(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023067330
(43)【公開日】2023-05-16
(54)【発明の名称】温度制御装置及び温度制御方法
(51)【国際特許分類】
B25J 19/00 20060101AFI20230509BHJP
B25J 9/22 20060101ALI20230509BHJP
G05B 11/36 20060101ALI20230509BHJP
【FI】
B25J19/00 M
B25J9/22 Z
G05B11/36 F
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2021178452
(22)【出願日】2021-11-01
(71)【出願人】
【識別番号】000006666
【氏名又は名称】アズビル株式会社
(74)【代理人】
【識別番号】110003166
【氏名又は名称】弁理士法人山王内外特許事務所
(72)【発明者】
【氏名】盧 佳晨
【テーマコード(参考)】
3C707
5H004
【Fターム(参考)】
3C707LS02
3C707MS03
3C707MS27
3C707MS29
5H004GA29
5H004GB16
5H004HA01
5H004HB01
5H004KA52
5H004KB01
(57)【要約】
【課題】従来に対し、ロボットの発熱をより抑制可能とする。
【解決手段】軌道情報に基づいて、ロボット2の動作を制御する動作制御部102と、ロボット2の温度を示す情報を取得する温度情報取得部103と、設定温度及び温度情報取得部103による取得結果に基づいて、ロボット2の動作を緩和するための動作緩和補正係数を算出する係数算出部104と、係数算出部104による算出結果に基づいて、ロボット2の軌道情報に対してPID制御を行う温度制御部105とを備えた。
【選択図】
図2
【特許請求の範囲】
【請求項1】
軌道情報に基づいて、ロボットの動作を制御する動作制御部と、
前記ロボットの温度を示す情報を取得する温度情報取得部と、
設定温度及び前記温度情報取得部による取得結果に基づいて、前記ロボットの動作を緩和するための動作緩和補正係数を算出する係数算出部と、
前記係数算出部による算出結果に基づいて、軌道情報に対してPID制御を行う温度制御部と
を備えた温度制御装置。
【請求項2】
前記温度制御部は、前記係数算出部による算出結果に基づいて、軌道情報における動作最高速度の割合を制御する
ことを特徴とする請求項1記載の温度制御装置。
【請求項3】
前記温度制御部は、前記係数算出部による算出結果に基づいて、軌道情報におけるデューティー比の割合を制御する
ことを特徴とする請求項1記載の温度制御装置。
【請求項4】
動作制御部が、軌道情報に基づいて、ロボットの動作を制御するステップと、
温度情報取得部が、前記ロボットの温度を示す情報を取得するステップと、
係数算出部が、設定温度及び前記温度情報取得部による取得結果に基づいて、前記ロボットの動作を緩和するための動作緩和補正係数を算出するステップと、
温度制御部が、前記係数算出部による算出結果に基づいて、軌道情報に対してPID制御を行うステップと
を有する温度制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、ロボットに対して発熱抑制を行うように動作を制御する温度制御装置及び温度制御方法に関する。
【背景技術】
【0002】
従来、ロボットの発熱量にモータの仕事量を加えて消費電力を算出する方法が知られている(例えば特許文献1参照)。より具体的には、この方法では、ロボットで使用されるモータの発熱量、及びアンプの発熱量を算出し、更にモータの仕事量を加えることで、消費電力を算出する。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、発熱量は安全面に影響する要素であり、例えば人間協働ロボット等ではダイレクトティーチングを実施する際に人が直接ロボットを触れることがあり、より安全であることが好ましい。よって、ロボットの発熱の抑制に関して更なる改善が求められている。
【0005】
この発明は、上記のような課題を解決するためになされたもので、従来に対し、ロボットの発熱をより抑制可能な温度制御装置を提供することを目的としている。
【課題を解決するための手段】
【0006】
この発明に係る温度制御装置は、軌道情報に基づいて、ロボットの動作を制御する動作制御部と、ロボットの温度を示す情報を取得する温度情報取得部と、設定温度及び温度情報取得部による取得結果に基づいて、ロボットの動作を緩和するための動作緩和補正係数を算出する係数算出部と、係数算出部による算出結果に基づいて、軌道情報に対してPID制御を行う温度制御部とを備えたことを特徴とする。
【発明の効果】
【0007】
この発明によれば、上記のように構成したので、従来に対し、ロボットの発熱をより抑制可能となる。
【図面の簡単な説明】
【0008】
【
図1】実施の形態1に係るロボットシステムの構成例を示す図である。
【
図2】実施の形態1に係るロボットコントローラの構成例を示す図である。
【
図3】実施の形態1に係るロボットコントローラの動作例を示すフローチャートである。
【
図4】実施の形態1に係るロボットコントローラの動作例を示す図である。
【
図5】従来のロボットコントローラによる制御例(閾値判定オンオフ制御によるロボットの温度の過渡状態の一例)を示す図である。
【
図6】実施の形態1に係るロボットコントローラによる制御例(PID制御によるロボットの温度の過渡状態の一例)を示す図である。
【発明を実施するための形態】
【0009】
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1は実施の形態1に係るロボットシステムの構成例を示す図である。
ロボットシステムは、
図1に示すように、ロボットコントローラ1、及び、1つ以上の関節軸を有するロボット(ロボットアーム)2を備えている。ロボット2は、関節軸毎にモータ(不図示)を有し、ロボットコントローラ1によりモータが制御されることで動作する。
【0010】
ロボットコントローラ1は、ロボット2が有するモータを制御することで、ロボット2を動作させる。また、ロボットコントローラ1は、ロボット2に対し、ロボット2の発熱を抑えるように動作制御を行う機能(温度制御装置の機能)を有する。
このロボットコントローラ1は、
図2に示すように、動作作成部101、動作制御部102、温度情報取得部103、係数算出部104及び温度制御部105を備えている。
【0011】
なお、ロボットコントローラ1は、システムLSI(Large Scale Integration)等の処理回路、又はメモリ等に記憶されたプログラムを実行するCPU(Central Processing Unit)等により実現される。
【0012】
動作作成部101は、ロボット2に対する軌道情報を生成する。この際、動作作成部101は、外部から受付けたロボット2に対する動作条件に基づいて、ロボット2に対する軌道情報を生成する。
【0013】
動作制御部102は、動作作成部101により生成された軌道情報に基づいて、ロボット2の動作を制御する。
なお、動作作成部101により生成された軌道情報に対し、温度制御部105により補正が行われた場合には、動作制御部102は、温度制御部105による補正後の軌道情報に基づいて、ロボット2の動作を制御する。
【0014】
温度情報取得部103は、ロボット2の温度を示す情報を取得する。この際、温度情報取得部103は、ロボット2に設けられた温度センサ(不図示)により計測された現在の温度(実測値)を示す情報、又は、温度推定部(不図示)により推定された現在の温度(予測値)を示す情報を取得する。
【0015】
係数算出部104は、設定温度及び温度情報取得部103による取得結果に基づいて、動作緩和補正係数を算出する。動作緩和補正係数は、軌道情報に基づくロボット2の動作を緩和するための係数である。
【0016】
温度制御部105は、係数算出部104による算出結果に基づいて、動作作成部101により生成された軌道情報に対してPID制御を行う。この際、温度制御部105は、動作緩和補正係数に基づいて、設定温度を超えないように軌道情報における動作最高速度又はデューティー比の割合を制御する。
【0017】
次に、
図1,2に示す実施の形態1に係るロボットコントローラ1の動作例について、
図3,4を参照しながら説明する。
【0018】
図1,2に示す実施の形態1に係るロボットコントローラ1の動作例では、
図3,4に示すように、まず、動作作成部101は、外部から受付けたロボット2に対する動作条件に基づいて、ロボット2に対する軌道情報を生成する。
【0019】
この際、まず、ユーザは、外部UI(ユーザインタフェース)を利用し、ロボット2に対する動作条件を入力する。そして、動作作成部101は、ユーザにより入力されたロボット2に対する動作条件を受付ける(ステップST301)。
【0020】
ここで、ロボット2に対する動作条件としては、例えば、動作ポイント(動作waypoint)、動作最高速度、待機時間(Wait time)、設定温度、及び、PID制御操作対象が挙げられる。動作ポイントは、ロボット2の先端の移動開始位置となる始点及び移動終了位置となる終点である。動作最高速度は、ロボット2の先端の最高移動速度である。待機時間は、始点又は終点或いはその両方で停止する時間である。設定温度は、通常動作又はダイレクトティーチング等々を実施する場合におけるロボット2の許容温度の範囲であり、目標温度及びマージンから設定可能とする。PID制御操作対象は、PID制御の対象であり、動作最高速度又はデューティー比が挙げられる。デューティー比は、動作時間/サイクルタイムで表される。動作時間は、始点から終点まで移動する時間であり、始点と終点との間の距離と動作最高速度から決まる。サイクルタイムは、動作時間+待機時間で表され、連続動作における1サイクルの所要時間を指す。
例えば、ユーザは、始点としてポイント(座標)Aを入力とし、終点としてポイント(座標)Bを入力し、動作最高速度としてC[m/s]を入力し、A又はB或いはその両方に停止する時間を入力し、目標温度及びマージンを入力し、PID制御操作対象を入力する。
【0021】
次いで、動作作成部101は、受付けた動作条件に基づいて、ロボット2に対する軌道情報を生成する(ステップST302)。すなわち、動作作成部101は、動作条件に基づいて、モーションプロファイル(ロボット2の速度及び先端位置等を含む時系列データ)を生成する。
【0022】
次いで、動作制御部102は、動作作成部101により生成された軌道情報に基づいて、ロボット2の動作を制御する(ステップST303)。すなわち、動作制御部102は、軌道情報が示すデータを指令値として、ロボット2を駆動して制御する。
【0023】
次いで、温度情報取得部103(
図4に示す温度情報取得プログラム)は、ロボット2の温度を示す情報を取得する(ステップST304)。温度情報取得部103は、常時、ロボット2の温度を示す情報の取得を行う。
【0024】
次いで、係数算出部104は、設定温度及び温度情報取得部103による取得結果に基づいて、動作緩和補正係数を算出する(ステップST305)。
【0025】
ここで、動作緩和補正係数は、下式(1)で表される。式(1)において、MVは動作緩和補正係数を示し、PVは温度取得部により取得された情報が示す温度(現在の温度)を示し、SPは設定温度の上限値(目標温度に対しマージンを取った温度)を示し、Pbは比例帯を示し、Tiは積分時間を示し、Tdは微分時間を示す。なお、MVは、0.1~1.0の数値であり、上限値である1.0の場合には軌道情報に対する補正なしの設計動作となる。PID制御のパラメータ(Pb,Ti・s,Td・s)のチューニング方法は既存技術を適用可能である。また、係数算出部104は、MVが下限値(0.1)を下回る場合には下限値を採用し、MVが上限値(1.0)を上回る場合には上限値を採用する。
MV=(100/Pb)・{1+(1/Ti・s)+Td・s}・(SP-PV) (1)
【0026】
例えば、SP=60℃、PV=50℃であり、仮にPb=10000、Ti・s=1、Td・s=1とした場合、MVは下式(2)のようになる。
MV=(100/10000)・{1+(1/1)+1}・(60-50)=0.3 (2)
【0027】
次いで、温度制御部105は、係数算出部104による算出結果に基づいて、動作作成部101により生成された軌道情報に対してPID制御を行う(ステップST306)。この際、温度制御部105は、動作緩和補正係数に基づいて、設定温度を超えないように軌道情報における動作最高速度又はデューティー比の割合を制御する。
【0028】
温度制御部105は、動作最高速度の割合を制御する場合には、係数算出部104により算出されたMVを動作最高速度に乗算して、動作最高速度の書き換えを行うことで、新しい軌道情報を作成する。この際、動作ポイントは変更されない。例えばMV=0.3である場合、0.3が動作最高速度に乗算されることで、30%だけ動作最高速度が緩和された新しい軌道情報が作成される。
また、温度制御部105は、デューティー比の割合を制御する場合には、上記と同様に、係数算出部104により算出されたMVをデューティー比に乗算して、デューティー比の書き換えを行うことで、新しい軌道情報を作成する。
【0029】
なお、係数算出部104及び温度制御部105は、
図4に示す減算器106及びPID温度制御器107に相当する。
【0030】
ここで、例えば
図5に示すように、従来方式(閾値判定オンオフ制御による不連続な切替え方式)では、複数の熱容量要素による高次遅れの等価むだ時間がある。そのため、従来方式では、過熱と冷熱の繰返しの発生及び不安定状態になる可能性が高く、設定温度を超えてしまう可能性が高い。
なお、
図5では、縦軸がロボット2の温度を示し、横軸が時間を示している。また、
図5において、符号51で示される破線に挟まれた範囲は設定温度を示し、符号52は目標温度を示している。
【0031】
これに対し、実施の形態1に係る温度制御装置では、上記に示したPID制御により、例えば
図6に示すように、設定温度内での軌道情報を作成可能となる。その後のロボット2の連続動作では、PID制御が常に有効となり、環境温度及び稼働中の条件変化があっても自動的に温度を管理可能となる。
なお、
図6では、縦軸がロボット2の温度を示し、横軸が時間を示している。また、
図6において、符号61で示される破線に挟まれた範囲は設定温度を示し、符号62は目標温度を示している。
【0032】
ここで、ロボット2の制御において、安全面を重視する場合、発熱量の抑制を目的に限定して管理及び操作を実行するべきである。その場合、モータの仕事量はモータの動作変化に応じて即座に変化するのに対し、発熱量及びこれに伴う温度上昇量は、フィードバック制御で調整可能な時定数を伴う現象である。すなわち、仕事量と発熱量は、影響の現れる速さが各段に異なる。また、モータの負荷と発熱量は、単調な物理現象(単調非線形)になる。そこで、実施の形態1に係る温度制御装置では、PID制御のようなダイナミクスを取り込んだ制御方法を採用することで、発熱量を抑制するためのロボット2の動作緩和を可能としている。
【0033】
このように、実施の形態1に係る温度制御装置では、ロボット2に対する設定温度と現在の温度に基づいて動作緩和補正係数を算出し、動作緩和補正係数が1.0未満である場合には、その値に準じて軌道情報における動作最高速度又はデューティー比の割合を制御することで、サイクルタイム等の動作パラメータを修正する。このPID制御(PID温度制御)により、ロボット2の温度が設定温度内に抑えられた状態となり、安定する。なお、設定温度内であるか否かについてはシステム上判定する必要はない。また、目標温度に対してマージンを取った温度近傍でロボット2が動作するのであれば、規定された安全性を確保した範囲で、最高(最速)の動作を維持可能となる。
【0034】
以上のように、この実施の形態1によれば、温度制御装置は、軌道情報に基づいて、ロボット2の動作を制御する動作制御部102と、ロボット2の温度を示す情報を取得する温度情報取得部103と、設定温度及び温度情報取得部103による取得結果に基づいて、ロボット2の動作を緩和するための動作緩和補正係数を算出する係数算出部104と、係数算出部104による算出結果に基づいて、ロボット2の軌道情報に対してPID制御を行う温度制御部105とを備えた。これにより、実施の形態1に係る温度制御装置は、従来に対し、ロボット2の発熱をより抑制可能となる。
【0035】
なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、若しくは実施の形態の任意の構成要素の省略が可能である。
【符号の説明】
【0036】
1 ロボットコントローラ
2 ロボット
101 動作作成部
102 動作制御部
103 温度情報取得部
104 係数算出部
105 温度制御部
106 減算器
107 PID温度制御器