IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ バイオセンス・ウエブスター・(イスラエル)・リミテッドの特許一覧

特開2023-57541アブレーションプランニングのための予測された電気解剖学的マップ
<>
  • 特開-アブレーションプランニングのための予測された電気解剖学的マップ 図1
  • 特開-アブレーションプランニングのための予測された電気解剖学的マップ 図2
  • 特開-アブレーションプランニングのための予測された電気解剖学的マップ 図3
  • 特開-アブレーションプランニングのための予測された電気解剖学的マップ 図4
  • 特開-アブレーションプランニングのための予測された電気解剖学的マップ 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023057541
(43)【公開日】2023-04-21
(54)【発明の名称】アブレーションプランニングのための予測された電気解剖学的マップ
(51)【国際特許分類】
   A61B 5/367 20210101AFI20230414BHJP
【FI】
A61B5/367
【審査請求】未請求
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022162183
(22)【出願日】2022-10-07
(31)【優先権主張番号】17/498,384
(32)【優先日】2021-10-11
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】511099630
【氏名又は名称】バイオセンス・ウエブスター・(イスラエル)・リミテッド
【氏名又は名称原語表記】Biosense Webster (Israel), Ltd.
(74)【代理人】
【識別番号】100088605
【弁理士】
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【弁理士】
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】エリアス・シャミロフ
(72)【発明者】
【氏名】ウラジミール・ルビンシュタイン
(72)【発明者】
【氏名】アブラム・モンタグ
(72)【発明者】
【氏名】コンスタンティン・フェルドマン
(72)【発明者】
【氏名】アレクサンダー・ゴロボイ
【テーマコード(参考)】
4C127
【Fターム(参考)】
4C127AA02
4C127BB05
4C127FF03
4C127GG05
4C127GG09
4C127HH13
(57)【要約】
【課題】アブレーションプランニングのためのシステムを提供すること。
【解決手段】システムは、ディスプレイ及びプロセッサを含む。プロセッサは、現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算するように構成されている。プロセッサは、予測されたLATに基づいて、心臓組織の特定の部分のアブレーション後の心臓組織の予測状態を表す予測された電気解剖学的マップを生成し、予測された電気解剖学的マップをディスプレイ上に表示するように更に構成されている。他の実施形態についても述べる。
【選択図】図1
【特許請求の範囲】
【請求項1】
アブレーションプランニングのためのシステムであって、前記システムが、
ディスプレイと、
プロセッサと、を含み、前記プロセッサが、
現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、前記心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、前記心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算することと、
前記予測されたLATに基づいて、前記心臓組織の前記特定の部分のアブレーション後の前記心臓組織の予測状態を表す予測された電気解剖学的マップを生成することと、
前記予測された電気解剖学的マップを前記ディスプレイ上に表示することと、を行うように構成されている、システム。
【請求項2】
前記プロセッサが、
前記予測されたLATを計算する前に、前記心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、前記現在の電気解剖学的マップ上の前記心臓組織の前記特定の部分のマーキングを受信することと、を行うように更に構成されており、
前記プロセッサが、前記マーキングを受信することに応答して前記伝播をシミュレートするように構成されている、請求項1に記載のシステム。
【請求項3】
前記プロセッサが、前記予測されたLATに基づいて前記位置におけるそれぞれの予測伝導速度を計算するように更に構成されており、前記プロセッサが、前記予測伝導速度に基づいて前記予測された電気解剖学的マップを生成するように構成されている、請求項1に記載のシステム。
【請求項4】
前記プロセッサが、複数の反復にわたって、前記心臓組織を表す細胞オートマトンモデルを進化させることによって、前記興奮電位の前記伝播をシミュレートするように構成されており、
前記プロセッサが、前記モデルの細胞が最初に興奮状態である前記反復のそれぞれを識別することに応答して、前記予測されたLATを計算するように構成されている、請求項1に記載のシステム。
【請求項5】
前記プロセッサが、前記心臓組織を表す三角形メッシュを分割することによって、前記細胞を画定するように更に構成されている、請求項4に記載のシステム。
【請求項6】
前記細胞が、それぞれの伝導速度を有し、前記プロセッサは、前記反復の各々の間に、非興奮状態である前記細胞のうちの少なくとも1つの第1の細胞について、
前記細胞のうちの少なくとも1つの第2の細胞を、(i)前記第2の細胞の前記伝導速度、(ii)前記第1の細胞からの前記第2の細胞の距離、及び(iii)前記第2の細胞が最後に興奮状態であったときから経過した前記反復の数に応答して、前記第1の細胞の興奮因子として識別することと、
前記第2の細胞を識別することに応答して、前記第1の細胞を興奮状態にすることと、を行うことによって、前記モデルを進化させるように構成されている、請求項4に記載のシステム。
【請求項7】
前記プロセッサが、
前記予測されたLATを計算する前に、前記心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、前記現在の電気解剖学的マップのマップ部分の指示を受信することと、
前記現在の電気解剖学的マップの前記マップ部分に対応する前記細胞のうちの1つ又は2つ以上が興奮状態であり、前記細胞の他の全てが非興奮状態であるように、前記モデルを初期化することと、を行うように更に構成されている、請求項4に記載のシステム。
【請求項8】
前記プロセッサが、前記反復の各々の間に、事前定義された数の前記反復に対して興奮状態であった前記細胞のうちのいずれか1つを非興奮状態にすることによって、前記モデルを進化させるように構成されている、請求項4に記載のシステム。
【請求項9】
前記事前定義された数が、第1の事前定義された数であり、前記プロセッサが、前記反復の各々の間に、第2の事前定義された数の前記反復内で最後に興奮状態であった前記細胞のうちのいずれか1つを興奮状態にすることを控えることによって、前記モデルを進化させるように構成されている、請求項8に記載のシステム。
【請求項10】
アブレーションプランニングのための方法であって、前記方法は、
現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、前記心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、前記心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算することと、
前記予測されたLATに基づいて、前記心臓組織の前記特定の部分のアブレーション後の前記心臓組織の予測状態を表す予測された電気解剖学的マップを生成することと、
前記予測された電気解剖学的マップを表示することと、を含む、方法。
【請求項11】
前記予測されたLATを計算する前に、前記心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、前記現在の電気解剖学的マップ上の前記心臓組織の前記特定の部分のマーキングを受信することと、を更に含み、
前記伝播をシミュレートすることが、前記マーキングを受信することに応答して前記伝播をシミュレートすることを含む、請求項10に記載の方法。
【請求項12】
前記予測されたLATに基づいて前記位置におけるそれぞれの予測伝導速度を計算することを更に含み、前記予測された電気解剖学的マップを生成することが、前記予測伝導速度に基づいて前記予測された電気解剖学的マップを生成することを含む、請求項10に記載の方法。
【請求項13】
前記興奮電位の前記伝播をシミュレートすることが、複数の反復にわたって、前記心臓組織を表す細胞オートマトンモデルを進化させることによって、前記興奮電位の前記伝播をシミュレートすることを含み、
前記予測されたLATを計算することが、前記モデルの細胞が最初に興奮状態である前記反復のそれぞれを識別することに応答して、前記予測されたLATを計算することを含む、請求項10に記載の方法。
【請求項14】
前記心臓組織を表す三角形メッシュを分割することによって、前記細胞を画定することを更に含む、請求項13に記載の方法。
【請求項15】
前記細胞が、それぞれの伝導速度を有し、前記モデルを進化させることは、前記反復の各々の間に、非興奮状態である前記細胞のうちの少なくとも1つの第1の細胞について、
前記細胞のうちの少なくとも1つの第2の細胞を、(i)前記第2の細胞の前記伝導速度、(ii)前記第1の細胞からの前記第2の細胞の距離、及び(iii)前記第2の細胞が最後に興奮状態であったときから経過した前記反復の数に応答して、前記第1の細胞の興奮因子として識別することと、
前記第2の細胞を識別することに応答して、前記第1の細胞を興奮状態にすることと、を含む、請求項13に記載の方法。
【請求項16】
前記予測されたLATを計算する前に、前記心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、前記現在の電気解剖学的マップのマップ部分の指示を受信することと、
前記現在の電気解剖学的マップの前記マップ部分に対応する前記細胞のうちの1つ又は2つ以上が興奮状態であり、前記細胞の他の全てが非興奮状態であるように、前記モデルを初期化することと、を更に含む、請求項13に記載の方法。
【請求項17】
前記モデルを進化させることが、前記反復の各々の間に、事前定義された数の前記反復に対して興奮状態であった前記細胞のうちのいずれか1つを非興奮状態にすることを含む、請求項13に記載の方法。
【請求項18】
前記事前定義された数が、第1の事前定義された数であり、前記モデルを進化させることが、前記反復の各々の間に、第2の事前定義された数の前記反復内で最後に興奮状態であった前記細胞のうちのいずれか1つを興奮状態にすることを控えることを更に含む、請求項17に記載の方法。
【請求項19】
プログラム命令が記憶されている有形の非一時的コンピュータ可読媒体を含むコンピュータソフトウェア製品であって、前記命令が、プロセッサによって読み取られるときに、前記プロセッサに、
現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、前記心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、前記心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算することと、
前記予測されたLATに基づいて、前記心臓組織の前記特定の部分のアブレーション後の前記心臓組織の予測状態を表す予測された電気解剖学的マップを生成することと、
前記予測された電気解剖学的マップを前記ディスプレイ上に表示することと、を行わせる、コンピュータソフトウェア製品。
【請求項20】
前記命令が、前記プロセッサに、複数の反復にわたって、前記心臓組織を表す細胞オートマトンモデルを進化させることによって、前記興奮電位の前記伝播をシミュレートさせ、
前記命令が、前記プロセッサに、前記モデルの細胞が最初に興奮状態である前記反復のそれぞれを識別することに応答して、前記予測されたLATを計算させる、請求項19に記載のコンピュータソフトウェア製品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、広義には電気生理学の分野に関し、具体的には心不整脈のマッピング及び治療に関する。
【背景技術】
【0002】
心臓組織の任意の部分における局所興奮時間(LAT)は、(i)任意の心周期中に組織が電気興奮状態になる時間と、(ii)同じ周期中の基準時間との差である。基準時間は、例えば、身体表面心電図(ECG)又は冠状静脈洞電位図信号のQRS群の一点に設定され得る。
【0003】
その開示が参照により本明細書に組み込まれる、Bar-Talらの米国特許出願公開第2020/0146579号には、心腔の入力メッシュの表現、心腔の壁組織上の測定位置の組、及びこれらの位置で測定された局所興奮時間(LAT)のそれぞれの組を受信することを含む方法が記載されている。入力メッシュは、正則化された多角形を含む規則メッシュに再メッシュ化される。測定位置の組及びそれぞれのLATは、正則化された多角形にデータ適合される。正則化された多角形について、それぞれのLAT値及び壁組織が瘢痕組織を含むそれぞれの確率は反復的に計算され、瘢痕組織を示す規則メッシュ上での電気生理学的(EP)興奮波が求められる。EP興奮波及び瘢痕組織を含む、規則メッシュ上にオーバーレイされた電気解剖学的マップが表される。
【0004】
米国特許第9,463,072号には、患者固有の電気生理学的介入のプランニング及び案内のための方法及びシステムについて記載されている。患者固有の解剖学的心臓モデルは、患者の心臓画像データから生成される。患者固有の心臓電気生理学的モデルは、患者固有の解剖学的心臓モデル及び患者固有の電気生理学的測定値に基づいて生成される。仮想電気生理学的介入は、患者固有の心臓電気生理学的モデルを使用して実行される。シミュレートされた心電図(ECG)信号は、各仮想電気生理学的介入に応じて計算される。
【0005】
米国特許出願公開第2017/0027649号には、患者の対象の医療画像を取得することを含む、患者固有の電気生理学モデルを使用して電気生理学(EP)介入を案内するための方法が記載されている。スパースEP信号は、案内のために医療画像を使用して解剖学的構造にわたって取得される。スパースEP信号は、患者固有の計算電気生理学モデルを使用して補間され、EPダイナミクスの三次元モデルがそこから生成される。三次元モデルのレンダリングが表示される。候補介入部位が受信され、候補介入部位での介入から生じるEPダイナミクスに対する効果は、モデルを使用してシミュレートされ、シミュレートされた効果を示すモデルのレンダリングが表示される。
【0006】
Atienza,Felipe Alonso,et al.,「A probabilistic model of cardiac electrical activity based on a cellular automata system」,Revista Espanola de Cardiologia(English Edition)58.1(2005):41-47には、複雑な電気生理学的現象をシミュレートすることができる心臓電気活動のコンピュータモデルが記載されている。
【0007】
Evseev,Alexey A.,「Cellular automata simulation on surface triangulation for diffusion processes」,Bulletin of the Novosibirsk Computing Center,Series:Computer Science 30(2010):1-13には、三角グリッドにおける細胞オートマトンシミュレーションの技術が記載されている。
【0008】
Sahli Costabal,Francisco,et al.,「Physics-informed neural networks for cardiac activation mapping」,Frontiers in Physics 8(2020):42は、基礎をなす波の伝播ダイナミクスを考慮し、これらの予測に関連するエピステミック不確実性を定量化する、心臓興奮マッピングのための物理インフォームドニューラルネットワークを提案する。参考文献は、合成ベンチマーク問題及び左心房の個別化された電気生理学モデルを使用するこのアプローチの可能性を更に示す。
【発明の概要】
【課題を解決するための手段】
【0009】
本発明のいくつかの実施形態によれば、ディスプレイ及びプロセッサを含むシステムが提供される。プロセッサは、現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算するように構成されている。プロセッサは、予測されたLATに基づいて、心臓組織の特定の部分のアブレーション後の心臓組織の予測状態を表す予測された電気解剖学的マップを生成し、予測された電気解剖学的マップをディスプレイ上に表示するように更に構成されている。
【0010】
いくつかの実施形態では、
プロセッサは、
予測されたLATを計算する前に、心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、現在の電気解剖学的マップ上の心臓組織の特定の部分のマーキングを受信することと、を行うように更に構成されており、
プロセッサは、マーキングを受信することに応答して伝播をシミュレートするように構成されている。
【0011】
いくつかの実施形態では、プロセッサは、予測されたLATに基づいて位置におけるそれぞれの予測伝導速度を計算するように更に構成されており、プロセッサは、予測伝導速度に基づいて予測された電気解剖学的マップを生成するように構成されている。
【0012】
いくつかの実施形態では、
プロセッサは、複数の反復にわたって、心臓組織を表す細胞オートマトンモデルを進化させることによって、興奮電位の伝播をシミュレートするように構成されており、
プロセッサは、モデルの細胞が最初に興奮状態である反復のそれぞれを識別することに応答して、予測されたLATを計算するように構成されている。
【0013】
いくつかの実施形態では、プロセッサは、心臓組織を表す三角形メッシュを分割することによって、細胞を画定するように更に構成されている。
【0014】
いくつかの実施形態では、細胞は、それぞれの伝導速度を有し、プロセッサは、反復の各々の間に、非興奮状態である細胞のうちの少なくとも1つの第1の細胞について、
細胞のうちの少なくとも1つの第2の細胞を、(i)第2の細胞の伝導速度、(ii)第1の細胞からの第2の細胞の距離、及び(iii)第2の細胞が最後に興奮状態であったときから経過した反復の数に応答して、第1の細胞の興奮因子として識別することと、
第2の細胞を識別することに応答して、第1の細胞を興奮状態にすることと、を行うことによって、モデルを進化させるように構成されている。
【0015】
いくつかの実施形態では、プロセッサは、
予測されたLATを計算する前に、心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、現在の電気解剖学的マップのマップ部分の指示を受信することと、
現在の電気解剖学的マップのマップ部分に対応する細胞のうちの1つ又は2つ以上が興奮状態であり、細胞の他の全てが非興奮状態であるように、モデルを初期化することと、を行うように更に構成されている。
【0016】
いくつかの実施形態では、プロセッサは、反復の各々の間に、事前定義された数の反復に対して興奮状態であった細胞のうちのいずれか1つを非興奮状態にすることによって、モデルを進化させるように構成されている。
【0017】
いくつかの実施形態では、事前定義された数は、第1の事前定義された数であり、プロセッサは、反復の各々の間に、第2の事前定義された数の反復内で最後に興奮状態であった細胞のうちのいずれか1つを興奮状態にすることを控えることによって、モデルを進化させるように構成されている。
【0018】
本発明のいくつかの実施形態によれば、現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算することを含む方法が更に提供される。この方法は、予測されたLATに基づいて、心臓組織の特定の部分のアブレーション後の心臓組織の予測状態を表す予測された電気解剖学的マップを生成することと、予測された電気解剖学的マップを表示することと、を更に含む。
【0019】
本発明のいくつかの実施形態によれば、プログラム命令が記憶されている有形の非一時的コンピュータ可読媒体を含むコンピュータソフトウェア製品が更に提供される。命令は、プロセッサによって読み取られるときに、プロセッサに、現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算させる。命令は更に、プロセッサに、予測されたLATに基づいて、心臓組織の特定の部分のアブレーション後の心臓組織の予測状態を表す予測された電気解剖学的マップを生成し、予測された電気解剖学的マップをディスプレイ上に表示させる。
【図面の簡単な説明】
【0020】
本発明は、以下の添付図面とともに、以下の発明を実施するための形態からより十分に理解されるであろう。
図1】本発明のいくつかの例示的な実施形態による、心臓組織のアブレーションをプランニングするためのシステムの概略図である。
図2】本発明のいくつかの例示的な実施形態による、予測された電気解剖学的マップを生成及び表示するためのアルゴリズムのフロー図である。
図3】本発明のいくつかの例示的な実施形態による、分割された三角形メッシュの一部分の概略図である。
図4】本発明のいくつかの例示的な実施形態による、細胞オートマトンモデルが進化したシミュレーションステップの実施形態のフロー図である。
図5】本発明のいくつかの例示的な実施形態による、例示的な電気解剖学的マップ、及び対応する予測された電気解剖学的マップの概略図である。
【発明を実施するための形態】
【0021】
概論
本発明の実施形態は、アブレーションから生じるLATを予測することによって、対象の心臓組織のアブレーションのプランニングを容易にする。
【0022】
第1に、医師は、組織の電気解剖学的マップを示される。医師は、マップ上で、アブレーションのためにプランニングされた組織の部分をマークする。典型的には、医師はまた、マップを参照しながら、興奮波が各心臓周期中に発生する解剖学的位置を示す。
【0023】
続いて、医師からの前述の入力に基づいて、コンピュータプロセッサは、プランニングされたアブレーション後の心臓組織に沿った興奮波の伝播をシミュレートする。シミュレーションに基づいて、プロセッサは、予測されたLATを計算する。最後に、プロセッサは、予測されたLATを示すように着色及び/又は別様に注釈付けされた、予測された電気解剖学的マップを表示する。予測されたマップに基づいて、医師は、プランニングされたアブレーションが効果的であるかどうかを確認することができる。例えば、対象が、安定した頻脈に罹患している場合、医師は、プランニングされたアブレーションが、頻脈を生成する回路を中断するかどうかを確認することができる。
【0024】
いくつかの実施形態では、プロセッサは、複数の反復にわたって、心臓組織を表す細胞オートマトンモデルを進化させることによって、興奮波の伝播をシミュレートする。シミュレーション中に少なくとも1回興奮状態であるモデルの各細胞オートマトン(以下、「細胞」)について、プロセッサは、細胞が最初に興奮状態であった反復を識別し、識別された反復の数に基づいて、細胞の予測されたLATを計算する。したがって、例えば、より前の反復中に興奮状態にされた細胞は、より後の反復中に興奮状態にされた別の細胞よりも低い予測されたLATを有する。
【0025】
典型的には、プロセッサは、元の電気解剖学的マップから導出される細胞のそれぞれの伝導速度に基づいてモデルを進化させる。したがって、例えば、隣接する細胞が十分に大きい伝導速度を有することを条件として、細胞は、直前の反復中に興奮状態であった隣接する細胞によって興奮状態にされ得る。一方、隣接する細胞がより小さい伝導速度を有する場合、隣接する細胞がより前の反復中に興奮状態であった場合にのみ、細胞は、隣接する細胞によって興奮状態にされ得る。
【0026】
典型的には、プロセッサはまた、予測されたLATに基づいて予測伝導速度を計算し、予測された電気解剖学的マップは、予測伝導速度を示すように注釈付けされる。
【0027】
システムの説明
本発明のいくつかの実施形態による、心臓組織のアブレーションをプランニングするためのシステム20の概略図である、図1を最初に参照する。
【0028】
システム20は、医師28が対象26の体内に挿入するように構成されたプローブ24を含む。システム20は、システム20との医師28の相互作用を容易にするためのユーザーインターフェースコントロール39を含むコンソール46を更に含む。
【0029】
システム20は、典型的にはコンソール46内に含まれる回路40を更に含む。回路40は、プロセッサ42と、任意の適切な揮発性メモリ及び/又は不揮発性メモリを含み得るメモリ44と、を含む。典型的には、回路40は、ノイズ除去フィルタ及びアナログ-デジタル(A/D)コンバータを更に含む。
【0030】
プローブ24の遠位端は、1つ又は2つ以上の電極32を含む。プローブ24を対象26の体内に挿入することに続いて、医師28は、プローブを対象の心臓34にナビゲートする。その後、医師28は、電極32を使用して心臓34の組織からの電位図信号を測定する。プロセッサ42は、典型的には前述のノイズ除去フィルタ及びA/Dコンバータを介して、電位図信号を受信する。
【0031】
システム20は、例示を容易にするために、図1から省略されている追跡サブシステムを更に含む。追跡サブシステムは、心臓34内の電極32のそれぞれの位置の追跡を容易にするように構成されており、その結果、プロセッサ42は、各受信された電位図信号を、信号が取得された心臓組織上の位置に関連付けることができる。いくつかの実施形態では、プロセッサ42は、追跡サブシステムと相互作用する追跡モジュール30を実行することによって、電極位置を追跡する。
【0032】
いくつかの実施形態では、追跡サブシステムは、磁場を生成するように構成された1つ又は2つ以上の磁場生成器とともに、プローブ24の遠位端にある1つ又は2つ以上の電磁センサを含む。磁場は、電磁センサ内の追跡信号を誘導する。追跡信号に基づいて、プロセッサ42(例えば、追跡モジュール30)は、センサの位置、したがって電極の位置を確認する。そのような位置追跡技術は、例えば、それぞれの開示が参照によって本明細書に組み込まれる、Ben-Haimの米国特許第5,391,199号、同第5,443,489号、及び同第6,788,967号、Ben-Haimらの米国特許第6,690,963号、Ackerらの米国特許第5,558,091号、並びにGovariの米国特許第6,177,792号に開示されている。
【0033】
代替的又は追加的に、追跡サブシステムは、対象の身体に電気的に結合された1つ又は2つ以上の基準電極を含み得る。電流は、電極32と基準電極との間で受け渡され得る。結果として生じる電流又は電圧分布に基づいて、プロセッサ42(例えば、追跡モジュール30)は、電極32の位置を確認し得る。このような技術では、例えば、それぞれの開示が参照により本明細書に組み込まれる、Govariらの米国特許第7,536,218号、及びBar-Talらの米国特許第8,456,182号に記載されているように、電磁センサを使用して事前に較正された位置マップを利用することができる。
【0034】
代替的又は追加的に、電流は、基準電極間で受け渡され得る。電極32における結果として生じる電圧に基づいて、プロセッサ42(例えば、追跡モジュール30)は、例えば、それぞれの開示が参照により本明細書に組み込まれる、Wittkampfの米国特許第5,983,126号、及びNardellaの米国特許第5,944,022号に記載されているように、電極32の位置を確認することができる。
【0035】
システム20は、対象26の皮膚に電気的に結合された1つ又は2つ以上のECG電極29を更に含む。プロセッサ42は、典型的には前述のノイズ除去フィルタ及びA/Dコンバータを介して、電極29によって取得されたECG信号を受信する。
【0036】
電位図信号及びECG信号に基づいて、プロセッサ42は、組織の解剖学的構造の表現を組織の電気的特性と組み合わせる電気解剖学的マップ62を生成する。例えば、組織を表す三次元三角形メッシュは、メッシュの各要素について、要素によって表される組織の部分について計算されたLATを示すように、色スケールに従って着色され得る。代替的又は追加的に、伝導速度を表すベクトルをメッシュ上に重ね合わせることができる。
【0037】
いくつかの実施形態では、プロセッサは、マップ生成モジュール36を実行することによってマップ62を生成する。生成マップ62において、プロセッサ42は、その開示が参照により本明細書に組み込まれる、Bar-Talらの米国特許出願公開第2020/0146579号に記載されているように、周期的不整脈で観察される「再入」を考慮する。
【0038】
マップ62を生成することに続いて、プロセッサ42は、マップをディスプレイ48上に表示し、典型的には、マップをメモリ44に記憶する。続いて、医師28(又は別のユーザー)は、組織のプランニングされたアブレーションに関連する入力を提供する。入力は、例えば、ディスプレイ48に属するタッチスクリーンを使用して、又はマウス若しくはトラックボールなどの任意の適切なユーザーインターフェースコントロール39を使用して、提供され得る。入力は、例えば、医師がアブレーションをプランニングする組織の部分のマーキングを含み得る。
【0039】
続いて、入力に基づいて、プロセッサは、プランニングされたアブレーション後の組織に沿った生理学的興奮電位(又は「興奮波」)の伝播をシミュレートすることによって、組織上の異なるそれぞれの位置における複数の予測されたLATを計算する。言い換えれば、プロセッサは、現在伝導性である、医師がアブレーションをプランニングしている組織の特定の部分が、非伝導性になる、伝播をシミュレートする。いくつかの実施形態では、プロセッサは、シミュレーションモジュール35を実行することによってシミュレーションを実行する。
【0040】
続いて、予測されたLATに基づいて、プロセッサ(例えば、マップ生成モジュール36)は、アブレーション後の組織の予測状態を表す予測された電気解剖学的マップを生成する。次いで、予測された電気解剖学的マップは、ディスプレイ48上に表示され、典型的には、メモリ44に記憶される。予測されたマップに基づいて、医師は、プランニングされたアブレーションを進めるべきかどうかを決定することができる。
【0041】
典型的には、システム20は、アブレーション信号生成器(図示せず)を更に含む。プランニングされたアブレーションを進めることを決定することに続いて、医師28は、アブレーション信号を電極32に送達するように、ユーザーインターフェースコントロール39を使用して、アブレーション信号生成器を制御することができる。
【0042】
通常、プロセッサ42は、シングルプロセッサとして、又は協調的ネットワーク化された又はクラスタ化された一連のプロセッサとして具体化され得る。プロセッサ42の機能性は、ハードウェアにおいてのみ、例えば、1つ又は2つ以上の一定機能集積回路又は汎用集積回路、特定用途向け集積回路(ASIC)、及び/又はフィールドプログラマブルゲートアレイ(FPGA)を使用して実装され得る。代替的に、この機能性は、少なくとも一部ソフトウェアにおいて実装されてもよい。例えば、プロセッサ42は、例えば、中央処理装置(CPU)及び/又はグラフィックスプロセッシングユニット(GPU)が挙げられるプログラム可能プロセッサとして具体化され得る。ソフトウェアプログラムが挙げられるプログラムコード、及び/又はデータがCPU及び/又はGPUによる実行と処理に向けて読み込まれ得る。プログラムコード及び/又はデータは、電子形態でプロセッサに、例えばネットワーク上でダウンロードされ得る。代替的又は追加的に、プログラムコード及び/又はデータは、磁気メモリ、光メモリ、又は電子メモリなどの非一時的の有形の媒体に提供されかつ/又は記憶され得る。このようなプログラムコード及び/又はデータは、プロセッサに提供されると、本明細書に記載のタクスを行うように構成される、マシン又は専用コンピュータを生み出す。
【0043】
予測された電気解剖学的マップの計算
ここで、本発明のいくつかの実施形態による、予測された電気解剖学的マップを生成及び表示するためのアルゴリズム50のフロー図である図2を参照する。アルゴリズム50は、プロセッサ42(図1)によって実行され得る。
【0044】
典型的には、アルゴリズム50は、プロセッサが、心臓組織の現在の(アブレーション前の)状態を表す電気解剖学的マップ62(図1)を表示する、第1の表示ステップ52から始まる。
【0045】
典型的には、マップ62が表示されている間、医師は、マップ上で、アブレーションのためにプランニングされた組織の部分をマークし、このマーキングは、典型的には、本明細書では「アブレーションライン」と呼ばれる線の形態を有する。このマーキングは、マーキング受信ステップ54においてプロセッサによって受信される。代替的又は追加的に、医師は、再入位置など、興奮波が生じる解剖学的位置を表すマップの部分を示し得る。例えば、医師は、マップのこの部分上でマウスをクリックすることができる。この指示は、指示受信ステップ56においてプロセッサによって受信される。
【0046】
次に、シミュレートステップ58において、プロセッサは、組織に沿った興奮波の伝播をシミュレートすることによって、組織上の異なるそれぞれの位置における予測されたLATを計算する。
【0047】
いくつかの実施形態では、図3図4を参照して以下で更に説明されるように、プロセッサは、複数の反復にわたって、心臓組織を表す細胞オートマトンモデルを進化させることによって、伝播をシミュレートする。モデル内の各細胞は、脱分極の解剖学的状態をシミュレートする興奮状態(すなわち、「オン」)、又は分極(若しくは「休止」)状態をシミュレートする非興奮状態(すなわち、「オフ」)のいずれかであり得る。シミュレーション中の任意の時点で興奮状態である各細胞について、プロセッサは、細胞が最初に興奮状態であった反復を識別し、それに応答して、細胞の予測されたLATを計算する。
【0048】
他の実施形態では、プロセッサは、例えば、有限要素を使用して、連立拡散方程式を解くことによって伝播をシミュレートする。代替的に、プロセッサは、例えば、その開示が参照により本明細書に組み込まれる、Sermesant,Maxime,et al.,「An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology」,International Conference on Functional Imaging and Modeling of the Heart,Springer,Berlin,Heidelberg,2007に記載されているように、高速マーチング方法を使用することができる。更に別の選択肢として、プロセッサは、例えば、その開示が参照により本明細書に組み込まれる、Sahli Costabal,Francisco,et al.,「Physics-informed neural networks for cardiac activation mapping」,Frontiers in Physics 8(2020):42に記載されているように、ニューラルネットワークシミュレータを使用することができる。
【0049】
典型的には、プロセッサは、次いで、計算ステップ60を実行し、ここで、プロセッサは、予測されたLATに基づいて位置におけるそれぞれの予測伝導速度を計算する。
【0050】
続いて、生成ステップ64において、プロセッサは、予測されたLAT、及び任意選択で、予測された伝導速度に基づいて、予測された電気解剖学的マップを生成する。例えば、プロセッサは、図1を参照しながらマップ62について説明したように、予測されたLAT、及び/又は伝導速度を表すオーバーレイベクトルを示すように、予測された電気解剖学的マップを着色することができる。最後に、第2の表示ステップ66において、プロセッサは、予測されたマップを表示する。
【0051】
ここで、本発明のいくつかの実施形態による、分割された三角形メッシュ68の一部分の概略図である図3を参照する。更に、本発明のいくつかの実施形態による、細胞オートマトンモデルが進化されるアルゴリズム50(図2)のシミュレートステップ58の実施形態のフロー図である図4を参照する。
【0052】
マップ62(図1)に属するメッシュ68は、心臓組織を表す。図3の実線の境界70は、メッシュ68内の2つの三角形76を描写する。
【0053】
予測されたLATの精度を高めるために、細胞オートマトンモデルの細胞74が三角形76よりも小さくなることが有利であり得る。したがって、いくつかの実施形態では、シミュレートステップ58は、分割ステップ78から始まり、プロセッサは、メッシュ68を分割することによって細胞74を画定する。例えば、図3の破線72によって示されるように、プロセッサは、各三角形76を4つの三角形の細胞74に分割することができる。三角形76のサイズは互いに異なっていてもよく、したがって、細胞74のサイズも互いに異なってもよいことに留意されたい。
【0054】
初期化ステップ80において、プロセッサは、1つ又は2つ以上の細胞74を興奮状態に設定し、残りの細胞全てを非興奮状態にすることによって、モデルを初期化する。興奮状態に設定された細胞は、興奮波が生じる解剖学的位置を表すマップ62の部分に対応するものであり、これは、図2を参照しながら上述したように、医師によって示され得る。
【0055】
初期化に続いて、プロセッサは、モデルを反復的に進化させる。各反復中、伝導性である(すなわち、伝導性組織を表す)各細胞74が選択ステップ82において選択される。細胞を選択することに続いて、プロセッサは、チェックステップ84において、細胞が興奮状態であるかどうかをチェックする。否の場合、プロセッサは、別のチェックステップ86において、細胞が不応期にあるかどうか、すなわち、細胞が、事前定義された数の反復内で以前に興奮状態であったかどうかをチェックする。はいの場合、プロセッサは、細胞を興奮状態にすることを控え、代わりに、以下に記載される別のチェックステップ100に進む。そうでない場合、プロセッサは、以下に更に記載されるように、別のチェックステップ88において、細胞が少なくとも1つの興奮因子を有するかどうかをチェックする。否の場合、プロセッサは、チェックステップ100に進む。そうでない場合、細胞は、フラグ付けステップ90において、興奮のためにフラグ付けされる。
【0056】
フラグ付けステップ90を実行することに続いて、プロセッサは、別のチェックステップ92において、細胞が前に興奮状態にされたかどうかをチェックする。否の場合、プロセッサは、記録ステップ94において、細胞の現在の反復数を記録する。続いて、又は細胞が前に興奮状態にされた場合、プロセッサは、チェックステップ100に進む。
【0057】
一方、チェックステップ84において、プロセッサが、細胞が興奮状態であることを確認する場合、プロセッサは、別のチェックステップ96において、細胞が、事前定義された数の反復に対して興奮状態であったかどうかをチェックする。はいの場合、細胞は、別のフラグ付けステップ98において、非興奮のためにフラグ付けされる。続いて、又は細胞が、事前定義された数の反復に対して興奮状態でなかった場合、プロセッサは、チェックステップ100を実行する。
【0058】
チェックステップ100において、プロセッサは、現在の反復中に選択されるべき更なる細胞が残っているかどうかをチェックする。はいの場合、プロセッサは、選択ステップ82に戻り、次の細胞を選択する。そうでない場合、プロセッサは、進化ステップ102において、フラグ付き細胞の状態を変化させることによってモデルを進化させる。言い換えれば、プロセッサは、興奮のためにフラグ付けされた細胞を興奮状態にし、非興奮のためにフラグ付けされた細胞を非興奮状態にする。続いて、プロセッサは、別のチェックステップ104において、シミュレーション中に伝導性細胞の全てが興奮状態にされたかどうかをチェックする。否の場合、プロセッサは、選択ステップ82に戻り、進化の別の反復を実行する。
【0059】
チェックステップ104において、伝導性細胞の全てが興奮状態にされたことを確認すると、プロセッサは、計算ステップ106において、記録された反復数から予測されたLATを計算する。例えば、記録された反復数n(式中、n=1は、第1の反復を示す)を与えると、プロセッサは、予測されたLATをnT/Nとして計算することができ、式中、Tは、(現在の電気解剖学的マップの生成中に計算された)周期長であり、Nは、実行された反復の総数である。
【0060】
典型的には、細胞は、現在の電気解剖学的マップの生成中に計算された伝導速度に基づくそれぞれの伝導速度を有する。例えば、各細胞は、細胞が分割された三角形76の伝導速度を有し得る。(非伝導性組織を表す細胞には、ゼロの伝導速度が割り当てられ得る。)プロセッサは、チェックステップ88を実行するときに伝導速度を使用する。例えば、プロセッサは、(i)他の細胞の伝導速度、(ii)選択された細胞からの他の細胞の距離、及び(iii)他の細胞が最後に興奮状態であったときから経過した反復の数、に応答して、別の細胞を、選択された細胞の興奮因子として識別し得る。
【0061】
例えば、第iの細胞が選択されると仮定すると、プロセッサは、最初に、第iの細胞に隣接する、すなわち、少なくとも1つのエッジを第iの細胞と共有する細胞のセットを識別することができる。次いで、プロセッサは、興奮因子が見つかるか又はセットが使い果たされるまで、セット内の各細胞をチェックして、セットを通して反復することができる。具体的には、チェックされる各第jの細胞について、プロセッサは、以下のステップの順序を実行することができる。
(a)
【0062】
【数1】

第jの細胞の伝導速度の関数として、単一の反復中に第jの細胞にわたって興奮波によって移動された推定距離rを計算する。いくつかの実施形態では、
【0063】
【数2】

であり、式中、a及びbは、適切な定数である。いくつかのそのような実施形態では、定数aは、隣接する細胞の全ての対の間の平均距離又は中央距離に応答して設定される。(典型的には、2つの細胞間の距離は、細胞のそれぞれの重心の間の距離として定義される。)
(b)n=ceil(dij/r)を計算し、式中、dijは、第iの細胞と第jの細胞との間の距離であり、ceil()関数は、引数を最も近い整数に切り上げる。
(c)第jの細胞がn回の反復前に興奮状態であった場合、第jの細胞を第iの細胞の興奮因子として識別する。そうでない場合、セット内の次の隣接する細胞をチェックする。
【0064】
アルゴリズム50の計算ステップ60(図2)を参照しながら上述したように、プロセッサは、典型的には、予測されたLATに基づいて予測伝導速度を計算する。例えば、プロセッサは、以下のように、第iの細胞の予測伝導速度
【0065】
【数3】

を計算することができる。
(a)細胞の頂点について、それぞれの予測された頂点-LAT{LAT,LAT,LAT}を計算し、頂点-LATの各々は、典型的には、頂点を共有する細胞の予測されたLATの平均である。例えば、図3に示すように、細胞74aのLATは、細胞74a...74fのそれぞれの予測されたLATの平均であり得る。
(b)頂点の座標{(x,y),(x,y),(x,y)}を計算し、それに続いて、メッシュの三次元座標系から二次元へのセルの投影を計算する。
(c)以下の連立方程式を逆速度(又は「スローネス」)変数s及びsについて解く。
(i)LAT-LAT=(s,s)・(x-x,y-y
(ii)LAT-LAT=(s,s)・(x-x,y-y
(d)方程式
【0066】
【数4】

【0067】
【数5】

について解き、式中、
【0068】
【数6】

(e)ステップ(b)において適用された変換の逆数を適用することによって、
【0069】
【数7】

を、メッシュの座標系に対する
【0070】
【数8】

の投影として計算する。
【0071】
例示的な予測された電気解剖学的マップ
ここで、本発明のいくつかの実施形態による、例示的な電気解剖学的マップ62、及び対応する予測された電気解剖学的マップ62’の概略図である図5を参照する。
【0072】
典型的には、マップ62は、図1を参照しながら上述したように、計算されたLATを示すように、色スケールに従って着色される。そのような実施形態では、色スケールに属しない特定の色は、(非伝導性を含む)スロー伝導性組織を示し得る。これを説明するために、図5は、複数の輝度レベルを使用してマップ62を「着色」しており、マップの領域108における灰色の陰影はスロー伝導性組織を示す。領域108の外側では、ベクトル110は伝導速度を示す。
【0073】
マップ62を閲覧することに応答して、医師は、領域108を通過するアブレーションライン112をマークすることができる。医師は、再入位置を更に示し得る。続いて、プロセッサは、前の図を参照しながら上述したように、予測されたLAT及び伝導速度を計算することができる。これらの予測値に基づいて、プロセッサは、予測されたマップ62’を生成及び表示することができる。
【0074】
いくつかの実施形態では、予測されたマップは、図5に示すように、分割ステップ78(図4)において計算されたより細かいメッシュを含む。他の実施形態では、予測されたマップは、マップ62の元の三角形メッシュを含み、予測されたLAT及び伝導速度はこのメッシュ上に投影される。
【0075】
本発明が、本明細書でこれまで具体的に示し、説明したものに限られるものではないということが、当業者には分かるであろう。そうではなく、本発明の実施形態の範囲は、本明細書でこれまでに説明した様々な特徴の組合せと部分的組合せの両方とともに、これまでの説明を読んだ時点で当業者には分かってくると考えられる先行技術にはないその変形形態及び修正形態に及ぶ。参照により本特許出願に組み込まれる文献は、これらの組み込まれた文献において、いずれかの用語が本明細書において明示的又は暗示的になされた定義と矛盾する様式で定義される程度まで、本明細書における定義のみを考慮するものとする点を除き、本出願の不可欠な部分とみなすものとする。
【0076】
〔実施の態様〕
(1) アブレーションプランニングのためのシステムであって、前記システムが、
ディスプレイと、
プロセッサと、を含み、前記プロセッサが、
現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、前記心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、前記心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算することと、
前記予測されたLATに基づいて、前記心臓組織の前記特定の部分のアブレーション後の前記心臓組織の予測状態を表す予測された電気解剖学的マップを生成することと、
前記予測された電気解剖学的マップを前記ディスプレイ上に表示することと、を行うように構成されている、システム。
(2) 前記プロセッサが、
前記予測されたLATを計算する前に、前記心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、前記現在の電気解剖学的マップ上の前記心臓組織の前記特定の部分のマーキングを受信することと、を行うように更に構成されており、
前記プロセッサが、前記マーキングを受信することに応答して前記伝播をシミュレートするように構成されている、実施態様1に記載のシステム。
(3) 前記プロセッサが、前記予測されたLATに基づいて前記位置におけるそれぞれの予測伝導速度を計算するように更に構成されており、前記プロセッサが、前記予測伝導速度に基づいて前記予測された電気解剖学的マップを生成するように構成されている、実施態様1に記載のシステム。
(4) 前記プロセッサが、複数の反復にわたって、前記心臓組織を表す細胞オートマトンモデルを進化させることによって、前記興奮電位の前記伝播をシミュレートするように構成されており、
前記プロセッサが、前記モデルの細胞が最初に興奮状態である前記反復のそれぞれを識別することに応答して、前記予測されたLATを計算するように構成されている、実施態様1に記載のシステム。
(5) 前記プロセッサが、前記心臓組織を表す三角形メッシュを分割することによって、前記細胞を画定するように更に構成されている、実施態様4に記載のシステム。
【0077】
(6) 前記細胞が、それぞれの伝導速度を有し、前記プロセッサは、前記反復の各々の間に、非興奮状態である前記細胞のうちの少なくとも1つの第1の細胞について、
前記細胞のうちの少なくとも1つの第2の細胞を、(i)前記第2の細胞の前記伝導速度、(ii)前記第1の細胞からの前記第2の細胞の距離、及び(iii)前記第2の細胞が最後に興奮状態であったときから経過した前記反復の数に応答して、前記第1の細胞の興奮因子として識別することと、
前記第2の細胞を識別することに応答して、前記第1の細胞を興奮状態にすることと、を行うことによって、前記モデルを進化させるように構成されている、実施態様4に記載のシステム。
(7) 前記プロセッサが、
前記予測されたLATを計算する前に、前記心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、前記現在の電気解剖学的マップのマップ部分の指示を受信することと、
前記現在の電気解剖学的マップの前記マップ部分に対応する前記細胞のうちの1つ又は2つ以上が興奮状態であり、前記細胞の他の全てが非興奮状態であるように、前記モデルを初期化することと、を行うように更に構成されている、実施態様4に記載のシステム。
(8) 前記プロセッサが、前記反復の各々の間に、事前定義された数の前記反復に対して興奮状態であった前記細胞のうちのいずれか1つを非興奮状態にすることによって、前記モデルを進化させるように構成されている、実施態様4に記載のシステム。
(9) 前記事前定義された数が、第1の事前定義された数であり、前記プロセッサが、前記反復の各々の間に、第2の事前定義された数の前記反復内で最後に興奮状態であった前記細胞のうちのいずれか1つを興奮状態にすることを控えることによって、前記モデルを進化させるように構成されている、実施態様8に記載のシステム。
(10) アブレーションプランニングのための方法であって、前記方法は、
現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、前記心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、前記心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算することと、
前記予測されたLATに基づいて、前記心臓組織の前記特定の部分のアブレーション後の前記心臓組織の予測状態を表す予測された電気解剖学的マップを生成することと、
前記予測された電気解剖学的マップを表示することと、を含む、方法。
【0078】
(11) 前記予測されたLATを計算する前に、前記心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、前記現在の電気解剖学的マップ上の前記心臓組織の前記特定の部分のマーキングを受信することと、を更に含み、
前記伝播をシミュレートすることが、前記マーキングを受信することに応答して前記伝播をシミュレートすることを含む、実施態様10に記載の方法。
(12) 前記予測されたLATに基づいて前記位置におけるそれぞれの予測伝導速度を計算することを更に含み、前記予測された電気解剖学的マップを生成することが、前記予測伝導速度に基づいて前記予測された電気解剖学的マップを生成することを含む、実施態様10に記載の方法。
(13) 前記興奮電位の前記伝播をシミュレートすることが、複数の反復にわたって、前記心臓組織を表す細胞オートマトンモデルを進化させることによって、前記興奮電位の前記伝播をシミュレートすることを含み、
前記予測されたLATを計算することが、前記モデルの細胞が最初に興奮状態である前記反復のそれぞれを識別することに応答して、前記予測されたLATを計算することを含む、実施態様10に記載の方法。
(14) 前記心臓組織を表す三角形メッシュを分割することによって、前記細胞を画定することを更に含む、実施態様13に記載の方法。
(15) 前記細胞が、それぞれの伝導速度を有し、前記モデルを進化させることは、前記反復の各々の間に、非興奮状態である前記細胞のうちの少なくとも1つの第1の細胞について、
前記細胞のうちの少なくとも1つの第2の細胞を、(i)前記第2の細胞の前記伝導速度、(ii)前記第1の細胞からの前記第2の細胞の距離、及び(iii)前記第2の細胞が最後に興奮状態であったときから経過した前記反復の数に応答して、前記第1の細胞の興奮因子として識別することと、
前記第2の細胞を識別することに応答して、前記第1の細胞を興奮状態にすることと、を含む、実施態様13に記載の方法。
【0079】
(16) 前記予測されたLATを計算する前に、前記心臓組織の現在の状態を表す現在の電気解剖学的マップを表示することと、
ユーザーから、前記現在の電気解剖学的マップのマップ部分の指示を受信することと、
前記現在の電気解剖学的マップの前記マップ部分に対応する前記細胞のうちの1つ又は2つ以上が興奮状態であり、前記細胞の他の全てが非興奮状態であるように、前記モデルを初期化することと、を更に含む、実施態様13に記載の方法。
(17) 前記モデルを進化させることが、前記反復の各々の間に、事前定義された数の前記反復に対して興奮状態であった前記細胞のうちのいずれか1つを非興奮状態にすることを含む、実施態様13に記載の方法。
(18) 前記事前定義された数が、第1の事前定義された数であり、前記モデルを進化させることが、前記反復の各々の間に、第2の事前定義された数の前記反復内で最後に興奮状態であった前記細胞のうちのいずれか1つを興奮状態にすることを控えることを更に含む、実施態様17に記載の方法。
(19) プログラム命令が記憶されている有形の非一時的コンピュータ可読媒体を含むコンピュータソフトウェア製品であって、前記命令が、プロセッサによって読み取られるときに、前記プロセッサに、
現在伝導性である、対象の心臓組織の特定の部分が、非伝導性になる、前記心臓組織に沿った生理学的興奮電位の伝播をシミュレートすることによって、前記心臓組織上の異なるそれぞれの位置での複数の予測された局所興奮時間(LAT)を計算することと、
前記予測されたLATに基づいて、前記心臓組織の前記特定の部分のアブレーション後の前記心臓組織の予測状態を表す予測された電気解剖学的マップを生成することと、
前記予測された電気解剖学的マップを前記ディスプレイ上に表示することと、を行わせる、コンピュータソフトウェア製品。
(20) 前記命令が、前記プロセッサに、複数の反復にわたって、前記心臓組織を表す細胞オートマトンモデルを進化させることによって、前記興奮電位の前記伝播をシミュレートさせ、
前記命令が、前記プロセッサに、前記モデルの細胞が最初に興奮状態である前記反復のそれぞれを識別することに応答して、前記予測されたLATを計算させる、実施態様19に記載のコンピュータソフトウェア製品。
図1
図2
図3
図4
図5
【外国語明細書】