IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ セレクタ バイオサイエンシーズ インコーポレーテッドの特許一覧

特開2023-71721合成ナノキャリアにカップリングした免疫抑制剤のパターン化された投与
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023071721
(43)【公開日】2023-05-23
(54)【発明の名称】合成ナノキャリアにカップリングした免疫抑制剤のパターン化された投与
(51)【国際特許分類】
   A61K 35/76 20150101AFI20230516BHJP
   A61K 35/761 20150101ALI20230516BHJP
   A61K 48/00 20060101ALI20230516BHJP
   A61K 31/436 20060101ALI20230516BHJP
   A61K 9/51 20060101ALI20230516BHJP
   A61K 47/02 20060101ALI20230516BHJP
   A61K 47/36 20060101ALI20230516BHJP
   A61K 47/42 20170101ALI20230516BHJP
   A61P 37/06 20060101ALI20230516BHJP
   A61P 43/00 20060101ALI20230516BHJP
   A61K 31/4709 20060101ALI20230516BHJP
   C12N 15/864 20060101ALI20230516BHJP
   C12N 15/867 20060101ALI20230516BHJP
   C12N 15/861 20060101ALI20230516BHJP
【FI】
A61K35/76
A61K35/761
A61K48/00
A61K31/436
A61K9/51
A61K47/02
A61K47/36
A61K47/42
A61P37/06
A61P43/00 121
A61K31/4709
C12N15/864 100Z
C12N15/867 Z
C12N15/861 Z
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023020085
(22)【出願日】2023-02-13
(62)【分割の表示】P 2019537184の分割
【原出願日】2018-01-05
(31)【優先権主張番号】62/445,637
(32)【優先日】2017-01-12
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/545,412
(32)【優先日】2017-08-14
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/443,658
(32)【優先日】2017-01-07
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.プルロニック
(71)【出願人】
【識別番号】511254321
【氏名又は名称】セレクタ バイオサイエンシーズ インコーポレーテッド
【氏名又は名称原語表記】SELECTA BIOSCIENCES,INC.
【住所又は居所原語表記】65 Grove Street,Watertown,MA 02472,United States of America
(74)【代理人】
【識別番号】100102842
【弁理士】
【氏名又は名称】葛和 清司
(72)【発明者】
【氏名】イリンスキー,ピョートル
(72)【発明者】
【氏名】キシモト タカシ ケイ.
(57)【要約】      (修正有)
【課題】導入遺伝子発現の改善および/または免疫応答の低下、例えばIgMおよび/またはIgG免疫応答の下方制御を達成するための方法を提供する。
【解決手段】脂質ナノ粒子、ポリマー性ナノ粒子、金属ナノ粒子、界面活性剤ベースのエマルジョン、デンドリマー、バッキーボール、ナノワイヤ、ウイルス様粒子またはペプチドもしくはタンパク質粒子を含む合成ナノキャリアと、レトロウイルスベクター、アデノウイルスベクター、レンチウイルスベクターまたはアデノ随伴ウイルスベクター等のウイルスベクターとの共投与と組み合わせた、免疫抑制剤を含む合成ナノキャリアのプレ用量および/またはポスト用量を含む投与レジメンよる。
【選択図】なし
【特許請求の範囲】
【請求項1】
以下:
免疫抑制剤を含む合成ナノキャリアおよびウイルスベクターを対象に共投与すること、ならびに
ウイルスベクターなしで免疫抑制剤を含む合成ナノキャリアの少なくとも1回のプレ用量および/または少なくとも1回のポスト用量を、対象に投与すること
を含む、方法。
【請求項2】
少なくとも1回のプレ用量および少なくとも1回のポスト用量が、対象に投与される、請求項1に記載の方法。
【請求項3】
少なくとも2回のプレ用量が、対象に投与される、請求項1または2に記載の方法。
【請求項4】
少なくとも2回のポスト用量が、対象に投与される、請求項1~3のいずれか一項に記載の方法。
【請求項5】
共投与が、対象において繰り返される、請求項1に記載の方法。
【請求項6】
免疫抑制剤を含む合成ナノキャリアの少なくとも1回のプレ用量および/または少なくとも1回のポスト用量が、ウイルスベクターなしで、各々の繰り返し投与ステップにより対象に投与される、請求項5に記載の方法。
【請求項7】
少なくとも1回のプレ用量および少なくとも1回のポスト用量が、各々の繰り返し投与ステップにより対象に投与される、請求項6に記載の方法。
【請求項8】
少なくとも2回のプレ用量が、各々の繰り返し投与ステップにより対象に投与される、請求項6または7に記載の方法。
【請求項9】
少なくとも2回のポスト用量が、各々の繰り返し投与ステップにより対象に投与される、請求項6~8のいずれか一項に記載の方法。
【請求項10】
プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後1か月以内に起こる、請求項1~9のいずれか一項に記載の方法。
【請求項11】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後2週間以内に起こる、請求項10に記載の方法。
【請求項12】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後1週間以内に起こる、請求項11に記載の方法。
【請求項13】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後3日間以内に起こる、請求項12に記載の方法。
【請求項14】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後2日間以内に起こる、請求項13に記載の方法。
【請求項15】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後1日以内に起こる、請求項14に記載の方法。
【請求項16】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後12時間以内に起こる、請求項15に記載の方法。
【請求項17】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後6時間以内に起こる、請求項16に記載の方法。
【請求項18】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後1時間以内に起こる、請求項17に記載の方法。
【請求項19】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後30分以内に起こる、請求項18に記載の方法。
【請求項20】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後15分以内に起こる、請求項19に記載の方法。
【請求項21】
各々のプレ用量および/またはポスト用量が、共投与ステップの3日以内に投与される、請求項1~9のいずれか一項に記載の方法。
【請求項22】
各々のプレ用量および/またはポスト用量が、共投与ステップの2日以内に投与される、請求項21に記載の方法。
【請求項23】
各々のポスト用量が、共投与ステップの後、隔週で投与される、請求項1~22のいずれか一項に記載の方法。
【請求項24】
各々のプレ用量の免疫抑制剤の量が、各々の共投与ステップの免疫抑制剤の量と同じである、請求項1~23のいずれか一項に記載の方法。
【請求項25】
各々のポスト用量の免疫抑制剤の量が、各々の共投与ステップの免疫抑制剤の量と同じである、請求項1~24のいずれか一項に記載の方法。
【請求項26】
各々のプレ用量、ポスト用量および/または共投与ステップが、静脈内投与によるものである、請求項1~25のいずれか一項に記載の方法。
【請求項27】
以下:
第1の対象に、(1)(a)合成ナノキャリア中に含まれる免疫抑制剤の用量と(b)ウイルスベクターの用量とを共投与すること、ならびに(2)(c)合成ナノキャリア中に含まれる免疫抑制剤のプレ用量および/またはポスト用量を、ウイルスベクターの用量なしで投与すること、
を含む、方法であって、
ここで、(a)および(c)の免疫抑制剤の量は、一緒に、ウイルスベクターと共投与された場合に、合成ナノキャリアにカップリングした免疫抑制剤のプレ用量またはポスト用量なしで、ウイルスベクターに対する免疫応答を低下させるか、または第2の対象においてウイルスベクターの導入遺伝子発現を増大させる、合成ナノキャリア中に含まれる免疫抑制剤の用量の免疫抑制剤の量に等しい、
前記方法。
【請求項28】
(c)のプレ用量またはポスト用量の免疫抑制剤の量が、(d)の量の半分以下である、請求項27に記載の方法。
【請求項29】
(c)のプレ用量またはポスト用量の免疫抑制剤の量が、(d)の量の半分である、請求項27または28に記載の方法。
【請求項30】
プレ用量およびポスト用量が、(c)において第1の対象に投与される、請求項27~29のいずれか一項に記載の方法。
【請求項31】
(c)のプレ用量およびポスト用量の免疫抑制剤の量が、同じである、請求項30に記載の方法。
【請求項32】
(a)の免疫抑制剤の量が、(c)のプレ用量またはポスト用量の量と同じである、請求項27~31のいずれか一項に記載の方法。
【請求項33】
(c)少なくとも2回のプレ用量が、第1の対象に投与される、請求項27~32のいずれか一項に記載の方法。
【請求項34】
(c)少なくとも2回のポスト用量が、第1の対象に投与される、請求項27~33のいずれか一項に記載の方法。
【請求項35】
(1)および(2)が、繰り返される、請求項27~34のいずれか一項に記載の方法。
【請求項36】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後、1か月以内に起こる、請求項27~35のいずれか一項に記載の方法。
【請求項37】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後2週間以内に起こる、請求項36に記載の方法。
【請求項38】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後1週間以内に起こる、請求項37に記載の方法。
【請求項39】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後3日間以内に起こる、請求項38に記載の方法。
【請求項40】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後2日間以内に起こる、請求項39に記載の方法。
【請求項41】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後1日以内に起こる、請求項40に記載の方法。
【請求項42】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後12時間以内に起こる、請求項41に記載の方法。
【請求項43】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後6時間以内に起こる、請求項42に記載の方法。
【請求項44】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後1時間以内に起こる、請求項43に記載の方法。
【請求項45】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後30分以内に起こる、請求項44に記載の方法。
【請求項46】
プレ用量および/またはポスト用量の投与が、それぞれ、共投与の前または後15分以内に起こる、請求項45に記載の方法。
【請求項47】
各々のプレ用量および/またはポスト用量が、共投与ステップの3日以内に投与される、請求項27~35のいずれか一項に記載の方法。
【請求項48】
各々のプレ用量および/またはポスト用量が、共投与ステップの2日以内に投与される、請求項47に記載の方法。
【請求項49】
各々のポスト用量が、共投与ステップの後、隔週で投与される、請求項27~48のいずれか一項に記載の方法。
【請求項50】
各々のプレ用量、ポスト用量および/または共投与ステップが、静脈内投与によるものである、請求項27~49のいずれか一項に記載の方法。
【請求項51】
ウイルスベクターが、1つ以上の発現制御配列を含む、請求項1~50のいずれか一項に記載の方法。
【請求項52】
1つ以上の発現制御配列が、肝臓特異的プロモーターを含む、請求項51に記載の方法。
【請求項53】
1つ以上の発現制御配列が、構成的プロモーターを含む、請求項52に記載の方法。
【請求項54】
1つ以上の時点において対象におけるウイルスベクターに対するIgM応答を評価することをさらに含む、請求項1~53のいずれか一項に記載の方法。
【請求項55】
IgM応答を評価する時点のうちの少なくとも1つが、共投与の後である、請求項54に記載の方法。
【請求項56】
ウイルスベクターと免疫抑制剤を含む合成ナノキャリアとが、各々の共投与のために混合される、請求項1~55のいずれか一項に記載の方法。
【請求項57】
ウイルスベクターが、レトロウイルスベクター、アデノウイルスベクター、レンチウイルスベクターまたはアデノ随伴ウイルスベクターである、請求項1~56のいずれか一項に記載の方法。
【請求項58】
ウイルスベクターが、アデノ随伴ウイルスベクターである、請求項57に記載の方法。
【請求項59】
アデノ随伴ウイルスベクターが、AAV1、AAV2、AAV5、AAV6、AAV6.2、AAV7、AAV8、AAV9、AAV10またはAAV11アデノ随伴ウイルスベクターである、請求項58に記載の方法。
【請求項60】
共投与および/またはプレ用量および/またはポスト用量の免疫抑制剤が、NF-kB経路の阻害剤である、請求項1~59のいずれか一項に記載の方法。
【請求項61】
共投与および/またはプレ用量および/またはポスト用量の免疫抑制剤が、mTOR阻害剤である、請求項1~60のいずれか一項に記載の方法。
【請求項62】
mTOR阻害剤が、ラパマイシンである、請求項61に記載の方法。
【請求項63】
免疫抑制剤が、合成ナノキャリアにカップリングされている、請求項1~62のいずれか一項に記載の方法。
【請求項64】
免疫抑制剤が、合成ナノキャリア中にカプセル化されている、請求項62に記載の方法。
【請求項65】
共投与および/またはプレ用量および/またはポスト用量の合成ナノキャリアが、脂質ナノ粒子、ポリマー性ナノ粒子、金属ナノ粒子、界面活性剤ベースのエマルジョン、デンドリマー、バッキーボール、ナノワイヤ、ウイルス様粒子またはペプチドもしくはタンパク質粒子を含む、請求項1~64のいずれか一項に記載の方法。
【請求項66】
合成ナノキャリアが、ポリマー性ナノ粒子を含む、請求項65に記載の方法。
【請求項67】
ポリマー性ナノ粒子が、ポリエステル、ポリエーテルに結合したポリエステル、ポリアミノ酸、ポリカーボネート、ポリアセタール、ポリケタール、多糖、ポリエチルオキサゾリンまたはポリエチレンイミンを含む、請求項66に記載の方法。
【請求項68】
ポリマー性ナノ粒子が、ポリエステルまたはポリエーテルに結合したポリエステルを含む、請求項67に記載の方法。
【請求項69】
ポリエステルが、ポリ(乳酸)、ポリ(グリコール酸)、ポリ(乳酸-グリコール酸コポリマー)またはポリカプロラクトンを含む、請求項67または68に記載の方法。
【請求項70】
ポリマー性ナノ粒子が、ポリエステルおよびポリエーテルに結合したポリエステルを含む、請求項67~69のいずれか一項に記載の方法。
【請求項71】
ポリエーテルが、ポリエチレングリコールまたはポリプロピレングリコールを含む、請求項67~70のいずれか一項に記載の方法。
【請求項72】
合成ナノキャリアの集団の動的光散乱を用いて得られる粒子サイズ分布の平均が、110nmより大きな直径である、請求項1~71のいずれか一項に記載の方法。
【請求項73】
直径が、150nmより大きい、請求項72に記載の方法。
【請求項74】
直径が、200nmより大きい、請求項73に記載の方法。
【請求項75】
直径が、250nmより大きい、請求項74に記載の方法。
【請求項76】
直径が、5μmより小さい、請求項72~75のいずれか一項に記載の方法。
【請求項77】
直径が、4μmより小さい、請求項76に記載の方法。
【請求項78】
直径が、3μmより小さい、請求項77に記載の方法。
【請求項79】
直径が、2μmより小さい、請求項78に記載の方法
【請求項80】
直径が、1μmより小さい、請求項79に記載の方法。
【請求項81】
直径が、750nmより小さい、請求項80に記載の方法。
【請求項82】
直径が、500nmより小さい、請求項81に記載の方法。
【請求項83】
直径が、450nmより小さい、請求項82に記載の方法。
【請求項84】
直径が、400nmより小さい、請求項50に記載の方法。
【請求項85】
直径が、350nmより小さい、請求項84に記載の方法。
【請求項86】
直径が、300nmより小さい、請求項85に記載の方法。
【請求項87】
合成ナノキャリア中に含まれる免疫抑制剤の負荷量が、合成ナノキャリア全体の平均で、0.1%~50%(重量/重量)である、請求項1~86のいずれか一項に記載の方法。
【請求項88】
負荷量が、0.1%~25%である、請求項87に記載の方法
【請求項89】
負荷量が、1%~25%である、請求項88に記載の方法。
【請求項90】
負荷量が、2%~25%である、請求項89に記載の方法。
【請求項91】
合成ナノキャリアの集団のアスペクト比が、1:1、1:1.2、1:1.5、1:2、1:3、1:5、1:7または1:10より大きい、請求項1~90のいずれか一項に記載の方法。
【請求項92】
以下:
各々が請求項1~91のいずれか一項に記載されるような、1つ以上のプレ用量または1つ以上のポスト用量、ならびに
ウイルスベクターによる共投与のための免疫抑制剤を含む合成ナノキャリアの用量
を含む、キット。
【請求項93】
ウイルスベクターの用量をさらに含む、請求項92に記載のキット。
【請求項94】
1つ以上のプレ用量および1つ以上のポスト用量を含む、請求項92または93に記載のキット。
【請求項95】
使用のための指示をさらに含む、請求項92~94のいずれか一項に記載のキット。
【請求項96】
使用のための指示が、請求項1~91のいずれか一項に記載の方法を実施するための指示を含む、請求項95に記載のキット。
【請求項97】
ウイルスベクターによる投与のための免疫抑制剤を含む合成ナノキャリアが、請求項1~91のいずれか一項において記載されるようなものである、請求項92~96のいずれか一項に記載のキット。
【請求項98】
ウイルスベクターが、請求項1~91のいずれか一項において記載されるようなものである、請求項92~97のいずれか一項に記載のキット。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本願は、2017年1月7日に出願された米国仮出願番号62/443,658、2017年1月12日に出願された米国仮出願番号62/445,637、および2017年8月14日に出願された米国仮出願番号62/545,412に対する35U.S.C.§119下における優先権の利益を主張し、これらの各々の全内容は、本明細書において参考として援用される。
【背景技術】
【0002】
発明の分野
本発明は、少なくとも部分的に、ウイルスベクターおよび免疫抑制剤を含む合成ナノキャリアを投与するための、方法、および関連する組成物に関する。いくつかの態様において、本明細書において提供される方法および組成物は、導入遺伝子発現の増大および/または免疫応答の低下、例えばウイルスベクターに対するIgMおよび/またはIgG免疫応答の下方制御を達成する。
【発明の概要】
【0003】
一側面において、
ウイルスベクターおよび免疫抑制剤を含む合成ナノキャリアを対象に1回目に共投与すること、ならびに
1回目の共投与の前および/または後の1回以上の時点において、免疫抑制剤を含む合成ナノキャリアを投与すること、
を含む方法が提供され、
ここで、前および/または後の免疫抑制剤を含む合成ナノキャリアの投与は、1回目の共投与のそれぞれ前または後、1か月、2週間、1週間、1日、12時間、6時間、1時間、30分、または15分以内に起こる。
【0004】
本明細書において提供される方法のうちのいずれか1つの一態様において、方法は、ウイルスベクターと免疫抑制剤を含む合成ナノキャリアとを2回目に対象に共投与すること、ならびに、2回目の共投与の前および/または後の1回以上の時点において免疫抑制剤を含む合成ナノキャリアを投与することをさらに含み、ここで、前および/または後の免疫抑制剤を含む合成ナノキャリアの投与は、2回目の共投与のそれぞれ前または後、1か月、2週間、1週間、1日、12時間、6時間、1時間、30分、または15分以内に起こる。
【0005】
一側面において、免疫抑制剤を含む合成ナノキャリアとウイルスベクターとを対象に共投与すること、ならびに免疫抑制剤を含む合成ナノキャリアの少なくとも1回のプレ用量および/または少なくとも1回のポスト用量を、ウイルスベクターなしで対象に投与することを含む方法が提供される。
【0006】
提供される方法のうちのいずれか1つの一態様において、少なくとも1回のプレ用量および少なくとも1回のポスト用量が、対象に投与される。提供される方法のうちのいずれか1つの一態様において、少なくとも2回のプレ用量が、対象に投与される。提供される方法のうちのいずれか1つの一態様において、少なくとも2回のポスト用量が、対象に投与される。
【0007】
提供される方法のうちのいずれか1つの一態様において、共投与が、対象において繰り返される。
提供される方法のうちのいずれか1つの一態様において、免疫抑制剤を含む合成ナノキャリアの少なくとも1回のプレ用量および/または少なくとも1回のポスト用量が、ウイルスベクターなしで、各々の繰り返し投与ステップにより対象に投与される。提供される方法のうちのいずれか1つの一態様において、少なくとも1回のプレ用量および少なくとも1回のポスト用量が、各々の繰り返し投与ステップにより対象に投与される。提供される方法のうちのいずれか1つの一態様において、少なくとも2回のプレ用量が、各々の繰り返し投与ステップにより対象に投与される。提供される方法のうちのいずれか1つの一態様において、少なくとも2回のポスト用量が、各々の繰り返し投与ステップにより対象に投与される。
【0008】
提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後1か月以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後2週間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後1週間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後3日間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後2日間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後1日以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後12時間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後6時間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後1時間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後30分以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後15分以内に起こる。
【0009】
提供される方法のうちのいずれか1つの一態様において、各々のプレ用量および/またはポスト用量は、共投与ステップの3日以内に投与される。提供される方法のうちのいずれか1つの一態様において、各々のプレ用量および/またはポスト用量は、共投与ステップの2日以内に投与される。
提供される方法のうちのいずれか1つの一態様において、各々のポスト用量は、共投与ステップの後、隔週で投与される。
【0010】
提供される方法のうちのいずれか1つの一態様において、各々のプレ用量の免疫抑制剤の量は、各々の共投与ステップの免疫抑制剤の量と同じである。提供される方法のうちのいずれか1つの一態様において、各々のポスト用量の免疫抑制剤の量は、各々の共投与ステップの免疫抑制剤の量と同じである。
提供される方法のうちのいずれか1つの一態様において、各々のプレ用量、ポスト用量および/または共投与ステップは、静脈内投与によるものである。
【0011】
一側面において、第1の対象に、(1)(a)合成ナノキャリア中に含まれる免疫抑制剤の用量と(b)ウイルスベクターの用量とを共投与すること、ならびに(2)(c)合成ナノキャリア中に含まれる免疫抑制剤のプレ用量および/またはポスト用量を、ウイルスベクターの用量なしで投与することを含む方法が提供され、ここで、(a)および(c)の免疫抑制剤の量は、一緒に、ウイルスベクターと共投与された場合に、合成ナノキャリアにカップリングした免疫抑制剤のプレ用量またはポスト用量なしで、ウイルスベクターに対する免疫応答を低下させるか、または第2の対象においてウイルスベクターの導入遺伝子発現を増大させる、合成ナノキャリア中に含まれる免疫抑制剤の用量の免疫抑制剤の量に等しい。
【0012】
提供される方法のうちのいずれか1つの一態様において、(c)のプレ用量またはポスト用量の免疫抑制剤の量は、(d)の量の半分以下である。提供される方法のうちのいずれか1つの一態様において、(c)のプレ用量またはポスト用量の免疫抑制剤の量は、(d)の量の半分である。
【0013】
提供される方法のうちのいずれか1つの一態様において、プレ用量およびポスト用量が、(c)において第1の対象に投与される。提供される方法のうちのいずれか1つの一態様において、(c)のプレ用量およびポスト用量の免疫抑制剤の量は、同じである。提供される方法のうちのいずれか1つの一態様において、(a)の免疫抑制剤の量は、(c)のプレ用量またはポスト用量の量と同じである。
【0014】
提供される方法のうちのいずれか1つの一態様において、(c)において、少なくとも2回のプレ用量が、第1の対象に投与される。提供される方法のうちのいずれか1つの一態様において、(c)において、少なくとも2回のポスト用量が、第1の対象に投与される。
提供される方法のうちのいずれか1つの一態様において、(1)および(2)は、繰り返される。
【0015】
提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後、1か月以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後2週間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後1週間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後3日間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後2日間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後1日以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後12時間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後6時間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後1時間以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後30分以内に起こる。提供される方法のうちのいずれか1つの一態様において、プレ用量および/またはポスト用量の投与は、それぞれ、共投与の前または後15分以内に起こる。
【0016】
提供される方法のうちのいずれか1つの一態様において、各々のプレ用量および/またはポスト用量は、共投与ステップの3日以内に投与される。提供される方法のうちのいずれか1つの一態様において、各々のプレ用量および/またはポスト用量は、共投与ステップの2日以内に投与される。提供される方法のうちのいずれか1つの一態様において、各々のポスト用量は、共投与ステップの後、隔週で投与される。
【0017】
提供される方法のうちのいずれか1つの一態様において、各々のプレ用量、ポスト用量および/または共投与ステップは、静脈内投与によるものである。
提供される方法のうちのいずれか1つの一態様において、ウイルスベクターは、1つ以上の発現制御配列を含む。提供される方法のうちのいずれか1つの一態様において、1つ以上の発現制御配列は、肝臓特異的プロモーターを含む。提供される方法のうちのいずれか1つの一態様において、1つ以上の発現制御配列は、構成的プロモーターを含む。
【0018】
提供される方法のうちのいずれか1つの一態様において、方法は、1つ以上の時点において対象におけるウイルスベクターに対するIgMおよび/またはIgG応答を評価することをさらに含む。提供される方法のうちのいずれか1つの一態様において、IgMおよび/またはIgG応答を評価する時点のうちの少なくとも1つは、共投与の後である。
提供される方法のうちのいずれか1つの一態様において、ウイルスベクターと免疫抑制剤を含む合成ナノキャリアとは、各々の共投与のために混合される。
【0019】
提供される方法のうちのいずれか1つの一態様において、ウイルスベクターは、レトロウイルスベクター、アデノウイルスベクター、レンチウイルスベクターまたはアデノ随伴ウイルスベクターである。
提供される方法のうちのいずれか1つの一態様において、ウイルスベクターは、アデノ随伴ウイルスベクターである。提供される方法のうちのいずれか1つの一態様において、アデノ随伴ウイルスベクターは、AAV1、AAV2、AAV5、AAV6、AAV6.2、AAV7、AAV8、AAV9、AAV10またはAAV11アデノ随伴ウイルスベクターである。
【0020】
提供される方法のうちのいずれか1つの一態様において、共投与および/またはプレ用量および/またはポスト用量の免疫抑制剤は、NF-kB経路の阻害剤である。提供される方法のうちのいずれか1つの一態様において、共投与および/またはプレ用量および/またはポスト用量の免疫抑制剤は、mTOR阻害剤である。提供される方法のうちのいずれか1つの一態様において、mTOR阻害剤は、ラパマイシンである。
【0021】
提供される方法のうちのいずれか1つの一態様において、免疫抑制剤は、合成ナノキャリアにカップリングされている。提供される方法のうちのいずれか1つの一態様において、免疫抑制剤は、合成ナノキャリア中にカプセル化されている。
提供される方法のうちのいずれか1つの一態様において、共投与および/またはプレ用量および/またはポスト用量の合成ナノキャリアは、脂質ナノ粒子、ポリマー性ナノ粒子、金属ナノ粒子、界面活性剤ベースのエマルジョン、デンドリマー、バッキーボール、ナノワイヤ、ウイルス様粒子またはペプチドもしくはタンパク質粒子を含む。
【0022】
提供される方法のうちのいずれか1つの一態様において、合成ナノキャリアは、ポリマー性ナノ粒子を含む。提供される方法のうちのいずれか1つの一態様において、ポリマー性ナノ粒子は、ポリエステル、ポリエーテルに結合したポリエステル、ポリアミノ酸、ポリカーボネート、ポリアセタール、ポリケタール、多糖、ポリエチルオキサゾリンまたはポリエチレンイミンを含む。提供される方法のうちのいずれか1つの一態様において、ポリマー性ナノ粒子は、ポリエステルまたはポリエーテルに結合したポリエステルを含む。提供される方法のうちのいずれか1つの一態様において、ポリエステルは、ポリ(乳酸)、ポリ(グリコール酸)、ポリ(乳酸-グリコール酸コポリマー)またはポリカプロラクトンを含む。提供される方法のうちのいずれか1つの一態様において、ポリマー性ナノ粒子は、ポリエステルおよびポリエーテルに結合したポリエステルを含む。提供される方法のうちのいずれか1つの一態様において、ポリエーテルは、ポリエチレングリコールまたはポリプロピレングリコールを含む。
【0023】
提供される方法のうちのいずれか1つの一態様において、合成ナノキャリアの集団の動的光散乱を用いて得られる粒子サイズ分布の平均は、110nmより大きい直径である。提供される方法のうちのいずれか1つの一態様において、直径は、150nmより大きい。提供される方法のうちのいずれか1つの一態様において、直径は、200nmより大きい。提供される方法のうちのいずれか1つの一態様において、直径は、250nmより大きい。提供される方法のうちのいずれか1つの一態様において、直径は、5μmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、4μmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、3μmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、2μmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、1μmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、750nmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、500nmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、450nmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、400nmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、350nmより小さい。提供される方法のうちのいずれか1つの一態様において、直径は、300nmより小さい。
【0024】
提供される方法のうちのいずれか1つの一態様において、合成ナノキャリア中に含まれる免疫抑制剤の負荷量は、合成ナノキャリア全体の平均で、0.1%~50%(重量/重量)である。提供される方法のうちのいずれか1つの一態様において、負荷量は、0.1%~25%である。提供される方法のうちのいずれか1つの一態様において、負荷量は、1%~25%である。提供される方法のうちのいずれか1つの一態様において、負荷量は、2%~25%である。
【0025】
提供される方法のうちのいずれか1つの一態様において、合成ナノキャリアの集団のアスペクト比は、1:1、1:1.2、1:1.5、1:2、1:3、1:5、1:7または1:10より大きい。
一側面において、各々が例えば請求項のうちのいずれか1つにおいて記載されるような、本明細書において提供されるプレ用量のうちのいずれか1つの1つ以上、または本明細書において提供されるポスト用量のうちのいずれか1つの1つ以上、ならびに、ウイルスベクターによる共投与のための、本明細書において提供される免疫抑制剤を含む合成ナノキャリアのうちのいずれか1つの用量、を含むキットが提供される。
提供されるキットのうちのいずれか1つの一態様において、キットは、本明細書において提供されるウイルスベクターのうちのいずれか1つの用量をさらに含む。
【0026】
提供されるキットのうちのいずれか1つの一態様において、キットは、本明細書において提供されるプレ用量のうちのいずれか1つの1つ以上、および本明細書において提供されるポスト用量のうちのいずれか1つの1つ以上を含む。
提供されるキットのうちのいずれか1つの一態様において、キットは、使用のための指示をさらに含む。提供されるキットのうちのいずれか1つの一態様において、使用のための指示は、本明細書において提供される方法のうちのいずれか1つを実施するための指示を含む。
提供されるキットのうちのいずれか1つの一態様において、ウイルスベクターによる投与のための免疫抑制剤を含む合成ナノキャリアは、例えば請求項のうちのいずれか1つにおいて記載されるような、本明細書において提供される免疫抑制剤を含む合成ナノキャリアのうちのいずれか1つである。
【0027】
提供されるキットのうちのいずれか1つの一態様において、ウイルスベクターは、例えば請求項のうちのいずれか1つにおいて記載されるような、本明細書において提供されるウイルスベクターのうちのいずれか1つである。
本明細書において提供される方法のうちのいずれか1つの一態様において、前および/または後の免疫抑制剤を含む合成ナノキャリアの投与は、ウイルスベクターの投与を含まない。
【0028】
別の側面において、本明細書において提供される方法のうちのいずれか1つの合成ナノキャリアのうちのいずれか1つまたはその組み合わせを含むキットが提供される。提供されるキットのうちのいずれか1つの一態様において、キットは、本明細書において提供される方法のうちのいずれか1つのウイルスベクターをさらに含む。提供されるキットのうちのいずれか1つの一態様において、キットは、本明細書において提供される方法のうちのいずれか1つの1つ以上のプレ用量および/またはポスト用量をさらに含む。
【図面の簡単な説明】
【0029】
図1図1Aおよび1Bは、ラパマイシンを含む合成ナノキャリアを用いる、またはこれを用いない場合の、SEAP活性およびAAV IgG抗体レベルを示す
図2AB図2Aおよび2Bは、それぞれ、d19およびd75におけるSEAP活性を示す。
図2C図2Cは、d19およびd75の両方におけるAAV IgG抗体レベルを示す。
図3図3Aは、SEAP発現動態を示す。図3Bは、d12およびd19におけるAAV IgG抗体レベルを示す。
図4図4Aおよび4Bは、AAVおよびラパマイシンを含む合成ナノキャリアの容積によるサイズ分布を示す。
図5図5Aは、AAV投与後のd5およびd10における血清AAV IgMを示す。図5Bは、d7、d12、d19およびd89における血清AAV IgMを示す。
【0030】
図6図6は、d7におけるAAV IgMを、長軸方向のAAV駆動型のSEAP発現に対して示す。
図7図7は、d7、d12、d19およびd33におけるAAV IgG抗体レベルを示す。
図8図8は、SEAP発現動態(d7-d47)を示す。
図9図9は、d5およびd13におけるAAV IgM抗体レベルを示す。
図10図10は、d9、d13およびd20におけるAAV IgG抗体レベルを示す。
【0031】
図11図11Aは、AAV-SEAP±ラパマイシンを含む合成ナノキャリア(SVP[Rapa])による初回AAV接種の後の特定の時間におけるSEAP発現動態を示すグラフである。図11Bは、AAV-SEAP±ラパマイシンを含む合成ナノキャリア(SVP[Rapa])による初回AAV接種の後の異なる時点におけるAAV IgG形成を示すグラフである。
図12図12は、AAV-SEAP±ラパマイシンを含む合成ナノキャリア(SVP[Rapa])による注射の後の特定の時間におけるSEAP発現動態を示すグラフである。
図13図13Aは、AAV8をプレ免疫されたマウスにおける特定の時間におけるAAV駆動型のSEAP発現動態を示すグラフである。図13Bは、SVP[Rapa]投与の異なる組み合わせおよびレジメンによる、異なる時点における、AAV IgG形成を示すグラフである。
図14AB図14Aは、AAV IgGを有するマウスにおける、ラパマイシンを含む合成ナノキャリア(SVP[Rapa])の2回の用量の後での、SEAP発現動態を示すグラフである。図14Bは、d139におけるSEAP発現を示すグラフであって、AAVブースト(d92)時にラパマイシンを含む合成ナノキャリア(SVP[Rapa])のゼロ回または1回の用量を投与された群と、AAVブースト(d92)時にラパマイシンを含む合成ナノキャリア(SVP[Rapa])の2回の用量を投与された群とを比較している。
図14CD図14Cは、特定の時点におけるAAV-(RFP/SEAP)投与後のAAV IgG動態を示すグラフである。図14Dは、d153におけるAAV IgGとSEAP活性との間の負の相関関係を示すグラフである。
図15図15Aは、異なるSVP[Rapa]投与レジメン下における第1のAAV注射後の血清SEAP動態を示すグラフである。図15Bは、AAVベクターとラパマイシンを含む合成ナノキャリア(SVP[Rapa])との共注射(co-injection)の後で、異なるレジメンのSVP[Rapa]投与を行った後の、AAV IgGを示すグラフである。
【0032】
図16図16は、AAVとSVP[Rapa]とを共注射され、次いで異なるSVP[Rapa]レジメンで処置された群における、d116におけるAAV IgG測定を示す。
図17図17Aは、異なる時点(AAVプライミング用量後の日数)におけるSEAP動態(AAV-SEAP、1×1010VG;d0/125)を示すグラフである。図17Bは、ELISAの結果を表すグラフである。グラフは、異なる処置レジメン(d7、d12、d19、d47およびd75における)の後のAAV IgGのレベルを示す。
【発明を実施するための形態】
【0033】
発明の詳細な説明
本発明を詳細に記載する前に、本発明は、特に例示される材料またはプロセスのパラメーターに限定されるものではなく、したがって、無論変化してもよいことが理解されるべきである。また、本明細書において用いられる用語は、単に発明の特定の態様を記載することを目的とするものであって、本発明を記載するための代替的な用語の使用の限定要因となることを意図するものではないことも、理解されるべきである。
【0034】
本明細書において引用される全ての刊行物、特許および特許出願は、上記または下記のいずれにおいても、本明細書によりその全体において全ての目的のために参考として援用される。かかる援用は、援用された本明細書において引用される刊行物、特許および特許出願のうちの任意のものが先行技術を構成することを認めることを意図するものではない。
【0035】
本明細書および添付の請求の範囲において用いられる場合、単数形「a」、「an」および「the」は、内容が明らかに他を示さない限りにおいて、複数の指示物を含む。例えば、「a polymer」に対する参照は、2つ以上のかかる分子の混合物、または単一のポリマー種の異なる分子量のものの混合物を含み、「合成ナノキャリア」に対する参照は、2つ以上のかかる合成ナノキャリアまたは複数のかかる合成ナノキャリアの混合物を含み、「a DNA molecule」に対する参照は、2つ以上のかかるDNA分子または複数のかかるDNA分子の混合物を含み、「an immunosuppressant」に対する参照は、2つ以上のかかる免疫抑制剤分子または複数のかかる免疫抑制剤分子の混合物を含む、など。
【0036】
本明細書において用いられる場合、用語「含む(comprise)」またはそのバリエーション、例えば「含む(comprises)」または「含むこと(comprising)」は、任意の列記される完全体(integer)(例えば特色(a feature)、要素(element)、特徴(characteristic)、特性(property)、方法/プロセスのステップ(method/process step)もしくは限定要因(limitation))、または完全体の群(例えば特色(features)、要素(elements)、特徴(characteristics)、特性(properties)、方法/プロセスのステップ(method/process steps)もしくは限定要因(limitations))の包含を示すように読まれるべきであるが、任意の他の完全体または完全体の群の除外を示すものとして読まれるべきではない。
したがって、本明細書において用いられる場合、用語「含むこと(comprising)」は、包括的であって、さらなる、列記されていない完全体または方法/プロセスのステップを除外するものではない。
【0037】
本明細書において提供される組成物および方法のうちのいずれかの態様において、「含むこと(comprising)」は、「から本質的になる(consisting essentially of)」または「からなる(consisting of)」により置き換えることができる。句「から本質的になる(consisting essentially of)」は、本明細書において、特定の完全体またはステップ、ならびに請求される発明の特徴または機能に対して物質的に影響を及ぼさないものを必要とするように用いられる。本明細書において用いられる場合、用語「からなる(consisting)」は、(例えば特色(a feature)、要素(element)、特徴(characteristic)、特性(property)、方法/プロセスのステップ(method/process step)もしくは限定要因(limitation))、または完全体の群(例えば特色(features)、要素(elements)、特徴(characteristics)、特性(properties)、方法/プロセスのステップ(method/process steps)もしくは限定要因(limitations))のみの存在を示すように用いられる。
【0038】
A.導入
ウイルスベクター、例えばアデノ随伴ウイルス(AAV)に基づくものは、遺伝子治療などの治療的適用において多大な潜在能力を示してきた。しかし、遺伝子治療および他の適用におけるウイルスベクターの使用は、ウイルス性抗原への暴露の結果としての免疫原性に起因して、限定されてきた。ウイルスベクターに暴露された対象は、しばしば免疫応答を呈し、最終的にウイルスベクターに対する耐性を獲得することになるか、および/または著しい炎症反応に直面することになる。ウイルスベクターに対する細胞性および体液性のいずれの免疫応答も、例えば繰り返し投与に関して、かかる治療の効力を弱めるか、および/またはかかる治療を用いる能力を低下させ得る。これらの免疫応答は、抗体、B細胞およびT細胞応答を含み、ウイルスのキャプシドまたはコートタンパク質、またはそれらのペプチドなどの、ウイルスベクターのウイルス性抗原に対して特異的であり得る。
【0039】
本発明者らは、驚くべきことに、合成ナノキャリアとウイルスベクターとの共投与と組み合わせた、免疫抑制剤を含む合成ナノキャリアのプレ用量および/またはポスト用量を含む投与レジメンにより、改善された免疫応答の低下および/または改善された導入遺伝子発現を達成することができることを発見した。かかる改善は、合成ナノキャリアとウイルスベクターとの共投与のみ(プレ用量またはポスト用量なしでの)と比較して、顕著である。例えば、例において示されるように、ラパマイシン含有合成ナノキャリアと共投与された肝臓指向性AAV8ベクターの注射の前および/または後の、ラパマイシン含有合成ナノキャリアのさらなる投与が、初回およびフォローアップの両方の注射の後で、ナイーブな動物およびAAV免疫動物において、最も高くかつ最も安定なレベルの導入遺伝子発現を維持したことが示された。これは、最も低いAAV抗体応答と結びついた。
【0040】
加えてまた驚くべきことに、合成ナノキャリア中に含まれる場合、共投与ステップの免疫抑制剤の量を、プレ用量またはポスト用量により、共投与ステップのみ(プレ用量またはポスト用量なし)と比較して、減少させることができることを見出した。したがって、合成ナノキャリア中に含まれる場合、免疫抑制剤の量は、プレ用量および/またはポスト用量と、本明細書において提供される処置レジメンのうちのいずれか1つにおいて共投与される用量の間で、「分割」することができる。例えば、例は、合成ナノキャリア中に含まれる場合、免疫抑制剤の用量を2つの部分に分割して、第1の半分の用量を、第2の半分の用量を用いるAAVベクター共注射の前に投与することが、同じ総用量の免疫抑制剤が(合成ナノキャリア中に含まれる場合で)AAVベクターにより単純に共注射された場合と比較して、導入遺伝子発現に関して、および抗ウイルスIgGに対する抑制効果のために、有益であったことを示す。
【0041】
加えて、驚くべきことに、ウイルスベクター投与が、ウイルスベクター投与のすぐ後に、強力なIgM免疫応答をもたらし得ることを発見した。また、いくつかの例において、ウイルスベクター投与と相対的な時点で投与された、免疫抑制剤を含む合成ナノキャリアが、IgM依存的な様式において上昇した導入遺伝子発現を誘導することを発見した。特に、合成ナノキャリアは、アデノ随伴ウイルスベクターに対するIgM免疫応答の誘導を下方制御すること、および、初期IgMレベルは導入遺伝子発現と逆相関し、ウイルスベクター投与に続く高いIgM抗体レベルは、導入遺伝子発現の低いレベルと相関し、逆もまたしかりであることを見出した。さらに、この相関関係は、ウイルスベクターのさらなる投与の後で持続することが見出した。これらの発見に先立ち、免疫抑制剤を含む合成ナノキャリアが、可溶性タンパク質およびウイルス粒子を含む多数の抗原に対するIgG抗体応答を下方制御することが示された。しかし、ウイルスベクター投与について、例えば導入遺伝子発現などの特定の文脈においては、IgM抗体応答などの他の免疫応答が重要である場合もある。
【0042】
したがって、本発明者らは、驚くべきことに、かつ予想外に、本明細書において開示される発明を実施することにより、上記の問題および限定要因を克服することができることを発見した。処置のためのウイルスベクターの有効な使用に対する前述の障害に対する解決手段を提供する方法および組成物を提供する。本明細書において提供されるのは、本明細書において提供されるウイルスベクターコンストラクトのうちのいずれか1つを免疫抑制剤を含む合成ナノキャリアと組み合わせて含むウイルスベクターで、種々の異なる投与レジメンにおいて、特に免疫抑制剤を含む合成ナノキャリアのプレ用量および/またはポスト用量により、対象を処置するための方法および組成物である。提供される方法および関連する組成物は、ウイルスベクターの使用の改善を可能にし、IgMおよび/またはIgG免疫応答などの望ましくない免疫応答の低下をもたらすか、および/または、例えば導入遺伝子発現の増大を通しての、効力の改善をもたらすことができる。
本発明は、ここで、以下により詳細に記載されるであろう。
【0043】
B.定義
「投与すること(administering)」または「投与(administration)」または「投与する(administer)」とは、材料を、対象に対して、薬理学的に有用な様式において、与えるかまたは分配することを意味する。当該用語は、「投与させること(causing to be administered)」を含むように意図される。「投与させること」とは、他者に、直接的または間接的に、当該材料を投与させること(causing)、投与することを促すこと(urging)こと、投与することを奨励すること(encouraging)、投与することを補助すること(aiding)、投与することを誘導すること(inducing )または指示すること(directing)を意味する。投与の間の期間に言及する場合、別段に記載される場合を除いて、当該期間は、投与の開始との間の時間である。
【0044】
本明細書において用いられる場合、「共投与すること(coadministering)」とは、医師が、投与の間の任意の時間が、所望される治療結果に対する影響に関して、実質的に無であるか無視可能であるとみなすであろう場合に、同じ時間における、または実質的に同じ時間における投与を指す。本明細書において提供される方法のうちのいずれか1つのいくつかの態様において、共投与は、同時(simultaneous)投与である。「同時」とは、投与が、互いの5、4、3、2、1分以内、またはそれより短い時間内に始まることを意味する。いくつかの態様において、1つの組成物の投与の終了と別の組成物の投与の開始との間に、5、4、3、2、1分以下、またはそれより短い時間が経過する。他の態様において、1つの組成物の投与の開始と別の組成物の投与の開始との間に、5、4、3、2、1分以下、またはそれより短い時間が経過する(例えば、2つの組成物が、異なる場所においておよび/または異なる様式を介して与えられる場合など)。いくつかの態様において、同時とは、投与が同じ時間に開始されることを意味する。他の態様において、組成物は、混合されて、対象に与えられる。免疫抑制剤を含む合成ナノキャリアは、繰り返し、例えば、2、3、4、5回またはそれより多く、ウイルスベクターと共投与してもよい。
【0045】
提供される方法のうちのいずれか1つのいくつかの態様において、ウイルスベクターと免疫抑制剤を含む合成ナノキャリアとの共投与は、免疫抑制剤を含む合成ナノキャリアの投与の前におよび/または後に(それぞれ、免疫抑制剤を含む合成ナノキャリアのプレ用量またはポスト用量)、ウイルスベクターなしで行われる。提供される方法のうちのいずれか1つのいくつかの態様において、免疫抑制剤を含む合成ナノキャリアのプレ用量は、免疫抑制剤を含む合成ナノキャリアとウイルスベクターとの共投与の1、2または3日前に投与される。提供される方法のうちのいずれか1つのいくつかの態様において、免疫抑制剤を含む合成ナノキャリアのポスト用量は、免疫抑制剤を含む合成ナノキャリアとウイルスベクターとの共投与の1、2または3日後に投与される。提供される方法のうちのいずれか1つのいくつかの態様において、1回より多くのプレ用量および/またはポスト用量は、各々の共投与と共に投与される。提供される方法のうちのいずれか1つのいくつかの態様において、共投与が繰り返される場合、各々の繰り返し用量は、1または2回またはそれより多くのプレ用量に先行される。提供される方法のうちのいずれか1つのいくつかの態様において、共投与が繰り返される場合、各々の繰り返し用量の後に、1または2回またはそれより多くのポスト用量が続く。提供される方法のうちのいずれか1つのいくつかの態様において、各々の共投与と共に1回より多くのポスト用量が投与される場合、ポスト用量は、各々の共投与と共に、隔週で投与される。
【0046】
「混合する(admix)」とは、本明細書において用いられる場合、2つ以上の構成成分の混合であって、当該2つ以上の構成成分が、組成物中に一緒に存在し、当該組成物の投与が、当該2つ以上の構成成分を対象に提供するようなものを指す。本明細書において提供される方法のうちのいずれか1つの共投与のうちのいずれか1つは、混合物として投与することができる。
【0047】
「有効量」とは、本明細書において提供されるような対象への投与のための組成物に関して、対象において1つ以上の所望される結果、例えば、ウイルスベクターなどに対するIgMおよび/またはIgG免疫応答などの免疫応答の低下または除去、および/または有効なまたは増大した導入遺伝子発現をもたらす、組成物の量を指す。有効量は、in vitroまたはin vivoでの目的のためのものであってよい。in vivoでの目的について、量は、医師が、ウイルスベクターの投与の結果として望ましくない免疫応答を経験し得る対象のために臨床的利益を有し得るとみなすであろうものであってよい。本明細書において提供される方法のうちのいずれか1つにおいて、投与される組成物は、本明細書において提供されるような有効量のうちのいずれか1つにおけるものであってよい。
【0048】
有効量は、望ましくない免疫応答のレベルを低下させることを含み得るが、いくつかの態様においては、それは、望ましくない免疫応答を完全に予防することを含む。有効量はまた、望ましくない免疫応答の発生を遅延させることを含んでもよい。有効量はまた、所望される治療上のエンドポイントまたは所望される治療結果をもたらす量であってよい。提供される組成物および方法のうちのいずれか1つのいくつかの態様において、有効量は、所望される免疫応答、例えばIgMおよび/またはIgG応答などのウイルスベクターに対する免疫応答の低下もしくは除去、および/または有効な導入遺伝子の生成もしくはその発現の増大が、対象において少なくとも1か月間持続するものである。この低下もしくは除去または有効なもしくは増大した発現は、局所的にまたは全身的に測定することができる。前述のもののいずれかの達成は、慣用的な方法によりモニタリングすることができる。
【0049】
有効量は、無論、処置されている特定の対象;状態、疾患または障害の重篤度;年齢、身体条件、サイズおよび体重を含む個々の患者のパラメーター;処置の期間;併用治療(あれば)の性質;投与の特定の経路、ならびに健康管理者の知識および専門技術の範囲内の類似の要因に依存するであろう。これらの要因は、当業者に周知であり、慣用的な実験のみを用いて取り組むことができる。
【0050】
有効量とは、単一の材料の構成成分の用量を指してもよく、または、多数の材料の構成成分の用量を指してもよい。例えば、免疫抑制剤の有効量に言及する場合、免疫抑制剤を含む材料の単一の用量を指しても、免疫抑制剤を含む同じもしくは異なる材料の多数の用量を指してもよい。したがって、本明細書において用いられる場合、提供される方法または組成物のうちのいずれか1つのいくつかの態様において、免疫抑制剤の有効量は、免疫抑制剤の他の投与なしでの、本明細書において提供されるような共投与ステップにおける免疫抑制剤の量であってよい。提供される方法または組成物のうちのいずれか1つの他の態様においては、しかし、免疫抑制剤の量は、投与のセットのついての免疫抑制剤の総量、例えば、本明細書において提供されるようなプレ用量および/またはポスト用量の免疫抑制剤の量と組み合わせた、本明細書において提供されるような共投与の免疫抑制剤の総量である。
【0051】
提供される方法または組成物のうちのいずれか1つのいくつかの態様において、免疫抑制剤の量は、投与のセットの間で「分割され」、総量は、別のレジメン(プレ用量またはポスト用量の投与なしで、免疫抑制剤を含む合成ナノキャリアと共投与される場合など)により、低下した免疫応答または有効なもしくは増大したウイルスベクターの導入遺伝子発現を達成することが決定された量に基づくものであってもよい。この免疫抑制剤の総量は、プレ用量および/またはポスト用量として与えられた免疫抑制剤の量、ならびに共投与ステップとして与えられた免疫抑制剤の量の間で分配される、本明細書において提供されるようなレジメンにより投与することができる。したがって、提供される方法または組成物のうちのいずれか1つのいくつかの態様において、共投与される用量と組み合わされたプレ用量および/またはポスト用量の免疫抑制剤の量は、この総量に等しい。
【0052】
提供される方法または組成物のうちのいずれか1つのいくつかの態様において、プレ用量またはポスト用量の免疫抑制剤の量は、この総量の半分以下である。提供される方法または組成物のうちのいずれか1つのいくつかの態様において、プレ用量またはポスト用量の免疫抑制剤の量は、この総量の半分である。提供される方法または組成物のうちのいずれか1つのいくつかの態様において、プレ用量および/またはポスト用量の免疫抑制剤の量は、共投与ステップの免疫抑制剤の量と同じであってもよい。
【0053】
「免疫応答を評価すること」とは、in vitroまたはin vivoでの免疫応答のレベル、その存在または不在、その減少、その増大などの、任意の測定または決定を指す。かかる測定または決定は、対象から得られる1つ以上の試料において行うことができる。かかる評価は、本明細書において提供されるか、ELISAベースのアッセイを含む当該分野において他に公知の方法のうちのいずれか1つを用いて行うことができる。評価は、例えば対象からの試料中の、IgMおよび/またはIgG抗体など(ウイルスベクターに対して特異的なものなど)の抗体の数またはパーセンテージを評価することであってよい。評価はまた、免疫応答に関する任意の効果を評価すること、例えばサイトカインの存在または不在、細胞の表現型などを測定することであってもよい。本明細書において提供される方法のうちのいずれか1つは、ウイルスベクターまたはその抗原に対する免疫応答を評価するステップを含むか、これをさらに含んでもよい。評価は、直接的に行われても、間接的に行われてもよい。当該用語は、他者に、免疫応答を評価させるか、評価することを促すか、評価することを奨励するか、評価することを補助するか、評価することを誘導または指示する行動を含む。
【0054】
「平均」とは、本明細書において用いられる場合、別段に記述されない限り、算術平均を指す。
「カップリングする」または「カップリングされる」(および類似のもの)は、1つの実体(例えば部分)を別のものに化学的に会合させることを意味する。提供される方法または組成物のうちのいずれか1つのいくつかの態様において、カップリングは、共有結合性であり、これは、結合が、2つの実体の間の共有結合の存在に関して起こることを意味する。非共有結合性の態様において、非共有結合性カップリングは、電荷相互作用、アフィニティー相互作用、金属配位、物理的吸着、ホスト-ゲスト相互作用、疎水性相互作用、TTスタッキング相互作用、水素結合相互作用、ファン・デル・ワールス相互作用、磁気相互作用、静電相互作用、双極子-双極子相互作用および/またはそれらの組み合わせを含むが、これらに限定されない、非共有結合性相互作用により媒介される。提供される方法または組成物のうちのいずれか1つの態様において、カプセル化が、カップリングの形態である。
【0055】
「用量」とは、薬理学的および/または免疫学的に活性な材料の、所与の時間にわたる対象への投与のための特定の量を指す。一般的に、本発明の方法およびキットを含む組成物における免疫抑制剤を含む合成ナノキャリアおよび/またはウイルスベクターの用量は、別段に提供されない限り、合成ナノキャリア中に含まれる免疫抑制剤の量および/またはウイルスベクターの量を指す。あるいは、免疫抑制剤を含む合成ナノキャリアの用量に言及する場合においては、用量は、所望される量の免疫抑制剤を提供する合成ナノキャリアの数に基づいて投与してもよい。用量が、繰り返し投与に関して用いられる場合、用量は、繰り返し投与の各々の量を指し、これは、同じであっても異なっていてもよい。「プレ用量」とは、本明細書において用いられる場合、材料または材料のセットの投与の前に投与される、材料または材料のセットを指す。「ポスト用量」とは、本明細書において用いられる場合、別の材料または材料のセットの投与の後に投与される、材料または材料のセットを指す。提供される方法または組成物のうちのいずれか1つのいくつかの態様において、プレ用量またはポスト用量の材料は、他方の投与の材料と同じであっても異なっていてもよい。好ましくは、本明細書において提供されるように、プレ用量またはポスト用量の材料は、免疫抑制剤を含む合成ナノキャリアを含むが、ウイルスベクターを含まない。
【0056】
「カプセル化する(encapsulate)」とは、合成ナノキャリア中の物質のうちの少なくとも一部を封入する(enclose)ことを意味する。提供される方法または組成物のうちのいずれか1つのいくつかの態様において、物質は、合成ナノキャリア中に完全に封入される。提供される方法または組成物のうちのいずれか1つの他の態様において、封入される物質のうちの大部分または全てが、合成ナノキャリアに対して外部の局所環境に暴露されない。提供される方法または組成物のうちのいずれか1つの他の態様において、50%、40%、30%、20%、10%または5%(重量/重量)以下が、局所環境に暴露される。カプセル化は、吸収とは区別される。吸収は、物質のうちの大部分または全てを合成ナノキャリアの表面上に置き、物質が、合成ナノキャリアに対して外部の局所環境に暴露されたままにする。
【0057】
「発現制御配列」は、発現に影響を及ぼすことができる任意の配列であって、プロモーター、エンハンサー、およびオペレーターを含み得る。ベクター内の発現制御配列、または制御エレメントは、適切な核酸の転写、翻訳、ウイルスのパッケージングなどを促進することができる。一般に、制御エレメントは、シス側で作用するが、トランス側でもまた機能し得る。提供される方法または組成物のうちのいずれか1つの一態様において、発現制御配列は、プロモーター、例えば構成的プロモーターまたは組織特異的プロモーターである。「構成的プロモーター」は、遍在または無差別(promiscuous)プロモーターとも称され、一般に活性であり、特定の細胞に排他的または優先的であるとは考えられていないものである。「組織特異的プロモーター」とは、特定の細胞型または組織において活性であるものであって、かかる活性は、特定の細胞型または組織に対して排他的であり得る。本明細書において提供される核酸またはウイルスベクターのうちのいずれか1つにおいて、プロモーターは、本明細書において提供されるプロモーターのうちのいずれか1つであってよい。
【0058】
「ウイルスベクターに対する免疫応答」または類似のものは、抗体(例えば、IgMもしくはIgG)または細胞の応答などの任意の望ましくないウイルスベクターに対する免疫応答を指す。いくつかの態様において、望ましくない免疫応答は、ウイルスベクターまたはその抗原に対する抗原特異的免疫応答である。いくつかの態様において、免疫応答は、ウイルスベクターのウイルス性抗原に対して特異的である。他の態様において、免疫応答は、ウイルスベクターの導入遺伝子によりコードされるタンパク質またはペプチドに対して特異的である。いくつかの態様において、免疫応答は、ウイルスベクターのウイルス性抗原に対して特異的であり、ウイルスベクターの導入遺伝子によりコードされるタンパク質またはペプチドに対しては特異的でない。
【0059】
いくつかの態様において、対象における低下した抗ウイルスベクター応答とは、本明細書において提供されるような投与の後に対象から得られた生体試料を用いて測定された抗ウイルスベクター免疫応答であって、本明細書において提供されるような投与を用いない、試験対象などの別の対象へのウイルスベクターの投与の後で、この他の対象から得られた生体試料を用いて測定された抗ウイルスベクター免疫応答と比較して低下したものを含む。いくつかの態様において、抗ウイルスベクター免疫応答は、本明細書において提供されるような投与の後で対象から得られた生体試料における、その後の対象の生体試料に対して行われたウイルスベクターのin vitroでのチャレンジの後の抗ウイルスベクター免疫応答であって、本明細書において提供されるような投与なしで、試験対象などの別の対象から、当該他の対象へのウイルスベクターの投与の後で得られた生体試料に対して行われたウイルスベクターのin vitroでのチャレンジの後で検出された抗ウイルスベクター免疫応答と比較して低下したものである。他の態様において、免疫応答は、別の対象において、例えば試験対象からの試料において評価することができ、ここで、当該他の対象についての結果は、スケーリングの有無にかかわらず、組織において対象において起こっているか既に起こったものの指標となることが期待されるであろう。いくつかの態様において、対象における低下した抗ウイルスベクター応答は、本明細書において提供されるような投与の後で対象から得られた生体試料を用いて測定された抗ウイルスベクター免疫応答であって、当該対象から、異なる時点において(例えば、本明細書において提供されるような投与なしで、例えば本明細書において提供されるような投与の前の時点において)得られた生体試料を用いて測定された抗ウイルスベクター免疫応答と比較して、低下したものを含む。
【0060】
「免疫抑制剤」とは、好ましくはAPCに対するその効果を通して、免疫寛容原性効果を引き起こすことができる化合物を意味する、免疫寛容原性効果とは、一般に、APCまたは他の免疫細胞による、抗原に対する望ましくない免疫応答を耐久性のある様式において全身性および/または局所性に軽減、阻害または予防する調節を指す。提供される方法または組成物のうちのいずれか1つの一態様において、免疫抑制剤は、APCに、1つ以上の免疫エフェクター細胞における制御性の表現型を促進させるものである。例えば、制御性の表現型とは、抗原特異的CD4+T細胞またはB細胞の産生の阻害、誘導、刺激または動員、抗原特異的抗体の産生の阻害、Treg細胞(例えば、CD4+CD25highFoxP3+Treg細胞)の産生、誘導、刺激または動員などにより特徴づけることができる。これは、CD4+T細胞またはB細胞の制御性の表現型への変換の結果であり得る。これはまた、CD8+T細胞、マクロファージおよびiNKT細胞などの他の免疫細胞におけるFoxP3の誘導の結果でもあり得る。提供される方法または組成物のうちのいずれか1つの一態様において、免疫抑制剤は、APCが抗原をプロセッシングした後に、APCの応答に影響を及ぼすものである。提供される方法または組成物のうちのいずれか1つの別の態様において、免疫抑制剤は、抗原のプロセッシングを妨害するものではない。提供される方法または組成物のうちのいずれか1つのさらなる態様において、免疫抑制剤は、アポトーシス性のシグナル伝達分子ではない。提供される方法または組成物のうちのいずれか1つの別の態様において、免疫抑制剤は、リン脂質ではない。
【0061】
免疫抑制剤として、これらに限定されないが、以下が挙げられる:スタチン;mTOR阻害剤、例えばラパマイシンまたはラパマイシンアナログ(すなわち、ラパログ);TGF-βシグナル伝達剤;TGF-β受容体アゴニスト;ヒストンデアセチラーゼ阻害剤、例えばトリコスタチンA;副腎皮質ステロイド;ミトコンドリアの機能の阻害剤、例えばロテノン;P38阻害剤;NF-κβ阻害剤、例えば6Bio、デキサメタゾン、TCPA-1、IKK VII;アデノシン受容体アゴニスト;プロスタグランジンE2アゴニスト(PGE2)、例えばミソプロストール;ホスホジエステラーゼ阻害剤、例えばホスホジエステラーゼ4阻害剤(PDE4)、例えばロリプラム;プロテアソーム阻害剤;キナーゼ阻害剤;Gタンパク質共役受容体アゴニスト;Gタンパク質共役受容体アンタゴニスト;グルココルチコイド;レチノイド;サイトカイン阻害剤;サイトカイン受容体阻害剤;サイトカイン受容体アクチベーター;ペルオキシソーム増殖剤活性化受容体アンタゴニスト;ペルオキシソーム増殖剤活性化受容体アゴニスト;ヒストンデアセチラーゼ阻害剤;カルシニューリン阻害剤;ホスファターゼ阻害剤;PI3KB阻害剤、例えばTGX-221;オートファジー阻害剤、例えば3-メチルアデニン;アリール炭化水素受容体阻害剤;プロテアソーム阻害剤I(PSI);ならびに酸化型ATP、例えばP2X受容体遮断薬。免疫抑制剤としてまた、以下が挙げられる:IDO、ビタミンD3、レチノイン酸、シクロスポリン、例えばシクロスポリンA、アリール炭化水素受容体阻害剤、レスベラトロール、アザチオプリン(Aza)、6-メルカプトプリン(6-MP)、6-チオグアニン(6-TG)、FK506、サングリフェリン(sanglifehrin)A、サルメテロール、ミコフェノール酸モフェチル(MMF)、アスピリンおよび他のCOX阻害剤、ニフルミン酸、エストリオールおよびトリプトライド。他の例次的な免疫抑制剤として、これらに限定されないが、以下が挙げられる:小分子薬、天然の生成物、抗体(例えば、CD20、CD3、CD4に対する抗体)、生物製剤(biologics)ベースの薬物、炭水化物ベースの薬物、RNAi、アンチセンス核酸、アプタマー、メトトレキサート、NSAID;フィンゴリモド;ナタリズマブ;アレムツズマブ;抗CD3;タクロリムス(FK506)、アバタセプト、ベラタセプトなど。「ラパログ」とは、本明細書において用いられる場合、ラパマイシン(シロリムス)に構造的に関連する分子(アナログ)を指す。ラパログの例として、限定することなく、テムシロリムス(CCI-779)、エベロリムス(RAD001)、リダフォロリムス(AP-23573)、およびゾタロリムス(ABT-578)が挙げられる。ラパログのさらなる例は、例えばWO公開WO 1998/002441および米国特許第8,455,510号において見出すことができ、それらのラパログは、その全体において本明細書において参考として援用される。さらなる免疫抑制剤は、当業者には公知であり、本発明は、このことに関して限定されない。提供される方法または組成物のうちのいずれか1つの態様において、免疫抑制剤は、本明細書において提供される剤のうちのいずれか1つ、例えば前述のもののうちのいずれか1つを含んでもよい。
【0062】
「導入遺伝子発現を増大させること」とは、対象におけるウイルスベクターの導入遺伝子発現のレベルを増大させることを指し、導入遺伝子は、ウイルスベクターにより送達されるものである。いくつかの態様において、導入遺伝子発現のレベルは、対象における多様な目的の組織または系における導入遺伝子タンパク質濃度を測定することにより決定することができる。あるいは、導入遺伝子の発現生成物が核酸である場合、導入遺伝子発現のレベルは、導入遺伝子の核酸生成物により測定することができる。導入遺伝子発現を増大させることは、例えば、対象から得られた試料中の導入遺伝子発現の量を測定して、それを前の試料と比較することにより、決定することができる。試料は、組織試料であってもよい。いくつかの態様において、導入遺伝子発現は、フローサイトメトリーを用いて測定することができる。他の態様において、増大した導入遺伝子発現は、別の対象において、例えば試験対象からの試料において、評価することができ、ここで、当該他の対象についての結果は、スケーリングの有無にかかわらず、組織において対象において起こっているか、または既に起こったことの指標となることが期待されるであろう。本明細書において提供される方法のうちのいずれか1つは、増大した導入遺伝子発現をもたらし得る。
【0063】
「負荷量(load)」とは、免疫抑制剤が合成ナノキャリア中に含まれる場合、例えばそれにカップリングされる場合、合成ナノキャリア全体における材料の総乾燥処方重量(重量/重量)に基づく、合成ナノキャリア中の免疫抑制剤の量である。一般に、かかる負荷量は、合成ナノキャリアの集合全体にわたる平均として計算される。提供される方法または組成物のうちのいずれか1つの一態様において、負荷量は、合成ナノキャリア全体の平均で、0.1%~99%である。提供される方法または組成物のうちのいずれか1つの別の態様において、負荷量は、0.1%~50%である。提供される方法または組成物のうちのいずれか1つの別の態様において、負荷量は、0.1%~20%である。提供される方法または組成物のうちのいずれか1つのさらなる態様において、負荷量は、0.1%~10%である。提供される方法または組成物のうちのいずれか1つのなおさらなる態様において、負荷量は、1%~10%v。提供される方法または組成物のうちのいずれか1つのなおさらなる態様において、負荷量は、7%~20%である。提供される方法または組成物のうちのいずれか1つのさらに別の態様において、負荷量は、合成ナノキャリアの集合全体の平均で、少なくとも0.1%、少なくとも0.2%、少なくとも0.3%、少なくとも0.4%、少なくとも0.5%、少なくとも0.6%、少なくとも0.7%、少なくとも0.8%、少なくとも0.9%、少なくとも1%、少なくとも2%、少なくとも3%、少なくとも4%、少なくとも5%、少なくとも6%、少なくとも7%、少なくとも8%、少なくとも9%、少なくとも10%、少なくとも11%、少なくとも12%、少なくとも13%、少なくとも14%、少なくとも15%、少なくとも16%、少なくとも17%、少なくとも18%、少なくとも19%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%または少なくとも99%である。提供される方法または組成物のうちのいずれか1つのさらにさらなる態様において、負荷量は、合成ナノキャリアの集合全体の平均で、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%または20%である。上の態様のうちのいずれか1つのいくつかの態様において、負荷量は、合成ナノキャリアの集合全体の平均で、25%以下である。提供される方法または組成物のうちのいずれか1つの態様において、負荷量は、当該分野において知られているように計算される。
【0064】
「合成ナノキャリアの最大寸法」とは、合成ナノキャリアの任意の軸に沿って測定されるナノキャリアの最大の寸法を意味する。「合成ナノキャリアの最小寸法」とは、合成ナノキャリアの任意の軸に沿って測定される合成ナノキャリアの最小の寸法を意味する。例えば、球体の合成ナノキャリアについては、合成ナノキャリアの最大および最小寸法は、実質的に同一であり、その直径のサイズであろう。同様に、立方体状の合成ナノキャリアについて、合成ナノキャリアの最小寸法は、その高さ、幅または長さのうちの最小のものであり、一方、合成ナノキャリアの最大寸法は、その高さ、幅または長さのうちの最大のものであろう。一態様において、試料中の合成ナノキャリアの合計数に基づいて、試料中の合成ナノキャリアのうちの少なくとも75%、好ましくは少なくとも80%、より好ましくは少なくとも90%の最小寸法が、100nmに等しいかまたはこれより大きい。一態様において、試料中の合成ナノキャリアの合計数に基づいて、試料中の合成ナノキャリアのうちの少なくとも75%、好ましくは少なくとも80%、より好ましくは少なくとも90%の最大寸法が、5μmに等しいかまたはこれより小さい。好ましくは、試料中の合成ナノキャリアの合計数に基づいて、試料中の合成ナノキャリアのうちの少なくとも75%、好ましくは少なくとも80%、より好ましくは少なくとも90%の最小寸法が、110nmより大きく、より好ましくは120nmより大きく、より好ましくは130nmより大きく、より好ましくは150nmよりなお大きい。合成ナノキャリアの最大寸法と最小寸法とのアスペクト比は、態様に依存して変化し得る。例えば、合成ナノキャリアの最大寸法の最小寸法に対するアスペクト比は、1:1~1,000,000:1、好ましくは1:1~100,000:1、より好ましくは1:1~10,000:1、より好ましくは1:1~1000:1、なおより好ましくは1:1~100:1、さらにより好ましくは1:1~10:1で変化し得る。好ましくは、試料中の合成ナノキャリアの合計数に基づいて、試料中の合成ナノキャリアのうちの少なくとも75%、好ましくは少なくとも80%、より好ましくは少なくとも90%の最大寸法は、3μmに等しいかまたはこれより小さく、より好ましくは2μmに等しいかまたはこれより小さく、より好ましくは1μmに等しいかまたはこれより小さく、より好ましくは800nmに等しいかまたはこれより小さく、より好ましくは600nmに等しいかまたはこれより小さく、より好ましくはなお500nmに等しいかまたはこれより小さい。好ましい態様において、試料中の合成ナノキャリアの合計数に基づいて、試料中の合成ナノキャリアのうちの少なくとも75%、好ましくは少なくとも80%、より好ましくは少なくとも90%の最小寸法は、100nmと等しいかまたはこれより大きく、より好ましくは120nmと等しいかまたはこれより大きく、より好ましくは130nmと等しいかまたはこれより大きく、より好ましくは140nmと等しいかまたはこれより大きく、より好ましくは150nmとなお等しいかまたはこれより大きい。合成ナノキャリアの寸法(例えば有効直径)の測定値は、いくつかの態様において、液体(通常は水性)の媒質中に合成ナノキャリアを懸濁し、動的光散乱(DLS)を用いる(例えばBrookhaven ZetaPALS装置を用いる)ことにより得ることができる。例えば、合成ナノキャリアの懸濁液を、水性バッファーから精製水中に希釈して、約0.01~0.1mg/mLの最終的な合成ナノキャリア懸濁液濃度を達成することができる。希釈された懸濁液は、DLS分析のための好適なキュベットの内部で直接調製しても、これに移してもよい。キュベットを、次いで、DLS中に置き、制御された温度に平衡化させ、次いで、媒質の粘性および試料の屈折率についての適切なインプットに基づいて、安定かつ再現可能な分布を得るために十分な時間にわたりスキャンすることができる。有効直径、または分布の平均を、次いで報告する。高アスペクト比、または非球形の、合成ナノキャリアの有効サイズを決定することは、より正確な測定値を得るために、電子顕微鏡などの増加的な技術を必要とし得る。合成ナノキャリアの「寸法」または「サイズ」または「直径」は、例えば動的光散乱を用いて得られる、粒子サイズ分布の平均を意味する。
【0065】
「薬学的に受入可能な賦形剤」または「薬学的に受入可能なキャリア」は、組成物を処方するために薬理学的に活性な材料と一緒に用いられる、薬理学的に不活性な材料を意味する。薬学的に受入可能な賦形剤は、当該分野において公知の多様な材料を含み、これは、多糖(例えばグルコース、ラクトースなど)、抗菌剤などの保存剤、再構成補助剤、着色剤、食塩水(例えばリン酸緩衝化食塩水)、およびバッファーを含むが、これらに限定されない。
【0066】
「繰り返し用量」または「繰り返し投与」または類似のものは、同じ材料のより早い用量または投与の後で対象に投与される材料または材料のセットの、少なくとも1回のさらなる用量または投与を意味する。材料は同じであってもよく、一方、繰り返し用量または投与中の材料の量は、異なっていてもよい。
【0067】
「対象」は、ヒトおよび霊長類などの温血哺乳動物;鳥類;ネコ、イヌ、ヒツジ、ヤギ、ウシ、ウマおよびブタなどの飼育された家庭または農場の動物;マウス、ラットおよびモルモットなどの研究動物;魚類;爬虫類;動物園および野生の動物などを含む動物を意味する。本明細書において用いられる場合、対象は、本明細書において提供される方法または組成物のうちのいずれか1つを必要とするものであってよい。本明細書において提供される「第2の対象」または「別の対象」とは、投与が提供されている対象とは異なる別の対象を指す。この対象は、試験対象などの任意の他の対象であってよく、この対象は、同じまたは異なる種のものであってよい。好ましくは、この第2の対象は、合成ナノキャリア中に含まれる免疫抑制剤のプレ用量またはポスト用量を投与されることなく、合成ナノキャリア中に含まれる免疫抑制剤とウイルスベクターとの共投与により、ウイルスベクターに対する低下した免疫応答または有効なもしくは増大したウイルスベクターの導入遺伝子発現が達成されているものである。したがって、提供される方法のうちのいずれか1つのいくつかの態様において、第2の対象または別の対象は、低下した免疫応答または増大した導入遺伝子発現を達成するために、共投与のみを受けている。この共投与の免疫抑制剤の量を用いて、記載される方法のうちのいずれか1つによる、または本明細書において提供される組成物のうちのいずれか1つにおける使用のための、本明細書において提供されるような用量を決定することができる。この量は、類似のまたはより優れた効果を達成するために、プレ用量および/またはポスト用量と共投与される用量との間で分配することができる。
【0068】
提供される方法または組成物のうちのいずれか1つのいくつかの態様において、第2のまたは他の対象が異なる種のものである場合、量は、投与を受けることになる対象の種について適切であるようにスケーリングすることができ、このスケーリングされた量は、本明細書において提供されるように、合計として用いることができる。例えば、非比例的なスケーリングまたは他のスケーリング方法を用いることができる。第2の対象または他の対象における免疫応答、ならびに導入遺伝子発現は、当業者に公知の、または本明細書において別段に提供されるような慣用的な方法を用いて、評価することができる。本明細書において提供される方法のうちのいずれか1つは、本明細書において記載されるような第2のまたは他の対象におけるこれらの量のうちの1つ以上を決定することを含むか、これをさらに含んでもよい。
【0069】
「合成ナノキャリア」は、天然において見出されない分散した物体であって、サイズが5マイクロンより小さいかまたはこれと等しい少なくとも1つの寸法を有する者を意味する。アルブミンナノ粒子は、一般に合成ナノキャリアとして含まれるが、しかし、ある態様において、合成ナノキャリアは、アルブミンナノ粒子を含まない。態様において、合成ナノキャリアは、キトサンを含まない。他の態様において、合成ナノキャリアは、脂質ベースのナノ粒子ではない。さらなる態様において、合成ナノキャリアは、リン脂質を含まない。
【0070】
合成ナノキャリアは、これらに限定されないが、1つまたは複数の脂質ベースのナノ粒子(本明細書においてまた、脂質ナノ粒子、すなわち、それらの構造を構成する材料のうちの大部分が脂質であるナノ粒子としても言及される)、ポリマー性ナノ粒子、金属ナノ粒子、界面活性剤ベースのエマルジョン、デンドリマー、バッキーボール、ナノワイヤ、ウイルス様粒子(すなわち、ウイルスの構造タンパク質から主に構成されるが、感染性ではないか、低い感染性を有する粒子)、ペプチドまたはタンパク質ベースの粒子(本明細書においてまた、タンパク質粒子、すなわち、それらの構造を構成する材料のうちの大部分がペプチドまたはタンパク質である粒子としても言及される)(アルブミンナノ粒子など)、および/または脂質-ポリマーナノ粒子などのナノ材料の組み合わせを用いて開発されるナノ粒子であってよい。合成ナノキャリアは、球状、立方体状、錐体状、長方形、円柱状、環状体状などを含むがこれらに限定されない、多様な異なる形状であってよい。本発明による合成ナノキャリアは、1つ以上の表面を含む。本発明の実施における使用のために適応させることができる例示的な合成ナノキャリアは、以下を含む:(1)Grefらに対する米国特許5,543,158において開示される生分解性ナノ粒子、(2)Saltzmanらに対する公開された米国特許出願20060002852のポリマー性ナノ粒子、(3)DeSimoneらに対する公開された米国特許出願20090028910のリソグラフィーにより構築されたナノ粒子、(4)von Andrianらに対するWO 2009/051837の開示、(5)Penadesらに対する公開された米国特許出願2008/0145441において開示されるナノ粒子、(6)de los Riosらに対する公開された米国特許出願20090226525において開示されるタンパク質ナノ粒子、(7)Sebbelらに対する公開された米国特許出願20060222652において開示されるウイルス様粒子、(8)Bachmannらに対する公開された米国特許出願20060251677において開示されるウイルス様粒子に結合した核酸、(9)WO2010047839A1またはWO2009106999A2において開示されるウイルス様粒子、(10)P. Paolicelli et al.,「Surface-modified PLGA-based Nanoparticles that can Efficiently Associate and Deliver Virus-like Particles」Nanomedicine. 5(6):843-853 (2010)において開示されるナノ沈殿された(nanoprecipitated)ナノ粒子、(11)米国公開2002/0086049において開示されるアポトーシス細胞、アポトーシス小体、または合成もしくは半合成の模倣物、あるいは(12)Lookら、「Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice」J. Clinical Investigation 123(4):1741-1749 (2013)のもの。
【0071】
約100nmと等しいかまたはこれより小さい、好ましくは100nmと等しいかまたはこれより小さい最小寸法を有する、本発明による合成ナノキャリアは、補体を活性化するヒドロキシル基を有する表面を含まないか、あるいは、補体を活性化するヒドロキシル基ではない部分から本質的になる表面を含む。好ましい態様において、約100nmと等しいかまたはこれより小さい、好ましくは100nmと等しいかまたはこれより小さい最小寸法を有する、本発明による合成ナノキャリアは、補体を実質的に活性化する表面を含まないか、あるいは、補体を実質的に活性化しない部分から本質的になる表面を含む。より好ましい態様において、約100nmと等しいかまたはこれより小さい、好ましくは100nmと等しいかまたはこれより小さい最小寸法を有する、本発明による合成ナノキャリアは、補体を活性化する表面を含まないか、あるいは、補体を活性化しない部分から本質的になる表面を含む。態様において、合成ナノキャリアは、ウイルス様粒子を除外する。態様において、合成ナノキャリアは、1:1、1:1.2、1:1.5、1:2、1:3、1:5、1:7より大きい、または1:10より大きいアスペクト比を有していてもよい。
【0072】
「ウイルスベクターの導入遺伝子」または「導入遺伝子」または類似のものは、それを細胞中に輸送するためにウイルスベクターが用いられる核酸材料であって、細胞中に輸送された後、本明細書において記載されるような治療的適用などのために、発現されてそれぞれタンパク質または核酸分子を生成するものを指す。「発現される」または「発現」または類似のものは、細胞中に導入遺伝子が形質導入されて、形質導入された細胞によりプロセッシングされた後の、機能的な(すなわち、所望される目的のために生理学的に活性である)遺伝子生成物の合成を指す。かかる遺伝子生成物はまた、本明細書において、「導入遺伝子発現生成物」としても言及される。発現された生成物は、したがって、結果として生じる、導入遺伝子によりコードされる、タンパク質または核酸、例えばアンチセンスオリゴヌクレオチドまたは治療用RNAである。
【0073】
「ウイルスベクター」は、核酸などのペイロードを細胞に送達することができるか、これを送達する、ウイルスベースの送達系を意味する。一般に、当該用語は、キャプシドおよび/またはコートタンパク質などのウイルス構成成分(これはまた、ペイロードを含んでもよいか、またはこれを含む(およびそのように適応させられている)を有する、ウイルスベクターコンストラクトを指す。いくつかの態様において、ペイロードは、導入遺伝子をコードする。いくつかの態様において、導入遺伝子は、治療用タンパク質、DNA結合タンパク質またはエンドヌクレアーゼなどの、本明細書において提供されるタンパク質をコードするものである。他の態様において、導入遺伝子は、ガイドRNA、アンチセンス核酸、snRNA、RNAi分子(例えば、dsRNAまたはssRNA)、miRNA、または三重鎖形成オリゴヌクレオチド(TFO)などをコードする。他の態様において、ペイロードは、それ自体が治療的である核酸であって、送達された核酸の発現は必要でない。例えば、核酸は、合成siRNAなどのsiRNAであってもよい。
【0074】
いくつかの態様において、ペイロードはまた、他の構成成分、例えば逆位末端反復配列(ITR)、マーカーなどをコードしていてもよい。ペイロードはまた、発現制御配列を含んでもよい。発現制御DNA配列として、プロモーター、エンハンサー、およびオペレーターが挙げられ、一般に、発現コンストラクトが利用されることになる発現系に基づいて選択される。いくつかの態様において、プロモーターおよびエンハンサー配列は、遺伝子発現を増加させる能力のために選択されるが、一方、オペレーター配列は、遺伝子発現を制御する能力のために選択され得る。ペイロードはまた、いくつかの態様においては、宿主細胞における相同組み換えを亢進し(facilitate)、好ましくはこれを促進する(promote)配列を含んでもよい。
【0075】
例示的な発現制御配列として、プロモーター配列、例えば、サイトメガロウイルスプロモーター;ラウス肉腫ウイルスプロモーター;およびサルウイルス40プロモーター;ならびに本明細書において他の場所で開示されるか、当該分野において他に公知の任意の他の型のプロモーターが挙げられる。一般に、プロモーターは、所望される発現生成物をコードする配列の上流(すなわち5’)に作動的に連結される。ペイロードはまた、コード配列の下流(すなわち3’)に作動的に連結された好適なポリアデニル化配列(例えば、SV40またはヒト成長ホルモン遺伝子のポリアデニル化配列)を含んでもよい。
【0076】
一般に、ウイルスベクターは、1つ以上の所望される核酸を細胞中に形質導入することができるように、操作される。加えて、本明細書において提供される治療的適用のために、ウイルスベクターは複製欠損であることがこのましいことが、理解されるであろう。ウイルスベクターは、限定することなく、レトロウイルス(例えば、マウスレトロウイルス、トリレトロウイルス、モロニーマウス白血病ウイルス(MoMuLV)、ハーベイマウス肉腫ウイルス(HaMuSV)、マウス乳癌ウイルス(MuMTV)、テナガザル白血病ウイルス(GaLV)およびラウス肉腫ウイルス(RSV))、レンチウイルス、ヘルペスウイルス、アデノウィルス、アデノ随伴ウイルス、アルファウイルスなどに基づいていてよい。他の例は、本明細書において他の場所において提供されるか、当該分野において公知である。ウイルスベクターは、本明細書において提供されるもののうちのいずれか1つなどの、ウイルスの天然のバリアント、株、または血清型に基づいていてもよい。ウイルスベクターはまた、分子進化を通して選択されるウイルスに基づいていてもよい(例えば、J.T. Koerber et al, Mol. Ther. 17(12):2088-2095および米国特許第6,09,548を参照)。ウイルスベクターは、限定することなく、AAV8またはAAV2などのアデノ随伴ウイルス(AAV)に基づいていてもよい。ウイルスベクターはまた、Anc80に基づいていてもよい。したがって、本明細書において提供されるAAVベクターまたはAnc80ベクターは、それぞれAAVまたはAnc80に基づくウイルスベクターであり、核酸材料の送達のためにそれをパッケージングすることができるウイルスの構成成分、例えばキャプシドおよび/またはタンパク質などのを有する。AAVベクターの他の例として、これらに限定されないが、AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、Rh10、Rh74、またはAAV-2i8またはそれらのバリアントに基づくものが挙げられる。ウイルスベクターはまた、操作されたベクター、組み換えベクター、変異体ベクター、またはハイブリッドベクターであってもよい。かかるベクターを作製する方法は、当業者には明らかであろう。いくつかの態様において、ウイルスベクターは、「キメラウイルスベクター」である。かかる態様において、このことは、ウイルスベクターが、1つより多くのウイルスまたはウイルスベクターに由来するウイルスの構成成分から構成されることを意味する。例えば、PCT公開WO01/091802およびWO14/168953、ならびに米国特許第6,468,771を参照。かかるウイルスベクターは、例えば、AAV8/Anc80またはAAV2/Anc80ウイルスベクターであってよい。
【0077】
さらなるウイルスベクターエレメントは、シス側またはトランス側において機能することができる。いくつかの態様において、ウイルスベクターは、ベクターゲノムを含み、これはまた、標的(ドナー)配列の5’または3’末端に隣接する1つ以上の逆位末端反復(ITR)配列、転写を促進する発現制御エレメント(例えばプロモーターまたはエンハンサー)、イントロン配列、スタッファー(stuffer)/フィラー(filler)ポリヌクレオチド配列(一般に、不活性配列)、および/または標的(ドナー)配列の3’末端に位置するポリ(A)配列を含む。
【0078】
C.本発明の方法における使用のための組成物
重要なことに、本明細書において提供される方法および組成物は、ウイルスベクターの投与による効果の改善を提供する。したがって、本明細書において提供される方法および組成物は、ウイルスベクターによる対象の処置のために有用である。かかるウイルスベクターは、遺伝子治療などを含む多様な目的のために核酸を送達するために用いることができる。上述のとおり、ウイルスベクターに対する免疫応答は、その効力に対して有害な影響を及ぼし得、また、その再投与を妨害し得る。重要なことに、本明細書において提供される方法および組成物は、導入遺伝子の発現の改善を達成すること、および/またはウイルスベクターに対する免疫応答を低下させることにより、前述の障害を克服することを見出した。本発明者らは、驚くべきことに、合成ナノキャリアとウイルスベクターとの共投与と組み合わせた、免疫抑制剤を含む合成ナノキャリアのプレ用量および/またはポスト用量を含む投与レジメンにより、免疫応答の低下および/または導入遺伝子発現の改善を達成することができることを発見した。加えてまた驚くべきことに、合成ナノキャリア中に含まれる場合、共投与ステップの免疫抑制剤の量を、プレ用量またはポスト用量により、共投与ステップのみと比較して減少させることができることを見出した。したがって、本明細書において提供される処置レジメンのうちのいずれか1つにおいて、免疫抑制剤の量は、合成ナノキャリア中に含まれる場合、プレ用量および/またはポスト用量と共投与される用量との間で「分割」することができる。
【0079】
また、上述のとおり、ウイルスベクター投与が、ウイルスベクター投与のすぐ後に、IgM免疫応答をもたらし得ることを発見した。また、ウイルスベクターと相対的な時間において投与された、免疫抑制剤を含む合成ナノキャリアが、IgM依存的な様式において、上昇した導入遺伝子発現を誘導することができることを発見した。
【0080】
導入遺伝子
ウイルスベクターのペイロードは、導入遺伝子であってよい。例えば、導入遺伝子は、所望される発現生成物、例えば、ポリペプチド、タンパク質、タンパク質混合物、DNA、cDNA、機能的RNA分子(例えば、RNAi、miRNA)、mRNA、RNAレプリコン、または他の目的の生成物をコードしていてもよい。
【0081】
例えば、導入遺伝子の発現生成物は、対象(例えば疾患または障害を有する対象)にとって有益なタンパク質またはその部分であってもよい。タンパク質は、細胞外、細胞内、または膜結合タンパク質であってもよい。例えば、導入遺伝子は、酵素、血液派生物(blood derivatives)、ホルモン、インターロイキンおよびインターフェロンなどのリンホカイン、凝固剤(coagulant)、増殖因子、神経伝達物質、腫瘍抑制因子、アポリポタンパク質、抗原、および抗体をコードしていてもよい。対象は、それにより当該タンパク質の対象の内因性のバージョンが欠損しているか、または限定された量において産生されるか、もしくは全く産生されない、疾患または障害を有するか、これを有することが疑われてもよい。提供される方法または組成物のうちのいずれか1つの他の態様において、導入遺伝子の発現生成物は、対象にとって有益な遺伝子またはその部分であってよい。
【0082】
治療用タンパク質の例として、これらに限定されないが、注入可能または注射可能な治療用タンパク質、酵素、酵素コファクター、ホルモン、血液または血液凝固因子、サイトカインおよびインターフェロン、増殖因子、アディポカインなどが挙げられる。
【0083】
注入可能または注射可能な治療用タンパク質の例として、例えば、トシリズマブ(Roche/Actemra(登録商標))、アルファ-1アンチトリプシン(Kamada/AAT)、ヘマタイド(登録商標)(AffymaxおよびTakeda、合成ペプチド)、アルブインターフェロンアルファ-2b(Novartis/Zalbin(商標))、Rhucin(登録商標)(Pharming Group、C1阻害剤置換療法)、テサモレリン(Theratechnologies/Egrifta、合成の成長ホルモン放出因子)、オクレリズマブ(Genentech、RocheおよびBiogen)、ベリムマブ(GlaxoSmithKline/Benlysta(登録商標))、ペグロチカーゼ(Savient Pharmaceuticals/Krystexxa(商標))、タリグルセラーゼアルファ(Protalix/Uplyso)、アガルシダーゼアルファ(Shire/Replagal(登録商標))、およびベラグルセラーゼアルファ(Shire)が挙げられる。
【0084】
酵素の例として、リゾチーム、オキシドレダクターゼ、トランスフェラーゼ、ヒドロラーゼ、リアーゼ、イソメラーゼ、アスパラギナーゼ、ウリカーゼ、グリコシダーゼ、プロテアーゼ、ヌクレアーゼ、コラゲナーゼ、ヒアルロニダーゼ、ヘパリナーゼ、ヘパラナーゼ、キナーゼ、ホスファターゼ、溶解素およびリガーゼが挙げられる。酵素の他の例として、酵素置換療法のために用いられるものが挙げられ、これは、これらに限定されないが、イミグルセラーゼ(例えばCEREZYME(商標))、a-ガラクトシダーゼA(a-gal A)(例えば、アガルシダーゼベータ、FABRYZYME(商標))、酸性a-ガラクトシダーゼ(GAA)(例えば、アルグルコシダーゼアルファ、LUMIZYME(商標)、MYOZYME(商標))、およびアリールスルファターゼB(例えば、ラロニダーゼ、ALDURAZYME(商標)、イデュルスルファーゼ、ELAPRASE(商標)、アリールスルファターゼB、NAGLAZYME(商標))を含む。
【0085】
ホルモンの例として、以下が挙げられる:メラトニン(N-アセチル-5-メトキシトリプタミン)、セロトニン、チロキシン(またはテトラヨードチロニン)(甲状腺ホルモン)、トリヨードチロニン(甲状腺ホルモン)、エピネフリン(またはアドレナリン)、ノルエピネフリン(またはノルアドレナリン)、ドーパミン(またはプロラクチン阻害ホルモン)、抗ミュラー管ホルモン(antimullerian hormone)(またはミュラー管阻害因子またはホルモン)、アディポネクチン、副腎皮質刺激ホルモン(またはコルチコトロピン)、アンジオテンシノーゲンおよびアンジオテンシン、抗利尿ホルモン(またはバソプレシン、アルギニンバソプレシン)、心房性ナトリウム利尿ペプチド(またはアトリオペプチン)、カルシトニン、コレシストキニン、コルチコトロピン放出ホルモン、エリスロポエチン、濾胞刺激ホルモン、ガストリン、グレリン、グルカゴン、グルカゴン様ペプチド(GLP-1)、GIP、ゴナドトロピン放出ホルモン、成長ホルモン放出ホルモン、ヒト絨毛性ゴナドトロピン、ヒト胎盤性ラクトゲン、成長ホルモン、インヒビン、インスリン、インスリン様増殖因子(またはソマトメジン)、レプチン、黄体化ホルモン、メラニン細胞刺激ホルモン、オレキシン、オキシトシン、副甲状腺ホルモン、プロラクチン、レラキシン、セクレチン、ソマトスタチン、トロンボポエチン、甲状腺刺激ホルモン(またはチロトロピン)、チロトロピン放出ホルモン、コルチゾール、アルドステロン、テストステロン、デヒドロエピアンドロステロン、アンドロステンジオン、ジヒドロテストステロン、エストラジオール、エストロン、エストリオール、プロゲステロン、カルシトリオール(1,25-ジヒドロキシビタミンD3)、カルシジオール(25-ヒドロキシビタミンD3)、プロスタグランジン、ロイコトリエン、プロスタサイクリン、トロンボキサン、プロラクチン放出ホルモン、リポトロピン、脳性ナトリウム利尿ペプチド、ニューロペプチドY、ヒスタミン、エンドセリン、膵臓ポリペプチド、レニン、およびエンケファリン。
【0086】
血液または血液凝固因子の例として、以下が挙げられる:第I因子(フィブリノーゲン)、第II因子(プロトロンビン)、組織因子、第V因子(プロアクセレリン(proaccelerin)、不安定な因子)、第VII因子(安定な因子、プロコンバーチン)、第VIII因子(抗血友病性グロブリン)、第IX因子(クリスマス因子または血漿トロンボプラスチン構成成分)、第X因子(Stuart-Prower因子)、第Xa因子、第XI因子、第XII因子(Hageman因子)、第XIII因子(フィブリン安定化因子)、フォン・ヴィルブランド因子、フォン・ヘルデブラント(von Heldebrant)因子、プレカリクレイン(フレッチャー因子)、高分子量キニノーゲン(HMWK)(フィッツジェラルド因子)、フィブロネクチン、フィブリン、トロンビン、アンチトロンビン、例えばアンチトロンビンIII、ヘパリンコファクターII、タンパク質C、タンパク質S、タンパク質Z、タンパク質Z関連プロテアーゼ阻害剤(ZPI)、プラスミノーゲン、アルファ2-抗プラスミン、組織プラスミノーゲンアクチベーター(tPA)、ウロキナーゼ、プラスミノーゲンアクチベーター阻害剤-1(PAI1)、プラスミノーゲンアクチベーター阻害剤-2(PAI2)、がん凝血原、およびエポエチンアルファ(エポジェン、プロクリット)。
【0087】
サイトカインの例として、以下が挙げられる:リンホカイン、インターロイキン、およびケモカイン、1型サイトカイン、例えばIFN-γ、TGF-β、および2型サイトカイン、例えばIL-4、IL-10およびIL-13。
増殖因子の例として、以下が挙げられる:アドレノメデュリン(AM)、アンギオポエチン(Ang)、自己分泌型細胞運動刺激因子、骨形成タンパク質(BMP)、脳由来神経栄養因子(BDNF)、上皮増殖因子(EGF)、エリスロポエチン(EPO)、線維芽細胞増殖因子(FGF)、グリア細胞由来神経栄養因子(GDNF)、顆粒球コロニー刺激因子(G-CSF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、増殖分化因子-9(GDF9)、肝細胞増殖因子(HGF)、ヘパトーマ由来増殖因子(HDGF)、インスリン様増殖因子(IGF)、遊走刺激因子、ミオスタチン(GDF-8)、神経成長因子(NGF)および他のニューロトロフィン、血小板由来増殖因子(PDGF)、トロンボポエチン(TPO)、トランスフォーミング増殖因子アルファ(TGF-α)、トランスフォーミング増殖因子ベータ(TGF-β)、腫瘍壊死因子-アルファ(TNF-α)、血管内皮増殖因子(VEGF)、Wntシグナル伝達経路、胎盤増殖因子(PlGF)、[(ウシ胎仔ソマトトロピン)](FBS)、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6およびIL-7。
【0088】
アディポカインの例として、レプチンおよびアディポネクチンが挙げられる。
治療用タンパク質のさらなる例として、これらに限定されないが、以下が挙げられる:受容体、シグナル伝達タンパク質、骨格筋タンパク質、足場タンパク質、転写因子、構造タンパク質、膜タンパク質、細胞質ゾルタンパク質、結合タンパク質、核タンパク質、分泌型タンパク質、ゴルジタンパク質、小胞体タンパク質、ミトコンドリアタンパク質、および小胞タンパク質など。
【0089】
提供される方法または組成物のうちのいずれか1つの一態様において、発現生成物は、標的遺伝子または標的遺伝子の一部を、破壊するか、修正/修復するか、またはこれを置き換えるために用いてもよい。例えば、Clustered Regularly Interspaced Short Palindromic Repeat/Cas(CRISPR/Cas)系は、正確なゲノム編集のために用いることができる。この系において、単一のCRISPR関連ヌクレアーゼ(Casヌクレアーゼ)を、塩基配列の短い反復を含むDNA遺伝子座を含む特異的なDNA標的を認識するように、ガイドRNA(短鎖(short)RNA)によりプログラミングしてもよい。CRISPR遺伝子座は、ウイルスのゲノム材料に由来するスペーサーDNAの短いセグメントに隣接する。最も一般的な系であるII型CRISPR系において、スペーサーDNAは、トランス活性化RNA(tracRNA)とハイブリダイズし、ここで、それは、CRISPR-RNA(crRNA)にプロセッシングされて、次いでCasヌクレアーゼと会合して複合体を形成し、これがRNAseIIIプロセッシングを開始させ、外来DNAの分解をもたらす。標的配列は、好ましくは、認識されるために、その3’末端においてプロトスペーサー隣接モチーフ(PAM)配列を含む。系は、多数の方法において改変することができ、例えば、合成のガイドRNAを、CRISPRベクターに融合させてもよく、多様な異なるガイドRNA構造およびエレメントが可能である(ヘアピンおよび足場配列を含む)。
【0090】
提供される方法または組成物のうちのいずれか1つのいくつかの態様において、導入遺伝子配列は、CRISPR/Cas系のいずれか1つ以上の構成成分、例えば発現されると検出可能なシグナルを生成するレポーター配列をコードしていてもよい。かかるレポーター配列の例として、これらに限定されないが、以下が挙げられる:β-ラクタマーゼ、β-ガラクトシダーゼ(LacZ)、アルカリホスファターゼ, チミジンキナーゼ、緑色蛍光タンパク質(GFP)、クロラムフェニコールアセチルトランスフェラーゼ(CAT)、ルシフェラーゼ、例えばCD2、CD4、CD8を含む膜結合タンパク質、およびインフルエンザヘマグルチニンタンパク質。他のレポーターは、当業者に公知である。
【0091】
提供される方法または組成物のうちのいずれか1つの別の例において、導入遺伝子は、RNA生成物、例えばtRNA、dsRNA、リボソームRNA、触媒性RNA、siRNA、RNAi、miRNA、低分子ヘアピン型RNA(shRNA)、トランススプライシングRNA、およびアンチセンスRNAをコードしていてもよい。例えば、対象において標的とされる核酸配列の発現を阻害または失わせるために、特定のRNA配列を作製することができる。好適な標的配列として、例えば、腫瘍性の標的およびウイルス疾患が挙げられる。
【0092】
提供される方法または組成物のうちのいずれか1つのいくつかの態様において、導入遺伝子配列は、発現されると検出可能なシグナルを生成するレポーター配列をコードしていても、または、導入遺伝子配列は、疾患の動物モデルを作製するために用いることができるタンパク質もしくは機能的RNAをコードしていてもよい。提供される方法または組成物のうちのいずれか1つの別の例において、導入遺伝子は、研究目的のために、例えば導入遺伝子を保有する体細胞トランスジェニック動物モデルを作製するために(例えば導入遺伝子の生成物の機能の研究のために)用いられることが意図されるタンパク質または機能的RNAをコードしていてもよい。提供される方法または組成物のうちのいずれか1つの他の態様において、かかる発現生成物の企図は、処置のためのものである。導入遺伝子の他の用途は、当業者には明らかであろう。
【0093】
導入遺伝子の配列はまた、発現制御配列を含んでもよい。発現制御配列は、プロモーター、エンハンサー、およびオペレーターを含み、一般に、発現コンストラクトが利用されることになる発現系に基づいて選択される。提供される方法または組成物のうちのいずれか1つのいくつかの態様において、プロモーターおよびエンハンサー配列は、遺伝子発現を増加させる能力のために選択されるが、一方、オペレーター配列は、遺伝子発現を制御する能力のために選択され得る。典型的には、プロモーター配列は、所望される発現生成物をコードする核酸配列の上流(すなわち5’)に位置し、隣接する配列に作動的に連結され、それにより、所望される生成物が発現される量を、プロモーターなしで発現される量と比較して増加させる。エンハンサー配列は、一般に、プロモーター配列の上流に位置し、所望される生成物の発現をさらに増加させることができる。提供される方法または組成物のうちのいずれか1つのいくつかの態様において、エンハンサー配列は、プロモーターの下流、および/または導入遺伝子中に位置していてもよい。導入遺伝子はまた、宿主細胞における相同組み換えおよび/またはパッケージングを亢進し、このましくはそれを促進する配列を含んでもよい。導入遺伝子はまた、宿主細胞中での複製のために必要な配列を含んでもよい。
【0094】
例示的な発現制御配列として、本明細書において提供され得るいずれか1つなどの、肝臓特異的プロモーター配列および構成的プロモーター配列が挙げられる。他の組織特異的プロモーターとして、眼、網膜、中枢神経系、脊髄その他が挙げられる。遍在的または無差別的なプロモーターおよびエンハンサーの例として、これらに限定されないが、以下が挙げられる:サイトメガロウイルス(CMV)最初期プロモーター/エンハンサー配列、ラウス肉腫ウイルス(RSV)プロモーター/エンハンサー配列、および多様な哺乳動物細胞型において活性な他のウイルスプロモーター/エンハンサー、または天然においては存在しない合成のエレメント(例えば、Boshart et al, Cell, 41 :521-530 (1985)を参照)、SV40プロモーター、ジヒドロ葉酸レダクターゼ(DHFR)プロモーター、細胞質型β-アクチンプロモーターおよびホスホグリセロールキナーゼ(PGK)プロモーター。
【0095】
オペレーター、または制御可能エレメントは、作動的に連結された核酸の発現を増大または減少させるシグナルまたは刺激に対して応答性である。誘導性エレメントは、シグナルまたは刺激に対する応答において、作動的に連結された核酸の発現を増大するもの、例えばホルモン誘導性プロモーターである。抑制性エレメントは、シグナルまたは刺激に対する応答において、作動的に連結された核酸の発現を減少させるものである。典型的には、抑制性および誘導性エレメントは、存在するシグナルまたは刺激 の量に対して比例的に応答性である。導入遺伝子は、提供される方法または組成物のうちのいずれか1つにおいて、かかる配列を含んでもよい。
【0096】
導入遺伝子はまた、コード配列の下流(すなわち3’)に作動的に連結された好適なポリアデニル化配列を含んでもよい。
例えば遺伝子治療のための、導入遺伝子を送達する方法は、、当該分野において公知である(例えば、Smith. Int. J. Med. Sci. 1(2):76-91 (2004);Phillips. Methods in Enzymology:Gene Therapy Methods. Vol. 346. Academic Press (2002)を参照)。本明細書において記載される導入遺伝子のうちのいずれかを、当該分野において公知の方法を用いて、本明細書において記載されるウイルスベクターのうちのいずれかに組み込むことができる。例えば、米国特許第7,629,153を参照。
【0097】
ウイルスベクター
ウイルスは、それらのゲノムを、それらが感染する細胞の内部に輸送するために特化した機構を進化させてきた;かかるウイルスに基づくウイルスベクターを、特定の用途に対して細胞に形質導入するために仕立てることができる。本明細書において提供されるように用いることができるウイルスベクターの例は、当該分野において公知であるか、本明細書において記載される。好適なウイルスベクターとして、例えば、レトロウイルスベクター、レンチウイルスベクター、単純ヘルペスウイルス(HSV)ベースのベクター、アデノウィルスベースのベクター、アデノ随伴ウイルス(AAV)ベースのベクター、およびAAV-アデノウィルスキメラベクターが挙げられる。
【0098】
本明細書において提供されるウイルスベクターは、レトロウイルスに基づくものであってもよい。レトロウイルスは、一本鎖のプラス鎖(positive sense)RNAウイルスである。レトロウイルスベクターは、ウイルスを複製無能にするように操作することができる。したがって、レトロウイルスベクターは、in vivoでの安定な遺伝子導入のために、特に有用であると考えられる。レトロウイルスベクターの例は、例えば米国公開番号20120009161、20090118212および20090017543において見出すことができ、ウイルスベクターおよびそれらを作製する方法は、本明細書においてその全体において参考として援用される。
【0099】
レンチウイルスベクターは、本明細書において提供されるようなウイルスベクターの生成のために用いることができるレトロウイルスベクターの例である。レンチウイルスの例として、HIV(ヒト)、サル免疫不全ウイルス(SIV)、ネコ免疫不全ウイルス(FIV)、ウマ伝染性貧血ウイルス(EIAV)およびビスナウイルス(ヒツジレンチウイルス)が挙げられる。レンチウイルスベクターの例は、例えば、米国公開番号20150224209、20150203870、20140335607、20140248306、20090148936および20080254008において見出すことができ、ウイルスベクターおよびそれらを作製する方法は、本明細書においてその全体において参考として援用される。
【0100】
単純ヘルペスウイルス(HSV)ベースのウイルスベクターもまた、本明細書において提供されるような用途のために好適である。多くの複製欠損HSVベクターは、複製を防止するために1つ以上の中間初期遺伝子(intermediate-early gene)を取り除くための欠失を含む。HSVベースのベクターの記載については、例えば、米国特許第5,837,532号、同第5,846,782号、同第5,849,572号、および同第5,804,413号、ならびに国際特許出願WO 91/02788、WO 96/04394、WO 98/15637、およびWO 99/06583を参照;これらのウイルスベクタおよびそれらを作製する方法の記載は、本明細書においてその全体において参考として援用される。
【0101】
ウイルスベクターは、アデノウィルスに基づくものであってもよい。ウイルスベクターの基礎とすることができるアデノウィルスは、任意の起源、任意のサブグループ、任意のサブタイプ、または任意の血清型からのものであってよい。例えば、アデノウィルスは、サブグループA(例えば、血清型12、18および31)、サブグループB(例えば、血清型3、7、11、14、16、21、34、35および50)、サブグループC(例えば、血清型1、2、5および6)、サブグループD(例えば、血清型8、9、10、13、15、17、19、20、22~30、32、33、36~39および42~48)、サブグループE(例えば、血清型4)、サブグループF(例えば、血清型40および41)、未分類の血清群(例えば、血清型49および51)、または任意の他のアデノウィルス血清型のものであってよい。アデノウィルス血清型1~51は、American Type Culture Collection(ATCC、Manassas, Va.)から入手可能である。非グループCアデノウィルス、および非ヒトアデノウィルスであっても、複製欠損アデノウイルスベクターを調製するために用いることができる。非グループCアデノウイルスベクター、非グループCアデノウイルスベクターを生成する方法、および非グループCアデノウイルスベクターを用いる方法は、例えば、米国特許第5,801,030号、同第5,837,511号、および同第5,849,561、ならびに国際特許出願WO 97/12986およびWO 98/53087において開示される。任意のアデノウィルス(キメラアデノウィルスであっても)を、アデノウイルスベクターのためのウイルスゲノムのソースとして用いることができる。例えば、ヒトアデノウィルスを、複製欠損アデノウイルスベクターのためのウイルスゲノムのソースとして用いることができる。アデノウイルスベクターのさらなる例は、米国公開番号20150093831、20140248305、20120283318、20100008889、20090175897および20090088398において見出すことができ、これらのウイルスベクターおよびそれらを作製する方法の記載は、その全体において参考として援用される。
【0102】
本明細書において提供されるウイルスベクターはまた、アデノ随伴ウイルス(AAV)に基づくものであってもよい。AAVベクターは、本明細書において記載されるものなどの治療的適用における使用のために、特に重要であった。AAVベースのベクターの記載については、例えば、米国特許第8,679,837号、同第8,637,255号、同第8,409,842号、同第7,803,622号、および同第7,790,449号、ならびに米国公開番号20150065562、20140155469、20140037585、20130096182、20120100606および20070036757を参照。AAVベクターは、組み換えAAVベクターであってもよい。AAVベクターはまた、自己相補的(sc)AAVベクターであってもよく、これは、例えば米国特許公開2007/01110724および2004/0029106、ならびに米国特許第7,465,583号および同第7,186,699号において記載され、これらのウイルスベクターおよびそれらを作製する方法は、その全体において本明細書において参考として援用される。
【0103】
ウイルスベクターの基礎とすることができるアデノ随伴ウイルスは、任意の血清型または血清型の混合物のものであってよい。AAV血清型は、AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10およびAAV11を含む。例えば、ウイルスベクターが血清型の混合物に基づく場合、ウイルスベクターは、1つのAAV血清型(例えばAAV血清型1、2、3、4、5、6、7、8、9、10および11のうちのいずれか1つから選択される)から取得されたキャプシドシグナル配列、ならびに異なる血清型(例えばAAV血清型1、2、3、4、5、6、7、8、9、10および11のうちのいずれか1つから選択される)からのパッケージング配列を含んでもよい。本明細書において提供される方法または組成物のうちのいずれか1つのいくつかの態様において、したがって、AAVベクターは、AAV2/8ベースのベクターである。本明細書において提供される方法または組成物のうちのいずれか1つの他の態様において、AAVベクターは、AAV2/5ベースのベクターである。
【0104】
提供される方法または組成物のうちのいずれか1つのいくつかの態様において、ウイルスベクターの基礎とするウイルスは、Anc80などの合成ものであってもよい。
提供される方法または組成物のうちのいずれか1つのいくつかの態様において、ウイルスベクターは、AAV/Anc80ベクター、例えばAAV8/Anc80ベクターまたはAAV2/Anc80ベクターである。
ベクターの基礎とすることができる他のウイルスとして、AAV1、AAV3、AAV4、AAV5、AAV6、AAV7、AAV9、AAV10、AAV11、rhl0、rh74またはAAV-2i8、およびそれらのバリアントが挙げられる。
【0105】
本明細書において提供されるウイルスベクターはまた、アルファウイルスに基づくものであってもよい。アルファウイルスとして、以下が挙げられる:シンドビス(およびVEEV)ウイルス、アウラ(Aura)ウイルス、ババンキウイルス、バーマ(Barmah)森林ウイルス、べバル(Bebaru)ウイルス、カバソウ(Cabassou)ウイルス、チクングニアウイルス、東部ウマ脳炎ウイルス、エバーグレーズウイルス、フォートモルガン(Fort Morgan)、ゲタウイルス、ハイランズJ(Highlands J)ウイルス、キジラガ(Kyzylagach)ウイルス、マヤロ(Mayaro)ウイルス、メ・トリ(Me Tri)ウイルス、ミデルブルグ(Middelburg)ウイルス、モッソ・ダス・ペドラス(Mosso das Pedras)ウイルス、ムカンボ(Mucambo)ウイルス、ヌドゥム(Ndumu)ウイルス、オニョンニョン(O'nyong-nyong)ウイルス、ピクスナ(Pixuna)ウイルス、リオ・ネグロ(Rio Negro)ウイルス、ロスリバーウイルス、サケ膵臓疾患ウイルス(Salmon pancreas disease virus)、セムリキ森林ウイルス、ミナミゾウアザラシウイルス、トナテ(Tonate)ウイルス、トロカラ(Trocara)ウイルス、ウナ(Una)ウイルス、ベネズエラウマ脳炎ウイルス、西部ウマ脳炎ウイルス、およびワタロアウイルス。アルファウイルスベクターの例は、米国公開番号20150050243、20090305344、および20060177819において見出すことができる;ベクターおよびそれらを作製する方法は、その全体において本明細書において参考として援用される。
本明細書において提供されるウイルスベクターのうちのいずれか1つは、本明細書において提供される方法のうちのいずれか1つにおける使用のためのものであってよい。
【0106】
免疫抑制剤
免疫抑制剤として、これらに限定されないが、以下が挙げられる:スタチン;mTOR阻害剤、例えばラパマイシンまたはラパマイシンアナログ;TGF-βシグナル伝達剤;TGF-β受容体アゴニスト;ヒストンデアセチラーゼ(HDAC)阻害剤;副腎皮質ステロイド;ミトコンドリアの機能の阻害剤、例えばロテノン;P38阻害剤;NF-κβ阻害剤;アデノシン受容体アゴニスト;プロスタグランジンE2アゴニスト;ホスホジエステラーゼ阻害剤、例えばホスホジエステラーゼ4阻害剤;プロテアソーム阻害剤;キナーゼ阻害剤;Gタンパク質共役受容体アゴニスト;Gタンパク質共役受容体アンタゴニスト;グルココルチコイド;レチノイド;サイトカイン阻害剤;サイトカイン受容体阻害剤;サイトカイン受容体アクチベーター;ペルオキシソーム増殖剤活性化受容体アンタゴニスト;ペルオキシソーム増殖剤活性化受容体アゴニスト;ヒストンデアセチラーゼ阻害剤;カルシニューリン阻害剤;ホスファターゼ阻害剤および酸化型ATP。免疫抑制剤はまた、以下を含む:IDO、ビタミンD3、シクロスポリンA、アリール炭化水素受容体阻害剤、レスベラトロール、アザチオプリン、6-メルカプトプリン、アスピリン、ニフルミン酸、エストリオール、トリプトライド、インターロイキン(例えば、IL-1、IL-10)、シクロスポリンA、サイトカインまたはサイトカイン受容体を標的とするsiRNAなど。
【0107】
スタチンの例として、以下が挙げられる:アトルバスタチン(LIPITOR(登録商標)、TORVAST(登録商標))、セリバスタチン、フルバスタチン(LESCOL(登録商標)、LESCOL(登録商標)XL)、ロバスタチン(MEVACOR(登録商標)、ALTOCOR(登録商標)、ALTOPREV(登録商標))、メバスタチン(COMPACTIN(登録商標))、ピタバスタチン(LIVALO(登録商標)、PIAVA(登録商標))、ロスバスタチン(PRAVACHOL(登録商標)、SELEKTINE(登録商標)、LIPOSTAT(登録商標))、ロスバスタチン(CRESTOR(登録商標))、およびシンバスタチン(ZOCOR(登録商標)、LIPEX(登録商標))。
【0108】
mTOR阻害剤の例として、以下が挙げられる:ラパマイシンおよびそのアナログ(例えば、CCL-779、RAD001、AP23573、C20-タアリルラパマイシン(C20-Marap)、C16-(S)-ブチルスルホンアミドラパマイシン(C16-BSrap)、C16-(S)-3-メチルインドールラパマイシン(C16-iRap)(Bayle et al. Chemistry & Biology 2006、13:99-107))、AZD8055、BEZ235(NVP-BEZ235)、クリソファン酸(クリソファノール)、デフォロリムス(MK-8669)、エベロリムス(RAD0001)、KU-0063794、PI-103、PP242、テムシロリムス、およびWYE-354(Selleck、Houston、TX、USAから入手可能)。
【0109】
TGF-βシグナル伝達剤の例として、以下が挙げられる:TGF-βリガンド(例えば、アクチビンA、GDF1、GDF11、骨形成タンパク質、ノーダル(Nodal)、TGF-β類)およびそれらの受容体(例えば、ACVR1B、ACVR1C、ACVR2A、ACVR2B、BMPR2、BMPR1A、BMPR1B、TGFβRI、TGFβRII)、R-SMADS/co-SMADS(例えば、SMAD1、SMAD2、SMAD3、SMAD4、SMAD5、SMAD8)、ならびにリガンド阻害剤(例えば、フォリスタチン、ノギン、コーディン、DAN、レフティー、LTBP1、THBS1、デコリン)。
【0110】
ミトコンドリアの機能の阻害剤の例として、以下が挙げられる:アトラクチロシド(二カリウム塩)、ボンクレキン酸(三アンモニウム塩)、カルボニルシアニドm-クロロフェニルヒドラゾン、カルボキシアトラクチロシド(例えば、Atractylis gummiferaからのもの)、CGP-37157、(-)-デグエリン(例えば、Mundulea sericeaからのもの)、F16、ヘキソキナーゼII VDAC結合ドメインペプチド、オリゴマイシン、ロテノン、Ru360、SFK1、およびバリノマイシン(例えば、Streptomyces fulvissimusからのもの)(EMD4Biosciences, USA)。
【0111】
P38阻害剤の例として、以下が挙げられる:SB-203580(4-(4-フルオロフェニル)-2-(4-メチルスルフィニルフェニル)-5-(4-ピリジル)1H-イミダゾール)、SB-239063(トランス-1-(4ヒドロキシシクロヘキシル)-4-(フルオロフェニル)-5-(2-メトキシ-ピリミジン-4-イル)イミダゾール)、SB-220025(5-(2アミノ-4-ピリミジニル)-4-(4-フルオロフェニル)-1-(4-ピペリジニル)イミダゾール))、およびARRY-797。
【0112】
NF(例えば、NK-κβ)阻害剤の例として、以下が挙げられる:IFRD1、2-(1,8-ナフチリジン-2-イル)-フェノール、5-アミノサリチル酸、BAY 11-7082、BAY 11-7085、CAPE(カフェイン酸フェネチルエステル)、ジエチルマレイン酸、IKK-2阻害剤IV、IMD 0354、ラクタシスチン、MG-132[Z-Leu-Leu-Leu-CHO]、NFκB活性化阻害剤III、NF-κB活性化阻害剤II、JSH-23、パルテノライド、フェニルアルシンオキシド(PAO)、PPM-18、ピロリジンジチオカルバミン酸アンモニウム塩、QNZ、RO 106-9920、ロカグラミド(rocaglamide)、ロカグラミドAL、ロカグラミドC、ロカグラミドI、ロカグラミドJ、ロカグラオール(rocaglaol)、(R)-MG-132、サリチル酸ナトリウム、トリプトライド(PG490)、およびウェデロラクトン(wedelolactone)。
【0113】
アデノシン受容体アゴニストの例として、CGS-21680およびATL-146eが挙げられる。
プロスタグランジンE2アゴニストの例として、E-プロスタノイド2およびE-プロスタノイド4が挙げられる。
ホスホジエステラーゼ阻害剤(非選択的および選択的阻害剤)の例として、以下が挙げられる:カフェイン、アミノフィリン、IBMX(3-イソブチル-1-メチルキサンチン)、パラキサンチン、ペントキシフィリン、テオブロミン、テオフィリン、メチル化キサンチン、ビンポセチン、EHNA(エリスロ-9-(2-ヒドロキシ-3-ノニル)アデニン)、アナグレリド、エノキシモン(PERFAN(商標))、ミルリノン、レボシメンダン、メセンブリン、イブジラスト、ピクラミラスト、ルテオリン、ドロタベリン、ロフルミラスト(DAXAS(商標)、DALIRESP(商標))、シルデナフィル(REVATION(登録商標)、VIAGRA(登録商標))、タダラフィル(ADCIRCA(登録商標)、CIALIS(登録商標))、バルデナフィル(LEVITRA(登録商標)、STAXYN(登録商標))、ウデナフィル、アバナフィル、イカリイン(icariin)、4-メチルピペラジン、およびピラゾロピリミジン-7-1。
【0114】
プロテアソーム阻害剤の例として、ボルテゾミブ、ジスルフィラム、エピガロカテキン-3-没食子酸エステル、およびサリノスポラミドAが挙げられる。
キナーゼ阻害剤の例として、ベバシズマブ、BIBW 2992、セツキシマブ(ERBITUX(登録商標))、イマチニブ(GLEEVEC(登録商標))、トラスツズマブ(HERCEPTIN(登録商標))、ゲフィチニブ(IRESSA(登録商標))、ラニビズマブ(LUCENTIS(登録商標))、ペガプタニブ、ソラフェニブ、ダサチニブ、スニチニブ、エルロチニブ、ニロチニブ、ラパチニブ、パニツムマブ、バンデタニブ、E7080、パゾパニブ、およびムブリチニブ(mubritinib)が挙げられる。
【0115】
グルココルチコイドの例として、以下が挙げられる:ヒドロコルチゾン(コルチゾール)、酢酸コルチゾン、プレドニゾン、プレドニゾロン、メチルプレドニゾロン、デキサメタゾン、ベタメタゾン、トリアムシノロン、ベクロメタゾン、酢酸フルドロコルチゾン、酢酸デオキシコルチコステロン(DOCA)、およびアルドステロン。
レチノイドの例として、以下が挙げられる:レチノール、レチナール、トレチノイン(レチノイン酸、RETIN-A(登録商標))、イソトレチノイン(ACCUTANE(登録商標)、AMNESTEEM(登録商標)、CLARAVIS(登録商標)、SOTRET(登録商標))、アリトレチノイン(PANRETIN(登録商標))、エトレチナート(TEGISON(商標))およびその代謝物であるアシトレチン(SORIATANE(登録商標))、タザロテン(TAZORAC(登録商標)、AVAGE(登録商標)、ZORAC(登録商標))、ベキサロテン(TARGRETIN(登録商標))、およびアダパレン(DIFFERIN(登録商標))。
【0116】
サイトカイン阻害剤の例として、IL1ra、IL1受容体アンタゴニスト、IGFBP、TNF-BF、ウロモジュリン、アルファ-2-マクログロブリン、シクロスポリンA、ペンタミジン、およびペントキシフィリン(PENTOPAK(登録商標)、PENTOXIL(登録商標)、TRENTAL(登録商標))が挙げられる。
ペルオキシソーム増殖剤活性化受容体アンタゴニストの例として、GW9662、PPARγアンタゴニストIII、G335、およびT0070907(EMD4Biosciences, USA)が挙げられる。
ペルオキシソーム増殖剤活性化受容体アゴニストの例として、ピオグリタゾン、シグリタゾン、クロフィブラート、GW1929、GW7647、L-165,041、LY 171883、PPARγアクチベーター、Fmoc-Leu、トログリタゾン、およびWY-14643(EMD4Biosciences, USA)が挙げられる。
【0117】
ヒストンデアセチラーゼ阻害剤の例として、以下が挙げられる:ヒドロキサム酸(またはヒドロキサメート)、例えばトリコスタチンA、環状テトラペプチド(例えばトラポキシンB)およびデプシペプチド、ベンズアミド、求電子性ケトン、脂肪族酸化合物、例えばフェニル酪酸ぷpぼバルプロ酸、ヒドロキサム酸、例えばボリノスタット(SAHA)、ベリノスタット(PXD101)、LAQ824、およびパノビノスタット(LBH589)、ベンズアミド、例えばエンチノスタット(MS-275)、CI994、およびモセチノスタット(MGCD0103)、ニコチンアミド、NADの誘導体、ジヒドロクマリン、ナフトピラノン、および2-ヒドロキシナフトアルデヒド。
【0118】
カルシニューリン阻害剤の例として、シクロスポリン、ピメクロリムス、ボクロスポリン、およびタクロリムスが挙げられる。
ホスファターゼ阻害剤の例として、以下が挙げられる:BN82002塩酸塩、CP-91149、カリクリンA、カンタリジン酸、カンタリジン、シペルメトリン、エチル-3,4-デフォスタチン(dephostatin)、フォストリエシンナトリウム塩、MAZ51、メチル-3,4-デフォスタチン、NSC 95397、ノルカンタリジン(norcantharidin)、Prorocentrum concavumからのオカダ酸アンモニウム塩、オカダ酸、オカダ酸カリウム塩、オカダ酸ナトリウム塩、フェニルアルシンオキシド、多様なホスファターゼ阻害剤カクテル、タンパク質ホスファターゼ1C、タンパク質ホスファターゼ2A阻害剤タンパク質、タンパク質ホスファターゼ2A1、タンパク質ホスファターゼ2A2、およびオルトバナジン酸ナトリウム(sodium orthovanadate)。
【0119】
合成ナノキャリア
本明細書において提供される方法は、免疫抑制剤を含む合成ナノキャリアの投与を含む。一般に、免疫抑制剤は、合成ナノキャリアの構造を構成する材料に加える要素である。例えば、合成ナノキャリアが1つ以上のポリマーから構成される、提供される方法または組成物のうちのいずれか1つの一態様において、免疫抑制剤は、当該1つ以上のポリマーに加える化合物であって、提供される方法または組成物のうちのいずれか1つのいくつかの態様においては、当該1つ以上のポリマーに結合している化合物である。合成ナノキャリアの材料がまた、免疫寛容原性効果をもたらす態様において、免疫抑制剤は、免疫寛容原性効果をもたらす合成ナノキャリアの材料に加えて存在する要素である。
【0120】
本発明により、多様な合成ナノキャリアを用いることができる。いくつかの態様において、合成ナノキャリアは、球または球状体である。いくつかの態様において、合成ナノキャリアは、扁平または板の形状である。いくつかの態様において、合成ナノキャリアは、立方体または立方体状である。いくつかの態様において、合成ナノキャリアは、卵円または楕円である。いくつかの態様において、合成ナノキャリアは、円柱、円錐、または錐体である。
【0121】
いくつかの態様においては、各々の合成ナノキャリアが類似の特性を有するように、サイズまたは形状に関して比較的均一な合成ナノキャリアの集合を用いることが望ましい。例えば、合成ナノキャリアの合計数に基づいて、提供される組成物または方法のうちのいずれか1つの合成ナノキャリアのうちの少なくとも80%、少なくとも90%、または少なくとも95%は、合成ナノキャリアの平均直径または平均寸法の5%、10%、または20%以内に該当する最小寸法または最大寸法を有していてもよい。
【0122】
合成ナノキャリアは、固体または中空であってもよく、1つ以上の層を含んでもよい。いくつかの態様において、各々の層は、他の層と比較してユニークな組成物およびユニークな特性を有する。ほんの一例を挙げると、合成ナノキャリアは、コア/シェル構造を有していてもよく、ここで、コアは、1つの層(例えばポリマー性のコア)であり、シェルは、第2の層(例えば脂質二重層または単層)である。合成ナノキャリアは、複数の異なる層を含んでもよい。
【0123】
いくつかの態様において、合成ナノキャリアは、任意に、1つ以上の脂質を含んでもよい。いくつかの態様において、合成ナノキャリアは、リポソームを含んでもよい。いくつかの態様において、合成ナノキャリアは、脂質二重層を含んでもよい。いくつかの態様において、合成ナノキャリアは、脂質単層を含んでもよい。いくつかの態様において、合成ナノキャリアは、ミセルを含んでもよい。いくつかの態様において、合成ナノキャリアは、脂質層(例えば、脂質二重層、脂質単層など)により囲まれたポリマー性マトリックスを含むコアを含んでもよい。いくつかの態様において、合成ナノキャリアは、脂質層(例えば、脂質二重層、脂質単層など)により囲まれた非ポリマー性コア(例えば、金属粒子、量子ドット、セラミック粒子、骨粒子、ウイルス粒子、タンパク質、核酸、炭水化物など)を含んでもよい。
【0124】
他の態様において、合成ナノキャリアは、金属粒子、量子ドット、セラミック粒子などを含んでもよい。いくつかの態様において、非ポリマー性合成ナノキャリアは、非ポリマー性構成成分の凝集物、例えば金属原子(例えば金原子)の凝集物である。
【0125】
いくつかの態様において、合成ナノキャリアは、任意に、1つ以上の両親媒性の実体を含んでもよい。いくつかの態様において、両親媒性の実体は、増大した安定性、改善された均一性、または増大した粘性を有する合成ナノキャリアの生成を促進し得る。いくつかの態様において、両親媒性の実体は、脂質膜(例えば、脂質二重層、脂質単層など)の内部表面に結合していてもよい。当該分野において公知の多くの両親媒性の実体が、本発明による合成ナノキャリアを作製するために好適である。かかる両親媒性の実体として、これらに限定されないが、以下が挙げられる:ホスホグリセリド;ホスファチジルコリン;ジパルミトイルホスファチジルコリン(DPPC);ジオレイルホスファチジルエタノールアミン(DOPE);ジオレイルオキシプロピルトリエチルアンモニウム(DOTMA);ジオレイルホスファチジルコリン;コレステロール;コレステロールエステル;ジアシルグリセロール;コハク酸ジアシルグリセロール;ジホスファチジルグリセロール(DPPG);ヘキサンデカノール;ポリエチレングリコール(PEG)などの脂肪アルコール;ポリオキシエチレン-9-ラウリルエーテル;パルミチン酸またはオレイン酸などの界面活性脂肪酸;脂肪酸;脂肪酸モノグリセリド;脂肪酸ジグリセリド;脂肪酸アミド;ソルビタントリオレート(Span(登録商標)85)グリコラート;ソルビタンモノラウレート(Span(登録商標)20);ポリソルベート20(Tween(登録商標)20);ポリソルベート60(Tween(登録商標)60);ポリソルベート65(Tween(登録商標)65);ポリソルベート80(Tween(登録商標)80);ポリソルベート85(Tween(登録商標)85);ポリオキシエチレンモノステアレート;サーファクチン;ポロキソマー(poloxomer);ソルビタントリオレエートなどのソルビタン脂肪酸エステル;レシチン;リゾレシチン;ホスファチジルセリン;ホスファチジルイノシトール;スフィンゴミエリン;ホスファチジルエタノールアミン(セファリン);カルジオリピン;ホスファチジン酸;セレブロシド;ジセチルホスファート;ジパルミトイルホスファチジルグリセロール;ステアリルアミン;ドデシルアミン;ヘキサデシル-アミン;アセチルパルミテート;グリセロールリシノレート;ヘキサデシルステアレート;イソプロピルミリステート;チロキサポール;ポリ(エチレングリコール)5000-ホスファチジルエタノールアミン;ポリ(エチレングリコール)400-モノステアレート;リン脂質;高い界面活性特性を有する合成および/または天然の洗剤;デオキシコレート;シクロデキストリン;カオトロピックな塩;イオン対形成剤;ならびにこれらの組み合わせ。両親媒性の実体の構成成分は、異なる両親媒性の実体の混合物であってもよい。当業者は、これが、包括的なものではなく、例示的な界面活性を有する物質のリストであることを認識するであろう。本発明により用いられるべき合成ナノキャリアの生成において、任意の両親媒性の実体を用いることができる。
【0126】
いくつかの態様において、合成ナノキャリアは、任意に、1つ以上の炭水化物を含んでもよい。炭水化物は、天然であっても合成であってもよい。炭水化物は、誘導体化された天然炭水化物であってもよい。ある態様において、炭水化物は、これらに限定されないが、グルコース、フルクトース、ガラクトース、リボース、ラクトース、スクロース、マルトース、トレハロース、セロビオース、マンノース、キシロース、アラビノース、グルクロン酸、ガラクツロン酸、マンヌロン酸、グルコサミン、ガラクトサミン、およびノイラミン酸を含む、単糖または二糖を含む。ある態様において、炭水化物は、これらに限定されないが、以下を含む多糖である:プルラン、セルロース、微結晶性セルロース、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシセルロース(HC)、メチルセルロース(MC)、デキストラン、シクロデキストラン、グリコーゲン、ヒドロキシエチルデンプン、カラギーナン、グリコン(glycon)、アミロース、キトサン、N,O-カルボキシルメチルキトサン、アルギンおよびアルギン酸、デンプン、キチン、イヌリン、コンニャク、グルコマンナン、プスツラン、ヘパリン、ヒアルロン酸、カードラン、およびキサンタン。態様において、合成ナノキャリアは、多糖などの炭水化物を含まない(または特にこれを除外する)。ある態様において、炭水化物は、これらに限定されないが、マンニトール、ソルビトール、キシリトール、エリスリトール、マルチトールおよびラクチトールを含む糖アルコールなどの炭水化物誘導体を含んでもよい。
【0127】
いくつかの態様において、合成ナノキャリアは、1つ以上のポリマーを含んでもよい。いくつかの態様において、合成ナノキャリアは、非メトキシ末端化されたプルロニックポリマーである1つ以上のポリマーを含む。いくつかの態様において、合成ナノキャリアを構成するポリマーのうちの少なくとも1%、2%、3%、4%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、または99%(重量/重量)は、非メトキシ末端化されたプルロニックポリマーである。いくつかの態様において、合成ナノキャリアを構成するポリマーの全ては、非メトキシ末端化されたプルロニックポリマーである。いくつかの態様において、合成ナノキャリアは、非メトキシ末端化されたポリマーである1つ以上のポリマーを含む。いくつかの態様において、合成ナノキャリアを構成するポリマーのうちの少なくとも1%、2%、3%、4%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、または99%(重量/重量)は、非メトキシ末端ポリマーである。いくつかの態様において、合成ナノキャリアを構成するポリマーの全ては、非メトキシ末端化されたポリマーである。いくつかの態様において、合成ナノキャリアは、プルロニックポリマーを含まない1つ以上のポリマーを含む。いくつかの態様において、合成ナノキャリアを構成するポリマーのうちの少なくとも1%、2%、3%、4%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、または99%(重量/重量)は、プルロニックポリマーを含まない。いくつかの態様において、合成ナノキャリアを構成するポリマーの全ては、プルロニックポリマーを含まない。いくつかの態様において、かかるポリマーは、コーティング層(例えば、リポソーム、脂質単層、ミセルなど)により囲まれていてもよい。いくつかの態様において、合成ナノキャリアのエレメントは、ポリマーに結合していてもよい。
【0128】
免疫抑制剤は、多数の方法のうちのいずれかにより、合成ナノキャリアにカップリングさせることができる。一般に、結合は、免疫抑制剤と合成ナノキャリアとの間の結合の結果であり得る。この結合は、免疫抑制剤が、合成ナノキャリアの表面に結合すること、および/または合成ナノキャリア中に含まれる(カプセル化される)ことをもたらし得る。いくつかの態様においては、しかし、免疫抑制剤は、合成ナノキャリアにより、合成ナノキャリアへの結合よりもむしろ合成ナノキャリアの構造の結果として、カプセル化される。好ましい態様において、合成ナノキャリアは、本明細書において提供されるようなポリマーを含み、免疫抑制剤は当該ポリマーに接着している。
【0129】
接着が、免疫抑制剤と合成ナノキャリアとの間の結合の結果として起こる場合、接着は、カップリング部分を介して起こり得る。カップリング部分は、それを通して免疫抑制剤が合成ナノキャリアに結合する、任意の部分であってよい。かかる部分として、アミド結合またはエステル結合などの共有結合、ならびに免疫抑制剤を合成ナノキャリアに結合させる(共有結合によりまたは非共有結合により)別の分子が挙げられる。かかる分子は、リンカーまたはポリマーまたはその単位を含む。例えば、カップリング部分は、免疫抑制剤が静電的にそれに結合する、荷電されたポリマーを含んでもよい。別の例として、カップリング部分は、それが共有結合する荷電されたポリマーを含んでもよい。
【0130】
好ましい態様において、合成ナノキャリアは、本明細書において提供されるようなポリマーを含む。これらの合成ナノキャリアは、完全にポリマー性であっても、ポリマーと他の材料との混合物であってもよい
【0131】
いくつかの態様において、合成ナノキャリアのポリマーは、会合してポリマー性マトリックスを形成する。これらの態様のうちのいくつかにおいて、構免疫抑制剤などの成成分は、ポリマー性マトリックスの1つ以上のポリマーと共有結合により会合していてもよい。いくつかの態様において、共有結合による会合は、リンカーにより媒介される。いくつかの態様において、構成成分は、ポリマー性マトリックスの1つ以上のポリマーと、非共有結合的に会合していてもよい。例えば、いくつかの態様において、構成成分は、ポリマー性マトリックス中にカプセル化されるか、ポリマー性マトリックスにより囲まれるか、および/またはポリマー性マトリックス全体に分散していてもよい。あるいはまたは加えて、構成成分は、疎水性相互作用、電荷相互作用、ファン・デル・ワールス力などにより、ポリマー性マトリックスの1つ以上のポリマーと会合していてもよい。ポリマー性マトリックスをそれから形成させるための多様なポリマーおよび方法は、従来から知られている。
【0132】
ポリマーは、天然または非天然(合成)のポリマーであってよい。ポリマーは、ホモポリマーであっても、2つ以上のモノマーを含むコポリマーであってもよい。配列に関して、コポリマーは、ランダムであっても、ブロックであっても、またはランダム配列とブロック配列との組み合わせであってもよい。典型的には、本発明によるポリマーは、有機ポリマーである。
【0133】
いくつかの態様において、ポリマーは、ポリエステル、ポリカーボネート、ポリアミド、またはポリエーテル、またはこれらの単位を含む。他の態様において、ポリマーは、ポリ(エチレングリコール)(PEG)、ポリプロピレングリコール、ポリ(乳酸)、ポリ(グリコール酸)、ポリ(乳酸-コ-グリコール酸)、またはポリカプロラクトン、またはこれらの単位を含む。いくつかの態様において、ポリマーは、生分解性であることが好ましい。したがって、これらの態様において、ポリマーが、ポリエーテル、例えばポリ(エチレングリコール)またはポリプロピレングリコールまたはこれらの単位を含む場合、ポリマーが生分解性となるように、ポリマーがポリエーテルと生分解性ポリマーとのブロックコポリマーを含むことが好ましい。他の態様において、ポリマーは、ポリエーテルまたはその単位、例えばポリ(エチレングリコール)またはポリプロピレングリコールまたはこれらの単位のみを含むのではない。
【0134】
本発明における使用のために有用なポリマーの他の例として、これらに限定されないが、以下が挙げられる:ポリエチレン、ポリカーボネート(例えばポリ(1,3-ジオキサン-2オン))、ポリ無水物(例えばポリ(セバシン酸無水物))、ポリプロピルフマレート(fumerate)、ポリアミド(例えばポリカプロラクタム)、ポリアセタール、ポリエーテル、ポリエステル(例えば、ポリラクチド、ポリグリコリド、ポリラクチド-コ-グリコリド、ポリカプロラクトン、ポリヒドロキシ酸(例えばポリ(β-ヒドロキシアルカノエート)))、ポリ(オルトエステル)、ポリシアノアクリレート、ポリビニルアルコール、ポリウレタン、ポリホスファゼン、ポリアクリレート、ポリメタクリレート、ポリウレア、ポリスチレン、およびポリアミン、ポリリジン、ポリリジン-PEGコポリマー、およびポリ(エチレンイミン)、ポリ(エチレンイミン)-PEGコポリマー。
【0135】
いくつかの態様において、本発明によるポリマーは、米国食品医薬品局(FDA)により21C.F.R.§177.2600下においてヒトにおける使用について承認されているポリマーを含み、これは、これらに限定されないが、ポリエステル(例えば、ポリ乳酸、ポリ(乳酸-コ-グリコール酸)、ポリカプロラクトン、ポリバレロラクトン、ポリ(1,3-ジオキサン-2オン));ポリ無水物(例えば、ポリ(セバシン酸無水物));ポリエーテル(例えば、ポリエチレングリコール);ポリウレタン;ポリメタクリレート;ポリアクリレート;およびポリシアノアクリレートを含む。
【0136】
いくつかの態様において、ポリマーは、親水性であってもよい。例えば、ポリマーは、アニオン性基(例えば、リン酸基、硫酸基、カルボン酸基);カチオン性基(例えば、四級アミン基);または極性基(例えば、ヒドロキシル基、チオール基、アミン基)を含んでもよい。いくつかの態様において、親水性ポリマー性マトリックスを含む合成ナノキャリアは、合成ナノキャリア中に親水性環境を生じる。いくつかの態様において、ポリマーは、疎水性であってもよい。いくつかの態様において、疎水性ポリマー性マトリックスを含む合成ナノキャリアは、合成ナノキャリア中に疎水性環境を生じる。ポリマーの親水性または疎水性の選択は、合成ナノキャリア中に組み込まれる材料の性質に対して影響を有し得る。
【0137】
いくつかの態様において、ポリマーは、1つ以上の部分および/または官能基により修飾されていてもよい。多様な部分または官能基を、本発明により用いることができる。いくつかの態様において、ポリマーは、ポリエチレングリコール(PEG)により、炭水化物により、および/または多糖から誘導される非環式ポリアセタールにより修飾されていてもよい(Papisov, 2001, ACS Symposium Series, 786:301)。ある態様は、Grefらに対する米国特許第5543158号、またはVon AndrianらによるWO公開WO2009/051837の一般的教示を用いて行うことができる。
【0138】
いくつかの態様において、ポリマーは、脂質または脂肪酸基により修飾されていてもよい。いくつかの態様において、脂肪酸基は、酪酸、カプロン酸、カプリル酸、カプリン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキドン酸、ベヘン酸、またはリグノセリン酸のうちの1つ以上であってよい。いくつかの態様において、脂肪酸基は、パルミトレイン酸、オレイン酸、バクセン酸、リノール酸、アルファ-リノール酸、ガンマ-リノール酸、アラキドン酸、ガドレイン酸、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸、またはエルカ酸のうちの1つ以上であってよい。
【0139】
いくつかの態様において、ポリマーは、以下を含むポリエステルであってよい:本明細書において集合的に「PLGA」として言及される乳酸およびグリコール酸の単位を含むコポリマー、例えばポリ(乳酸-コ-グリコール酸)およびポリ(ラクチド-コ-グリコリド);ならびに本明細書において「PGA」として言及されるグリコール酸単位を含むホモポリマー、および本明細書において集合的に「PLA」として言及される乳酸単位を含むホモポリマー、例えばポリ-L-乳酸、ポリ-D-乳酸、ポリ-D,L-乳酸、ポリ-L-ラクチド、ポリ-D-ラクチドおよびポリ-D,L-ラクチド。いくつかの態様において、例示的なポリエステルとして、例えば、ポリヒドロキシ酸;PEGコポリマー、ならびにラクチドとグリコリドとのコポリマー(例えば、PLA-PEGコポリマー、PGA-PEGコポリマー、PLGA-PEGコポリマー、およびこれらの誘導体が挙げられる。いくつかの態様において、ポリエステルとして、例えば、ポリ(カプロラクトン)、ポリ(カプロラクトン)-PEGコポリマー、ポリ(L-ラクチド-コ-L-リジン)、ポリ(セリンエステル)、ポリ(4-ヒドロキシ-L-プロリンエステル)、ポリ[α-(4-アミノブチル)-L-グリコール酸]、およびこれらの誘導体が挙げられる。
【0140】
いくつかの態様において、ポリマーは、PLGAであってよい。PLGAは、乳酸とグリコール酸との生体適合性かつ生分解性のコポリマーであり、PLGAの多様な形態が、乳酸:グリコール酸の比により特徴づけられる。乳酸は、L-乳酸、D-乳酸、またはD,L-乳酸であってよい。PLGAの分解速度は、乳酸:グリコール酸比を改変することにより調整することができる。いくつかの態様において、本発明により用いられるべきPLGAは、約85:15、約75:25、約60:40、約50:50、約40:60、約25:75、または約15:85の乳酸:グリコール酸比により特徴づけられる。
【0141】
いくつかの態様において、ポリマーは、1つ以上のアクリルポリマーであってもよい。ある態様において、アクリルポリマーとして、例えば、以下が挙げられる:アクリル酸とメタクリル酸とのコポリマー、メチルメタクリレートコポリマー、エトキシエチルメタクリレート、シアノエチルメタクリレート、アミノアルキルメタクリレートコポリマー、ポリ(アクリル酸)、ポリ(メタクリル酸)、メタクリル酸アルキルアミドコポリマー、ポリ(メチルメタクリレート)、ポリ(メタクリル酸無水物)、メチルメタクリレート、ポリメタクリレート、ポリ(メチルメタクリレート)コポリマー、ポリアクリルアミド、アミノアルキルメタクリレートコポリマー、グリシジルメタクリレートコポリマー、ポリシアノアクリレート、前述のポリマーのうちの1つ以上を含む組み合わせ。アクリルポリマーは、低い含有量の四級アンモニウム基を有するアクリル酸エステルとメタクリル酸エステルとの完全に重合されたコポリマーを含んでもよい。
【0142】
いくつかの態様において、ポリマーは、カチオン性ポリマーであってもよい。一般的に、カチオン性ポリマーは、核酸の負に荷電した鎖を濃縮および/または保護することができる。アミン含有ポリマー、例えばポリ(リジン)(Zauner et al., 1998, Adv. Drug Del. Rev., 30:97;およびKabanov et al., 1995, Bioconjugate Chem., 6:7)、ポリ(エチレンイミン)(PEI;Boussif et al., 1995, Proc. Natl. Acad. Sci., USA, 1995, 92:7297)、ならびにポリ(アミノアミン)デンドリマー(Kukowska-Latallo et al., 1996, Proc. Natl. Acad. Sci., USA, 93:4897;Tang et al., 1996, Bioconjugate Chem., 7:703;およびHaensler et al., 1993, Bioconjugate Chem., 4:372)は、生理学的pHにおいて正に荷電し、核酸とイオン対を形成する。態様において、合成ナノキャリアは、カチオン性ポリマーを含まなくともよい(またはこれを除外してもよい)。
【0143】
いくつかの態様において、ポリマーは、カチオン性側鎖を有する分解性ポリエステルであってもよい(Putnam et al., 1999, Macromolecules, 32:3658;Barrera et al., 1993, J. Am. Chem. Soc., 115:11010;Kwon et al., 1989, Macromolecules, 22:3250;Lim et al., 1999, J. Am. Chem. Soc., 121:5633;およびZhou et al., 1990, Macromolecules, 23:3399)。これらのポリエステルの例として、ポリ(L-ラクチド-コ-L-リジン)(Barrera et al., 1993, J. Am. Chem. Soc., 115:11010)、ポリ(セリンエステル)(Zhou et al., 1990, Macromolecules, 23:3399)、ポリ(4-ヒドロキシ-L-プロリンエステル)(Putnam et al., 1999, Macromolecules, 32:3658;およびLim et al., 1999, J. Am. Chem. Soc., 121:5633)、ならびにポリ(4-ヒドロキシ-L-プロリンエステル)(Putnam et al., 1999, Macromolecules, 32:3658;and Lim et al., 1999, J. Am. Chem. Soc., 121:5633)が挙げられる。
【0144】
これらのおよび他のポリマーの特性ならびにそれらを調製するための方法は、は、当該分野において周知である(例えば、米国特許6,123,727;5,804,178;5,770,417;5,736,372;5,716,404;6,095,148;5,837,752;5,902,599;5,696,175;5,514,378;5,512,600;5,399,665;5,019,379;5,010,167;4,806,621;4,638,045;および4,946,929;Wang et al., 2001, J. Am. Chem. Soc., 123:9480;Lim et al., 2001, J. Am. Chem. Soc., 123:2460;Langer, 2000, Acc. Chem. Res., 33:94;Langer, 1999, J. Control. Release, 62:7;およびUhrich et al., 1999, Chem. Rev., 99:3181を参照)。より一般的には、特定の好適なポリマーを合成するための多様な方法は、Concise Encyclopedia of Polymer Science and Polymeric Amines and Ammonium Salts、Goethals編、Pergamon Press、1980年;Principles of Polymerization、Odian著、John Wiley & Sons、第4版、2004年;Contemporary Polymer Chemistry、Allcockら著、Prentice-Hall、1981年;Deming et al., 1997, Nature, 390:386において;ならびに、米国特許6,506,577、6,632,922、6,686,446および6,818,732において記載される。
【0145】
いくつかの態様において、ポリマーは、直鎖状または分枝状ポリマーであってよい。いくつかの態様において、ポリマーは、デンドリマーであってよい。いくつかの態様において、ポリマーは、互いに実質的に架橋されていてもよい。いくつかの態様において、ポリマーは、実質的に架橋を含まなくともよい。いくつかの態様において、ポリマーは、架橋のステップを経験することなく、本発明により用いられてもよい。さらに、合成ナノキャリアは、前述のおよび他のポリマーのうちのいずれかの、ブロックコポリマー、グラフトコポリマー、ブレンド、混合物および/または付加体(adduct)を含んでもよいことが、理解されるべきである。当業者は、本明細書において列記されるポリマーが、包括的なものではなく、本発明により使用することができるポリマーの例示的なリストを表すことを認識するであろう。
【0146】
いくつかの態様において、合成ナノキャリアは、ポリマー性構成成分を含まない。いくつかの態様において、合成ナノキャリアは、金属粒子、量子ドット、セラミック粒子などを含んでもよい。いくつかの態様において、非ポリマー性合成ナノキャリアは、非ポリマー性構成成分の凝集物、例えば金属原子(例えば金原子)の凝集物である。
【0147】
本発明による組成物は、薬学的に受入可能な賦形剤、例えば保存剤、バッファー、食塩水、またはリン酸緩衝化食塩水を含んでもよい。組成物は、有用な投与形態に到達するための従来の医薬の製造および配合技術を用いて、製造することができる。一態様において、組成物は、注射のための無菌の食塩水溶液中に、保存剤と一緒に懸濁される。
【0148】
D.組成物を使用および製造する方法
ウイルスベクターは、当業者に公知であるか、本明細書において別段に記載される方法により作製することができる。例えば、ウイルスベクターは、例えば、米国特許第4,797,368号およびLaughlin et al., Gene, 23, 65-73 (1983)において記載される方法を用いて、構築および/または精製することができる。
【0149】
一例として、複製欠損アデノウイルスベクターは、抗力価のウイルスベクターストックを作製するために、複製欠損アデノウイルスベクターにおいては存在しないが、ウイルスの増殖のために必要とされる遺伝子機能を、適切なレベルにおいて提供する、補完性(complementing)の細胞株において生成しもよい。補完性細胞株は、(例えばアデノウィルスアンプリコンの増殖を可能にするための)全てのアデノウィルス機能を含む、初期領域、後期領域、ウイルスパッケージング領域、ウイルス関連RNA領域、またはこれらの組み合わせによりコードされる、少なくとも1つの複製に必須の遺伝子機能の欠損を補完することができる。補完性細胞株の構築は、Sambrookら、Molecular Cloning, a Laboratory Manual、第2版、Cold Spring Harbor Press、Cold Spring Harbor、N.Y.(1989)、およびAusubelら、Current Protocols in Molecular Biology、Greene Publishing Associates and John Wiley & Sons、New York、N.Y.(1994)により記載されるものなどの、標準的な分子生物学および細胞培養技術を含む。
【0150】
アデノウイルスベクターを生成するための補完性細胞株として、これらに限定されないが、HEK293細胞(例えばGraham et al., J. Gen. Virol., 36, 59-72 (1977)において記載される)、PER.C6細胞(例えば国際特許出願WO 97/00326、ならびに米国特許第5,994,128号および同第6,033,908号において記載される)、ならびに293-ORF6細胞(例えば国際特許出願WO 95/34671およびBrough et al., J. Virol., 71, 9206-9213 (1997)において記載される)が挙げられる。いくつかの例において、補完性細胞は、全ての必要とされるアデノウィルス遺伝子機能については補完しないであろう。アデノウイルスベクターの複製を可能にするために、細胞またはアデノウィルスのゲノムによりコードされない遺伝子機能をトランスで提供するために、ヘルパーウイルスを用いてもよい。アデノウイルスベクターは、例えば、米国特許第5,965,358号、同第5,994,128号、同第6,033,908号、同第6,168,941号、同第6,329,200号、同第6,383,795号、同第6,440,728号、同第6,447,995号、および同第6,475,757号、米国特許出願公開番号2002/0034735 A1、ならびに国際特許出願WO 98/53087、WO 98/56937、WO 99/15686、WO 99/54441、WO 00/12765、WO 01/77304、およびWO 02/29388、ならびに本明細書において同定される他の参考文献において記載される材料および方法を用いて、構築するか、増殖させるか、および/または精製することができる。アデノウィルス血清型35ベクターを含む非グループCアデノウイルスベクターは、例えば、米国特許第5,837,511号および同第5,849,561号、ならびに国際特許出願WO 97/12986およびWO 98/53087において記載される方法を用いて生成することができる。
【0151】
AAVベクターなどのウイルスベクターは、組み換え方法を用いて生成することができる。例えば、方法は、AAVキャプシドタンパク質またはそのフラグメントをコードする核酸配列;機能的rep遺伝子;AAV逆位末端反復配列(ITR)および導入遺伝子からなる組み換えAAVベクター;ならびに組み換えAAVベクターのAAVキャプシドタンパク質中へのパッケージングを許容する十分なヘルパー機能を含む宿主細胞を培養することを含んでもよい。いくつかの態様において、ウイルスベクターは、AAV1、AAV2、AAV5、AAV6、AAV6.2、AAV7、AAV8、AAV9、AAV10、AAV11およびこれらのバリアントからなる群より選択されるAAV血清型の逆位末端反復配列(ITR)を含んでもよい。
【0152】
ウイルスベクターをキャプシド中にパッケージングするために宿主細胞において培養されるべき構成成分は、宿主細胞にトランスで提供してもよい。あるいは、必要とされる構成成分(例えば、組み換えAAVベクター、rep配列、cap配列、および/またはヘルパー機能)のうちのいずれか1つ以上を、当業者に公知の方法を用いて、必要とされる構成成分のうちの1つ以上を含むように操作された、安定な宿主細胞により提供してもよい。最も好適には、かかる安定な宿主細胞は、必要とされる構成成分を、誘導性プロモーターの制御下において含んでもよい。しかし、必要とされる構成成分は、構成的プロモーターの制御下にあってもよい。ウイルスベクターを生成するために必要とされる組み換えウイルスベクター、rep配列、cap配列、およびヘルパー機能を、任意の適切な遺伝子エレメントを用いて、パッケージング宿主細胞に送達してもよい。選択される遺伝子エレメントは、本明細書において記載されるものを含む、任意の好適な方法により送達することができる。他の方法は、核酸操作における当業者に公知であり、遺伝子工学、組み換え工学、および合成技術を含む。例えば、Sambrookら、Molecular Cloning:A Laboratory Manual、Cold Spring Harbor Press、Cold Spring Harbor、N.Y.を参照。同様に、rAAVビリオンを作製する方法は、周知であり、好適な方法の選択は、本発明に対する限定要因ではない。例えば、K. Fisher et al, J. Virol., 70:520-532 (1993)および米国特許第5,478,745号を参照。
【0153】
いくつかの態様において、組み換えAAVトランスファーベクターは、三重遺伝子導入方法を用いて生成してもよい(例えば米国特許第6,001,650号、米国特許第6,593,123号、ならびにX. Xiao et al, J. Virol. 72:2224-2232 (1998)およびT. Matsushita et al, Gene Ther. 5(7):938-945 (1998)において詳細に記載されるとおりであり、三重遺伝子導入方法に関するこれらの内容は、本明細書において参考として援用される)。例えば、組み換えAAVは、宿主細胞を、組み換えAAVトランスファーベクター(導入遺伝子を含む)で、AAV粒子、AAVヘルパー機能ベクター、および補助機能ベクターにパッケージングされるように遺伝子導入することにより、生成することができる。一般に、AAVヘルパー機能ベクターは、AAVヘルパー機能配列(repおよびcap)をコードし、これらは、増殖性AAVの複製およびキャプシド化のためにトランスで機能する。好ましくは、AAVヘルパー機能ベクターは、いかなる検出可能な野生型AAVビリオン(すなわち機能的repおよびcap遺伝子を含むAAVビリオン)をも生じることなく、効率的なAAVベクター生成を支持する。補助機能ベクターは、AAVが複製のために依存している、非AAV由来のウイルスおよび/または細胞の機能のためのヌクレオチド配列をコードする。補助機能は、AAV複製のために必要とされる機能を含み、これは、限定することなく、以下を含む:AAV遺伝子転写の活性化に関与する部分、段階特異的なAAV mRNAスプライシング、AAV DNA複製、cap発現生成物の合成、およびAAVキャプシドの組み立て。ウイルスベースの補助機能は、アデノウィルス、ヘルペスウイルス(単純ヘルペスウイルス1型以外)、およびワクシニアウイルスなどの既知のヘルパーウイルスのうちのいずれかに由来してもよい。
【0154】
ウイルスベクターを生成するための他の方法は、当該分野において公知である。さらに、ウイルスベクターは、市販されている。
免疫抑制剤にカップリングした合成ナノキャリアに関して、構成成分を合成ナノキャリアに接着させるための方法は、有用であり得る。
【0155】
態様において、構成成分を、例えば合成ナノキャリアに接着させるための方法は、有用であり得る。ある態様において、接着は、共有結合性リンカーであってもよい。態様において、本発明による免疫抑制剤は、アジド基とアルキン基を含む免疫抑制剤との1,3-双極性環付加反応により、またはアルキンとアジド基を含む免疫抑制剤との1,3-双極性環付加反応により形成される、1,2,3-トリアゾールリンカーを介して、外部表面に共有結合により接着させることができる。かかる環付加反応は、好ましくは、好適なCu(I)-リガンドおよびCu(II)化合物を触媒活性Cu(I)化合物に還元するための還元剤と共に、Cu(I)触媒の存在下において行われる。Cu(I)により触媒されるアジド-アルキン環付加(CuAAC)はまた、クリック反応としても言及され得る。
【0156】
加えて、共有結合性カップリングは、以下を含む共有結合性リンカーを含んでもよい:アミドリンカー、ジスルフィドリンカー、チオエーテルリンカー、ヒドラゾンリンカー、ヒドラジドリンカー、イミンまたはオキシムリンカー、ウレアまたはチオウレアリンカー、アミジンリンカー、アミンリンカー、およびスルホンアミドリンカー。
アミドリンカーは、免疫抑制剤などの1つの構成成分上のアミンとナノキャリアなどの第2の構成成分のカルボン酸基との間のアミド結合を介して形成される。リンカー中のアミド結合は、従来のアミド結合のうちのいずれかを用いて行うことができ、これは、好適に保護されたアミノ酸と、活性化されたカルボン酸(N-ヒドロキシコハク酸イミドにより活性化されたエステルなど)との反応を形成する。
【0157】
ジスルフィドリンカーは、例えばR1-S-S-R2の形態の2個の硫黄原子の間のジスルフィド(S-S)結合の形成を介して作製する。ジスルフィド結合は、チオール/メルカプタン基(-SH)を含む構成成分と別の活性化されたチオール基との、またはチオール/メルカプタン基を含む構成成分と、活性化されたチオール基を含む構成成分との、チオール交換により形成することができる。
【0158】
トリアゾールリンカー、特に、
【化1】

ここで、R1およびR2は、任意の化学実体であってよい、
の形態の1,2,3-トリアゾールは、末端アルキンが第2の構成成分(免疫抑制剤など)に接着したている第1の構成成分に接着したアジドの1,3-双極性環付加反応により作製される。1,3-双極性環付加反応は、触媒を用いてまたはこれを用いずに、好ましくは、1,2,3-トリアゾール機能を通して2つの構成成分を連結するCu(I)-触媒を用いて行う。この化学は、Sharpless et al., Angew. Chem. Int. Ed. 41(14), 2596, (2002)およびMeldal, et al, Chem. Rev., 2008, 108(8), 2952-3015において詳細に記載され、しばしば、「クリック」反応またはCuAACとして言及される。
【0159】
チオエーテルリンカーは、例えばR1-S-R2の形態における硫黄-炭素(チオエーテル)結合の形成により作製する。チオエーテルは、第2の構成成分上のハライドまたはエポキシドなどのアルキル化基による1つの構成成分上のチオール/メルカプタン(-SH)基のいずれかのアルキル化により作製することができる。チオエーテルリンカーはまた、1つの構成成分上のチオール/メルカプタン基の、マイケルアクセプターとしてマレイミド基またはビニルスルホン基を含む第2の構成成分上の電子欠乏アルケン基へのマイケル付加により形成させることができる。別の方法において、チオエーテルリンカーは、1つの構成成分上のチオール/メルカプタン基と第2の構成成分上のアルケン基とのラジカルチオール-エン反応により調製することができる。
【0160】
ヒドラゾンリンカーは、1つの構成成分上のヒドラジド基と第2の構成成分上のアルデヒド/ケトン基との反応により作製する。
ヒドラジドリンカーは、1つの構成成分上のヒドラジン基と第2の構成成分上のカルボン酸基との反応により形成させる。かかる反応は、一般に、活性化試薬によりカルボン酸が活性化されるアミド結合の形成と類似の化学を用いて行う。
【0161】
イミンまたはオキシムリンカーは、1つの構成成分上のアミンまたはN-アルコキシアミン(またはアミノオキシ)基と第2の構成成分上のアルデヒドまたはケトン基との反応により形成される。
ウレアまたはチオウレアリンカーは、1つの構成成分上のアミン基と第2の構成成分上のイソシアネートまたはチオイソシアネート基との反応により調製される。
アミジンリンカーは、1つの構成成分上のアミン基と第2の構成成分上のイミドエステル基との反応により調製される。
【0162】
アミンリンカーは、1つの構成成分上のアミン基と第2の構成成分上のアルキル化基(ハライド、エポキシド、またはスルホン酸エステル基など)とのアルキル化反応により作製する。あるいは、アミンリンカーはまた、シアノ水素化ホウ素ナトリウムまたはトリアセトキシ水素化ホウ素ナトリウムなどの好適な還元性試薬を用いる、1つの構成成分上のアミン基と第2の構成成分上のアルデヒドまたはケトン基との還元的アミノ化により、作製することができる。
スルホンアミドリンカーは、1つの構成成分上のアミン基と第2の構成成分上ののスルホニルハライド(例えば塩化スルホニル)基との反応により作製する。
【0163】
スルホンリンカーは、求核剤のビニルスルホンへのマイケル付加により作製する。ビニルスルホンまたは求核剤のいずれかは、ナノキャリアの表面上にあるか、または構成成分に結合していてもよい。
構成成分はまた、非共有結合性抱合方法を介して、抱合させてもよい。例えば、負に荷電した免疫抑制剤は、静電気的吸着を通して、正に荷電した構成成分に抱合させることができる。金属リガンドを含む構成成分もまた、金属-リガンド錯体を介して金属錯体に抱合させることができる。
【0164】
態様において、構成成分は、合成ナノキャリアの組み立ての前に、ポリマー、例えばポリ乳酸-ブロック-ポリエチレングリコールに接着していてもよく、または、合成ナノキャリアを、その表面上で反応性もしくは活性化可能な基により形成させてもよい。後者の場合、構成成分は、合成ナノキャリアの表面により提示される、接着の化学と適合性である基を用いて調製することができる。他の態様において、ペプチド構成成分は、好適なリンカーを用いてVLPまたはリポソームに接着させることができる。リンカーは、2つの分子を一緒にカップリングすることができる化合物または試薬である。一態様において、リンカーは、Hermanson 2008において記載されるようなホモ二官能性またはヘテロ二官能性試薬であってよい。例えば、表面上にカルボキシ基を含むVLPまたはリポソーム合成ナノキャリアは、ADHリンカーにより対応する合成ナノキャリアを形成するEDCの存在下において、ホモ二官能性リンカーであるアジピン酸ジヒドラジド(ADH)で処置することができる。生じたADHにより連結された合成ナノキャリアを、次いで、ナノキャリア上のADHリンカーの他方の末端を介して酸性基を含むペプチド構成成分と抱合させ、対応するVLPまたはリポソームペプチド抱合体を生成する。
【0165】
態様において、ポリマー鎖の末端にアジドまたはアルキン基を含むポリマーを調製する。このポリマーを、次いで、複数のアルキンまたはアジド基をそのナノキャリアの表面上に位置させるような様式において、合成ナノキャリアを調製するために用いる。あるいは、合成ナノキャリアを別の経路により調製し、その後、アルキンまたはアジド基で官能化してもよい。構成成分は、アルキン(ポリマーがアジドを含む場合)またはアジド(ポリマーがアルキンを含む場合)基のいずれかが存在するように調製する。構成成分を、次いで、1,3-双極性環付加反応を介して、触媒を用いてまたはこれを用いずに、ナノキャリアと反応させ、これは、1,4-置換1,2,3-トリアゾールリンカーを通して、構成成分を粒子に共有結合により接着させる。
【0166】
構成成分が小分子である場合、合成ナノキャリアの組み立ての前に構成成分をポリマーに接着させることは有利であり得る。態様において、構成成分をポリマーに接着させてその後このポリマー抱合体を合成ナノキャリアの構築に用いるというよりはむしろ、表面基の使用を通して構成成分を合成ナノキャリアに接着させるために用いられるような表面基を有する合成ナノキャリアを調製することもまた有利である。
【0167】
利用可能な抱合方法の詳細な説明については、Academic Press, Inc.により2008年に刊行されたHermanson G T「Bioconjugate Techniques」、第2版を参照。共有結合による接着に加えて、構成成分は、予め形成された合成ナノキャリアへの吸着により接着しても、または、それは、合成ナノキャリアの形成の間にカプセル化により接着していてもよい。
【0168】
合成ナノキャリアは、当該分野において公知の多様な方法を用いて調製することができる。例えば、合成ナノキャリアは、ナノ沈殿、流体チャネルを用いるフローフォーカス(flow focusing)、スプレー乾燥、単一および二重のエマルジョン溶媒蒸発、溶媒抽出、相分離、粉砕(milling)、マイクロエマルジョンの手法、微細加工、ナノ加工、犠牲層、単純および複雑なコアセルベーション、ならびに当業者に周知の他の方法などの方法により形成させることができる。あるいは、または加えて、単分散の半導体、伝導性、磁性、有機性および他のナノ材料のための水性および有機性の溶媒合成は記載されている(Pellegrino et al., 2005, Small, 1:48;Murray et al., 2000, Ann. Rev. Mat. Sci., 30:545;およびTrindade et al., 2001, Chem. Mat., 13:3843)。さらなる方法は、文献において記載されている(例えば、Doubrow編、「Microcapsules and Nanoparticles in Medicine and Pharmacy」、CRC Press, Boca Raton, 1992;Mathiowitz et al., 1987, J. Control. Release, 5:13;Mathiowitz et al., 1987, Reactive Polymers, 6:275;およびMathiowitz et al., 1988, J. Appl. Polymer Sci., 35:755;米国特許5578325および6007845;P. Paolicelliら、「Surface-modified PLGA-based Nanoparticles that can Efficiently Associate and Deliver Virus-like Particles」Nanomedicine. 5(6):843-853 (2010)を参照)。
【0169】
材料は、望ましい場合、以下を含むがこれらに限定されない多様な方法を用いて、合成ナノキャリア中にカプセル化することができる:C. Astete et al.,「Synthesis and characterization of PLGA nanoparticles」J. Biomater. Sci. Polymer Edn, Vol. 17, No. 3, pp. 247-289 (2006);K. Avgoustakis「Pegylated Poly(Lactide) and Poly(Lactide-Co-Glycolide) Nanoparticles:Preparation, Properties and Possible Applications in Drug Delivery」Current Drug Delivery 1:321-333 (2004);C. Reis et al.,「Nanoカプセル化I. Methods for preparation of drug-loaded polymeric nanoparticles」Nanomedicine 2:8- 21 (2006);P. Paolicelli et al.,「Surface-modified PLGA-based Nanoparticles that can Efficiently Associate and Deliver Virus-like Particles」Nanomedicine. 5(6):843-853 (2010)。材料を合成ナノキャリア中にカプセル化するために好適な他の方法もまた用いることができ、これは、限定されないが、Ungerに対して2003年10月14日に発行された米国特許6,632,671において開示される方法を含む。
【0170】
ある態様において、合成ナノキャリアは、ナノ沈殿のプロセスまたはスプレー乾燥により調製される。合成ナノキャリアを調製することにおいて用いられる条件は、所望されるサイズまたは特性(例えば、疎水性、親水性、外部の形態学、「粘着性(stickiness)」、形状など)の粒子を得るために、改変してもよい。合成ナノキャリアを調製する方法および用いられる条件(例えば、溶媒、温度、濃度、気流速度など)は、合成ナノキャリアに接着すべき材料、および/またはポリマーマトリックスの組成に依存し得る。
【0171】
上の方法のいずれかにより調製された合成ナノキャリアが、所望される範囲の外のサイズ範囲を有する場合、合成ナノキャリアを、例えば篩を使用して、サイズ調整することができる。
合成ナノキャリアのエレメントは、例えば、1つ以上の共有結合により、合成ナノキャリア全体に接着させても、1つ以上のリンカーにより接着していてもよい。合成ナノキャリアを官能化するさらなる方法は、Saltzmanらに対する公開された米国特許出願2006/0002852、DeSimoneらに対する公開された米国特許出願2009/0028910、またはMurthyらに対する公開された国際特許出願WO/2008/127532 A1から適応させてもよい。
【0172】
あるいはまたは加えて、合成ナノキャリアは、非共有結合性相互作用を介して、直接的または間接的に、構成成分に接着していてもよい。非共有結合性の態様において、非共有結合性の接着は、電荷相互作用、アフィニティー相互作用、金属配位、物理的吸着、ホスト-ゲスト相互作用、疎水性相互作用、TTスタッキング相互作用、水素結合相互作用、ファン・デル・ワールス相互作用、磁気相互作用、静電相互作用、双極子-双極子相互作用および/またはそれらの組み合わせを含むが、これらに限定されない、非共有結合性相互作用により媒介される。かかる接着は、合成ナノキャリアの外部表面または内部表面上のものとなるように配置される。態様において、カプセル化および/または吸着は、接着の一形態である。
【0173】
本明細書において提供される組成物は、以下を含んでもよい:無機または有機の緩衝化剤(例えば、リン酸、炭酸、酢酸またはクエン酸のナトリウムまたはカリウム塩)およびpH調整剤(例えば、塩酸、水酸化ナトリウムまたはカリウム、クエン酸または酢酸の塩、アミノ酸およびそれらの塩)、抗酸化剤(例えば、アスコルビン酸、アルファ-トコフェロール)、界面活性剤(例えば、ポリソルベート20、ポリソルベート80、ポリオキシエチレン9-10ノニルフェノール、デオキシコール酸ナトリウム)、溶解および/または凍結/溶解(lyo)安定化剤(例えば、スクロース、ラクトース、マンニトール、トレハロース)、浸透圧調整剤(例えば、塩または糖)、抗菌剤(例えば、安息香酸、フェノール、ゲンタマイシン)、消泡剤(例えば、ポリジメチルシロキサン)、保存剤(例えば、チメロサール、2-フェノキシエタノール、EDTA)、ポリマー性安定化剤および粘性調整剤(例えば、ポリビニルピロリドン、ポロキサマー488、カルボキシメチルセルロース)および共溶媒(例えば、グリセロール、ポリエチレングリコール、エタノール)。
【0174】
本発明による組成物は、薬学的に受入可能な賦形剤を含んでもよい。組成物は、有用な投与形態に到達するための従来の医薬の製造および配合技術を用いて製造することができる。本発明を実施することにおける使用のために好適な技術は、Handbook of Industrial Mixing:Science and Practice、Edward L. Paul, Victor、A. Atiemo-ObengおよびSuzanne M. Kresta編、2004年、John Wiley & Sons, Inc.;およびPharmaceutics:The Science of Dosage Form Design、第2版、M. E. Auten編、2001年、Churchill Livingstoneにおいて見出すことができる。一態様において、組成物は、注射のための無菌の食塩水溶液中に保存剤と共に懸濁される。
【0175】
本発明の組成物は、任意の好適な様式において製造すること、および本発明は、決して、本明細書において記載される方法を用いて生成され得る組成物に限定されるものではないことが、理解されるべきである。適切な製造の方法の選択は、関連する特定の部分の特性に対する注意を必要とし得る。
【0176】
いくつかの態様において、組成物は、無菌条件下において製造されるか、最後に無菌化される。このことは、生じる組成物が無菌かつ非感染性であることを保証し、それにより、非無菌の組成物と比較した場合に、安全性を改善する。このことは、組成物を投与されている対象が、免疫欠損を有するか、感染症を罹患しているか、および/または感染に対して感受性である場合には特に、価値ある安全性の指標を提供する。
【0177】
本発明による投与は、これらに限定されないが、皮下、静脈内、筋肉内および腹腔内経路を含む多様な経路によるものであってよい。本明細書において言及される組成物は、従来の方法を用いる投与、いくつかの態様においては共投与のために、製造および調製することができる。
【0178】
本発明の組成物は、有効量、例えば本明細書において別の場所に記載される有効量において投与することができる。投与形態は、多様な頻度において投与することができる。提供される方法または組成物のうちのいずれか1つのいくつかの態様において、ウイルスベクターを用いるまたはこれを用いない、免疫抑制剤を含む合成ナノキャリアの繰り返し投与が行われる。
【0179】
本発明の側面は、本明細書において提供されるような投与の方法のためのプロトコルを決定することに関する。プロトコルは、少なくとも、頻度、免疫抑制剤を含む合成ナノキャリアおよび/またはウイルスベクターの投与量を、例えば提供される投与レジメンに従って変化させ、所望されるまたは望ましくない免疫応答または導入遺伝子発現を評価することにより、決定することができる。本発明の実施のための好ましいプロトコルは、ウイルスベクターまたはそのウイルス性抗原に対する免疫応答を低下させるか、および/または導入遺伝子発現を促進する。プロトコルは、例えば本明細書において提供される投与レジメンのうちのいずれか1つに従う、投与の頻度ならびに免疫抑制剤を含む合成ナノキャリアおよび/またはウイルスベクターの用量を含む。本明細書において提供される方法のうちのいずれか1つは、プロトコルを決定するステップを含んでもよく、または、投与するステップは、本明細書において提供されるような所望される結果のうちの1つ以上を達成することが決定されたプロトコルに従って行われる。
【0180】
本開示の別の側面は、キットに関する。提供されるキットのうちのいずれか1つのいくつかの態様において、キットは、本明細書において提供される組成物のうちのいずれか1つを含む。好ましくは、組成物は、本明細書において提供されるような任意の1つ以上の用量を提供する量におけるものである。組成物は、キットにおいて、1つの容器中または1つより多くの容器中にある。提供されるキットのうちのいずれか1つのいくつかの態様において、容器は、バイアルまたはアンプルである。提供されるキットのうちのいずれか1つのいくつかの態様において、組成物は、後の時点においてそれらを再構成することができるように、別の容器中または同じ容器中で、各々凍結乾燥形態にある。提供されるキットのうちのいずれか1つのいくつかの態様において、キットは、再構成、混合、投与などのための指示をさらに含む。提供されるキットのうちのいずれか1つのいくつかの態様において、指示は、本明細書において記載される方法のうちのいずれか1つの説明を含む。指示は、任意の好適な形態であってよく、例えば、印刷された挿入物またはラベルとしての形態であってよい。提供されるキットのうちのいずれか1つのいくつかの態様において、キットは、組成物をin vivoで対象に送達することができる1つ以上のシリンジまたは他のデバイスをさらに含む。
【0181】

例1:ラパマイシンを含む合成ナノキャリア
材料
ラパマイシンは、TSZ CHEMから購入した(185 Wilson Street, Framingham, MA 01702;製品カタログ#R1017)。76%ラクチドおよび24%グリコリド含有量および0.69dL/gの本来の粘度を有するPLGAは、SurModics Pharmaceuticalsから購入した(756 Tom Martin Drive, Birmingham, AL 35211;製品コード7525 DLG 7A)。約5,000DaのPEGブロックおよび約40,000DaのPLAブロックを有するPLA-PEGブロックコポリマーは、SurModics Pharmaceuticalsから購入した(756 Tom Martin Drive, Birmingham, AL 35211;製品コード100 DL mPEG 5000 5CE)。ポリビニルアルコール(85~89%加水分解されている)は、EMD Chemicalsから購入した(Product Number 1.41350.1001)。
【0182】
方法
溶液は、以下のとおり調製した:
溶液1:塩化メチレン中、75mg/mLのPLGAおよび25mg/mLのPLA-PEG。溶液は、PLGAおよびPLA-PEGを、純粋な塩化メチレン中で溶解することにより調製した。
溶液2:塩化メチレン中100mg/mLのラパマイシン。溶液は、ラパマイシンを純粋な塩化メチレン中で溶解することにより調製した。
溶液3:100mMのpH8のリン酸バッファー中50mg/mLのポリビニルアルコール。
【0183】
水中油型エマルジョンを用いて、ナノキャリアを調製した。O/Wエマルジョンは、小さな圧力管中で溶液1(1mL)、溶液2(0.1mL)、および溶液3(3mL)を組み合わせて、Branson Digital Sonifier 250を用いて30%の振幅で60秒間にわたり超音波処理することにより調製した。O/Wエマルジョンを、70mMのpH8のリン酸バッファー溶液(30mL)を含むビーカーに加えて、室温で2時間にわたり撹拌して、塩化メチレンを蒸発させ、ナノキャリアを形成させた。ナノキャリアの一部を、ナノキャリア懸濁液を遠心管に移して、75,000×gおよび4℃で35分間遠心分離し、上清を取り除き、ペレットをリン酸緩衝化食塩水中で再懸濁することにより洗浄した。洗浄の手順を繰り返し、ペレットを、リン酸緩衝化食塩水中で、約10mg/mLの最終ナノキャリア懸濁液のために再懸濁した。
【0184】
ナノキャリアのサイズを、動的光散乱により決定した。ナノキャリア中のラパマイシンの量を、HPLC分析により決定した。1mLの懸濁液あたりの合計の乾燥ナノキャリア質量を、重量測定的方法により決定した。
【表1】
【0185】
例2:GSK1059615を含む合成ナノキャリア
材料
GSK1059615は、MedChem Expressから購入した(11 Deer Park Drive, Suite 102D Monmouth Junction, NJ 08852);製品コードHY-12036。1:1のラクチド:グリコリド比および0.24dL/gの本来の粘度を有するPLGA
は、Lakeshore Biomaterialsから購入した(756 Tom Martin Drive, Birmingham, AL 35211);製品コード5050 DLG 2.5A。メチルエーテル末端化された約5,000DaのPEGブロックおよび0.26DL/gの全体的な本来の粘度を有するPLA-PEG-OMeブロックコポリマーは、Lakeshore Biomaterialsから購入した(756 Tom Martin Drive, Birmingham, AL 35211;製品コード100 DL mPEG 5000 5K-E)。Cellgroリン酸緩衝化食塩水1×(pH7.4)(PBS 1X)は、Corningから購入した(9345 Discovery Blvd. Manassas, VA 20109);製品コード21-040-CV。
【0186】
方法
溶液は、以下のとおり調製した:
溶液1:PLGA(125mg)、およびPLA-PEG-OMe(125mg)を、10mLのアセトン中で溶解した。溶液2:GSK1059615は、1mLのN-メチル-2-ピロリジノン(NMP)中10mgで調製した。
【0187】
ナノキャリアは、小さいガラス圧力管中で溶液1(4mL)および溶液2(0.25mL)を組み合わせ、混合物を、20mLの超純水を含む250mLの丸底フラスコに、撹拌しながら滴加することにより調製した。フラスコを回転式蒸発デバイス上に載せて、減圧下においてアセトンを取り除いた。ナノキャリアの一部を、ナノキャリア懸濁液を遠心管に移して、75,600rcfおよび4℃で50分間にわたり遠心分離し、上清を取り除き、PBS 1X中でペレットを再懸濁することにより洗浄した。洗浄の手順を繰り返し、PBS 1X中でペレットを再懸濁して、ポリマーに基づいて10mg/mLの名目上の濃度を有するナノキャリア懸濁液を達成した。洗浄したナノキャリア溶液を、次いで、Pall製の1.2μmのPESメンブレンシリンジフィルター(パート番号4656)を用いてろ過した。同一のナノキャリア溶液を、上のとおり調製し、ろ過ステップの直後にプールした。均一な懸濁液を、-20℃で凍結保存した。
【0188】
ナノキャリアサイズを、動的光散乱により決定した。ナノキャリア中のGSK1059615の量を、351nmにおけるUV吸収により決定した。1mLの懸濁液あたりの合計の乾燥ナノキャリアの質量を、重量測定的方法により決定した。
【表2】
【0189】
例3:初期AAVによりコードされる導入遺伝子のin vivoでの発現は、AAVが、ラパマイシンにカップリングされた合成ナノキャリアと予め混合された場合には影響を受けない
標準的なオスマウスAAV形質導入モデルにおいて、AAVがラパマイシンにカップリングされた合成ナノキャリアと予め混合された場合(SVP[Rapa])(この場合においてはカプセル化されたラパマイシン)、初期AAVによりコードされる導入遺伝子のin vivoでの発現は、影響を受けない;SVP[Rapa]が、AAVの直後に投与される場合、導入遺伝子発現は劣る;この効果は、IgG抗体形成に依存しないことを見出した。
【0190】
具体的には、6~12個体のオスC57BL/6マウスの群に、SVPにカプセル化されたラパマイシン(この例においてはSVP[Rapa])を用いてまたはこれを用いずに(これは、AAVに混合され、次いで投与されるか、AAV-SEAPの直後に(15分以内の間隔;「非混合」とラベルされる)注射される)、AAV-SEAPを注射した(i.v.、尾静脈)。示された時点(第19日)においてマウスから採血し、血清を全血から分離し、-20±5℃で分析まで保存した。次いで、ThermoFisher Scientific(Waltham, MA, USA)製のキットを用いて、血清におけるSEAPレベルを測定した。簡単に述べると、血清試料および陽性対照を、希釈バッファー中で希釈し、65℃で30分間にわたりインキュベートし、次いで室温まで冷却し、96ウェルのフォーマット中に播種し、アッセイバッファー(5分間)および次いで基質(20分間)を添加し、プレートをルミノメーター(477nm)上で読み取った。
【0191】
別に、AAVに対するIgG抗体を、ELISAアッセイにおいて測定した:96ウェルプレートをAAVで一晩コートし、翌日に洗浄およびブロッキングし、次いで希釈した血清試料(1:40)をプレートに加えてインキュベートした;プレートを次いで洗浄し、ヤギ抗マウスIgG特異的HRPを添加し、その後さらにインキュベートおよび洗浄し、AAVに対するIgG抗体の存在を、TMB基質を添加することにより検出し、450nmの吸光度において(570nmの参照波長を用いて)測定した(最大光学密度(OD)として表されるシグナルの強度は、試料中のIgG抗体の量に直接的に比例する)。
【0192】
混合されたSVP[Rapa]は、この時点においてはSEAP発現に影響を及ぼさなかったが、SEAP発現は、AAV-SEAPの後にSVP[Rapa]を連続的に注射されたマウスにおいて、下方制御された(図1A)。この時点においてSVP[Rapa]で処置された全てのマウスがAAVに対するIgG抗体の下方制御を示したことから、この効果は、AAVに対するIgG抗体の誘導に非依存的であった(図1B)。
【0193】
例4:混合されていないラパマイシンにカップリングされた合成ナノキャリアは、投与の順序にかかわらず、AAV駆動型の導入遺伝子の発現の初期の下方制御をもたらす
本実験において、非混合SVP[Rapa]は、投与の順序にかかわらず、AAV駆動型の導入遺伝子の発現の初期の下方制御をもたらすことを見出した。導入遺伝子の発現レベルは、SVP[Rapa]と組み合わせたAAVを投与されたマウスにおいて経時的に増大することを見出した;この効果は、SVP[Rapa]によるIgG抗体の下方制御と関係しない。
【0194】
具体的には、5~6個体のオスC57BL/6マウスの群に、SVP[Rapa]を用いてまたはこれを用いずに(これは、AAVと混合されるか、またはAAV-SEAPの前もしくは後に、15分間もしくは1時間の間隔で注射された)、AAV-SEAPをi.v.で注射した。示された時点(d19およびd75)において、マウス血清中のSEAP活性およびAAVに対するIgG抗体を測定した。
【0195】
AAV-SEAPとSVP[Rapa]との別々の投与は、第19日において、より低いSEAPの発現をもたらした(図2A)。1時間間隔で処置されたマウスは、15分間隔で注射されたマウスよりもいくらか低い発現を示した。混合されたAAV-SEAPおよびSVP[Rapa]を投与されたマウスは、AAV-SEAPのみを注射されたものと同じレベルのSEAP発現を有した(図2A)。注目すべきことに、SEAP発現のレベルは、SVP[Rapa]を投与された全てのマウスにおいて、経時的に増大し、第75日までに、混合されたAAV-SEAPおよびSVP[Rapa]を投与されたマウスは、AAV-SEAPのみを投与されたものより高いレベルまでSEAPを発現したが、一方で、混合されていないAAV-SEAPおよびSVP[Rapa]を投与されたマウスの群で、AAV-SEAPのみを投与されたものと類似するSEAPレベルを生成するものが存在した(図2B)。この現象は、SVP[Rapa]を投与された全ての群において観察されたIgG抗体の下方制御に非依存的であった(図2C)。
【0196】
例5:混合されたラパマイシンにカップリングされた合成ナノキャリアおよびAAV-SEAPは、IgG抗体応答にかかわらず、導入遺伝子の発現の即時上昇をもたらす
本実験において、AAV-SEAPを用いるSVP[Rapa]のメスマウスへの投与は、IgG抗体応答にかかわらず、導入遺伝子の発現の即時上昇をもたらすことを見出した。
【0197】
例3および4から、SVP[Rapa]とAAVとを混合しないことは、短期において劣った効果を有し得ると考えられる。しかし、当該現象は、初期の時点(第19日など)においては、オスC57BL/6マウスにおいて一般的に観察されるAAVによる効率的な形質導入によりマスクされる場合がある。別に、C57BL/6メスマウスの群に、SVP[Rapa]を用いてまたはこれを用いずに、2つの異なる用量のAAV-SEAPを接種し、第12および19日に、血清中のSEAP活性およびAAV IgG抗体を測定した。SEAP発現のレベルの上昇が、AAV-SEAPとSVP[Rapa]との混合物を投与された全てのマウスにおいて、AAV接種の直後に起こることが見出され、平均2倍の改善であった(図3A)。注目すべきことに、このことは、最少のIgG抗体誘導が観察される第12日などの、非常に初期の時点において観察された(図3B)。加えて、群間のSEAP発現の相対的レベルは、所与の時間間隔内で同じままであった(注射後12日と19日との間)が、一方で、SVP[Rapa]未処置群におけるIgG抗体レベルは、同じ時間にわたって増大した(図3B)。
【0198】
これらの結果は、導入遺伝子を担持するAAVおよびSVP[Rapa]の投与が、in vivoで、より高い導入遺伝子発現のレベルをもたらし、これは、AAV形質導入をより受け入れにくい系において特に注目すべきであること、ならびにこの現象が、SVP[Rapa]によるAAV IgG抗体の下方制御に非依存的であることを確認する。
【0199】
例6:AAVとラパマイシンにカップリングされた合成ナノキャリアとの混合はin vitroで15分以内にその完全な吸着をもたらす
具体的には、1mLのPBS中の2.5×1011VGのAAVまたはSVP[Rapa]粒子を、石英キュベットに加え、DLSにより別々に測定する(図4A)か、または混合した後に(100:1のAAV対SVP[Rapa]粒子比において)、インキュベーションの直後もしくは15分後に測定する(図4B)。
【0200】
AAVをSVP[Rapa]に混合した直後に(図4B)、2つの別々のピークが観察され、これらは、別々に測定されたAAVおよびSVP[Rapa]のサイズに対応した(図4A;それぞれ25および150nm)。SVP[Rapa]のAAVへの混合の15分後においては、単一のピークのみが観察され(図4B)、これは、ナノキャリアのサイズに対応し、このことは、SVP[Rapa]へのAAVの完全な吸着を示す。
【0201】
例7:初期AAV IgM誘導は、ラパマイシンにカップリングされた合成ナノキャリアおよびウイルスベクターの投与により下方制御される
5個体のメスのC57BL/6マウスの群に、SVPにカプセル化されたラパマイシン(この例においてはSVP[Rapa])または対照ポリマーのみ(この例においてはSVP[Empty])を用いてまたはこれを用いずに(これは、AAVと混合されて次いで投与されるか、またはAAV-SEAPの直前に注射された(15分以内の間隔で;「非混合」とラベルされる))、1×1010ウイルスゲノム(VG)のAAV-SEAPを注射した(i.v.、尾静脈)。示された時点において(Aにおいては第5および10日、ならびにBにおいては第6、12、19および89日)、マウスから採血し、血清を全血から分離し、-20±5℃で分析まで保存した。別に、AAVに対するIgM抗体をELISAアッセイにより測定した:96ウェルプレートをAAVで一晩コートし、翌日に洗浄およびブロッキングし、次いで希釈した血清試料(1:40)をプレートに加えてインキュベートした;プレートを次いで洗浄し、ヤギ抗マウスIgM特異的HRPを添加し、その後さらにインキュベートおよび洗浄し、AAVに対するIgM抗体の存在を、TMB基質を添加することにより検出し、450nmの吸光度において(570nmの参照波長を用いて)測定した(最大光学密度(OD)として表されるシグナルの強度は、試料中のIgM抗体の量に直接的に比例する)。
【0202】
SVP[Rapa]と共に投与された混合および非混合AAVはいずれも、AAV注射の後、第5(図5A)および7日において(図5B)、IgMの初期誘導を、正常血清の基線(破線)に近いレベルまで強力に下方制御した。この効果は、第10日においてもなお観察された(図5A)が、第12日以降までにはより顕著ではなくなり(図5B)、この時点において、未処置のマウスにおけるIgMのレベルは減少した。対照SVP[Empty]ナノキャリアで処置された群においては、IgMの下方制御活性は観察されなかった。
【0203】
例8:AAVキャプシドに対する初期IgMのレベルは、AAV投与後の導入遺伝子発現のレベルと逆相関する
4~5個体のメスのC57BL/6マウスの8つの群に、SVP[Rapa]を用いてまたはこれを用いずに、またはSVP[Empty]を用いて(これは、AAVと混合されるか、またはAAV-SEAPの直前に別に注射された)、AAV-SEAP(1×1010VG)をi.v.で注射した。示された時点(d7~d89)において、SEAP活性およびAAV IgMレベルを測定した(図6)。第92日において、全ての動物を、同じ量のAAV-SEAPでブーストし、プライミング時のものと同じ処置に供した。ThermoFisher Scientific(Waltham, MA, USA)製のアッセイキットを用いて、血清におけるSEAPレベルを測定した。簡単に述べると、血清試料および陽性対照を、希釈バッファー中で希釈し、65℃で30分間にわたりインキュベートし、次いで室温まで冷却し、96ウェルのフォーマット中に播種し、アッセイバッファー(5分間)および次いで基質(20分間)を添加し、プレートをルミノメーター(477nm)において読み取った。
【0204】
d7におけるIgMレベルは、血清中のSEAPの全体レベルが一般に低いAAV投与後の第7日において、血清SEAPレベルと、極めて強力かつ統計学的に有意な逆相関を示した(グラフ上にp値を示す)。この相関は、初回のAAVおよびSVP[Rapa]投与の後ほぼ3か月間にわたり維持された。さらに、AAV-SEAPブーストの後、第92日において、初期には低いAAV IgMのレベルを有した動物は、ブーストに対して、より有益な様式において、すなわち、導入遺伝子発現をより高いレベルまで上昇させることにより応答したが、一方で、初期に高いIgMレベルを有する動物は、より弱い様式において、すなわち、導入遺伝子発現のより低い上昇により応答した。結果として、初期(第7日)のAAV IgMレベルとブースト後の血清SEAPレベルとの間の逆相関は、ブースト後にさらに強力になった(d99およびd104、またはブースト後第7日および第12日)。
【0205】
例9:合成ナノキャリアおよびウイルスベクターの前のラパマイシンにカップリングされた合成ナノキャリアの投与(仮想的)
対象の群に、SVP[Rapa]をi.v.で注射し、30日以内に、対象に、AAV-SEAP(1×1010VG)を、SVP[Rapa]と共に(これは、混合されるか、または混合されないが同時に投与される)、i.v.で注射する。示された時点において、SEAP活性およびAAV IgMレベルを測定する。
【0206】
例10:ラパマイシンにカップリングされた合成ナノキャリアおよびウイルスベクターのさらなる投与(仮想的)
例9における対象の第2の投与の30日以内に、対象に、再び、SVP[Rapa]をi.v.で注射する。さらなる30日間以内に、対象に、AAV-SEAP(1×1010VG)を、SVP[Rapa]と共に(これは、混合されるか、または混合されないが同時に投与される)、i.v.で注射する。示された時点において、SEAP活性およびAAV IgMレベルを再び測定する。
【0207】
例11:IgG抑制
5個体のメスのC57BL/6マウスの群に、1×1010ウイルスゲノム(VG)のAAV-SEAPを、単独で、またはSVPにカプセル化されたラパマイシン(この例においてはSVP[Rapa])、または対照ポリマーのみ(この例においてはSVP[Empty])と共に注射し(i.v.、尾静脈)、前者は、AAVに混合して次いで投与されるか、またはAAV-SEAPの前に注射した(15分以内;「非混合」とラベルされる)。示された時点において マウスから採血し、血清を全血から分離し、-20±5℃で分析まで保存した。
【0208】
AAVに対するIgG抗体を、ELISAアッセイにおいて測定した:96ウェルプレートをAAVで一晩コートし、翌日に洗浄およびブロッキングし、次いで希釈した血清試料(1:40)をプレートに加えてインキュベートした;プレートを次いで洗浄し、ヤギ抗マウスIgG特異的HRPを添加し、その後さらにインキュベートおよび洗浄し、AAVに対するIgG抗体の存在を、TMB基質を添加することにより検出し、450nmの吸光度において(570nmの参照波長を用いて)測定した(最大光学密度(OD)として表されるシグナルの強度は、試料中のIgG抗体の量に比例する)。SEAPレベルを、ThermoFisher Scientific(Waltham, MA, USA)製のアッセイキットを用いて測定した。血清試料および陽性対照を、希釈バッファー中で希釈し、65℃で30分間にわたりインキュベートし、室温まで冷却し、96ウェルのフォーマット中に播種し、アッセイバッファー(5分間)および次いで基質(20分間)を添加し、プレートをルミノメーター(477nm)において読み取った。
【0209】
混合されたおよび非混合のSVP[Rapa]はいずれも、AAVに対するIgGの初期の誘導を抑制した(図7)。この効果は、SVP[Rapa]がAAVに混合されていたか、AAV注射の前に別に投与されたかにかかわらず、強力であった。
AAVと混合されたおよび非混合のSVP[Rapa]は、いずれも、血清中のSEAP発現の初期のおよび一貫した上昇を促進した(図8)。両方のSVP[Rapa]処置群におけるSEAP発現は、未処置群におけるものより2.5~3.0倍高く、また対照SVP[Empty]で処置された群におけるものよりも高かった。この差は、第7日において観察され、少なくとも7週間にわたり持続した。
【0210】
例12:IgMおよびIgG抑制
5個体のメスC57BL/6マウスの群に、1×1010ウイルスゲノム(VG)のAAVのみを注射する(i.v.、尾静脈)か、またはSVPにカプセル化されたラパマイシン(この例においてはSVP[Rapa])を、AAVと混合して、次いで投与するか(第0日)、AAVの1日前に(第-1日)別に注射するか、もしくは、両方を、AAVの1日前に別々に注射し、混合して注射した(第-1、0日)。示された時点において、マウスから採血し、血清を全血から分離して、-20±5℃で分析まで貯蔵した。IgMおよびIgGのレベルを、上記のとおり決定した。
【0211】
AAVと混合されたSVP[Rapa]は、AAVのIgM(図9)およびIgG(図10)の両方の抑制をもたらしたが、SVP[Rapa]をAAVとは別に1日前に投与した場合に、類似の効果が観察された。注目すべきことに、これら2群におけるAAVのIgM(第13日まで、図9)およびIgG(第20日まで、図10)の両方が、より後の時点において上昇し始めたが、それらのレベルは、未処置のマウスにおけるものよりも低いままであった。同じ時点において、AAV注射の1日前にSVP[Rapa]で処置され、また混合物で処置されたマウス(d-1、0)は、第5日において最も低いAAV IgMレベルを示し(第13日までに限界(marginal)上昇、図9)、第20日までAAV IgGの発生を示さなかった(図10)。したがって、AAVのIgMおよびIgG抗体の産生は、第-1日および第0日においてSVP[Rapa]処置を受けたマウスにおいて、より強力に抑制された。
【0212】
例13:免疫抑制剤を含む合成ナノキャリア
ラパマイシンなどの免疫抑制剤を含む合成ナノキャリアは、当業者に公知の任意の方法を用いて生成することができる。好ましくは、本明細書において提供される方法または組成物のうちのいずれか1つのいくつかの態様において、免疫抑制剤を含む合成ナノキャリアは、米国公開番号US 2016/0128986 A1および米国公開番号US 2016/0128987 A1の方法のうちのいずれか1つにより生成され、記載される生成の方法および生じる合成ナノキャリアは、その全体において本明細書において参考として援用される。本明細書において提供される方法または組成物のうちのいずれか1つにおいて、免疫抑制剤を含む合成ナノキャリアは、かかる援用される合成ナノキャリアである。ラパマイシンを含む合成ナノキャリアは、これらの援用される方法に少なくとも類似する方法により生成し、以下の例において用いた。
【0213】
例14:免疫抑制剤を含む合成ナノキャリアの分割用量
合成ナノキャリア中に含まれる場合、ラパマイシンの用量を2つの部分に分割して、第1の半分を、AAVベクターとラパマイシンの第2の半分の用量(合成ナノキャリア中に含まれる場合)との共注射の前に投与することは、 導入遺伝子の発現に関して(図11A)、およびその抗ウイルスIgGに対する抑制性効果のために(図11B)、ラパマイシンの同じ累積用量が合成ナノキャリア中に含まれてAAVベクターと共注射される場合と比較して、有益であることを見出した。
【0214】
5個体のメスのC57BL/6マウスの群に、第0および92日において、1×1010ウイルスゲノム(VG)のAAV-SEAPを、単独で(AAV-SEAP)、もしくはラパマイシン含有合成ナノキャリアと共に(AAV-SEAP+ラパマイシン含有合成ナノキャリア、100μg、d0、92)を注射する(静脈内、i.v.、尾静脈)か、または、ラパマイシン含有合成ナノキャリア(50μgのラパマイシン)を、AAV注射の2日前およびAAV注射と共に送達した(AAV-SEAP+ラパマイシン含有合成ナノキャリア、d-2、0、90、92)。図11Aにおいて示される時点において(第7、19、75、99、104および111日)、マウスから採血し、血清を全血から分離し、-20±5℃で分析まで保存した。
【0215】
血清におけるSEAPレベルを、ThermoFisher Scientific(Waltham, MA, USA)製のアッセイキットを用いて測定した。簡単に述べると、血清試料および陽性対照を、希釈バッファー中で希釈し、65℃で30分間(min)にわたりインキュベートし、次いで室温まで冷却し、96ウェルのフォーマット中に播種し、アッセイバッファー(5分間)、および次いで添加した基質(20分間)と共にインキュベートし、プレートを、ルミノメーター(477nm)を用いて読み取った。
【0216】
別に、AAVに対するIgG抗体を、ELISAを用いて測定した。96ウェルのプレートを、AAVで一晩コートし、次いで翌日に洗浄およびブロッキングした。希釈した血清試料(1:40)をプレートに加えてインキュベートした。プレートを、次いで洗浄し、ヤギ抗マウスIgG特異的HRPを添加した。別のインキュベーションおよび洗浄の後、AAVに対するIgG抗体の存在を、TMB基質を添加することにより検出し、450nmの吸光度において(570nmの参照波長を用いて)測定した(図11Bにおいて、最大光学密度(OD)として表されるシグナルの強度は、試料中のIgG抗体の量に直接的に比例する)。
【0217】
AAV-SEAPに混合されたラパマイシン含有合成ナノキャリア(50μg)の共投与の2日前の、ラパマイシン含有合成ナノキャリア(50μg)の投与は、SEAP発現の即時上昇をもたらし(図11A)、これは、特定の時点においては、SVPを用いない場合よりもほぼ2倍高かった。各々の時点について、各々の群において、グラフの上に、第19日(d19)における未処置のマウスにおけるもの(100%)と比較した相対的発現を示す。同じ時間において、同じ合計100μgの用量(AAVと混合されて共投与されるラパマイシン含有合成ナノキャリア)は、導入遺伝子の発現に対して有益な効果を有しなかった。第92日ブースト(矢印により示す)の後に、類似の効果が観察された。注目すべきことに、ラパマイシン含有合成ナノキャリアの投与の両方のレジメンが、プライミングおよびブーストの後に、AAVに対するIgG応答の形成を同等に抑制した(図11B)。
【0218】
例15:少なくとも2つの部分における免疫抑制剤を含む合成ナノキャリアの投与
合成ナノキャリア中に含まれる場合、2つの部分におけるラパマイシンの用量の送達は、第1の部分が第2の半分の用量とのAAVの共注射の2日前に投与される場合、安定に上昇した導入遺伝子の発現をもたらすことを見出した(図12)。
【0219】
9~10個体のメスC57BL/6マウスの群に、第0日において、1×1010VGのAAV-SEAPを、単独で(AAV-SEAP)、またはAAV注射の2日前およびAAV注射と共に送達される50μgのラパマイシンと共に(合成ナノキャリア中に含まれる場合)(AAV-SEAP+ラパマイシン含有合成ナノキャリア、d-2、0)注射した(i.v.、尾静脈)。示された時点において(第7、12、19、33、48および77日)マウスから採血し、血清を全血から分離し、-20±5℃で分析まで保存した。血清におけるSEAPレベルを、例14において記載されるように測定した。
【0220】
AAV-SEAPに混合された別の50μgのラパマイシン(合成ナノキャリア中に含まれる場合)の共投与の2日前の、50μgのラパマイシン(合成ナノキャリア中に含まれる場合)の投与は、SEAP発現の即時上昇をもたらし、これは、一般に、合成ナノキャリアを用いない場合のものよりも2倍高かった(AAV投与後、初期の7日間では、3倍であった)。この差は、全ての連続する時点において、安定であり、維持された(各々の時点について、各々の群において、グラフの上に、d19における未処置のマウスにおけるものを100%として、これと比較した相対的発現を示す)。
【0221】
例16:免疫抑制剤を含む合成ナノキャリアのさらなる用量
AAV免疫マウスへの、ラパマイシン(合成ナノキャリア中に含まれる場合)とのAAVベクターの共注射の前の、ラパマイシン(合成ナノキャリア中に含まれる場合)のさらなる用量の送達は、導入遺伝子の発現の上昇をもたらすことが見出された。
【0222】
50μgのラパマイシン(合成ナノキャリア中に含まれる場合)のプレ投与は、AAVプライミングの後の導入遺伝子の発現のために有益であることが観察されたので、それがまたAAVに先に暴露された動物においても有益であるか否かを検討した。5個体のメスのC57BL/6マウスの群に、第0日において、1×1010VGのAAV-RFPを、単独で、または50μgのラパマイシン(合成ナノキャリア中に含まれる場合)と混合して注射し(i.v.、尾静脈)、次いで、単独またはラパマイシン(合成ナノキャリア中に含まれる場合)と混合した同じ用量のAAV-SEAPでブーストするか、またはラパマイシン(合成ナノキャリア中に含まれる場合)を、いずれもAAV-SEAPに混合して、AAV-SEAPの3日前にプレ注射した。示された時点において、マウスから採血し、血清を全血から分離して、-20±5℃で分析まで保存した。血清におけるSEAPレベルおよびAAVに対するIgGを、例14において記載されるように測定した。
【0223】
ラパマイシン含有合成ナノキャリアで処置されていない動物(AAV-RFP/AAV-SEAP)は、有意義なSEAP導入遺伝子の発現を示さなかった(図13A)。AAV-RFPプライミングのみにおける50μgのラパマイシン(合成ナノキャリア中に含まれる場合)の投与(AAV-RFP+ラパマイシン含有合成ナノキャリア/AAV-SEAP)は、低いレベルの導入遺伝子発現を示した(一般に、AAV-RFPをプレ注射されていないナイーブなマウスのものから10~13%)。導入遺伝子発現のさらなる上昇は、プライミングおよびブーストの両方におけるラパマイシン含有合成ナノキャリア投与により達成され(AAV-RFP/AAV-SEAP;ラパマイシン含有合成ナノキャリア、d0、86)、これは、ときに20%を越え、15~24%の区間内にとどまった。対照的に、AAVブーストの3日前におけるさらなるラパマイシン含有合成ナノキャリアの投与は、SEAP発現のはるかにより高い上昇をもたらし、これはときにナイーブなマウスのものから50%を超えて、34~52%の範囲内にとどまった(各々の時点について、各々の群において、グラフの上に、各々の時点におけるプライミングされていないマウスにおけるものを100%として、これと比較した相対的発現を示す)。
【0224】
この導入遺伝子発現は、ラパマイシン含有合成ナノキャリアで処置されていないマウスによるAAV IgGの存在に、緊密に位置づけされ、これに対して逆に対応した;ラパマイシン含有合成ナノキャリアで処置されていないマウスは、即時のIgG産生を示し、これは次いでブーストによりさらに上昇した(図13Bにおいて矢印により示す)。プライミングにおいてのみラパマイシン含有合成ナノキャリアで処置されたマウスは、ブーストのすぐ後にAAV IgGを生じたが、一方、プライミングおよびブーストの両方で処置されたものは、数週間遅れてブースト後の抗体の発達を示した。注目すべきことに、AAVブーストの前にラパマイシン含有合成ナノキャリアでさらに処置されたマウスは、研究の期間にわたって、ほとんどが抗体陰性であり続け、1個体のマウスのみが、ブーストの後7週間において検出可能なIgG抗体を示した(図13B)。
【0225】
例17:免疫抑制剤を含む合成ナノキャリアのさらなる用量
予め存在していたAAV IgGのレベルが低い(かつ初回プライミング用量においてラパマイシン含有合成ナノキャリアで処置されていない)マウスへの、AAVベクターとラパマイシン含有合成ナノキャリアとの共注射の前の、ラパマイシン含有合成ナノキャリアのさらなる用量の送達は、ブースト後の導入遺伝子の発現にとって必須であることを見出した。
【0226】
さらなる50μgのラパマイシン(合成ナノキャリア中に含まれる場合)のプレ投与が、AAVに先に暴露されていたが、また初回プライミングにおいてラパマイシン含有合成ナノキャリアで処置されていた動物において、AAVブースト後の導入遺伝子発現のために有益であることが示されたので、同様の利益が、AAVに事前に暴露され、ラパマイシン含有合成ナノキャリア共投与を用いずにAAVにより免疫した動物において見出されるか否かを検討した。5~7個体のメスC57BL/6マウスの群に、第0日において、2×10VGのAAV-RFPを注射し(i.v.、尾静脈)、次いで、AAV IgGのレベルのが低いマウス(プライミング後第75日における最大OD≦0.3)を選択して、第92日において、単独またはラパマイシン含有合成ナノキャリアと混合した1×1010VGのAAV-SEAPでブーストするか、または、いずれもAAV-SEAPと混合したラパマイシン含有合成ナノキャリアを、AAV-SEAPの2日前に事前注射した。示された時点において、マウスから採血し、血清を全血から分離し、-20±5℃で分析まで保存した。血清におけるSEAPレベルおよびAAVに対するIgGを、例14において記載されるように測定した。
【0227】
ラパマイシン含有合成ナノキャリアで処置されていないか、またはブーストにおいて単一のラパマイシン含有合成ナノキャリア投与を投与されている動物(AAV-RFP/SEAP;ラパマイシン含有合成ナノキャリア≦1)は、非常に僅かなSEAP導入遺伝子発現を示した(図14A)。導入遺伝子の発現は、通常、5~9%の区間内であり(ナイーブなマウスにおける100%での発現と比較して)、有意義な発現レベルを示した5個体のうちの単一のマウスに起因した(図14B中、左欄を参照)。対照的に、50μgのラパマイシン(合成ナノキャリア中に含まれる場合)を、AAVブーストの2日前に、およびまたブーストにおいても投与された群からのマウス(AAV-RFP/SEAP;ラパマイシン含有合成ナノキャリア=2)は、はるかにより顕著なSEAP発現を示し、これは一般に、ナイーブなマウスのものと比較して34~40%の範囲内にとどまった(図14Aにおいて、各々の時点について、各々の群における相対的発現を示す)。注目すべきことに、この群における7個体のマウスのうちの5個体は、検出可能なSEAP発現を示し(図14Bにおける右欄を参照)、これは、実験群の間で、統計学的に有意な異なるレベルのSEAP発現をもたらした(図14B)。
【0228】
AAV免疫マウスにおけるこのブースト後の導入遺伝子発現活性は、AAVに対する既往の応答の発生に対して、緊密に、かつ逆に対応し、これは、2回より少ないラパマイシン含有合成ナノキャリアによる処置を受けたマウスにおけるAAV IgGの上昇、およびAAVブーストの前およびAAVブースト時において2回のラパマイシン含有合成ナノキャリア処置を受けたマウスにおけるこの応答のシフトにより示されるとおりである(図14C、ブーストを矢印により示す)。5個体のうちの1個体を除く全てのマウスが、強力にAAV IgG陽性となったことから、2回より少ない用量のラパマイシン含有合成ナノキャリアで処置されたマウスは、ブースト後第7日において早くも強力なAAV IgG追加免疫応答を示した(図14C)。同時に、ラパマイシン含有合成ナノキャリアで2回処置されたマウスは、それによりはるかにより低いAAVに対する既往の抗体応答を示し、これは、7個体のうちの2個体のマウスのみが強力にAAV IgG陽性となったことから、第92日のブースト後第7日において早くも統計学的に有意に異なるものとなった(図14C中d99)。注目すべきことに、この群における抗体レベルは、第92日においてはじめてAAVに暴露されたナイーブなマウスにおけるものよりも一貫して低かった(図14Aおよび14C中の参照対照群)。驚くことではないが、まさにこれらのマウス(2回より少ないラパマイシン含有合成ナノキャリア処置を受けている群のうちの1個体および2回のラパマイシン含有合成ナノキャリア処置を受けている群のうちの5個体)は、2つの実験群においてAAV IgGと血清SEAPレベルとの間の統計学的に有意な逆相関をもたらす有意義なSEAP発現を一貫して示した点において同じであった(図14D)。
【0229】
例18:免疫抑制剤を含む合成ナノキャリアおよびウイルスベクターの投与
AAVベクターとラパマイシン含有合成ナノキャリアとの共注射の後に投与されたラパマイシン含有合成ナノキャリア用量は、導入遺伝子の発現およびAAV抗体の抑制のためのさらなる利益を提供することを見出した。
【0230】
ラパマイシン含有合成ナノキャリアとAAVとの共投与は、AAV駆動型の導入遺伝子発現のための、および、AAVに対する抗体を有効に抑制するために、すみやかな利益を提供することを示したが、さらなるラパマイシン含有合成ナノキャリア注射が、さらなる利益を提供するか否かを検討した。5個体のメスのC57BL/6マウスの群に、第0および88日において、1×1010VGのAAV-SEAPを、単独で、または50μgのラパマイシン(合成ナノキャリア中に含まれる場合)と混合して注射し(i.v.、尾静脈)、1群を次いで、さらに2回、隔週で、いずれもプライミングおよびブーストの後に、ラパマイシン含有合成ナノキャリア注射で処置した(d14、28、102および116)。示した時点において、マウスから採血し、血清を全血から分離し、-20±5℃で分析まで保存した。血清におけるSEAPレベルおよびAAVに対するIgGを、例14において記載されるように測定した。
【0231】
先に示したとおり、AAV-SEAPと混合した50μgのラパマイシン(合成ナノキャリア中に含まれる場合)の投与は、SEAP発現の即時上昇をもたらし(図15A)、これは、ある時点においては、合成ナノキャリアを用いない群よりも4倍高かった。しかし、さらなるラパマイシン含有合成ナノキャリア処置は、さらにより顕著な利益を提供し、生じた発現レベルは、未処置のマウスよりも6~7倍高かった。第88日のブーストの後で、さらなる上昇が観察された(矢印により示す;各々のブースト後の時点について、各々の群におけるブースト前のd75のSEAPレベルと比較して、相対的発現を示す)。ブースト時におけるラパマイシン含有合成ナノキャリアの投与は、中程度のさらなる利益を提供し、生じた導入遺伝子の発現は、未処置のマウスと比較して5倍過剰に安定化し、さらなるラパマイシン含有合成ナノキャリア処置の利益は、第108日における8倍の差異まで上昇し続けた。このことは、さらなるラパマイシン含有合成ナノキャリアを投与されたマウスにおける、より顕著なAAV IgGの抑制に対応し、一方で、AAVと混合されたラパマイシン含有合成ナノキャリアのみで処置されたマウスにおけるIgG応答抑制は顕著であったが、ブースト後は特に、不完全であった(図15B)。
【0232】
例19:免疫抑制剤を含む合成ナノキャリアのさらなる用量
さらなるラパマイシン含有合成ナノキャリアは、長期のAAV抗体抑制についての最高の潜在能力を提供することを見出した。
【0233】
AAVとのラパマイシン含有合成ナノキャリアの共投与、およびそのさらなる適用は、AAVに対する抗体を効果的に抑制することが示されたが、この抑制は、必ずしも常に100%のレベルに達しない。したがって、プライミング時におけるさらなるラパマイシン含有合成ナノキャリア注射と、ラパマイシン含有合成ナノキャリアのフォローアップ投与とを組み合わせることが、組み合わされた相乗的利益を提供するか否かを検討した。6~9個体のメスC57BL/6マウスの群に、第0日および83日において、1×1010VGのAAV-SEAPを、単独で、または50μgのラパマイシン(合成ナノキャリア中に含まれる場合)と混合して注射し(i.v.、尾静脈)、1群をさらに、プライミングの2日前およびブースト時に(d-2およびd81)ラパマイシン含有合成ナノキャリアで処置し、他方を、さらに2回、隔週で、いずれもプライミングおよびブーストの後に、ラパマイシン含有合成ナノキャリア注射で処置し(d14、28、97および116)、最後の1つを、これらの組み合わせで処置した(d-2、12、28、81、97および116)。AAVに対するIgGを、例14において記載されるように測定した。
【0234】
前に示したとおり、免疫前のラパマイシン含有合成ナノキャリア処置と組み合わせた、AAV-SEAPと混合した50μgのラパマイシン(合成ナノキャリア中に含まれる場合)の投与(gr.2;d-2、0、81、83)は、9個体のマウスのうちの2個体のみが、第90日(ブースト直後)において検出可能なIgGレベル(これは最大ODにより決定される)を示したことから、ブースト前の転換なしで、著明なAAV IgG抑制をもたらした。9個体のうちの3個体(および強力には3個体のうちの1個体のみ)が、第116日(ブースト後33日)までにIgG陽性であった。本研究において、ラパマイシン含有合成ナノキャリアによるフォローアップ(d14およびd28)処置は、ブースト前投与と同程度に効率的であった(転換なし)。しかし、数個体のマウスは、ブースト後に転換し始め(9個体のうちの5個体;強力には5個体のうちの4個体)、第116日までに陽性となった。したがって、両方のラパマイシン含有合成ナノキャリア投与レジメンの組み合わせが、第116日(ブースト後33日)までは何らの転換も観察されなかったことから、最も有効であった(図16)。
【0235】
例20:AAV駆動型の導入遺伝子発現
標準的なメスマウスAAV形質導入モデルにおいて、SVP[Rapa]をAAVと共投与することの利益が存在し、これは、in vivoで、より高い導入遺伝子発現をもたらすことが観察されている。この効果は、さらなるSVP[Rapa]投与によりさらに増強される。この例において、プライミング時における、およびブースト時における、AAVとの単一のSVP[Rapa]の共投与は、導入遺伝子発現を用量依存的な様式において改善すること、およびこの効果は、少なくとも部分的に、AAV抗体の発生と逆相関することが示される。さらに、AAV駆動型の導入遺伝子発現を強力に上昇することができる高用量のSVP[Rapa]を3つの部分に均等に分割し、そのうちの1つのみをAAVと共投与し、他の2つをAAV注射の前および後に別々に投与するのであれば、導入遺伝子発現に対するSVP[Rapa]の有益な効果、およびSVP[Rapa]により媒介されるAAV抗体発生の抑制は、損なわれない。
【0236】
具体的には、4群の10個体のメスC57BL/6マウスに、SVP[Rapa]を用いずにまたはこれと共に、1×1010VGのAAV8-SEAPを注射した(静脈内で(i.v.)、尾静脈)。以下の用量のSVP[Rapa]を用いた:単一の50μgの用量(AAVと混合されて共投与された)、単一の150μgの用量(AAVと混合されて共投与された)、および150μgの用量を3回の50μgの注射に分割したもの(1つはAAVと混合されて共投与され、2つは、AAV注射の2日前およびAAV注射の2日後に別々に投与された)。
【0237】
示した時点において(第7、12、19、47および75日)、マウスから採血し、血清を全血から分離し、-20±5℃で分析まで保存した。次いで、AAVに対するIgG抗体を、ELISAを用いて測定した。96ウェルのプレートを、AAVで一晩コートし、翌日に洗浄してブロッキングし、次いで希釈した血清試料(1:40)をプレートに加えてインキュベートした。インキュベーションの後で、プレートを洗浄し、ヤギ抗マウスIgG特異的HRPを添加した。プレートをインキュベートし、再度洗浄して、次いでAAVに対するIgG抗体の存在を、TMB基質を添加して、450nmの吸光度におけるシグナルを、570nmの参照波長を用いて測定することにより検出した。最大光学密度(OD)として表されるシグナルの強度は、試料中のIgG抗体の量に直接的に比例する。
【0238】
別に、ThermoFisher Scientific(Waltham, MA, USA)製のアッセイキットを用いて、血清中の分泌型アルカリホスファターゼ(SEAP)レベルを測定した。簡単に述べると、血清試料および陽性対照を、希釈バッファー中で希釈し、65℃で30分間にわたりインキュベートし、次いで室温まで冷却し、96ウェルのプレートに播種し、次いでアッセイバッファー(5分間)および次いで基質(20分間)と共にインキュベートした。プレートを、次いで、ルミノメーターにおいて477nmで読み取った。
【0239】
初期の(プライミング後の)AAV IgGおよびSEAPの検出および分析の後、マウスを休息させ、次いで、第117日において再び採血し、第125日において、プライミング時と同じAAVおよびSVP[Rapa]の用量を用いて、AAV-SEAPでブーストした;すなわち、第1の群はSVP[Rapa]を投与されず、続く群は、50μgのSVP[Rapa]をブースト時に、150μgのSVP[Rapa]をブースト時に、および50μgのSVP[Rapa]を3回:ブーストの2日前、ブースト時(AAVと混合され、共投与された)、およびブーストの2日後に、投与された。マウスを、次いで、第132および138日(ブースト後7日および13日)に採血し、およびSEAP血清レベルを、上で特定したように決定した。
【0240】
SVP[Rapa]で処置された全ての群は、プライミングの直後に、未処置のマウスにおけるものと比較して、増大したSEAPレベルを示し(図17A、gr.1対gr.2~4)、これらの差異は、統計学的に有意であり(****-p<0.0001)、数か月間にわたり持続した。初期の時点のほとんどにおいて、150μgのSVP[Rapa](単一または分割用量として;gr.3および4)で処置された群におけるSEAPレベルは、より低い、50μgの用量(gr.2)で処置された群よりも高かったが、長期において(d75~117)、これらのレベルの全ては等しくなった。大いに、このことは、150μgのSVP[Rapa]で処置された群中のマウスにおけるAAV IgG発生の初期動態と相関し、第75日までの間に、および第75日を含めて、IgGの転換を示さなかった(図17B、gr.3および4)が、一方で、より低い、50μgの用量(図17B、gr.2)で処置された群中の数個体のマウスは、第19日において検出可能な抗体を示し、10個体のうちの4個体(40%)は、第75日までに転換した(図17B)。注目すべきことに、SVP[Rapa]なしでAAVを注射された全てのマウスは、迅速にAAV IgG陽性となった(図17B、gr.1)。
【0241】
第125日のブーストの後で(図17Aにおいて矢印により示す)、SVP[Rapa]処置群と未処置群との間の差異は、さらにより著明になった(図17A、第132および138日)。注目すべきことに、ブーストの直後に(d132)、SVP[Rapa]で処置されていないマウスにおいて、SEAPの上昇は存在しなかったが(ブースト後のSEAP発現の、d117におけるブースト前発現に対する比を、図17Aにおいて上の行として示す)、一方で、全てのSVP[Rapa]処置群は、即時上昇を示した(図17A、gr.2~4、d132)。興味深いことに、未処置群における、および低い50μgの用量のSVP[Rapa]で処置された群におけるSEAPレベルは、それらの相対的発現と類似の様式において第138日まで進行し(図17Aにおいて下の行として示し、未処置のgr.1におけるレベルに「100」の数を割り当てた)、同じにとどまった(50μg処置群は、一貫して約3.5倍高いSEAPを有する)。同じ時間において、より高い(150μg)用量のSVP[Rapa]で処置されたマウスの両方の群におけるSEAPレベルは、第132日から第138日までにさらに上昇した導入遺伝子発現を有した;すなわち、未処置のマウスにおけるものよりも約4倍高かったものから、約4.5倍高いものとなり、1つの場合においては、さらに、より低い(50μg)用量のSVP[Rapa]で処置されたマウスのものとは統計学的に異なるものとなった(図17A、gr.2対gr.4;第138日;p<0.05)。
【0242】
したがって、AAV駆動型の導入遺伝子発現は、プライミングおよびブーストの両方において、混合されたSVP[Rapa]の共投与により用量依存的な様式において上昇したことを見出した。この効果は、完全ではないが、AAVに対する抗体の抑制と逆相関し、しかし、AAVと混合された単一の用量として、またはそのうちの一部がAAVと混合され、一部が別に投与される分割用量として送達される、SVP[Rapa]用量に対して、依存的ではなかった。
図1
図2AB
図2C
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14AB
図14CD
図15
図16
図17
【手続補正書】
【提出日】2023-03-15
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
本明細書に記載の発明。
【外国語明細書】