(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023071068
(43)【公開日】2023-05-22
(54)【発明の名称】光干渉装置
(51)【国際特許分類】
G01B 9/02 20220101AFI20230515BHJP
【FI】
G01B9/02
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2021183655
(22)【出願日】2021-11-10
(71)【出願人】
【識別番号】514277260
【氏名又は名称】シンクランド株式会社
(71)【出願人】
【識別番号】504190548
【氏名又は名称】国立大学法人埼玉大学
(74)【代理人】
【識別番号】110000752
【氏名又は名称】弁理士法人朝日特許事務所
(72)【発明者】
【氏名】太田 和哉
(72)【発明者】
【氏名】志賀 代康
(72)【発明者】
【氏名】細田 真希
(72)【発明者】
【氏名】塩田 達俊
【テーマコード(参考)】
2F064
【Fターム(参考)】
2F064AA09
2F064CC01
2F064EE04
2F064GG22
2F064GG41
2F064GG44
2F064GG49
2F064HH08
2F064JJ01
(57)【要約】
【課題】ファブリーペローエタロンを用いて奥行方向の測定範囲を拡大するとともに、一台のカメラで繰返し反射の回数を特定する。
【解決手段】カメラ100A、BS110、BS120、レンズ170、FP150、グレーティング160、生成手段182、および特定手段184Aを有する光干渉装置1Aを提供する。BS110、BS120、レンズ170、およびグレーティング160はマッハツェンダー光学系を構成し、FP150はBS110からグレーティング160に至る光路に設けられる。カメラ100Aは測定対象物OBからの第1の戻り光R1とグレーティング150からの第2の戻り光R2とを受光する。生成手段182は第1の戻り光R1と第2の戻り光R2とによって生じる干渉縞を表す二次元画像を生成する。特定手段184Aは第2の戻り光R2におけるFP150による繰返し反射回数を干渉縞の太さに基づいて特定する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
受光手段と、
光源から出射された光が入射する第1のビームスプリッタと、
前記第1のビームスプリッタにて分割された第1の光である測定光を測定対象物へ集光させるレンズと、
前記第1のビームスプリッタにて分割された、前記第1の光とは異なる第2の光である参照光が入射するファブリーペローエタロンと、
前記ファブリーペローエタロンから出射された参照光が導かれるグレーティングと、
前記第1のビームスプリッタと前記レンズとの間に設けられ、前記第1の光を前記レンズへ導くとともに、前記測定対象物からの第1の戻り光を前記受光手段に導く一方、前記グレーティングからの第2の戻り光を前記受光手段に導く、第2のビームスプリッタと、
前記受光手段にて受光した前記第1の戻り光と前記第2の戻り光によって生じる干渉縞を表す二次元画像を生成する生成手段と、
前記二次元画像に表されている干渉縞の太さに基づいて、当該干渉縞を生じさせる前記第2の戻り光における前記ファブリーペローエタロンによる繰返し反射回数を特定する特定手段と
を有する光干渉装置。
【請求項2】
受光した光を2以上の所定の波長帯に分離する受光手段と、
光源から出射された光が入射する第1のビームスプリッタと、
前記第1のビームスプリッタにて分割された第1の光である測定光を測定対象物へ集光させるレンズと、
前記第1のビームスプリッタにて分割された、前記第1の光とは異なる第2の光である参照光が入射するファブリーペローエタロンと、
前記ファブリーペローエタロンから出射された参照光が導かれるグレーティングと、
前記第1のビームスプリッタと前記レンズとの間に設けられ、前記第1の光を前記レンズへ導くとともに、前記測定対象物からの第1の戻り光を前記受光手段に導く一方、前記グレーティングからの第2の戻り光を前記受光手段に導く、第2のビームスプリッタと、
前記受光手段にて受光した前記第1の戻り光と前記第2の戻り光によって生じる干渉縞を表す二次元画像を生成する生成手段と
前記二次元画像において前記測定対象物の奥行方向に2以上の干渉縞セットが存在する場合、当該干渉縞セットを構成する干渉縞の間隔に基づいて、当該干渉縞セットを生じさせている前記第2の戻り光における前記ファブリーペローエタロンによる繰返し反射回数を特定する特定手段と
を有する光干渉装置。
【請求項3】
前記受光手段は、2以上の所定の波長帯の光を透過もしくは反射させるフィルタと、当該フィルタの後段に配置されたモノクロカメラとを含む
請求項2に記載の光干渉装置。
【請求項4】
前記受光手段は、前記受光した光を少なくとも3つの波長帯域に分離するカラーカメラを含む
請求項2に記載の光干渉装置。
【請求項5】
前記測定対象物に入射する直前の前記測定光のビーム形状は線状である、
請求項1~4のいずれか一つに記載の光干渉装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は光干渉装置に関する。
【背景技術】
【0002】
測定対象物の表面の凹凸を計測する計測技術の一例として、マッハツェンダー光学系を利用する技術が挙げられる(例えば、特許文献1参照)。この種の計測技術では、光源から発せられた光を測定対象物に照射する測定光と参照光とに分離し、測定対象物により反射された測定光と参照光とを合成した合成光(干渉光)の干渉縞を測定することで測定対象物の表面形状が測定される。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
マッハツェンダー光学系を用いた表面の計測技術において、表面の法線方向等の奥行方向の測定範囲を拡大するために、参照光の光路内にファブリーペローエタロンを配置することが考えられる。ファブリーペローエタロンとは、2枚の反射平面を互いに向い合わせて配置した光学素子のことをいう。ファブリーペローエタロンでは、向い合わせに配置された反射面間での繰返し反射によって光干渉が発生し、所定の干渉条件を満たす波長の光だけが透過する。参照光の光路内にファブリーペローエタロンを配置することで、繰返し反射の回数分だけ位相が遅れた参照光が繰返し反射毎に生成される。ファブリーペローエタロンの厚さ(光学長)がグレーティングによる基本測定範囲以下である場合、位相遅れが各々異なる複数の参照光の各々と測定対象物による測定光の反射光とを干渉させることにより、基本測定範囲が連続的に繰返すこととなり、複数の干渉縞をカメラで同時測定することで奥行測定範囲を拡大する。
【0005】
参照光光路内にファブリーペローエタロンが配置された場合、ファブリーペローエタロンにおける複数回の繰返し反射によって作られた干渉縞内のそれぞれの縞が、何回目の繰返し反射による干渉縞かを判別することが必要となる。繰返し反射の回数(次数)は測定対象物の表面における凹みの深さに対応するからである。ここで、複数のカメラを使用して波長毎に干渉縞の画像を生成し、干渉信号に起因する参照光の繰返し次数を複数の画像を解析して計算することも原理的に可能である。しかし、複数のカメラを使用して波長毎に干渉縞の画像を生成する態様では、一台のカメラ当たりの信号強度が低下し、S/Nが劣化する。S/Nとは、信号(Signal)の雑音(Noise)の比のことをいう。従って、一台のカメラで繰返し反射の回数を特定できることが好ましいが、このようなことを可能にする技術は従来なかった。
【0006】
本発明は、マッハツェンダー光学系を用いた表面の計測技術において、ファブリーペローエタロンを用いて奥行測定範囲を拡大するとともに、一台のカメラで繰返し反射の回数を特定することを可能にする技術を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の第1の態様に係る光干渉装置は、受光手段と、第1および第2のビームスプリッタと、レンズと、ファブリーペローエタロンと、グレーティングと、生成手段と、特定手段と、を備える。第1のビームスプリッタには、光源から出射された光が入射する。レンズは、第1のビームスプリッタにて分割された第1の光である測定光を測定対象物へ集光させる。ファブリーペローエタロンには、第1のビームスプリッタにて分割された、第1の光とは異なる第2の光である参照光が入射する。グレーティングには、ファブリーペローエタロンから出射された参照光が導かれる。第2のビームスプリッタは、第1のビームスプリッタとレンズとの間に設けられる。第2のビームスプリッタは、第1の光をレンズへ導くとともに、測定対象物からの第1の戻り光を受光手段に導く。また、第2のビームスプリッタは、グレーティングからの第2の戻り光を受光手段に導く。生成手段は、受光手段にて受光した第1の戻り光と第2の戻り光によって生じる干渉縞を表す二次元画像を生成する。特定手段は、生成手段により生成された二次元画像に表されている干渉縞の太さに基づいて、当該干渉縞を生じさせる第2の戻り光におけるファブリーペローエタロンによる繰返し反射回数を特定する。
【0008】
また、本発明の第2の態様に係る光干渉装置は、受光手段と、第1および第2のビームスプリッタと、レンズと、ファブリーペローエタロンと、グレーティングと、生成手段と、特定手段と、を備える。受光手段は、受光した光を2以上の所定の波長帯に分離する。第1のビームスプリッタには、光源から出射された光が入射する。レンズは、第1のビームスプリッタにて分割された第1の光である測定光を測定対象物へ集光させる。ファブリーペローエタロンには、第1のビームスプリッタにて分割された、第1の光とは異なる第2の光である参照光が入射する。グレーティングには、ファブリーペローエタロンから出射された参照光が導かれる。第2のビームスプリッタは、第1のビームスプリッタとレンズとの間に設けられる。第2のビームスプリッタは、第1の光をレンズへ導くとともに、測定対象物からの第1の戻り光を受光手段に導く。また、第2のビームスプリッタは、グレーティングからの第2の戻り光を受光手段に導く。生成手段は、受光手段にて受光した第1の戻り光と第2の戻り光によって生じる干渉縞を表す二次元画像を生成する。特定手段は、生成手段により生成された二次元画像において測定対象物の奥行方向に2以上の干渉縞セットが存在する場合、当該干渉縞セットを構成する干渉縞の間隔に基づいて、当該干渉縞セットを生じさせている第2の戻り光におけるファブリーペローエタロンによる繰返し反射回数を特定する。
【0009】
第2の態様の光干渉装置では、受光手段は、2以上の所定の波長帯の光を透過もしくは反射させるフィルタと、当該フィルタの後段に配置されたモノクロカメラとを含んでもよい。
【0010】
また、第2の態様の光干渉装置では、受光手段は、受光した光を少なくとも3つの波長帯域に分離するカラーカメラを含んでもよい。
【0011】
また、上記各態様の光干渉装置において、測定対象物に入射する直前の測定光のビーム形状は線状であってもよい。
【図面の簡単な説明】
【0012】
【
図1】本発明の第1実施形態による光干渉装置1Aの構成例を示す図である。
【
図2】分散を付与しない場合のFP150からの参照光L2の出力タイミングの一例を示す図である。
【
図3】本実施形態におけるFP150からの参照光L2の出力タイミングの一例を示す図である。
【
図4】測定対象物OBの実際の表面状態の例を示す図である。
【
図5】分散を付与しない場合の干渉縞に基づく判別結果の一例を示す図である。
【
図6】本実施形態においてカメラ100Aにより撮像される干渉縞の一例を示す図である。
【
図7】本発明の第2実施形態による光干渉装置1Bの構成例を示す図である。
【
図8】カメラ100Aにより撮像される干渉縞の一例を示す図である。
【
図9】本発明の第3実施形態による光干渉装置1Cの構成例を示す図である。
【
図10】カメラ100CにおけるR、G、およびBの各画素の波長感度の一例を示す図である。
【
図11】カメラ100Cにより撮像される干渉縞の一例を示す図である。
【発明を実施するための形態】
【0013】
以下に述べる各実施形態には技術的に好ましい種々の限定が付されている。しかし、本発明の実施形態は、以下に述べる形態に限られるものではない。
【0014】
A.第1実施形態
図1は、本発明の第1実施形態による光干渉装置1Aの構成例を示す図である。光干渉装置1Aは、測定対象物OBの表面の凹凸を計測するための装置である。
図1では、光干渉装置1Aの他に光源SCおよび測定対象物OBが図示されている。
図1に示されるように、光干渉装置1Aは、カメラ100Aと、ビームスプリッタ(
図1では、BSと略記、以下、本明細書においても同様)110、BS120およびBS130と、ミラー140と、ファブリーペローエタロン(
図1では、FPと略記、以下、本明細書においても同様)150と、グレーティング160と、処理装置180Aと、リレーレンズ190,リレーレンズ200、およびレンズ210と、を含む。本実施形態では、光干渉装置1Aによる凹凸の測定対象となる測定対象物OBの面の法線に沿った軸はZ軸と称される。Z軸に直交する2つの軸のうちの一方はX軸と称され、他方はY軸と称される。
【0015】
光干渉装置1Aでは、BS110、BS120およびBS130と、ミラー140と、グレーティング160と、によりマッハツェンダー光学系が構成される。BS110、120およびBS130の各々は、偏光ビームスプリッタである。BS110、BS120およびBS130として偏光ビームスプリッタを用いるのは、各々における透過光と反射光の強度を調整し易いからである。
【0016】
図1に示されるように、BS110には、光源SCから出射された光Lが入射する。好ましい態様において、光源SCは、超短パルスレーザーからの出射光に非線形効果を与えることで生じる、位相のそろった広帯域で高強度のパルス光源である。その波長域は、赤色、緑色および青色の各色の光をカバーすることが好ましい。
BS110は、入射した光Lを測定光L1と参照光L2とに分割する。BS110は、本開示における第1のビームスプリッタの一例である。測定光L1は本開示における第1光の一例である。参照光L2は、本開示における第2の光、即ち第1の光とは異なる第2の光の一例である。
【0017】
参照光L2は、ミラー140による反射を経てFP150に入射する。FP150に入射した参照光L2は、FP150内における複数回の反射を経てFP150から出射される。本実施形態では、FP150の厚み(FP150内における参照光L2の一往復分の光学長)は測定対象物OBの表面におけるZ軸に沿った凹みの深さの基本測定範囲以下である。FP150から出射される参照光L2は、BS130による案内を経てグレーティング(回折格子)160に入射する。本実施形態では、FP150から出射される参照光L2の色毎に出力タイミングが異なるように、即ち波長毎に位相の遅れが異なるように、FP150に分散が付与されている。
【0018】
図2は、分散を付与しなかった場合にFP150内をN(
図2では、N=1~4)回往復した後に出力される参照光L2の出力タイミングの一例を示す図である。
図2における時間Tは、FP150の内部を参照光L2が一往復するのに要する時間である。
図2において右肩下がりのハッチングは青色の光の出力スペクトルを表し、横線のハッチングは緑色の光の出力スペクトルを表し、縦線のハッチングは黄色の光の出力スペクトルを表し、右肩上がりのハッチングは赤色の光の出力スペクトルを表す(後述する
図3においても同様)。
図2に示されるように、分散を付与しなかった場合には参照光L2に含まれる青色、緑色、黄色、および赤色の各色の光は同じタイミングで出力される。
【0019】
図3は、本実施形態においてFP150から出射される参照光L2の出力タイミングの一例を示す図である。本実施形態では、FP150に分散が付与されているので、各往復回数の参照光L2において、波長毎の位相の遅れが発生する。なお、
図3を参照すれば明らかなように、往復回数が同じであれば、赤色の光に対して黄色、緑色、そして青色の光の順に出力タイミングが遅れ、往復回数が多くなるほど、赤色の光の出力から青色の光の出力までの遅れの幅Δが大きくなる。
【0020】
グレーティング160における参照光L2の入射面には、鋸歯状に複数の溝が設けられている。
図1では、これら複数の溝の内の一つが図示されている。本実施形態では、この溝の深さdが、測定対象物OBの表面におけるZ軸に沿った凹みの深さの基本測定範囲となる。グレーティング160は入射した参照光L2を反射する。グレーティング160による参照光L2の反射光R2は、BS130、リレーレンズ190およびリレーレンズ200による案内を経てBS120へ入射する。反射光R2は、本開示における第2の戻り光の一例である。以下では、反射光R2は第2の戻り光R2とも称される。
【0021】
図1に示されるように、BS120は、BS110とレンズ170との間に設けられる。BS120は、測定光L1をレンズ170へ導くとともに、測定対象物OBによる測定光L1の反射光R1をカメラ100Aに導く。測定光L1の測定対象物OBによる反射光R1は、本開示における第1の戻り光の一例である。以下では、反射光R1は第1の戻り光R1とも称される。また、BS120は、反射光R2をカメラ100Aに導く。BS120は本開示における第2のビームスプリッタの一例である。
【0022】
レンズ170は、入射する測定光L1をX軸に沿った線状に集光するシリンドリカルレンズである。本実施形態では、X軸に沿った長さが約20mm、且つ幅が約10ミクロンの線状の測定光L1を用いて測定対象物OBの表面の凹凸の測定が行われる。X軸に沿った線状の測定光L1を用いて測定対象物OBの表面の凹凸の測定が行われるので、本実施形態では、X軸方向の走査は不要であり、Y軸方向の走査のみが行われればよい。レンズ170から出射される線状の測定光L1はレンズ210による集光を経て測定対象物OBの表面に照射される。測定光L1の測定対象物OBによる反射光R1はレンズ210、レンズ170、およびBS120による案内を経てカメラ100Aに入射する。
【0023】
カメラ100Aは、モノクロカメラである。カメラ100Aは、第1の戻り光と第2の戻り光とを受光した光を表す画像信号GM、即ち第1の戻り光R1と第2の戻り光R2によって生じる干渉縞のモノクロ画像を表す画像信号GMを処理装置180Aへ出力する。カメラ100Aは、本開示における受光手段の一例である。
【0024】
処理装置180Aは、例えばCPU(Central Processing Unit)等のプロセッサ、即ちコンピュータを含む。処理装置180Aは1つのコンピュータを含んでもよいし、複数のコンピュータを含んでもよい。処理装置180Aは、
図1では図示を省略した記憶装置に記憶されているプログラムに従って作動することにより生成手段182および特定手段184Aとして機能する。つまり、
図1における生成手段182および特定手段184Aは、プログラムに従ってコンピュータを作動させることにより実現されるソフトウェアモジュールである。なお、処理装置180Aと上記記憶装置とは、パーソナルコンピュータの一部であってもよい。
【0025】
生成手段182は、画像信号GMに基づいて二次元画像、即ち第1の戻り光R1と第2の戻り光R2によって生じる干渉縞を表すモノクロの二次元画像、を生成する。以下では、第1の戻り光R1と第2の戻り光R2によって生じる干渉縞のうち明るい部分の各々は明線と称され、暗い部分の各々は暗線と称される。干渉縞には明線と暗線とが交互に現れる。
【0026】
特定手段184Aは、生成手段182により生成された二次元画像で表される干渉縞の太さ、即ち明線或いは暗線の太さに基づいて、当該干渉縞を生じさせる第2の戻り光R2におけるFP150による繰返し反射回数(即ち、FP150内における参照光L2の往復の回数)を特定する。干渉縞の太さに基づいてFP150による繰返し反射回数を特定できる理由は次の通りである。
【0027】
参照光L2では、繰返し反射回数毎に波長(光の色)毎の位相が異なるため、第1の戻り光R1と第2の戻り光R2との干渉により発生する干渉縞には、繰返し反射回数に応じた色の滲みが発生する。前述したように、本実施形態においてこの干渉縞を撮像するカメラ100Aはモノクロカメラである。このため、繰返し反射回数に応じた色の滲みは、カメラ100Aによる撮像画像では干渉縞の太さの相違として現れる。これが、干渉縞の太さに基づいてFP150による繰返し反射回数を特定できる理由である。
【0028】
ここで、FP150を設けることでZ軸方向の測定範囲を10次まで拡張するものの、FP150に分散を付与しなかった場合を想定する。この場合、前掲
図2に示されるように、各反射回数の参照光L2において各色の光の出力タイミングは同じになり、前述した色の滲みは発生しない。
図4に測定対象物OBの実際の表面の状態の例を示す。この例においては、測定対象物OBの表面に凹部RE(・・・P1―P2―P3-P4-P5-P6・・・)が形成されている。即ち、凹部REの壁面は、P2―P3間においては深さ方向(Z軸方向、換言すると測定光が測定対象物OB入射する方向と平行な方向)に対して傾斜しているが、P4―P5間においては、深さ方向に対して平行になっている(換言すると、孔が垂直に削られている)。この測定対象物OBを、FP150に分散を付与せずに測定を行った場合に得られる干渉縞を概念的に示したものが
図5である。
図5においては、P4―P5間に対応する干渉縞が、測定範囲を拡張した分だけ干渉縞が多重に重なって現れる。この結果、P4―P5間の凹部REの深さを干渉縞から正しく判別することはできない。
【0029】
図6は、
図4に示した測定対象物OBについて、FP150に分散を付与して測定した場合に得られる干渉縞を模式的に示したものである。同図に示すように、繰返し反射回数は干渉縞の太さの相違として現れる。即ち、P2-P6間に対応する画像上の領域においては干渉縞が他の箇所によりも太く(幅が広く;換言すると線が滲んだ状態と)なっている。より詳細には、P2-P3間に対応する画像上の領域において干渉縞は徐々に太くなり、P1-P2間およびP3-P4間およびP5-P6間にそれぞれ対応する画像上の領域(同図のF0、F1、F2で示す)においては干渉縞の太さは一定となっている。
この干渉縞の太さ(換言すると線の滲み具合)に基づいて、繰返し反射の回数を特定し、孔の形状(例えば、この例でいえば凹部REの深さZ軸方向の距離を含む情報)を正しく判別することが可能になる。このように、本実施形態の光干渉装置1Aによれば、マッハツェンダー光学系を用いた表面の計測技術において、ファブリーペローエタロンを用いて奥行測定範囲を拡大するとともに、一台のカメラで繰返し反射の回数を特定することが可能になる。
【0030】
B.第2実施形態
図7は、本発明の第2実施形態による光干渉装置1Bの構成例を示す図である。
図7では、
図1におけるものと同じ構成要素には同一の符号が付されている。
図7と
図1とを比較すれば明らかなように、光干渉装置1Bの構成は、以下の2つの相違点において光干渉装置1Aの構成と異なる。
【0031】
第1の相違点は、カメラ100AとBS120との間にフィルタ220を有する点である。フィルタ220は、2つの離れた波長帯(本実施形態では、500nm±10nmの波長帯と700nm±10nmの波長帯)の光を透過させるカラーフィルタである。本実施形態では、フィルタ220とカメラ100Aとによって、受光した光を2以上の所定の波長帯に分離する受光手段が形成される。フィルタ220に代えて、2以上の所定の波長帯の光を反射するカラーフィルタを用い、当該カラーフィルタによる反射光をカメラ100Aに案内することで、受光した光を2以上の所定の波長帯に分離する受光手段が形成されてもよい。
【0032】
第2の相違点は、処理装置180Aに代えて処理装置180Bを有する点である。処理装置180Bは、生成手段182として機能する点では、処理装置180Aと同一であるが、特定手段184Aに代えて特定手段184Bとして機能する点において処理装置180Aと異なる。特定手段184Bは、第1の戻り光R1と第2の戻り光R2との干渉縞に基づいてFP150による繰返し反射回数を特定する点では、特定手段184Aと共通である。特定手段184Bは、生成手段182により生成された二次元画像において、測定対象物OBの奥行方向に2以上の干渉縞セットが存在する場合、当該干渉縞セットを構成する干渉縞の間隔に基づいて繰返し反射回数を特定する点において特定手段184Aと異なる。Z軸方向に2以上の干渉縞セットが存在する場合、当該干渉縞セットを構成する干渉縞の間隔に基づいて繰返し反射回数を特定できる理由は次の通りである。
【0033】
本実施形態においても、FP150には分散が付与されているので、各反射回数の参照光L2において、前掲
図3に示すように、波長毎の位相の遅れが発生する。参照光L2では、繰返し反射回数毎に波長毎の位相が異なるため、第1の戻り光R1と第2の戻り光R2との干渉により発生する干渉縞には、繰返し反射回数に応じた色の滲みが発生する。本実施形態では、カメラ100Aの前にフィルタ220が配置されているので、色の滲みの中のフィルタ220を透過する2つの波長帯の干渉縞が、
図8に示されるように2本セットで観察される(同図において、F1RとF1Lとで一対の干渉縞を形成し、F2RとF2Lとで一対の干渉縞を形成している)。換言すると、あるX軸上の位置に対応するZ軸の値が2つ存在する。この2本で一つのセットを形成する干渉縞内の上記2の波長帯の縞間隔は、繰返し反射回数に応じて異なる。これが、Z軸方向に2以上の干渉縞セットが存在する場合、当該干渉縞セットを構成する干渉縞の間隔に基づいて繰返し反射回数を特定できる理由である。
【0034】
以上説明したように、本実施形態の光干渉装置1Bによっても、マッハツェンダー光学系を用いた表面の計測技術において、ファブリーペローエタロンを用いて奥行測定範囲を拡大するとともに、一台のカメラで繰返し反射の回数を特定することが可能になる。
【0035】
C.第3実施形態
図9は、本発明の第3実施形態による光干渉装置1Cの構成例を示す図である。
図9では、
図7におけるものと同じ構成要素には同一の符号が付されている。
図9と
図7とを比較すれば明らかなように、光干渉装置1Cの構成は、以下の2つの相違点において光干渉装置1Bの構成と異なる。第1の相違点は、光干渉装置1Cはフィルタ220を有さない点である。第2の相違点は、カメラ100Aに代えてカメラ100Cを有する点である。カメラ100Cは、赤色、緑色、および青色の各色の画像信号GCを出力するカラーカメラ、即ち受光した光を少なくとも3つの波長帯域に分離するカラーカメラである点がカメラ100Aと異なる。カメラ100Cは、第2実施形態におけるフィルタ220およびカメラ100Aと同様に、受光した光を2以上の所定の波長帯に分離する受光手段の役割を果たす。
【0036】
本実施形態では、特定手段184Bは、赤色、緑色、および青色の各色のうち、予め定められた2つの色における干渉縞の間隔の相違に基づいて繰返し反射回数を特定する。例えば、カメラ100Cが、R(赤色)、G(緑色)、およびB(青色)の各画素の波長感度が
図10(A)で示されるベイヤーパターンカメラである場合、またはR、G、およびBの各画素の波長感度が
図10(B)で示されるプリズムカメラである場合には、各色の感度境界付近の波長を利用するため、特定手段184Bには、赤色および青色の各色における干渉縞の間隔の相違に基づいて繰返し反射回数を特定させればよい。
図11は、カメラ100Cにより撮像される干渉縞の一例を示す図である。
図11に示す例では、一点鎖線は赤色の光の干渉縞を、実線は緑色の光の干渉縞を、点線は青色の光の干渉縞をそれぞれ表す。
図11に示されるように、カメラ100Cにより撮像される干渉縞では、緑色の光の干渉縞に対する赤色および青色の干渉縞の位置は互い異なり、また、青色の光の干渉縞と赤色の光の干渉縞との間隔は繰返し反射回数に応じて異なる。
【0037】
以上説明したように、本実施形態の光干渉装置1Cによっても、マッハツェンダー光学系を用いた表面の計測技術において、ファブリーペローエタロンを用いて奥行測定範囲を拡大するとともに、一台のカメラで繰返し反射の回数を特定することが可能になる。なお、繰返し反射回数については予め定められた2つの色における干渉縞の間隔に基づいて特定するものの、Z軸方向の距離の測定については、色の滲みの影響を緩和するために、R、G、およびBのうちの一つの色に基づいて行われてもよい。
【0038】
D.変形
以上説明した各実施形態は、以下のように変形されてもよい。
(1)上記各実施形態において、ファブリーペローエタロン150は、直列に配列された複数のファブリーペローエタロン(例えば、直列に配列された2つのファブリーペローエタロン)に置き換えられてもよい。ファブリーペローエタロンの反射面の機械加工精度の限界のため、出力光のスペクトルの包絡線はあまり奇麗な波形ならないが、複数のファブリーペローエタロンを直列に配列することで、機械加工精度の限界に起因する影響を緩和することができる。
【0039】
(2)上記第1実施形態における生成手段182および特定手段184Aはソフトウェアモジュールであったが、生成手段182および特定手段184Aのいずれか一方または両方がASIC等のハードウェアモジュールであってもよい。生成手段182および特定手段184Aのいずれか一方または両方がハードウェアモジュールであっても、上記第1実施形態と同じ効果が奏される。第2実施形態における特定手段184Bもハードウェアモジュールであってもよい。
【0040】
(3)上記各実施形態では、測定対象物OBに入射する直前の測定光L1のビーム形状は線状であった。しかし、X軸方向に加えてY軸方向の走査も行うのであれば、測定光L1のビーム形状は線状でなくてもよい。
【符号の説明】
【0041】
1A,1B,1C…光干渉装置、100A…カメラ、110,120、130…ビームスプリッタ、140…ミラー、150…ファブリーペローエタロン、160…グレーティング、170…レンズ、180A,180B…処理装置、182…生成手段、184A,184B…特定手段、190,200,…リレーレンズ、210…レンズ、220…フィルタ。