IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本信号株式会社の特許一覧

<>
  • 特開-地下水位推定システム 図1
  • 特開-地下水位推定システム 図2
  • 特開-地下水位推定システム 図3
  • 特開-地下水位推定システム 図4
  • 特開-地下水位推定システム 図5
  • 特開-地下水位推定システム 図6
  • 特開-地下水位推定システム 図7
  • 特開-地下水位推定システム 図8
  • 特開-地下水位推定システム 図9
  • 特開-地下水位推定システム 図10
  • 特開-地下水位推定システム 図11
  • 特開-地下水位推定システム 図12
  • 特開-地下水位推定システム 図13
  • 特開-地下水位推定システム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023007090
(43)【公開日】2023-01-18
(54)【発明の名称】地下水位推定システム
(51)【国際特許分類】
   E02D 1/00 20060101AFI20230111BHJP
   G01V 9/02 20060101ALI20230111BHJP
【FI】
E02D1/00
G01V9/02
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021110110
(22)【出願日】2021-07-01
(11)【特許番号】
(45)【特許公報発行日】2022-08-22
(71)【出願人】
【識別番号】000004651
【氏名又は名称】日本信号株式会社
(74)【代理人】
【識別番号】100109221
【弁理士】
【氏名又は名称】福田 充広
(74)【代理人】
【識別番号】100181146
【弁理士】
【氏名又は名称】山川 啓
(72)【発明者】
【氏名】菊田 真仁
(72)【発明者】
【氏名】佐々木 崇人
(72)【発明者】
【氏名】勝田 信
(72)【発明者】
【氏名】佐川 俊介
【テーマコード(参考)】
2D043
2G105
【Fターム(参考)】
2D043AA07
2D043BA10
2G105AA02
2G105BB09
2G105LL07
(57)【要約】
【課題】簡易でメンテナンスのかからない計測としつつ、精度の良い地下水位の推定が可能となる地下水位推定システムを提供すること。
【解決手段】地下水位推定システム100は、深さの異なる箇所に設置されて土中の水分を計測する複数の水分計測部11a,11b,11cと、複数の水分計測部11a,11b,11cによる計測結果と複数の水分計測部11a,11b,11c間における深さの差とに基づき地下水位を推定する推定値演算部53とを備える。
【選択図】図2
【特許請求の範囲】
【請求項1】
深さの異なる箇所に設置されて土中の水分を計測する複数の水分計測部と、
前記複数の水分計測部による計測結果と前記複数の水分計測部間における深さの差とに基づき地下水位を推定する推定値演算部と
を備える地下水位推定システム。
【請求項2】
前記複数の水分計測部間における深さの差は、各水分計測部における測定可能範囲に応じて定められている、請求項1に記載の地下水位推定システム。
【請求項3】
前記推定値演算部は、前記複数の水分計測部のうち、最深部に設置した水分計測部から順に飽和判定を行い、不飽和判定となった水分計測部のうち最も深いものについて圧力水頭を推定する、請求項1及び2のいずれか一項に記載の地下水位推定システム。
【請求項4】
前記複数の水分計測部は、互いに長さの異なる複数の棒状部材の端部に水分検知部を設けて構成されている、請求項1~3のいずれか一項に記載の地下水位推定システム。
【請求項5】
前記複数の水分計測部は、1つの棒状部材において、複数の水分検知部を所定の間隔で設け、一体化されて構成されている、請求項1~3のいずれか一項に記載の地下水位推定システム。
【請求項6】
前記推定値演算部は、前記複数の水分計測部における計測値の変化に基づき水位変化を推定する、請求項1~5のいずれか一項に記載の地下水位推定システム。
【請求項7】
前記複数の水分計測部による計測結果を発信する発信部と、
前記複数の水分計測部から離隔して配置され、前記発信部からの計測結果を受信する受信部と
を備え、
前記推定値演算部は、前記受信部で受信された計測結果を集約して地下水位を推定する、請求項1~6のいずれか一項に記載の地下水位推定システム。
【請求項8】
前記水分計測部は、土中の体積含水率を誘電率から計測する、請求項1~7のいずれか一項に記載の地下水位推定システム。
【請求項9】
前記水分計測部は、土壌水分計で構成される、請求項1~8のいずれか一項に記載の地下水位推定システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば斜面崩落の危険度を判定する上での指標の1つとなり得る地下水位の時間変動について推定する地下水位推定システムに関する。
【背景技術】
【0002】
斜面の監視を行うシステムとして、例えば、斜面安定解析に関する種々の計測や算出方法を利用する技術が知られている(特許文献1参照)。また、斜面の地すべりを監視すべく、間隙水圧計を採用するものが知られている(特許文献2参照)。
【0003】
しかしながら、上記特許文献1及び2では、斜面の監視を行うシステムについて開示されているものの、長期的にメンテナンス性の良い監視あるいは観測を行うことは必ずしも容易でない。斜面の監視に必要となる各種データの計測として、例えば特許文献2のように、水位の計測に際して間隙水圧計を採用する場合、現場に設置した間隙水圧計について定期的なメンテナンスが必要となり、保守管理の容易なシステムを構築するのが難しい。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】再表2016/027390号公報
【特許文献2】特開2019-101744号公報
【発明の概要】
【0005】
本発明は上記した点に鑑みてなされたものであり、簡易でメンテナンスのかからない計測としつつ、精度の良い地下水位の推定が可能となる地下水位推定システムを提供することを目的とする。
【0006】
上記目的を達成するための地下水位推定システムは、深さの異なる箇所に設置されて土中の水分を計測する複数の水分計測部と、複数の水分計測部による計測結果と複数の水分計測部間における深さの差とに基づき地下水位を推定する推定値演算部とを備える。
【0007】
上記地下水位推定システムでは、複数の水分計測部を互いに深さの異なるところに設置し、各水分計測部のそれぞれの深さ位置において土中の水分を計測し、推定値演算部において、各水分計測部による計測結果とそれらの深さ位置(測定位置)の違いとに基づいて地下水位を推定する構成とすることで、例えば土壌水分計のように土中の水分計測に際して簡易でメンテナンスの負担が軽い、あるいはかからないものを各水分計測部として採用しても、精度の良い地下水位の推定が可能となる。
【0008】
本発明の具体的な側面では、複数の水分計測部間における深さの差は、各水分計測部における測定可能範囲に応じて定められている。この場合、複数の水分計測部を組み合わせることで、水位推定に必要な深さの範囲全体について適切な計測が可能となる。
【0009】
本発明の別の側面では、推定値演算部は、複数の水分計測部のうち、最深部に設置した水分計測部から順に飽和判定を行い、不飽和判定となった水分計測部のうち最も深いものについて圧力水頭を推定する。この場合、手順に沿って推定を行うことで、適切な水位推定ができる。
【0010】
本発明のさらに別の側面では、複数の水分計測部は、互いに長さの異なる複数の棒状部材の端部に水分検知部を設けて構成されている。この場合、各棒状部材の端部に設けた水分検知部における検知結果から水位推定ができる。
【0011】
本発明のさらに別の側面では、複数の水分計測部は、1つの棒状部材において、複数の水分検知部を所定の間隔で設け、一体化されて構成されている。この場合、1つの棒状部材に設けられた複数の水分検知部における検知結果から水位推定ができる。
【0012】
本発明のさらに別の側面では、推定値演算部は、複数の水分計測部における計測値の変化に基づき水位変化を推定する。この場合、計測値の変化を捉えることで、水位の計時的変化を捉えた推定ができる。
【0013】
本発明のさらに別の側面では、複数の水分計測部による計測結果を発信する発信部と、複数の水分計測部から離隔して配置され、発信部からの計測結果を受信する受信部とを備え、推定値演算部は、受信部で受信された計測結果を集約して地下水位を推定する。この場合、複数の水分計測部から離隔した場所において、集約した計測結果に基づく地下水位の推定がなされる。
【0014】
本発明のさらに別の側面では、水分計測部は、土中の体積含水率を誘電率から計測する。この場合、メンテナンスが簡易で、かつ確実な計測となる。
【0015】
本発明のさらに別の側面では、水分計測部は、土壌水分計で構成される。この場合、土壌水分計を複数使用することで、水位推定に必要な測定が可能となる。
【図面の簡単な説明】
【0016】
図1】第1実施形態に係る地下水位推定システムの概要を説明するための概念図である。
図2】地下水位推定システムの一構成例について説明するためのブロック図である。
図3】(A)~(C)は、地下水位の変化の様子を示す概念図である。
図4】(A)及び(B)は、地下水位の推定について説明するための概念図である。
図5】比較例としての水位観察の方法について示す図である。
図6】現場端末における動作について一例を説明するためのフローチャートである。
図7】データセンターにおける観測データの受付処理について一例を説明するためのフローチャートである。
図8】データセンターにおける演算処理について一例を説明するためのフローチャートである。
図9】データセンターにおける判定処理及び表示(出力)処理について一例を説明するためのフローチャートである。
図10】(A)及び(B)は、現場端末における異常発生の一例について示す概念図である。
図11】第2実施形態に係る地下水位推定システムの概要を説明するための概念図である。
図12】第3実施形態に係る地下水位推定システムの概要を説明するための概念図である。
図13】(A)~(C)は、地下水位推定システムの他の一例について概要を説明するための概念図である。
図14】(A)~(D)は、地下水位推定システムのさらに他の一例について概要を説明するための概念図である。
【発明を実施するための形態】
【0017】
〔第1実施形態〕
以下、図1等を参照して、第1実施形態に係る地下水位推定システムについて一例を説明する。図1等に示すように、本実施形態に係る地下水位推定システム100は、地下水位について観測を行う対象となる現場SIに設置される現場端末10と、現場端末10からの情報を受け付けるデータセンター50とを備える。図示の一例では、地下水位の推定を行う対象となる斜面等の現場SIに現場端末10を複数設置し、各現場端末10において計測(観測)された結果としての観測データODを、現場SIから離隔された場所に設置されたデータセンター50に対して無線により発信(送信)する。データセンター50において、各現場端末10からの観測データODが集約されることで、現場SIにおける地下水位が推定される。さらに、データセンター50は、各現場端末10からの観測データOD等の情報に加え、気象データ等の他の情報を、外部から取得することで、現場SIの状況等を判断し、危険度の判定が可能となっているものとしてもよい。
【0018】
以下、図2として示すブロック図を参照して、地下水位推定システム100の一構成例について説明する。なお、図示では、簡略化するため、1つの現場端末10がデータセンター50と通信している様子を示している。
【0019】
地下水位推定システム100のうち、現場端末10は、複数(図示の例では3つ)の水分計測部11a,11b,11cで構成されるセンサー部11と、記憶部12と、通信部13と、バッテリー14と、各部と接続する主制御部15とを備え、各部が筐体SCに収納されている。なお、センサー部11において、複数の水分計測部11a,11b,11cについては、一部が筐体SCから地面GNに向けて下方に突き出して地下UNに埋められた状態となっている。また、ここでの一例では、設置位置(深さ)の異なる3つの水分計測部11a,11b,11cでセンサー部11を構成しているが、現場SIの状況や各水分計測部11a等の測定能力に応じて、1つの設置箇所においてセンサー部11を構成する水分計測部の個数は適宜変更するものとしてもよい。
【0020】
現場端末10は、既述のように、現場SIに設置され、設置箇所における状況をデータセンター50に送るための装置である。図示の一例では、現場端末10は、各部を収納した筐体SCが現場SIの地面GNの上に設置されるとともに、各水分計測部11a,11b,11cが、深さの異なる箇所に設置されて地面GNから地下(土中)UNに向けて地面GNに対して垂直に埋め込まれた状態で、複数の水分計測部11a,11b,11cにより、異なる深さにおいて地下UNの水分が計測される。また、主制御部15は、各水分計測部11a,11b,11cにおいて計測した結果に関する各種データを、設置箇所における状況を示す情報として、データセンター50に送る。
【0021】
以下、現場端末10の各部の詳細について説明する。まず、現場端末10のうち、センサー部11は、すなわち各水分計測部11a,11b,11cは、互いに長さの異なる棒状部材BAを有し、その端部に水分検知部MDとしての電極ERを設けて構成されている。各水分計測部11a,11b,11cは、例えば土壌水分計で構成できる。図示の一例では、最も浅い側すなわち地面GNに近い側に水分計測部11aが設置され、最も深い側すなわち地面GNから遠い側に水分計測部11cが設置され、これらの中間に水分計測部11bが設置されている。各水分計測部11a,11b,11cは、先端部分(最深部)である電極ERにおいて通電を行って土中の誘電率を測定し、測定された誘電率から、電極ER付近における水分量が算出される。ここでは、各水分計測部11a,11b,11cにおいて、上記水分量として、体積含水率が観測データODとして取得されるものとする。地下水位推定システム100では、この観測データODに基づいて水位(斜線のハッチングで示す地下水の領域R1の上端位置)の推定がなされる。
【0022】
なお、水分計測部11a等として、土壌水分計を採用した場合、土質等にも影響を受けるが、深さ方向についておよそ50cm程度の範囲について、計測結果に基づく推定が可能となる。したがって、例えば、各水分計測部11a,11b,11c間の距離(深さの差)DDa,DDb,DDcを50cm程度ずつとなるようにし、これを各水分計測部11a,11b,11cがそれぞれ担う測定範囲とすると、3つの水分計測部11a,11b,11c全体として、深さ方向について観察可能範囲DDxを150cm程度とすることができる。なお、図示の一例では、地下(土中)UNにおいて、岩盤LY1より上の領域として存在する土層LY2について計測できるように観察可能範囲DDxの範囲が、すなわち各水分計測部11a,11b,11cの配置が定められている。
【0023】
記憶部12は、例えばストレージデバイス等で構成される。記憶部12は、センサー部11すなわち3本の水分計測部11a,11b,11cと接続し、水分計測部11a,11b,11cにおいて検知された土壌水分すなわち体積含水率についての観測データODを記録する。この場合、記憶部12は、センサー部11と協働して、観測データODを記録するロガーとして機能している。
【0024】
通信部13は、データセンター50との通信を行うための装置であり、主制御部15からの指令に従って、観測データODを含む各種データの送受信を行う。すなわち、通信部13は、複数の水分計測部11a,11b,11cによる計測結果としての観測データODを発信する発信部として機能する。
【0025】
バッテリー14は、現場端末10を構成する各部に電力を供給して、各部における電源駆動を維持するための電源である。
【0026】
主制御部15は、例えばCPUや、電子回路、あるいはこれらとストレージデバイスの組合せ等で構成され、現場端末10を構成する上記各部と接続されて、これらの動作制御、延いては、現場端末10全体の動作についての統括制御を行う。ここでは、特に、3本の水分計測部11a,11b,11cにおける水分検知動作のタイミング制御や、記録した観測データODについて、通信部13を介して、データセンター50への送信(出力)を行う。主制御部15は、このほかにも、例えばバッテリー14における残量のチェックや、そのチェック結果についてのデータセンター50への報告等種々の管理動作を行う。
【0027】
以下、地下水位推定システム100のうち、データセンター50の詳細について説明する。データセンター50は、通信部51と、データサーバ52と、推定値演算部53と、出力装置54とを備える。
【0028】
データセンター50は、既述のように、現場SIから離隔して設けられ、現場SIの各地に設置された複数の現場端末10からの情報を通信部51において受け付け、受け付けた情報を、データサーバ52において集約し、これに基づき、推定値演算部53において現場SIにおける地下水位の推定を行う。なお、推定した結果については、例えば表示パネル等の表示部で構成される出力装置54において表示される。
【0029】
通信部51は、各地に設置された現場端末10との通信を行うための装置として機能すべく、現場端末10の通信部13との間で交信可能となっている。すなわち、通信部51は、複数の水分計測部11a,11b,11cから離隔して配置され、発信部である通信部13からの計測結果(観測データOD)を受信する受信部として機能する。
【0030】
データサーバ52は、通信部51介して受け取った現場端末10からの観測データODをはじめとする各種データの管理を行う。また、詳細な図示や説明を省略するが、データサーバ52では、現場端末10からの情報以外にも、例えば現場SIにおける気象予測情報等といった外部からの各種情報が管理されており、データセンター50は、これらの情報から現場SIにおける土砂崩れ発生の可能性といった各種の危険性について、総合的に判断することが可能となっている。
【0031】
推定値演算部53は、例えばCPUや、電子回路等で構成され、現場端末10からの観測データODに基づいて、現場SIにおける地下水位を推定する。より具体的には、各現場端末10を構成する複数(3本)の水分計測部11a,11b,11cによる計測結果と複数の水分計測部11a,11b,11c間における深さの差とに基づき現場SIにおける地下水位を推定する演算装置である。なお、出力装置54では、例えば推定値演算部53による地下水位の推定結果等が出力表示される。
【0032】
以下、現場端末10を設置した現場SIにおける概念図である図3(A)~図3(C)を参照して、地下水位の変化の様子と、センサー部11を構成する水分計測部11a,11b,11cによる水分計測とについて説明する。
【0033】
図3(A)から図3(C)にかけて、地下UNにおける水位の上昇(あるいは下降)の様子が概念的に示されている。図示の一例では、地下UNは、硬い岩盤LY1の上に水分を含みやすい土層LY2が形成された構成となっているものとする。地下UNに含有される地下水は、湧き水等の水分が土層LY2に浸透することで形成され、図中においては、既述のように、斜線のハッチングで示す領域R1により示している。すなわち、地下水を示す領域R1は、岩盤LY1より上の領域であって土層LY2中にあり、領域R1の上端(もっとも地表に近い側の端)は、土層LY2中における地下水位WL1を示している。地下水位推定システム100は、この地下水位WL1の位置を推定するためのものということになる。また、既述のように、複数の水分計測部11a,11b,11cは、地下UNの状況に応じて領域R1の状況を把握すべく、設けられている。
【0034】
ここで、図3(A)に示すように、まず、深さ方向について地表の位置GN1から岩盤LY1(岩盤LY1と土層LY2との境界BD)までの距離である土層厚をhとし、位置GN1から各水分計測部11a,11b,11cの電極ERまでの距離である設置深さをZa,Zb,Zcとする。この場合、Za<Zb<Zc<hとなる。ここで、これらについては、例えば事前に地下UNに関する調査を行っており、土層厚hの値や土質等が既知であり、これらや、各水分計測部11a,11b,11cの性能等に応じて、適した設計で設置深さZa,Zb,Zcが定められているものとする。
【0035】
また、既述のように、水分計測部11aによる測定範囲は、距離DDaに示す範囲であるものとする。同様に、水分計測部11bによる測定範囲は、距離DDbに示す範囲であり、水分計測部11cによる測定範囲は、距離DDcに示す範囲であるものとする。ここでは、分かりやすい一例として、上記各値は、下記の数式を満たす状態となっているものとする。
Za+DDa=Zb
Zb+DDb=Zc
Zc+DDc=h
つまり、各水分計測部11a,11b,11cは、測定範囲が重畳せず、かつ、連続した状態で、距離DDaから距離DDcまでを繋いだ範囲が、現場端末10における観察可能範囲DDxとなっているものとする。言い換えると、現場端末10は、岩盤LY1と土層LY2との境界BDから水分計測部11aを設置した設置深さZaの位置までの範囲を観察可能範囲DDxとしている。
【0036】
ここで、各水分計測部11a,11b,11cにより測定(計測)された体積含水率に基づく水位の推定については、体積含水率が不飽和の値となるものに基づいてなされる。各水分計測部11a,11b,11cの電極ERの位置が、地下水位WL1よりも低くなる、すなわち電極ERが領域R1に含まれた状態になると、体積含水率が飽和となる。つまり、体積含水率が最大値となる。一方、電極ERの位置が、地下水位WL1よりも高ければ、体積含水率が不飽和となる。つまり、体積含水率が最大値よりも低い値となる。この際、地下水位WL1が近くなるほど、体積含水率の値が大きくなる。例えば、図3(A)~図3(C)において、水分計測部11cの電極ERは、図3(A)においてのみ、体積含水率が不飽和となる値を示し、図3(B)や図3(C)においては、体積含水率が飽和となる値を示すことになる。これは、図3(A)に示す場合、地下水位WL1は、距離DDcに示す範囲にあり、この場合、水分計測部11cにおいて測定される体積含水率に基づいて、地下水位WL1の位置推定がなされることになる。すなわち、送信される観測データODのうち、水分計測部11cにおける計測結果が採用されることになる。一方、図3(B)や図3(C)に示す場合、他の水分計測部11a,11bにおける計測結果が採用されることになる。
【0037】
以下、図3(A)から図3(C)にそれぞれ示す状態における水分の測定について、より詳しく説明する。
【0038】
まず、図3(A)に示す状態となっている場合、すなわち、地下水位WL1が、3つの水分計測部11a,11b,11cのいずれに対しても、その先端である電極ER(水分検知部MD)に到達していない場合について考察する。この場合、例えば最も岩盤LY1に近い水分計測部11cの電極ERの付近にある土壌がある程度の水分を含んでいると考えられ、測定される誘電率あるいはこれに対応する体積含水率が、ほとんど水分がないと考えられる他の水分計測部11a,11bとは異なる数値で検出されると想定される。したがって、この場合、水分計測部11cにおいて測定される体積含水率に基づいて、地下水位WL1の位置推定がなされることで、より的確な推定が可能になる。
【0039】
一方、図3(B)に示す状態となっている場合、すなわち、地下水位WL1が、水分計測部11cの電極ERの位置よりも上にあり、水分計測部11cの電極ERが領域R1に含まれているが、2つの水分計測部11a,11bの電極ERには到達していない場合について考察する。この場合、水分計測部11cの電極ERにおいては、飽和体積含水率に到達していることを示す値が検出されると考えられる。つまり、体積含水率が最大値を示すことになる。これに対して、2つの水分計測部11a,11bの電極ERは異なる数値(飽和体積含水率に到達していない値)が検出されると想定される。また、水分計測部11aと水分計測部11bとの間においても検出値に差異が生じていると想定される。したがって、この場合、水分計測部11bにおいて測定される体積含水率に基づいて、地下水位WL1の位置推定がなされることで、より的確な推定が可能になる。
【0040】
最後に、図3(C)に示す状態となっている場合、すなわち、地下水位WL1が、2つの水分計測部11b,11cの電極ERの位置よりも上にあり、2つの水分計測部11b,11cの電極ERが領域R1に含まれているが、水分計測部11aの電極ERには到達していない場合について考察する。この場合、2つの水分計測部11b,11cの電極ERにおいては、飽和体積含水率に到達していることを示す値が検出されると考えられる。これに対して、水分計測部11aの電極ERは異なる数値(飽和体積含水率に到達していない値)が検出されると想定される。したがって、この場合、水分計測部11aにおいて測定される体積含水率に基づいて、地下水位WL1の位置推定がなされることで、より的確な推定が可能になる。
【0041】
図3(A)~図3(C)を参照して説明したように、ここでは、不飽和判定となった観測点が複数ある場合、これらのうち最下部観測点(最も地表の位置GN1から遠い位置)での観測値を採用している。
【0042】
本実施形態では、上記のように、センサー部11を、深さについて位置が異なる複数の水分計測部11a,11b,11cで構成し、これらの間での検出結果の差異に基づいて地下水位WL1の推定を行う態様としている。これにより、本実施形態の地下水位推定システム100では、各水分計測部11a,11b,11cとして、例えば土壌水分計のように、土中の水分計測に際して簡易でメンテナンスの負担が軽い、あるいはかからないものを採用しても、精度の良い地下水位の推定が可能となっている。
【0043】
以下、図4として示す概念図を参照して、上記のような構成による地下水位の推定値についての算出手法の具体的一例を説明する。なお、図4(A)は、図3(C)に対応する図であり、図4(B)は、図3(B)に対応する図である。なお、図示において、土層LY2のうち、地下水が占める領域R1を重力水領域WR1とし、領域R1(重力水領域WR1)より上の領域を間隙水領域WR2とする。
【0044】
ここで、まず、既述の土層厚h、設置深さZa,Zb,Zcについては、既知であるものとし、さらに、設置深さZa,Zb,Zcについては、まとめて設置深さZと示すこともあるものとする。さらに、設置深さZの位置を基準とする圧力水頭をψ(≦0;負の値)とする。圧力水頭ψについては、各水分計測部11a,11b,11cにおける観測値である体積含水率から求められる。なお、以後、体積含水率をθとする。したがって、
ψ=ψ(θ)
とする。なお、圧力水頭ψと体積含水率θとの関係式(体積含水率θに基づく圧力水頭ψの算出)については、具体的一例を後述する。
【0045】
また、岩盤LY1からの高さが地下水位WL1を示すものとし、図示のように、この高さをdとする。すなわち地下水位WL1を示す高さdが、地下水位推定システム100において求めるべき値となるが、これについては、図示のように、上記各パラメータによって、
d=h-Z+ψ…(1)
と表現される。例えば図4(A)に示す場合、図3(C)を参照して示したように、体積含水率として利用される値は、図4(A)において星印で示す水分計測部11aにおいて測定される観測値を採用する。すなわち、体積含水率θの値が不飽和となっているもののうち最下部観測点に位置するものを採用する。つまり、図示の一例の場合、水分計測部11cに加え水分計測部11bまでが飽和となっている。したがって、以上の場合、圧力水頭ψを算出する際の基準位置を設置深さZ=Zaとし、上式(1)は、
d=h-Za+ψ(θ)…(2)
ただし、体積含水率θは、水分計測部11aにおいて測定される体積含水率の値
となる。
【0046】
同様に、図4(B)に示す場合、上式(1)は、
d=h-Zb+ψ(θ)…(3)
ただし、体積含水率θは、水分計測部11bにおいて測定される体積含水率の値
となる。なお、図示等を省略するが、図3(A)に相当する場合については、
d=h-Zc+ψ(θ)…(4)
ただし、体積含水率θは、水分計測部11cにおいて測定される体積含水率の値
となる。
【0047】
ここで、圧力水頭ψの算出方法については、種々の既知の手法を利用することが考えられるが、具体的には、例えば下記のような一例が考えられる。
ここで、体積含水率θを含む各パラメータ等は、以下の通りであり、これらは、土壌の状態等に応じて、適宜定められる。
【0048】
なお、上式(5)は、既知の数式である下記van Genuchtenモデルについて変形することで得られるものである。
【0049】
なお、体積含水率θの適用範囲については、
となる。
【0050】
以上のようにして、高さd、すなわち地下水位WL1の位置についての推定が可能となる。
【0051】
また、上記のようにして推定される高さd(地下水位WL1のの位置)に基づいて、現場端末10における土壌の安定性について予測することも考えられる。
【0052】
土壌の安定性を解析する(判断する)既知の手法の1つとして、重力水領域WR1と間隙水領域WR2との関係に基づいて、せん断応力τと、せん断抵抗力τとの比として、以下の式で表される斜面安定度Fsを利用するものが知られている。この解析手法を利用することが考えられる。
ここで、上式のうち、mは、地下水位比である、つまり、土層厚hと高さd(地下水位WL1の位置)との比率であり、以下に示すものとなる。
なお、上式(8)におけるm以外のパラメータは、下記の通りである。
【0053】
上式(8)について、一般に、斜面安定度Fsが1以上であれば安定であり、1未満である場合には不安定であるものと考えられる。つまり、上式(9)に示す地下水位比mを、現場端末10での測定に基づく推定結果を利用することで、斜面安定度Fsが1以上であるか1未満であるかを計算でき、この計算結果を、現場端末10における土壌の危険性を示す指標の1つとして適用することも可能である。
【0054】
以下、図5を参照して、比較例の地下水位推定システムについて説明する。図5は、一比較例として、本実施形態とは異なる手法による水位推定のための観察方法について示す概念的な図である。
【0055】
水位推定のために土中の状態を検知する手法としては、上記実施形態において説明した一例の他にも種々の方法が考えられ、本実施形態とは異なる手法の1つとして、例えば図5に示すうちの1つのように、間隙水圧計WPを利用することが考えられる。すなわち、間隙水圧計WPにより、土中の間隙水圧を測定することで、地下水位の推定を行うことが考えられる。しかしながら、間隙水圧計WPを利用する場合、例えば封入している脱気水の補充や気泡除去等の定期的なメンテナンスが必要となる。特に、自然災害の発生予兆を見るというような場合には、長期に亘って観測を行う必要があるため、上記のようなメンテナンスを要する構成はあまり向かないものと考えられる。
【0056】
これに対して、他の手法の1つとして、例えば同じく図5に示す他の一例のように、棒状部材BAに水分検知部MD(電極ER)を有して構成される単独の土壌水分計MMを利用することが考えられる。土壌水分計を利用する場合、上記実施形態において説明した場合と同様に、例えば水分検知部MD(電極ER)に電気を流すための電力確保等がなされていれば計測を継続できるため、間隙水圧計WPの場合と比較して、定期的なメンテナンスを要さず、長期間の計測を簡易に行うことが可能である。ただし、土壌水分計MMによって検知可能な範囲は、既述のように、深さ方向についておよそ50cm程度となるため、地下水位の変化の様子を観測するために必要な範囲を満たせない可能性がある。
【0057】
これに対して、本実施形態では、複数の水分計測部(例えば3つの水分計測部11a,11b,11c)を深さが異なるように設置しておくことで、例えば土壌水分計のようなメンテナンスは容易だが検出範囲に制限があるようなものを利用しても、地下水位の変化の様子を的確に捉えられる構成としている。
【0058】
なお、以上のような態様の地下水位推定システム100における地下水位の推定については、データセンター50を構成する推定値演算部53において観測データODについて、上記のような演算処理がなされることになる。すなわち、推定値演算部53は、複数の水分計測部11a,11b,11cのうち、最深部に設置した水分計測部11cから順に、水分計測部11b、水分計測部11aについて飽和判定を順次行い、不飽和判定となった水分計測部のうち最も深いものについて圧力水頭ψを推定する。さらに、推定値演算部53は、複数の水分計測部11a,11b,11cにおける計測値の変化に基づき水位変化を予測するものともなっている。
【0059】
以下、図6図9に示すフローチャートを参照して、地下水位推定システム100の各部における動作について、一例を説明する。
【0060】
最初に、図6を参照して、現場端末10における動作処理について、すなわち観測データODの収集について、一例を説明する。
【0061】
まず、現場端末10の主制御部15は、単位時間ごと(図示の一例では10分ごと)に観測データODを収集すべく、まず、所定の時刻であるかを確認し(ステップS101)、所定の時刻でなければ(ステップS101:No)、所定の時刻になるまで待機する(ステップS102)。所定の時刻になると(ステップS101:Yes)、主制御部15は、センサー部11を構成する3つ全ての水分計測部11a,11b,11cにおいて計測を行わせ、記憶部12にデータの記録をさせる。また、これととともに、これらの計測結果が、観測データOD(体積含水率θ)として収集される(ステップS103)。
【0062】
次に、主制御部15は、通信部13を介して、データセンター50(データサーバ52)へ、ステップS103で収集された観測データODを送信する(ステップS104)。
【0063】
主制御部15は、ステップS104での送信について、送信結果に異常が無ければ(ステップS105:Yes)、ステップS101からの動作を繰り返す。なお、送信結果に異常がある場合(ステップS105:No)、動作を中止して終了する。典型的には、接続・送信不良等が考えられる。
【0064】
次に、図7を参照して、データセンター50のうち、主にデータサーバ52における動作処理について、一例を説明する。
【0065】
まず、データセンター50のデータサーバ52は、通信部51を介して、各現場端末10から最新の観測データOD(体積含水率θ)を受信したか(データ受信の有無)を確認し(ステップS201)、確認がされなければ(ステップS201:No)、所定の時間待機する(ステップS202)。所定の時間が経過すると、再びステップS201の確認を行い、これを繰り返す。ステップS201において、確認がされると(ステップS201:Yes)、データサーバ52は、受信した観測データODをデータサーバ52内の所定の記憶領域に保存し(ステップS203)、また、演算装置である推定値演算部53に対して、受信した観測データODを送信(出力)する(ステップS204)。
【0066】
データサーバ52は、ステップS204での送信について、送信結果に異常が無ければ(ステップS205:Yes)、ステップS201からの動作を繰り返す。なお、送信結果に異常がある場合(ステップS205:No)、動作を中止して終了する。典型的には、接続・送信不良等が考えられる。
【0067】
次に、図8を参照して、データセンター50のうち、主に演算装置である推定値演算部53における動作処理について、一例を説明する。すなわち、上述した体積含水率θに基づく地下水位の推定(高さdの算出)の演算処理について、一例を説明する。また、ここでは、上述した斜面安定度Fsの解析についても、併せて行うものとする。
【0068】
まず、データセンター50の推定値演算部53は、データサーバ52から最新の観測データOD(体積含水率θ)を受信したか(データ受信の有無)を確認し(ステップS301)、確認がされなければ(ステップS301:No)、所定の時間待機し(ステップS302)、所定の時間が経過すると、再びステップS301の確認を行い、これを繰り返す。ステップS301において、確認がされると(ステップS301:Yes)、推定値演算部53は、図3(A)~図3(C)を参照して説明したように、各深度における飽和・不飽和について判定を行う(ステップS303)。
【0069】
ステップS303の判定結果に基づき、重力水領域WR1の判定をするとともに、併せて全深度において飽和判定となっているか否かを確認する(ステップS304)。
【0070】
ステップS304において、全深度において飽和判定とはなっていなければ(ステップS304:No)、推定値演算部53は、不飽和となっているもののうち最深部のものすなわち最下部観測点での観測値(体積含水率θ)から圧力水頭ψを算出する(ステップS305)。
【0071】
さらに、推定値演算部53は、ステップS304で算出された圧力水頭ψに基づき、地下水位の推定値としての高さdの値を算出するとともに、地下水位比mを算出する(ステップS306)。
【0072】
推定値演算部53は、ステップS306で算出された地下水位比mに基づき、斜面安定度Fsの解析を行う(ステップS307)。
【0073】
一方、ステップS304において、全深度において飽和判定となっている場合(ステップS304:Yes)、推定値演算部53は、重力水領域WR1について、3つの水分計測部11a,11b,11cのうち、最も浅い位置に設置した水分計測部11aの観測範囲よりも水位が高くなっているものと判断する。この場合、推定値演算部53は、地下水位比mの値がm=1となっているものとして、すなわち重力水領域WR1の上端が地表に相当する高さになっているものとして取り扱い(ステップS308)、この状態における斜面安定度Fsの解析が行われる(ステップS307)。
【0074】
ステップS307の後、推定値演算部53は、ステップS307において算出された解析結果としての斜面安定度Fsの値を、データサーバ52に送信し、データサーバ52内の所定の記憶領域において当該値が保存(格納)される(ステップS309)。
【0075】
推定値演算部53は、ステップS309でのデータサーバ52への送信について、送信結果に異常が無ければ(ステップS310:Yes)、ステップS301からの動作を繰り返す。なお、送信結果に異常がある場合(ステップS310:No)、動作を中止して終了する。典型的には、接続・送信不良等が考えられる。
【0076】
最後に、図9を参照して、斜面安定度Fsについての判定や、各種データ等の出力表示について、一例を説明する。
【0077】
まず、データセンター50のデータサーバ52において、格納されている観測データOD及び斜面安定度Fsの読み込みがなされる(ステップS401)とともに、例えば推定値演算部53等において、斜面安定度Fsに基づく土壌の安定・不安定についての判定が行われる、すなわち、斜面安定度Fsの値が1以上であるか、1未満であるかが確認される(ステップS402)。
【0078】
ステップS402において、斜面安定度Fsの値が1以上である、すなわち土壌が安定であると判断された場合(ステップS402:No)、データサーバ52は、出力装置54において、警報を伴うことなく、観測データOD及び斜面安定度Fsを出力させる(ステップS403)。
【0079】
一方、ステップS402において、斜面安定度Fsの値が1未満である、すなわち土壌が不安定であると判断された場合(ステップS402:Yes)、データサーバ52は、出力装置54において、警報をとともに、観測データOD及び斜面安定度Fsを出力させ、注意喚起する(ステップS404)。
【0080】
なお、上記のように、斜面安定度Fsの値が1未満である、すなわち土壌が不安定であると判断される状況が続くと、例えば図10(A)のように、現場SIにおいてセンサー部11が地中に埋められて正常に設置されていた現場端末10が、図10(B)に示すように、土砂崩れ等の異常発生に伴って、地中に埋められていた箇所が地上に出てきてしまう、といった状況になることも想定される。図10(B)に示すような状態となった場合、センサー部11において検知される値(誘電率の値)は、地中においてはあり得ないような数値を示すことになると想定される。したがって、このような数値がデータセンター50に送信された場合には、図6のステップS105で例示したような接続不良等に見られる現場端末10の機器故障等ではなく、現場SIにおいて既に異常が発生しているものとして捉えることができる。
【0081】
以上のように、本実施形態に係る地下水位推定システム100は、深さの異なる箇所に設置されて土中の水分を計測する複数の水分計測部11a,11b,11cと、複数の水分計測部11a,11b,11cによる計測結果と複数の水分計測部11a,11b,11c間における深さの差とに基づき地下水位を推定する推定値演算部53とを備える。地下水位推定システム100では、互いに深さの異なるところに設置した各水分計測部11a,11b,11cのそれぞれの深さ位置において土中の水分を計測し、推定値演算部53において、各水分計測部11a,11b,11cによる計測結果とそれらの深さ位置(測定位置)の違いとに基づいて地下水位を推定する構成とすることで、例えば土壌水分計のように土中の水分計測に際して簡易でメンテナンスの負担が軽い、あるいはかからないものを各水分計測部として採用しても、精度の良い地下水位の推定が可能となる。
【0082】
〔第2実施形態〕
以下、図11を参照しつつ、第2実施形態に係る地下水位推定システム100について一例を説明する。本実施形態では、第1実施形態の一例として説明した地下水位推定システム100と比較して、センサー部11の構成が異なっている。なお、上記観点以外についての地下水位推定システム100の全体構成としては、第1実施形態の場合と同様であるので、全体構成のうち、同符号で示す各構成要素についての詳細な説明を省略する。
【0083】
図11は、本実施形態に係る地下水位推定システム100の概要を説明するための概念図であり、図2のうち、現場端末10に関する部分に対応する図である。図示のように、本実施形態に係る地下水位推定システム100を構成する現場端末10において、センサー部11すなわち複数の水分計測部11a,11b,11cは、1つの棒状部材BAxにおいて、複数の水分検知部MD(電極ER)を所定の間隔で設け、一体化されて構成されている。つまり、本実施形態の場合、1つの棒状部材BAxに設けられた複数の水分検知部MD(電極ER)における検知結果(観測データOD)から水位推定ができる。
【0084】
本実施形態においても、センサー部11を構成する水分計測部11a,11b,11cによる計測結果とそれらの深さ位置(測定位置)の違いとに基づいて地下水位を推定する構成とすることで、簡易でメンテナンスのかからない計測としつつ、精度の良い地下水位の推定が可能となる。特に、本実施形態では、センサー部11を一体化した構造とすることで、例えば現場端末10の設置負担の軽減を図ることができる。
【0085】
〔第3実施形態〕
以下、図12を参照しつつ、第3実施形態に係る地下水位推定システム100について一例を説明する。本実施形態では、第1実施形態の一例として説明した地下水位推定システム100等と比較して、1つの現場端末10においてセンサー部11を複数設けている点が異なっている。なお、上記観点以外についての地下水位推定システム100の全体構成としては、第1実施形態の場合と同様であるので、全体構成のうち、同符号で示す各構成要素についての詳細な説明を省略する。
【0086】
図12は、本実施形態に係る地下水位推定システム100の概要を説明するための概念図であり、図2のうち、現場端末10に関する部分に対応する図である。図示のように、本実施形態に係る地下水位推定システム100を構成する現場端末10において、センサー部11が複数(図示の例では3つ)設けられており、各センサー部11を構成する複数の水分計測部11a,11b,11cにおいて、それぞれ計測がなされ、複数のセンサー部11ごとの検知結果(観測データOD)が、記憶部12において一括して記録されるとともに、通信部13により送信される。
【0087】
本実施形態においても、各センサー部11を構成する水分計測部11a,11b,11cによる計測結果とそれらの深さ位置(測定位置)の違いとに基づいて地下水位を推定する構成とすることで、簡易でメンテナンスのかからない計測としつつ、精度の良い地下水位の推定が可能となる。特に、本実施形態では、複数のセンサー部11について、一括して設置・管理することができる。
【0088】
〔その他〕
この発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
【0089】
まず、上記各実施形態で説明した事項は、一例であり、これらに限らず種々の変更態様が考えられ、例えば、上記各実施形態で説明した態様を適宜組み合わせて採用することも可能である。
【0090】
さらに、水分計測部を埋め込む方向等についても、種々の態様とすることができる。上記各実施形態では、水分計測部11a,11b,11cの深さ方向(深さの差を決める方向)を、地面GNを平面と見た場合の法線方向としているが、これに限らず、図13に一例を示すような態様とすることが考えられる。具体的には図13(A)に示すように、現場SIが傾斜した面(斜面)を有した形状となっている場合において、破線LLで示すように、重力方向Gに沿った方向を深さ方向とし、この方向について、所定の間隔で互いに異なる深さ位置となる測定対象点PPにおいて、水分計測を行う態様とすることが考えられる。また、この場合、図13(B)に示すように、各現場端末10において、センサー部11を重力方向Gに沿って延ばす態様とするもののほか、例えば図13(C)に示すように、各現場端末10のセンサー部11を、重力方向Gに垂直な方向(水平方向)に沿って延ばす態様とするものとしてもよい。
【0091】
また、図14(A)や図14(B)に示すように、多数(N個;例えばNは、4以上の整数)のセンサー部11をひとまとめにして、一括した構成としてもよい。さらに、地下UNにおけるセンサー部11の拡がり方についても種々の態様が考えられ、例えば、図14(C)に示すように、センサー部11が斜め方向に広がる態様としたり、図14(D)に示すように、センサー部11が深さの異なる位置で水平方向に広がる態様としたりすることも考えられる。
【0092】
また、上記において、センサー部11におけるセンシング精度を加味して、体積含水率θの飽和を規定してもよい。例えば、センサー部11の観測誤差をθeとし、θ≧θs-θeであれば、飽和として取り扱うようにする、といったことが考えられる。
【0093】
また、上記では、現場端末10の水分計測部11a,11b,11cで測定される体積含水率θの全てを、観測データODとして送信する態様としているが、必要に足る情報を観測データODとしてデータセンター50へ送信できれば、目的が達成できることから、これに限らず、種々の態様とすることができる。例えば、現場端末10において、体積含水率θの飽和・不飽和についてまで確認し、採用されるべき観測値である最下部観測点における体積含水率θのみを観測データODとして送信するものとしてもよい。さらに、危険度を図る指標の1つという観点からは、不飽和となる最下部観測点が明らかに危険ではない深さである場合には、危険はない旨の信号のみを観測データODとして現場端末10からデータセンター50へ送信する態様とすることも考えられる。すなわち、データセンター50の一部の処理を、現場端末10側において担う構成としてもよい。
【0094】
また、例えばデータセンター50について、物理的なサーバ等で構成されるものに限らず、例えばクラウド化して構成されるものとしてもよい。
【符号の説明】
【0095】
10…現場端末、11…センサー部、11a,11b,11c…水分計測部、12…記憶部、13…通信部、14…バッテリー、15…主制御部、50…データセンター、51…通信部、52…データサーバ、53…推定値演算部、54…出力装置、100…地下水位推定システム、BA,BAx…棒状部材、BD…境界、DDa,DDb,DDc…距離、DDx…観察可能範囲、ER…電極、Fs…斜面安定度、G…重力方向、GN…地面、GN1…位置、LL…破線、LY1…岩盤、LY2…土層、MD…水分検知部、MM…土壌水分計、OD…観測データ、PP…測定対象点、R1…領域、SC…筐体、SI…現場、UN…地下、WL1…地下水位、WP…間隙水圧計、WR1…重力水領域、WR2…間隙水領域、Z,Za,Zb,Zc…設置深さ、h…土層厚、m…地下水位比、θ…体積含水率、τ…せん断応力、τ…せん断抵抗力、ψ…圧力水頭、θe…観測誤差、θs…飽和体積含水率、θr…残留体積含水率、ψ1…空気侵入圧パラメータ、n…間隙径パラメータ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
【手続補正書】
【提出日】2022-03-01
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
深さの異なる箇所に設置されて土中の水分を計測する複数の水分計測部と、
前記複数の水分計測部による計測結果と前記複数の水分計測部間における深さの差とに基づき地下水位を推定する推定値演算部と
を備え
前記推定値演算部は、前記複数の水分計測部での計測に基づく飽和判定に応じて圧力水頭を推定する、地下水位推定システム。
【請求項2】
前記複数の水分計測部間における深さの差は、各水分計測部における測定可能範囲に応じて定められている、請求項1に記載の地下水位推定システム。
【請求項3】
前記推定値演算部は、前記複数の水分計測部のうち、最深部に設置した水分計測部から順に飽和判定を行い、不飽和判定となった水分計測部のうち最も深いものについて圧力水頭を推定する、請求項1及び2のいずれか一項に記載の地下水位推定システム。
【請求項4】
前記複数の水分計測部は、互いに長さの異なる複数の棒状部材の端部に水分検知部を設けて構成されている、請求項1~3のいずれか一項に記載の地下水位推定システム。
【請求項5】
前記複数の水分計測部は、1つの棒状部材において、複数の水分検知部を所定の間隔で設け、一体化されて構成されている、請求項1~3のいずれか一項に記載の地下水位推定システム。
【請求項6】
前記推定値演算部は、前記複数の水分計測部における計測値の変化に基づき水位変化を推定する、請求項1~5のいずれか一項に記載の地下水位推定システム。
【請求項7】
前記複数の水分計測部による計測結果を発信する発信部と、
前記複数の水分計測部から離隔して配置され、前記発信部からの計測結果を受信する受信部と
を備え、
前記推定値演算部は、前記受信部で受信された計測結果を集約して地下水位を推定する、請求項1~6のいずれか一項に記載の地下水位推定システム。
【請求項8】
前記水分計測部は、土中の体積含水率を誘電率から計測する、請求項1~7のいずれか一項に記載の地下水位推定システム。
【請求項9】
前記水分計測部は、土壌水分計で構成される、請求項1~8のいずれか一項に記載の地下水位推定システム。
【手続補正書】
【提出日】2022-06-15
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
深さの異なる箇所に設置されて土中の水分を計測する複数の水分計測部と、
前記複数の水分計測部による計測結果と前記複数の水分計測部間における深さの差とに基づき地下水位を推定する推定値演算部と
を備え、
前記推定値演算部は、前記複数の水分計測部での計測に基づく飽和判定において不飽和判定となった水分計測部のうち最も深いものについて圧力水頭を推定する、地下水位推定システム。
【請求項2】
前記複数の水分計測部間における深さの差は、各水分計測部における測定可能範囲に応じて定められている、請求項1に記載の地下水位推定システム。
【請求項3】
前記推定値演算部は、前記複数の水分計測部のうち、最深部に設置した水分計測部から順に飽和判定を行う、請求項1及び2のいずれか一項に記載の地下水位推定システム。
【請求項4】
前記複数の水分計測部は、互いに長さの異なる複数の棒状部材の端部に水分検知部を設けて構成されている、請求項1~3のいずれか一項に記載の地下水位推定システム。
【請求項5】
前記複数の水分計測部は、1つの棒状部材において、複数の水分検知部を所定の間隔で設け、一体化されて構成されている、請求項1~3のいずれか一項に記載の地下水位推定システム。
【請求項6】
前記推定値演算部は、前記複数の水分計測部における計測値の変化に基づき水位変化を推定する、請求項1~5のいずれか一項に記載の地下水位推定システム。
【請求項7】
前記複数の水分計測部による計測結果を発信する発信部と、
前記複数の水分計測部から離隔して配置され、前記発信部からの計測結果を受信する受信部と
を備え、
前記推定値演算部は、前記受信部で受信された計測結果を集約して地下水位を推定する、請求項1~6のいずれか一項に記載の地下水位推定システム。
【請求項8】
前記水分計測部は、土中の体積含水率を誘電率から計測する、請求項1~7のいずれか一項に記載の地下水位推定システム。
【請求項9】
前記水分計測部は、土壌水分計で構成される、請求項1~8のいずれか一項に記載の地下水位推定システム。