(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023055585
(43)【公開日】2023-04-18
(54)【発明の名称】情報処理装置、情報処理システム、情報出力方法およびプログラム
(51)【国際特許分類】
G01N 25/18 20060101AFI20230411BHJP
【FI】
G01N25/18 H
【審査請求】未請求
【請求項の数】18
【出願形態】OL
(21)【出願番号】P 2021165122
(22)【出願日】2021-10-06
【国等の委託研究の成果に係る記載事項】(出願人による申告)令和3年度、国立研究開発法人科学技術振興機構、未来社会創造事業「熱伝搬挙動の高感度計測に基づくミクロ劣化評価」委託研究、産業技術力強化法第17条の適用を受ける特許出願
(71)【出願人】
【識別番号】504139662
【氏名又は名称】国立大学法人東海国立大学機構
(74)【代理人】
【識別番号】100128886
【弁理士】
【氏名又は名称】横田 裕弘
(72)【発明者】
【氏名】長野 方星
(72)【発明者】
【氏名】佐藤 鈴
【テーマコード(参考)】
2G040
【Fターム(参考)】
2G040AB08
2G040BA02
2G040BA27
2G040CA02
2G040DA06
2G040DA15
2G040EA06
2G040EC04
2G040HA02
2G040HA16
(57)【要約】
【課題】対象物を破壊することなく対象物の内部構造を特定する。
【解決手段】情報処理装置は、対象物に対して周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像を取得する画像取得部と、画像取得部が取得した応答画像を用いて推定した対象物の断面構造の画像を出力する出力部と、を備えることを特徴とする。そして、情報処理装置は、対象物を破壊することなく対象物の内部構造を特定することができる。
【選択図】
図1
【特許請求の範囲】
【請求項1】
対象物に対して周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像を取得する画像取得部と、
前記画像取得部が取得した前記応答画像を用いて推定した前記対象物の断面構造の画像を出力する出力部と、
を備えることを特徴とする情報処理装置。
【請求項2】
対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組み合わせである学習データを取得する取得部と、
前記取得部が取得した学習データを用いて機械学習モデルを学習させる学習部と、
前記学習部にて学習させた前記機械学習モデルに対象物の前記応答画像を入力し、当該対象物の内部構造の推定画像を出力する出力部と、
を備えることを特徴とする情報処理システム。
【請求項3】
前記対象物は、特定の材料と、当該材料を支持する母材とを有し、
前記推定画像は、前記対象物の断面における前記材料の位置を示す画像である、ことを特徴とする請求項2に記載の情報処理システム。
【請求項4】
前記学習データは、一の対象物に対する加熱条件が異なる複数の前記応答画像を含む、ことを特徴とする請求項2に記載の情報処理システム。
【請求項5】
前記加熱条件は、一の対象物を加熱する際の加熱周波数である、ことを特徴とする請求項4に記載の情報処理システム。
【請求項6】
前記加熱条件は、一の対象物に対する加熱位置である、ことを特徴とする請求項4に記載の情報処理システム。
【請求項7】
前記加熱条件は、一の対象物における加熱対象面である、ことを特徴とする請求項6に記載の情報処理システム。
【請求項8】
前記加熱条件は、一の対象物に対する加熱面積である、ことを特徴とする請求項6に記載の情報処理システム。
【請求項9】
前記学習データは、一の対象物における温度の検知面が異なる複数の前記応答画像を含む、ことを特徴とする請求項2に記載の情報処理システム。
【請求項10】
前記機械学習モデルは、複数の畳み込み層を有し前記応答画像が入力されるエンコーダ部と、複数の逆畳み込み層を有し前記推定画像を出力するデコーダ部とを含むニューラルネットワーク構造を備え、
前記畳み込み層で抽出された特徴を当該畳み込み層に対応する前記逆畳み込み層に送らない、ことを特徴とする請求項2に記載の情報処理システム。
【請求項11】
対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組合せである学習データを用いて学習させた機械学習モデルを記憶する記憶部と、
前記機械学習モデルに一の対象物の前記応答画像を入力し、当該一の対象物の内部構造に関する情報を出力する出力部と、
を備えることを特徴とする情報処理装置。
【請求項12】
対象物に対して光を周期的に照射し当該対象物を加熱する加熱部と、
前記加熱部によって加熱された前記対象物の箇所を含む領域における温度分布の変化の時間応答を検知する検知部と、
前記検知部によって検知された温度分布の変化の時間応答に基づいて、前記対象物を構成する少なくとも1種の材料の配向性を示す情報を出力する他の出力部と、
前記出力部の前記内部構造に関する情報と前記他の出力部の前記配向性を示す情報とのうち出力する情報の選択をユーザから受け付ける受付部と、
を備えることを特徴とする請求項11に記載の情報処理装置。
【請求項13】
対象物に対して周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像を取得するステップと、
取得した前記応答画像を用いて推定した前記対象物の断面構造の画像を出力するステップと、
を備えることを特徴とする情報出力方法。
【請求項14】
対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組み合わせである学習データを取得するステップと、
取得した学習データを用いて機械学習モデルを学習させるステップと、
前記機械学習モデルに対象物の前記応答画像を入力し、当該対象物の内部構造の推定画像を出力するステップと、
を備えることを特徴とする情報出力方法。
【請求項15】
対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組合せである学習データを用いて学習させた機械学習モデルを記憶するステップと、
前記機械学習モデルに一の対象物の前記応答画像を入力し、当該一の対象物の内部構造に関する情報を出力するステップと、
を備えることを特徴とする情報出力方法。
【請求項16】
コンピュータに、
対象物に対して周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像を取得する機能と、
取得した前記応答画像を用いて推定した前記対象物の断面構造の画像を出力する機能と、
を実行させるプログラム。
【請求項17】
コンピュータに、
対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組み合わせである学習データを取得する機能と、
取得した学習データを用いて機械学習モデルを学習させる機能と、
前記機械学習モデルに対象物の前記応答画像を入力し、当該対象物の内部構造の推定画像を出力する機能と、
を実行させるプログラム。
【請求項18】
コンピュータに、
対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組合せである学習データを用いて学習させた機械学習モデルを記憶する機能と、
前記機械学習モデルに一の対象物の前記応答画像を入力し、当該一の対象物の内部構造に関する情報を出力する機能と、
を実行させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置、情報処理システム、情報出力方法およびプログラムに関する。
【背景技術】
【0002】
特許文献1には、X線CT法により取得された樹脂成形品のスライス画像を二値化し、この二値化画像に対してフーリエ変換を施すことで得られるパワースペクトル画像を用いて、樹脂成形品内の一部における充填材の配向状態の傾向を解析することが開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
例えば炭素繊維強化プラスチックなど対象物の内部構造を特定するには、X線CT法などの切り出しが必要となる破壊検査が用いられる場合がある。しかしながら、例えば破壊検査では、長い時間が必要となることや検査装置が大がかりとなるおそれがあった。
本発明は、対象物を破壊することなく対象物の内部構造を特定することを目的とする。
【課題を解決するための手段】
【0005】
かかる目的のもと、本明細書に開示される技術は、対象物に対して周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像を取得する画像取得部と、前記画像取得部が取得した前記応答画像を用いて推定した前記対象物の断面構造の画像を出力する出力部と、を備えることを特徴とする情報処理装置である。
【0006】
他の観点から捉えると、本明細書に開示される技術は、対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組み合わせである学習データを取得する取得部と、前記取得部が取得した学習データを用いて機械学習モデルを学習させる学習部と、前記学習部にて学習させた前記機械学習モデルに対象物の前記応答画像を入力し、当該対象物の内部構造の推定画像を出力する出力部と、を備えることを特徴とする情報処理システムである。
ここで、前記対象物は、特定の材料と、当該材料を支持する母材とを有し、前記推定画像は、前記対象物の断面における前記材料の位置を示す画像であるとよい。
また、前記学習データは、一の対象物に対する加熱条件が異なる複数の前記応答画像を含むとよい。
また、前記加熱条件は、一の対象物を加熱する際の加熱周波数であるとよい。
また、前記加熱条件は、一の対象物に対する加熱位置であるとよい。
また、前記加熱条件は、一の対象物における加熱対象面であるとよい。
また、前記加熱条件は、一の対象物に対する加熱面積であるとよい。
また、前記学習データは、一の対象物における温度の検知面が異なる複数の前記応答画像を含むとよい。
また、前記機械学習モデルは、複数の畳み込み層を有し前記応答画像が入力されるエンコーダ部と、複数の逆畳み込み層を有し前記推定画像を出力するデコーダ部とを含むニューラルネットワーク構造を備え、前記畳み込み層で抽出された特徴を当該畳み込み層に対応する前記逆畳み込み層に送らないとよい。
【0007】
他の観点から捉えると、本明細書に開示される技術は、対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組合せである学習データを用いて学習させた機械学習モデルを記憶する記憶部と、前記機械学習モデルに一の対象物の前記応答画像を入力し、当該一の対象物の内部構造に関する情報を出力する出力部と、を備えることを特徴とする情報処理装置である。
ここで、対象物に対して光を周期的に照射し当該対象物を加熱する加熱部と、前記加熱部によって加熱された前記対象物の箇所を含む領域における温度分布の変化の時間応答を検知する検知部と、前記検知部によって検知された温度分布の変化の時間応答に基づいて、前記対象物を構成する少なくとも1種の材料の配向性を示す情報を出力する他の出力部と、前記出力部の前記内部構造に関する情報と前記他の出力部の前記配向性を示す情報とのうち出力する情報の選択をユーザから受け付ける受付部と、を備えるとよい。
【0008】
他の観点から捉えると、本明細書に開示される技術は、対象物に対して周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像を取得するステップと、取得した前記応答画像を用いて推定した前記対象物の断面構造の画像を出力するステップと、を備えることを特徴とする情報出力方法である。
【0009】
他の観点から捉えると、本明細書に開示される技術は、対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組み合わせである学習データを取得するステップと、取得した学習データを用いて機械学習モデルを学習させるステップと、前記機械学習モデルに対象物の前記応答画像を入力し、当該対象物の内部構造の推定画像を出力するステップと、を備えることを特徴とする情報出力方法である。
【0010】
他の観点から捉えると、本明細書に開示される技術は、対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組合せである学習データを用いて学習させた機械学習モデルを記憶するステップと、前記機械学習モデルに一の対象物の前記応答画像を入力し、当該一の対象物の内部構造に関する情報を出力するステップと、を備えることを特徴とする情報出力方法である。
【0011】
他の観点から捉えると、本明細書に開示される技術は、コンピュータに、対象物に対して周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像を取得する機能と、取得した前記応答画像を用いて推定した前記対象物の断面構造の画像を出力する機能と、を実行させるプログラムである。
【0012】
他の観点から捉えると、本明細書に開示される技術は、コンピュータに、対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組み合わせである学習データを取得する機能と、取得した学習データを用いて機械学習モデルを学習させる機能と、前記機械学習モデルに対象物の前記応答画像を入力し、当該対象物の内部構造の推定画像を出力する機能と、を実行させるプログラムである。
【0013】
他の観点から捉えると、本明細書に開示される技術は、コンピュータに、対象物の内部構造を示す構造画像と、当該対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す応答画像との組合せである学習データを用いて学習させた機械学習モデルを記憶する機能と、前記機械学習モデルに一の対象物の前記応答画像を入力し、当該一の対象物の内部構造に関する情報を出力する機能と、を実行させるプログラムである。
【発明の効果】
【0014】
本明細書に開示される技術によれば、対象物を破壊することなく対象物の内部構造を特定することができる。
【図面の簡単な説明】
【0015】
【
図1】本実施形態の内部構造評価装置を示す概略構成図である。
【
図3】コンピュータのハードウェア構成例を示した図である。
【
図4】面内熱拡散率の測定原理を示す説明図である。
【
図5】厚み方向熱拡散率の測定原理を示す説明図である。
【
図6】(a)は対象物1における熱拡散の方向を示し、(b)は熱拡散の角度と熱拡散率と繊維配向密度との関係を示す図である。
【
図7】内部構造評価装置の動作を説明するフローチャートである。
【
図8】ロックインサーモグラフィ式周期加熱法で測定したときの周期加熱応答画像の一例を示す図である。
【
図9】本実施形態で用いる対象物の一例を示す図である。
【
図10】本実施形態の対象物の周期加熱応答画像および断面構造画像である。
【
図11】本実施形態の機械学習部が用いるニューラルネットワーク構造の概念図である。
【
図12】本実施形態の機械学習部おける学習の説明図である。
【
図13】本実施形態の機械学習部による推定結果の一例である。
【
図14】対象物1における変形例の加熱面および検知面の説明図である。
【
図15】対象物1における変形例の加熱面および検知面の説明図である。
【
図16】変形例の内部構造評価装置の説明図である。
【発明を実施するための形態】
【0016】
以下、添付図面を参照して、本実施の形態について詳細に説明する。
<内部構造評価装置100の構成>
【0017】
図1は、本実施形態の内部構造評価装置100を示す概略構成図である。
まず、
図1を参照して、本実施形態が適用される内部構造評価装置100の構成を説明する。
【0018】
図1に示すように、本実施形態の内部構造評価装置100は、対象物1を加熱する光源として機能するダイオードレーザ10と、ダイオードレーザ10のレーザ光を対象物1へと導く導光部20と、対象物1に対向して設けられる赤外線サーモグラフィ(ロックインサーモグラフィ)30と、赤外線サーモグラフィ30からの信号を受けるコンピュータ50と、周期的信号を発生させダイオードレーザ10およびコンピュータ50へと出力する周期的信号発生器70と、を備える。
【0019】
また、導光部20は、ダイオードレーザ10から出射されたレーザ光を反射するミラー21と、ミラー21からのレーザ光のビーム径を拡大するビームエキスパンダ23と、対象物1を保持する保持体24と、を備える。
そして、内部構造評価装置100において、ダイオードレーザ10から出射されたレーザ光は、ミラー21およびビームエキスパンダ23を経て対象物1に照射される。この対象物1においては、レーザ光が照射される領域が周期的に加熱される。すなわち、対象物1の表面における特定の点(位置)が、スポット周期加熱される。
【0020】
ダイオードレーザ10のレーザ光により周期的に加熱された対象物1の温度は、対象物1の裏面から赤外線サーモグラフィ30によって測定される。なお、赤外線サーモグラフィ30は、ダイオードレーザ10によりスポット周期加熱される特定の点を含む予め定めた範囲を、赤外線画像として撮像(測定)する。すなわち、赤外線サーモグラフィ30は、対象物1の裏面の温度応答を2次元で計測する。また、赤外線サーモグラフィ30には、周期的信号発生器70から周期的信号が入力される。そして、赤外線サーモグラフィ30で測定された温度のデータである温度分布データは、コンピュータ50へと出力される。
【0021】
コンピュータ50は、赤外線サーモグラフィ30とあわせて、所定間隔のフレームレートに基づいて、赤外線画像の取り込みと演算とを連続的に実行し、時間の経過とともに変化する温度変化量から平均化した画像データを作成する(ロックイン方式)。さらに説明をすると、赤外線サーモグラフィ30で得られたデータは、コンピュータ50により演算処理され、加熱点Hp(後述する
図6(a)参照)からの方向(角度)、熱拡散率、および配向性が算出される。
なお、赤外線サーモグラフィ30で得られた画像データを用いてコンピュータ50により演算処理を行い、対象物1の加熱点Hpからの方向(角度)、熱拡散率、および配向性を算出することを「内部構造の測定」と呼ぶ場合がある。
【0022】
また、本実施形態のコンピュータ50は、赤外線サーモグラフィ30で得られた画像データ(例えば、後述する周期加熱応答画像Ti)と、学習させた機械学習モデル(以下、学習済みモデルと呼ぶ)とを用いて、対象物1の内部構造の推定結果を出力することも可能になっている。この内容について後に詳しく説明する。
なお、赤外線サーモグラフィ30で得られた画像データを用いてコンピュータ50により機械学習に基づいて、対象物1の内部構造を推定することを「内部構造の推定」と呼ぶ場合がある。
【0023】
なお、以下の説明においては、
図1における対象物1の表面に沿う一方向、すなわち図中左右方向をx方向ということがある。また、
図1における図中上下方向をz方向ということがある。また、
図1における紙面奥行方向をy方向ということがある。
【0024】
<コンピュータ50の機能構成>
図2は、コンピュータ50の機能構成図である。
【0025】
次に、本実施の形態が適用されるコンピュータ50の機能構成を説明する。
図2に示すように、本実施の形態が適用されるコンピュータ50は、赤外線サーモグラフィ30(
図1参照)から入力される温度分布データおよび周期的信号に基づいて位相遅れ分布を測定する位相遅れ分布測定部51と、測定された位相遅れに基づいて熱拡散率分布を算出する熱拡散率分布算出部52と、を備える。さらに、コンピュータ50は、算出された熱拡散率分布に基づいて対象物1(
図1参照)の配向性(後述)を算出する配向性算出部53と、熱拡散率分布および配向性の算出結果を表示する算出結果表示部54とを備える。また、コンピュータ50は、測定された温度分布の変化の時間応答(位相遅れ分布)に基づいて対象物1の内部構造を推定する機械学習部55と、対象物1の評価結果の出力内容の選択を受け付ける選択受付部56と、を備える。
【0026】
<コンピュータ50のハードウェア構成>
図3は、コンピュータ50のハードウェア構成例を示した図である。
【0027】
図3に示すように、コンピュータ50は、演算手段であるCPU(Central Processing Unit)501と、記憶手段であるメインメモリ503およびHDD(Hard Disk Drive)505とを備える。ここで、CPU501は、OS(Operating System)やアプリケーションソフトウェア等の各種プログラムを実行する。また、メインメモリ503は、各種プログラムやその実行に用いるデータ等を記憶する記憶領域である。HDD505は、各種プログラムに対する入力データや各種プログラムからの出力データ等を記憶する記憶領域である。そして、コンピュータ50が備えるこれらの構成部材により、上記
図2などで説明した各機能構成が実行される。
【0028】
なお、コンピュータ50は、赤外線サーモグラフィ30など外部との通信を行うための通信インターフェイス(通信I/F)507を備えている。また、CPU501が実行するプログラム(例えば、内部構造の測定や内部構造の推定を行うプログラム)は、予めメインメモリ503に記憶させておく形態の他、例えばCD-ROM等の記憶媒体に格納してCPU501に提供したり、あるいは、ネットワーク(不図示)を介してCPU501に提供したりすることも可能である。
【0029】
<対象物1周辺の構成>
次に、対象物1の構成および内部構造評価装置100における対象物1の周辺構成を説明する。
【0030】
まず、対象物1の構成について説明をする。対象物1は、平板状の部材である。対象物1の材質は特に限定されないが、例えば炭素繊維強化樹脂(Carbon Fiber Reinforced Plastics、CFRP、炭素繊維強化プラスチック)などの複合材料で構成される。
図1に示すように、対象物1は、ダイオードレーザ10によってレーザ光が照射される側、すなわち
図1中上側の面である上面11と、ダイオードレーザ10によってレーザ光が照射される側とは反対側、すなわち
図1中下側の面である下面13とを有する。この下面13は、赤外線サーモグラフィ30と対向する面である。付言すると、赤外線サーモグラフィ30は、対象物1の下面13における熱分布を測定する。
【0031】
そして、本実施の形態のコンピュータ50は、赤外線サーモグラフィ30により検出された対象物1(
図1参照)の温度分布の変化の時間応答に基づいて、対象物1の配向性を同定(特定)する。さらに説明をすると、コンピュータ50は、対象物1の温度分布の変化の応答の遅れに基づいて対象物1の配向性を特定する。付言すると、ここでは、対象物1の熱的特性を、対象物1の配向性として擬制する。
【0032】
ここで、図示の例における対象物1は、炭素系複合材料、より具体的には、炭素繊維強化樹脂(Carbon Fiber Reinforced Plastics(CFRP)、炭素繊維強化プラスチック)である。さらに説明をすると、対象物1は、ピッチから製造される所謂ピッチ系炭素繊維(強化材料)にエポキシ樹脂等の樹脂(母材)を含浸させた、ピッチ系炭素繊維強化樹脂により構成される。すなわち、対象物1は、エポキシ樹脂等の樹脂(母材)が炭素樹脂(材料)を支持している。
【0033】
なお、ピッチ系炭素繊維は、このピッチ系炭素繊維に含浸される樹脂と比較して、高熱伝導性である。付言すると、ピッチ系炭素繊維は、相対的に低熱伝導性の樹脂とは、熱伝導率(熱拡散率)が大きく異なる。ここで、ピッチ系炭素繊維強化樹脂は単なる例示であり、炭素繊維および樹脂の熱伝導率(熱拡散率)に差があればよく、例えば熱拡散率が相対的に低いポリアクリロニトリル(PAN)系の炭素繊維強化樹脂を用いてもよい。
また、図示の例における炭素繊維強化樹脂は、所謂不連続繊維複合材料であり、例えばピッチ系炭素繊維の長さは、例えば0.1mm~10mm程度、より詳細には、1mm~5mm程度である。ここで、不連続繊維複合材料は、単なる例示であり、連続繊維複合材料であってもよい。例えば、連続繊維プリプレグを積層した、炭素繊維強化樹脂を対象物1としてもよい。
【0034】
また、対象物1の配向性とは、異方性材料である対象物1に含まれる繊維(炭素繊維)の配向分布を示す指標である。本実施の形態においては、配向角(配向方向)および配向角の分散(配向角のばらつき)により示される。また、配向角とは、対象物1において繊維が向きやすい方向を示す角度である。言い替えると、配向角は、繊維の優先配向度である。
【0035】
<測定原理>
次に、本実施の形態における測定方法の原理を説明する。
図4(a)および
図4(b)は、面内熱拡散率の測定原理を示す説明図である。
【0036】
まず、
図4(a)および
図4(b)を参照しながら、対象物1の面内熱拡散率の測定原理について説明をする。
【0037】
ここでは、対象物1の表面に対して、一定の周波数の加熱光(レーザ光)を照射し、対象物1の裏面側から赤外線サーモグラフィ30により測定する。付言すると、ここでは、位相遅れの距離依存性を検知する。
さて、加熱光により照射される領域を点熱源とすると、この点熱源から距離r離れた位置での交流温度Tacは、以下に示す式(1)で表わされる。
【0038】
【0039】
ここに、
T0・・・定数(Km)
f・・・加熱周波数(Hz)
t・・・時間(s)
r・・・距離(m)
【0040】
また、点熱源と交流温度Tacとの位相差θは、以下に示す式(2)で表わされる。
【0041】
【0042】
ここに、
f1・・・加熱周波数(一定)(Hz)
D・・・熱拡散率(mm2/s)
【0043】
この対象物1の面内熱拡散率Dは、以下に示す式(3)で表わされる。
【0044】
【0045】
図5(a)および
図5(b)は、厚み方向熱拡散率の測定原理を示す説明図である。
次に、
図5(a)および
図5(b)を参照しながら、対象物1の厚み方向熱拡散率の測定原理について説明をする。ここでは、厚みdが一定の対象物1に照射させる加熱光の周波数を変化させながら測定する。付言すると、ここでは位相遅れの周波数依存性を検知する。
【0046】
この対象物1の厚み方向の熱拡散率Dは、以下に示す式(4)で表わされる。
【0047】
【0048】
ここに、
d・・・測定対象物の厚み(一定)(mm)
【0049】
図6(a)は対象物1における熱拡散の方向を示し、
図6(b)は熱拡散の角度と熱拡散率と繊維配向密度との関係を示す図である。
次に、
図6(a)および
図6(b)を参照しながら、対象物1の配向分布の測定原理について説明をする
【0050】
さて、
図6(a)に示すように、対象物1に含まれる炭素繊維配向に応じて、加熱点Hpからの熱拡散現象が変化する。すなわち、対象物1に含まれる炭素繊維の向きに沿う方向においては加熱点Hpからの熱が伝わりやすく、炭素繊維の向きと交差する向きには加熱点Hpからの熱が伝わりにくい。このことにより、対象物1における加熱点Hpを中心とした角度に応じて、熱拡散の速さに違いが生じる。言い替えると、対象物1における加熱点Hpを中心とした角度に応じて、熱拡散率が変化する。
【0051】
ここで、
図6(b)に示すように、対象物1において、加熱点Hpから複数方向の熱拡散率の測定を内部構造評価装置100により行った結果、角度に応じて熱拡散率が変化することが確認された。
また、本実施の形態においては、得られた熱拡散率角度分布に基づいて、繊維配向分布の平均と分散とを算出する。さらに説明をすると、得られた熱拡散率角度分布に基づいて得られる繊維配向分布密度関数(Fiber Orientation Distribution density function)により、繊維配向分布の平均と分散とを算出する。なお、繊維配向分布密度関数は、例えば、複数のピークを含む熱拡散率角度分布を、各々のピーク区間に分割し、各ピークに対して最小二乗法を用いたフィッティングを行うことにより得られる。
【0052】
ここで、繊維配向分布密度関数は、以下に示す式(5)で表わされる。
【0053】
【0054】
ここに、
η・・・オフセット角(rad)
ξ・・・分布サイズを決定するパラメータ(無次元数)
P・・・第1フィッティングパラメータ
Q・・・第2フィッティングパラメータ
【0055】
また、η≦θa≦θ≦θb≦180°であり、かつP≧1/2、Q≧1/2、ξ≧2、η≧0である。
そして、PおよびQに基づいて、分布の平均値μと分散σ2(標準偏差σ)が、以下に示す式(6)により求まる。
【0056】
【0057】
そして、分布の平均値μに基づいて、繊維配向方向θ0が、以下に示す式(7)により求まる。なお、式(7)におけるピークを含む区間とは、分割角度に対応する。
【0058】
【0059】
また、分散σ2は、配向方向への集中度を表わすため配向強度(Degree of fiber orientation)とも言い替えられる。
【0060】
<動作>
図7は、内部構造評価装置100の動作を説明するフローチャートである。
次に、
図1、
図2および
図7を参照して、本実施の形態における内部構造評価装置100の動作を説明する。
【0061】
まず、内部構造評価装置100におけるダイオードレーザ10から出射されたレーザ光により、対象物1の表面がスポット周期加熱される(ステップ701)。
そして、赤外線サーモグラフィ30により測定される温度分布により、位相遅れ分布測定部51が位相遅れ分布を測定する(ステップ702)。
そして、この測定された位相遅れ分布に基づき、熱拡散率分布算出部52が熱拡散率角度分布を算出する(ステップ703)。そして、この算出された熱拡散率角度分布に基づき、配向性算出部53が、配向方向および分散を算出する(ステップ704)。そして、算出結果表示部54が、配向方向および分散の算出結果を表示手段(不図示)に表示する(ステップ705)。
【0062】
なお、上述した本実施形態の内部構造評価装置100(
図1参照)では、対象物1の上面11をダイオードレーザ10による加熱面とし、下面13を赤外線サーモグラフィ30による温度の検知面としているが、この態様に限定されない。内部構造評価装置100は、対象物1の上面11をダイオードレーザ10による加熱面とし、同じ上面11を赤外線サーモグラフィ30による温度の検知面としてもよい。
【0063】
次に、機械学習部55について詳細に説明する。
図8は、ロックインサーモグラフィ式周期加熱法で測定したときの周期加熱応答画像の一例を示す図である。
【0064】
本実施形態の内部構造評価装置100は、上述したとおり、ロックインサーモグラフィ式周期加熱法による熱拡散率測定を用いた繊維配向同定を行うことが可能である。ロックインサーモグラフィ式周期加熱法は、熱応答をロックイン解析することにより、非破壊で細かな情報を振幅と位相遅れとして得ることができる。つまり、内部構造評価装置100は、熱拡散の様子を微小な温度変動の振幅と位相遅れとして取得できる。
【0065】
ある異方性不連続繊維CFRP材をスポット加熱によるロックインサーモグラフィ式周期加熱法で測定した場合、
図8に示すような位相遅れ画像である周期加熱応答画像が得られる。この周期加熱応答画像は真円分布ではなく、内部の炭素繊維の影響を受けて左右方向に伸びた楕円状の分布になっている。このように周期加熱応答画像は、材料の内部構造情報を含んでいる。そのため、内部構造と周期加熱応答画像の関係性の定量化をすることで構造推定が可能となる。
【0066】
そして、機械学習部55は、ロックインサーモグラフィ式周期加熱法により取得できる温度分布の変化の時間応答を示す周期加熱応答画像を用いる。機械学習部55は、周期加熱応答画像から内部構造への変換を行う。また、機械学習部55は、内部構造への変換に深層学習を用いる。
本実施形態では、深層学習に用いる学習データは、仮想材料構築と伝熱シミュレーション解析を用いて準備した。学習データには、様々な構造の仮想材料である画像データと、シミュレーションによってその仮想材料を周期加熱して得られる周期加熱応答画像データとの多量なペアからなるデータセットを用いる。
【0067】
また、機械学習部55で使用するネットワークは、畳み込みと逆畳み込みを組み合わせて、周期加熱応答画像(入力)から内部構造の推定画像(出力)へ変換する構造を備える。機械学習部55は、作成したデータセットによりネットワークを学習させることで学習済みモデルを構築する。そして、機械学習部55は、学習済みモデルを用いることで周期加熱応答画像から内部構造を推定することを可能にする。
【0068】
本実施形態では、学習データとして「既知の内部構造」と「周期加熱応答画像」との組み合わせを大量に準備した。既知の内部構造の作成には、仮想材料を作成可能な材料開発シミュレーションソフトウェアを用いる。一方で、作成した既知の内部構造の周期加熱応答画像は、伝熱シミュレーション解析が可能なソフトウェアを用いる。本実施形態では、これらのソフトウェアによって作成および解析した「既知の内部構造」のデータ画像と「周期加熱応答画像」のデータ画像との組み合わせを大量に作成した。
【0069】
図9は、本実施形態で用いる対象物1の一例を示す図である。
図10は、本実施形態の対象物1の周期加熱応答画像Tiおよび断面構造画像Siである。
【0070】
図9に示す対象物1は、仮想材料である。対象物1には、一方向積層CFRPを用いる。
図9に示すように、3mm×3mm×1mmの樹脂1rの樹脂体のうち中央部における2mm×2mm×1mmの範囲にφ200μmの炭素繊維1cの束を一方向に分布させたモデルを用いる。炭素繊維1cの分布は、ソフトウェアが予め定められた条件に基づいてランダムに配置させたものを用いている。
【0071】
伝熱シミュレーション解析では、対象物1の上面11の中央部における1点である加熱点Hpを加熱する周期的な点加熱とした。また、対象物1の下面13における2mm×2mmの領域を測定面MAとした。ここで、本実施形態の加熱点Hpのサイズは、直径100μmとする。周期加熱条件は、熱流束は500000W/m2、加熱周波数は0.1Hz、測定周波数は2Hz、周期数は10とした。
【0072】
そして、
図10(a)に示すように、伝熱シミュレーション解析の結果としての周期加熱応答画像が得られる。この周期加熱応答画像Tiは、
図9に示す対象物1の下面13(xy面)から見た位相遅れ分布を示す周期加熱応答画像Tiである。周期加熱応答画像Tiでは、位相の遅れを白黒の濃淡によって表現する。位相遅れ分布は、対象物1の内部構造に応じて異なる。すなわち、周期加熱応答画像Tiは、対象物1の内部構造に応じて白黒の濃淡によって表現される画像の内容が異なってくる。言い替えると、周期加熱応答画像Tiは、対象物1の断面構造における炭素繊維1cの配置に応じて白黒の濃淡によって表現される画像の内容が異なる。
【0073】
また、
図10(b)に示すように、
図9に示す加熱点Hpを通る対象物1の断面の繊維分布を示す断面構造画像Siが得られる。この断面構造画像Siは、
図9に示すyz断面の画像である。断面構造画像Siには、断面における炭素繊維1cの位置および樹脂1rの位置が特定される。なお、本実施形態の断面構造画像Siは、後述する深層学習に使用しやすいように、モノクロの正方形に座標変換したものを用いる。
【0074】
そして、本実施形態の機械学習部55は、周期加熱応答画像Tiと断面構造画像Siとの組合せを1つのデータとして、複数のデータを集めたデータセットを学習データ(教師データ)として深層学習に用いる。
【0075】
<機械学習の条件>
図11は、本実施形態の機械学習部が用いるニューラルネットワーク構造の概念図である。
【0076】
機械学習部55は、機械学習モデルの一例として畳み込みニューラルネットワーク(CNN:Convolution Neural Network)を用いる。畳み込みニューラルネットワークは、各層を畳み込み処理で結びつけることで画像の特徴を捉えながらパラメータ削減ができるネットワーク構造である。
【0077】
本実施形態の機械学習部55は、U-Netの構造を参考としながらU-Netとは異なるネットワーク構造を採用している。
ここで、U-Netは、エンコーダ部で畳み込みを用いて入力画像から特徴を抽出し、デコーダ部で抽出された特徴からアップサンプリングにより入力画像サイズと同等の画像を出力するネットワーク構造である。特に、U-Netでは、主に物体検知に使用され、アップサンプリングを安定させるためにエンコーダ部とデコーダ部とが結合されている。U-netでは、例えば特定の畳み込み層にて抽出された特徴マップ(特徴量)をその特定の畳み込み層に対応する逆畳み込み層に送るスキップ構造を採用している。
【0078】
本実施形態では、入力である周期加熱応答画像Tiの特徴を抽出し、そこから出力である内部構造を表した推定画像を生成するような画像への変換を行う。そこで、
図11に示すように、本実施形態では、U-Netの構造を参考にし、エンコーダとデコーダの結合を取り除いたネットワーク構造を作成した。本実施形態の機械学習部55は、5つの畳み込み層を有するエンコーダ部と、5つの逆畳み込み層を有するデコーダ部とを備えるニューラルネットワークを用いている。エンコーダ部は、畳み込み層およびプーリング層からなる層が3つ、畳み込み層のみが2つ設けられている。また、デコーダ部は、逆畳み込み層およびアンプーリング層からなる層が3つ、逆畳み込み層のみが2つ設けられている。そして、本実施形態のニューラルネットワークは、特定の畳み込み層で抽出された特徴マップ(特徴量)を、その特定の畳み込み層に対応する逆畳み込み層に送るスキップ接続を有していない。
【0079】
そして、本実施形態の内部構造評価装置100では、以下のステップによって情報出力方法を実現している。
まず、機械学習部55は、対象物の内部構造を示す断面構造画像Siと、対象物に周期的な光を照射することで加熱された箇所を含む領域における温度分布の変化の時間応答を示す周期加熱応答画像Tiとの組み合わせである学習データを取得する。
次に、機械学習部55は、取得した学習データを用いて機械学習モデルを学習させる。
さらに、機械学習部55は、機械学習モデルに内部構造が未知である対象物の周期加熱応答画像Tiを入力し、その対象物の内部構造の構造推定画像Eiを出力する。
【0080】
図12は、本実施形態の機械学習部55おける学習の説明図である。
【0081】
本実施形態の機械学習部55は、上述したペアからなるデータセットでニューラルネットワークを学習させる深層学習を行う。なお、本実施形態において、作成したデータセットは合わせて122ペアであり、学習データ(Training data)に99ペア、学習内評価データ(Validation data)に20ペア、テストデータ(Test data)に3ペアをランダムで割り振った。すなわち、学習には、学習データと学習内評価データの計119ペアを用いた。
【0082】
誤差関数には、式(8)で示す回帰問題で汎用性の高い平均二乗誤差Eを使用した。最適化手法には、Adam(Adaptive moment estimation)を使用して誤差関数が小さくなる向きに学習を実行する。
【0083】
【0084】
ここでy
iは正解の値であり、y
l^は出力である。まず初めにハイパーパラメータを、最大エポック数は100、バッチ数は16として学習させたものをModel Aとした。学習計算時間はCPUで6分29秒であった。その結果、学習データの誤差関数の大きさで表すTraining errorの値は0.054、Validation dataの誤差関数の大きさで表すValidation errorは0.093となった。
図12に示すように、Errorは、それぞれ右肩下がりに収束していることから過学習なく正常に学習が進んでいることがわかった。
【0085】
次に、過学習を避けながらエポック数を大きくするために、式(9)に示す誤差関数にL2正則化を適用したE’を用いて学習させる。
【0086】
【0087】
そして、正則化パラメータλを0.001とした。また、βは回帰係数ベクトルである。最大エポック数は200、バッチ数は16として学習させたものをModel Bとした。学習計算時間はCPUで10分41秒であった。その結果、学習データの誤差関数の大きさで表すTraining errorの値は0.043、Validation dataの誤差関数の大きさで表すValidation errorは0.077となった。
【0088】
図13は、本実施形態の機械学習部55による推定結果の一例である。なお、
図13(a)はModel Aの結果を示し、
図13(b)はModel Bの結果を示している。
【0089】
本実施形態の機械学習部55は、学習済みモデルにテストデータ(データ1、データ2、データ3)である周期加熱応答画像Tiを入力し、内部構造の推定を行った。
図13(a)および
図13(b)には、左から順に、テストデータとしての周期加熱応答画像Tiと、推定結果である構造推定画像Eiと、正解データである断面構造画像Siとを並べている。
【0090】
図13に示す各々のテストデータとしての周期加熱応答画像Tiは、断面構造画像Siに示される断面構造を有する仮想材料を伝熱シミュレーション解析することで作成したものである。
そして、推定(出力)結果である構造推定画像Eiは、対象物1の断面における炭素繊維1cの位置を示す画像となっている。このように、機械学習部55は、対象物1の周期加熱応答画像Tiから、その対象物1における断面構造の画像である構造推定画像Eiを出力可能になっている。
【0091】
そして、
図13(a)および
図13(b)に示すように、定性的には、Model AおよびModel Bどちらもある程度の精度で構造推定を行っている。すなわち、構造推定画像Eiは、正解構造である断面構造画像Siの特徴を受けた出力となっていることが見て取れる。
【0092】
続いて、本実施形態の機械学習部55による正答率について説明する。
正答率は、対象物1の断面図の画像である断面構造画像Siを正解とし、学習済みモデルにより出力された画像である構造推定画像Eiの評価したものである。
【0093】
本実施形態では、2つの評価方法を用いた。具体的には、ALLという評価方法と、Balanced accuracy(以下、BA)という評価方法である。ALLは、全体の内の正の割合であり、正解率とも呼ばれる。また、BAでは、正誤の数の差を均した割合である。
評価では、仮想材料の断面構造画像Siにおける各ピクセルと、出力画像として得られる構造推定画像Eiにおいて対応する位置のピクセルとを比較した。
【0094】
ここで、対応する位置のピクセルにおいて、断面構造画像Siにおける炭素繊維1cと炭素繊維1c以外(この例では樹脂1r)と、構造推定画像Eiにおける炭素繊維1cと炭素繊維1c以外(この例では樹脂1r)との正誤の関係を以下のとおりとする。
例えば、断面構造画像Siにて炭素繊維1cである場合に、構造推定画像Eiにて炭素繊維1cと予測した場合を真陽性とする(以下、TPと呼ぶ)。断面構造画像Siにて炭素繊維1c以外である場合に、構造推定画像Eiにて炭素繊維1cと予測した場合を偽陽性とする(以下、FPと呼ぶ)。断面構造画像Siにて炭素繊維1cである場合に、構造推定画像Eiにて炭素繊維1c以外と予測した場合を偽陰性とする(以下、FNと呼ぶ)。断面構造画像Siにて炭素繊維1c以外である場合に、構造推定画像Eiにて炭素繊維1c以外と予測した場合に真陰性とする(以下、TNとよぶ)。
【0095】
【0096】
そして、ALLの値は、Model A(データ1)は約65%、Model A(データ2)は約66%、Model A(データ3)は約57%となった。また、ALLの値は、Model B(データ1)は約63%、Model B(データ2)は約65%、Model B(データ3)は約62%となった。このように、ALLの値は、約57%~66%という正答率となった。
【0097】
【0098】
そして、BAの値は、Model A(データ1)は約56%、Model A(データ2)は約57%、Model A(データ3)は約50%となった。また、このBAの値は、Model B(データ1)は約53%、Model B(データ2)は約52%、Model B(データ3)は約55%となる。このように、BAの値は、約50%~57%という正答率となった。
【0099】
本実施形態では、対象物1(例えば炭素繊維が含まれる複合材料であるCFRP)の内部特有の熱物性に着目した。すなわち、ロックインサーモグラフィ式周期加熱法を用いて対象物1を加熱した場合、対象物1の上面11から下面13への熱の伝搬状態(位相遅れ)の分布を特定できる。例えば、炭素繊維の繊維方向においては位相遅れが小さくなり、炭素繊維の繊維方向と異なる方向においては位相遅れが大きくなるという傾向がある。したがって、対象物1を測定して得られる位相遅れ分布を示す周期加熱応答画像Tiには、対象物1の内部構造の特徴量が反映される。そこで、本実施形態の機械学習部55では、機械学習モデル用いた機械学習によって、その特徴量を抽出するようにしている。そして、学習済みの機械学習モデルに対象物1の周期加熱応答画像Tiを入力することで、対象物1の内部構造を推定する構造推定画像Eiを出力するようにしている。
【0100】
このように、本実施形態の内部構造評価装置100では、学習済みモデルを用いて、周期加熱応答画像Tiから対象物1の断面構造を推定可能である。そして、内部構造評価装置100は、2次元で示される周期加熱応答画像Tiから、対象物1の内部構造である例えば炭素繊維の3次元の配向を立体的に特定可能である。すなわち、内部構造評価装置100は、周期加熱応答画像Tiを用いて対象物1の3次元的な内部構造の推定が可能になっている。
【0101】
続いて、
図2に示す選択受付部56について説明する。
本実施形態の内部構造評価装置100は、対象物1から赤外線サーモグラフィ30で得られた画像データを用いてコンピュータ50により演算処理を行い、対象物1の配向性を算出する内部構造の測定結果を出力可能になっている。また、本実施形態の内部構造評価装置100は、赤外線サーモグラフィ30で得られた画像データに基づき、学習済みモデルを用いて対象物1の内部構造の推定結果を出力可能になっている。そして、選択受付部56は、内部構造の測定結果と、内部構造の推定結果とのいずれの結果を出力するかの選択をユーザから受け付けることが可能になっている。
【0102】
次に、機械学習部55において機械学習モデルを学習させる際の学習データのバリエーションについて説明する。
【0103】
<変形例>
例えば
図1を参照しながら説明したように、本実施形態の機械学習部55では、対象物1の上面11をダイオードレーザ10による加熱面とし、下面13を赤外線サーモグラフィ30による温度の検知面として得られた周期加熱応答画像Tiを学習データとして用いる。そして、機械学習部55では、対象物1に対して同一の加熱条件で得られた周期加熱応答画像Tiを学習データとして用いて機械学習モデルを学習させた。
【0104】
これに対して、学習データは、同一の対象物1に対する加熱条件が異なる複数の周期加熱応答画像Tiを含んで構成されていてもよい。このように、同一の対象物1に対して異なる複数の周期加熱応答画像Tiを含む学習データを用いて機械学習モデルを学習させることで、対象物1の内部構造の推定精度を高めることが可能となる。
【0105】
例えば、機械学習部55は、対象物1の上面11を加熱面とし、同じ上面11を検知面として得られた周期加熱応答画像Tiを学習データとして用いてもよい。
そして、一の対象物1の断面を示す断面構造画像Siに対して、一の対象物1の上面11を加熱面とし下面13を検知面(
図1参照)として得られた周期加熱応答画像Tiと、一の対象物1の上面11を加熱面とし上面11を検知面として得られた周期加熱応答画像Tiとを組み合わせた学習データを作成する。そして、機械学習部55では、作成した学習データを用いてニューラルネットワークを学習させてもよい。
【0106】
<変形例>
図14は、対象物1における変形例の加熱面および検知面の説明図である。
【0107】
本実施形態では、例えば対象物1において加熱面と検知面とは上面11(xy面)と下面13(xy面)のように略平行の関係になる2つの面の一つの組み合わせによって周期加熱応答画像Tiを得ているが、この態様に限定されない。
【0108】
図14に示すように、対象物1の第1側面14(xz面)に加熱点Hpを設けて第1側面14を加熱面とし、第1側面14と略平行の関係である対象物1の第3側面16(xz面)を検知面として周期加熱応答画像Tiを得てもよい。また、対象物1の第2側面15(yz面)に加熱点Hpを設けて第2側面15を加熱面とし、第2側面15と略平行の関係である対象物1の第4側面17(yz面)を検知面とした周期加熱応答画像Tiを得てもよい。
【0109】
そして、対象物1の断面を示す断面構造画像Siに対して、下面13を検知面として得られた周期加熱応答画像Tiと、第3側面16を検知面として得られた周期加熱応答画像Tiと、第4側面17を検知面として得られた周期加熱応答画像Tiとを組み合わせた学習データを作成する。このように、学習データは、一の対象物1に対して加熱対象面を異ならせて得られた複数の周期加熱応答画像Tiを有して構成されていてもよい。そして、機械学習部55は、この学習データを用いてニューラルネットワークを学習させてもよい。
【0110】
<変形例>
図15は、対象物1における変形例の加熱面および検知面の説明図である。
【0111】
本実施形態では、例えば対象物1の上面11において1つの加熱点Hp(例えば
図9参照)にて点加熱を行うことで対象物1の上面11を加熱しているが、この例に限定されない。
図15に示すように、対象物1の上面11における複数箇所で点加熱を行うようにしてもよい。
図15に示す例では、上面11における第1加熱点Hp1、第2加熱点Hp2、第3加熱点Hp3および第4加熱点Hp4に対してダイオードレーザ10による光の照射を行うことで点加熱を実施する。そして、対象物1の上面11における各々の箇所で点加熱を行う度に、下面13を検知面として周期加熱応答画像Tiを得る。
【0112】
そして、対象物1の断面を示す断面構造画像Siに対して、上面11側における加熱位置が異なる複数の周期加熱応答画像Tiを組み合わせた学習データを作成する。このように、学習データは、一の対象物1に対して加熱位置を異ならせて得られた複数の周期加熱応答画像Tiを有して構成されていてもよい。そして、機械学習部55は、この学習データを用いてニューラルネットワークを学習させてもよい。
【0113】
<変形例>
図16は、変形例の内部構造評価装置100の説明図である。
【0114】
図16に示すように、変形例の内部構造評価装置100の基本構成は、上述した本実施形態の内部構造評価装置100と同様である。そして、変形例の内部構造評価装置100は、ダイオードレーザ10(
図1参照)から出射されたレーザ光をシート光に変化させるシリンドリカルレンズ25を有している。そして、
図16に示すように、対象物1の上面11には、光照射領域HAが形成される。図示の光照射領域HAは、長軸がx方向に沿う略楕円形状あるいは略長方形状)である。付言すると、光照射領域HAは、対象物1の上面11において一方向に長い形状である。この光照射領域HAにより、対象物1の上面11においてライン加熱(線加熱)が可能となる。なお、光照射領域HAは、線熱源として捉えることができる。
【0115】
そして、対象物1の上面11においてライン加熱を行い、下面13を検知面として周期加熱応答画像Tiを得る。また、対象物1の断面を示す断面構造画像Siに、ライン加熱を行うことで得られる周期加熱応答画像Tiを組み合わせた学習データを作成する。そして、機械学習部55は、この学習データを用いてニューラルネットワークを学習させてもよい。
【0116】
また、
図16に示す内部構造評価装置100において、対象物1とシリンドリカルレンズ25とを相対的に移動させてもよい。例えば、シリンドリカルレンズ25は固定とし、シリンドリカルレンズ25に対して対象物1をy方向に移動させる。これによって、対象物1に対して異なる箇所にてライン加熱を行ってもよい。そして、対象物1の上面11における各々の箇所でライン加熱を行う度に、下面13を検知面として周期加熱応答画像Tiを得ることができる。
そして、対象物1の断面を示す断面構造画像Siに対して、上面11側におけるライン加熱の位置が異なる複数の周期加熱応答画像Tiを組み合わせた学習データを作成する。そして、機械学習部55は、この学習データを用いてニューラルネットワークを学習させてもよい。
【0117】
さらに、対象物1の断面を示す断面構造画像Siに対して、一の対象物1に対して点加熱を行うことで得られた周期加熱応答画像Tiと、一の対象物1に対してライン加熱を行うことで得られた周期加熱応答画像Tiを組み合わせたデータセットを作成する。このように、学習データは、一の対象物1に対して加熱面積を異ならせて得られた複数の周期加熱応答画像Tiを有して構成されていてもよい。そして、機械学習部55は、この学習データを用いてニューラルネットワークを学習させてもよい。
【0118】
なお、内部構造評価装置100は、対象物1の例えば上面11全体を加熱するようにした面加熱を行い、下面13を検知面として周期加熱応答画像Tiを取得してもよい。
【0119】
<変形例>
本実施形態の機械学習部55は、対象物1を一の加熱周波数により加熱して得られた周期加熱応答画像Tiを学習データとして用いているが、この態様に限定されない。例えば、一の対象物1を加熱する際の加熱周波数を異ならせた複数の周期加熱応答画像Tiを学習データとして用いてもよい。
【0120】
特に、対象物1の上面11を加熱面とし上面11を検知面とする際に、加熱周波数を異ならせた複数の周期加熱応答画像Tiを得ることで、対象物1の厚さ方向(z方向)における内部構造の情報を選択的に取得することが可能になる。
【0121】
ここで、加熱周波数が低い場合には、熱波長が長くなり、上面11から下面13に向けてより加熱範囲が長くなる。この場合、対象物1の厚さ方向においてより下面13までの熱特性の情報が得られる。一方、加熱周波数が高い場合には、熱波長が短くなり、上面11から下面13に向けた加熱範囲が短くなる。この場合、対象物1の厚さ方向においてより上面11側だけでの熱特性の情報が得られる。
【0122】
このように、対象物1に対する加熱周波数を異ならせることによって、対象物1の厚さ方向において異なる熱特性の情報を得ることができる。そして、一の対象物1を加熱する際の加熱周波数を異ならせた複数の周期加熱応答画像Tiを学習データとして用いてニューラルネットワークを学習させることができる。
【0123】
なお、ダイオードレーザ10は、加熱部の一例である。赤外線サーモグラフィ30は、検知部の一例である。算出結果表示部54は、他の出力部の一例である。機械学習部55は、取得部、画像取得部、学習部、出力部、記憶部の一例である。選択受付部56は、受付部の一例である。内部構造評価装置100は、情報処理装置、情報処理システムの一例である。周期加熱応答画像Tiは、応答画像の一例である。断面構造画像Siは、構造画像の一例である。構造推定画像Eiは、推定画像の一例である。
【0124】
なお、本実施形態の内部構造評価装置100は、対象物1の内部構造を推定するために機械学習部55の学習済みモデルを用いているが、この態様に限定されない。内部構造評価装置100は、対象物1の周期加熱応答画像Tiに基づいて、その対象物1の内部構造(断面構造)を推定できればよく、例えばパターンマッチングによる画像処理の技術を用いることもできる。
【0125】
また、例えば
図9を参照しながら説明したように、本実施形態では例えば炭素繊維束を一方向に分布させたモデルを対象物1として用いて機械学習を行う例を説明しているが、この態様に限定されない。本実施形態の内部構造評価装置100の機械学習部55は、例えば炭素繊維束の繊維の方向が様々な方向を向く(多方向)の対象物1に対しても同様に適用することができる。
【0126】
また、本実施形態の内部構造評価装置100による評価の対象となる対象物1は、複合材料に限定されない。対象物1は、例えば単一の材料によって構成されていてもよい。この場合、例えば材料の中に空隙(ボイド)が存在する場合に、空隙部分において熱伝導が阻害される。このため、材料中における空隙の有無は、温度分布の変化の時間応答として周期加熱応答画像Tiに反映される。そして、内部構造評価装置100は、単一の材料によって構成される対象物1に対しても、内部構造の測定や内部構造の推定を行うことができる。
【0127】
さて、上記では種々の実施形態および変形例を説明したが、これらの実施形態や変形例同士を組み合わせて構成してももちろんよい。
また、本開示は上記の実施形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の形態で実施することができる。
【符号の説明】
【0128】
1…対象物、1r…樹脂、1c…炭素繊維、10…ダイオードレーザ、30…赤外線サーモグラフィ、50…コンピュータ、51…分布測定部、52…熱拡散率分布算出部、53…配向性算出部、54…算出結果表示部、55…機械学習部、56…選択受付部、Si…断面構造画像、Ti…周期加熱応答画像、Ei…構造推定画像