IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ カルボン エアロスペース (ファウンデーション)、エルエルシーの特許一覧

特開2023-71779一体型の加熱要素を備えた複合航空機構造
<>
  • 特開-一体型の加熱要素を備えた複合航空機構造 図1
  • 特開-一体型の加熱要素を備えた複合航空機構造 図2
  • 特開-一体型の加熱要素を備えた複合航空機構造 図3
  • 特開-一体型の加熱要素を備えた複合航空機構造 図4
  • 特開-一体型の加熱要素を備えた複合航空機構造 図5
  • 特開-一体型の加熱要素を備えた複合航空機構造 図6
  • 特開-一体型の加熱要素を備えた複合航空機構造 図7
  • 特開-一体型の加熱要素を備えた複合航空機構造 図8
  • 特開-一体型の加熱要素を備えた複合航空機構造 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023071779
(43)【公開日】2023-05-23
(54)【発明の名称】一体型の加熱要素を備えた複合航空機構造
(51)【国際特許分類】
   B64D 15/12 20060101AFI20230516BHJP
   B64C 1/00 20060101ALI20230516BHJP
   B32B 5/28 20060101ALI20230516BHJP
【FI】
B64D15/12
B64C1/00 B
B32B5/28 A
【審査請求】有
【請求項の数】6
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023024102
(22)【出願日】2023-02-20
(62)【分割の表示】P 2021083532の分割
【原出願日】2019-04-24
(31)【優先権主張番号】62/661,917
(32)【優先日】2018-04-24
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】521466873
【氏名又は名称】カルボン エアロスペース (ファウンデーション)、エルエルシー
(74)【代理人】
【識別番号】100104411
【弁理士】
【氏名又は名称】矢口 太郎
(72)【発明者】
【氏名】ハードマン、カイル、ビー.
(72)【発明者】
【氏名】カルダー、マーク、エー.
(72)【発明者】
【氏名】デルクス、イアン、シー.
(57)【要約】      (修正有)
【課題】被加熱複合構造、および被加熱複合構造を形成する方法を提供する。
【解決手段】被加熱複合構造は、熱可塑性マトリックス内に埋め込まれた炭素繊維を含む。前記炭素繊維は、電源と接続されるよう構成された第1および第2の電極50,52と接続され、これにより当該電極50,52に電流を流すと前記埋め込まれた炭素繊維に電流が流れ、前記複合構造を加熱して、前記複合構造上における氷の形成を妨げるうえで十分な抵抗加熱をもたらす。
【選択図】図1
【特許請求の範囲】
【請求項1】
被加熱航空機構造であって、
複合構造であって、
炭素繊維強化熱可塑性の構造層と、
強化熱可塑性のヒーター層であって、
単一方向性の炭素繊維強化熱可塑性物質を含む複数の導電性非金属繊維と、
前記導電性非金属繊維と電気接続された第1の電極と、
第2電極であって、前記導電性非金属繊維が前記第1電極と前記第2電極との間に電気経路を提供するように、前記導電性非金属繊維と電気接続された、第2電極と、
を有する強化熱可塑性のヒーター層と、
を有する複合構造を有し、
前記第1電極と前記導電性非金属繊維は、前記第1電極に印加される電力が前記導電性非金属繊維を介して伝導されるように接続されて、前記複合構造を加熱するのに十分な抵抗加熱を提供するものである、被加熱航空機構造。
【請求項2】
請求項1記載の被加熱航空機構造において、前記複数の導電性繊維は、前記第1の電極と前記第2の電極との間の導電経路を提供するものである、被加熱航空機構造。
【請求項3】
請求項2記載の被加熱航空機構造において、前記導電経路は、前記第1の電極と前記第2の電極との間に複雑な経路を含むものである、被加熱航空機構造。
【請求項4】
請求項2記載の被加熱航空機構造において、前記導電経路は、前記第1の電極と前記第2の電極との間に蛇行経路を含むものである、被加熱航空機構造。
【請求項5】
請求項1記載の被加熱航空機構造において、
前記強化熱可塑性のヒーター層から独立して動作可能な追加のヒーター層を含み、前記ヒーター層の間に配置され、前記追加のヒーター層を前記強化熱可塑性のヒーター層から絶縁する電気絶縁層を含む、被加熱航空機構造。
【請求項6】
請求項1記載の被加熱航空機構造において、
前記複数の導電性非金属繊維は、前記第1電極と前記第2電極との間に複雑な経路を含むものである、被加熱航空機構造。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、2018年4月24日付で出願された米国仮特許出願62/661,917号の優先権を主張するものである。上記出願の開示は、この参照によりその全体が本明細書に組み込まれる。
【0002】
本発明は、複合材料の分野に関する。特に、本願は、一体型の加熱アセンブリを組み込んだ複合材料に関する。本発明は、特に複合航空機構造のための防氷システムの分野における応用を対象とする。
【背景技術】
【0003】
航空機表面への着氷は、飛行中に危険な状況を生じる原因となり、長年にわたり多数の死亡事故を起こしてきた。機体、エアフォイル、翼などの構造への着氷は、重量の増加、抗力の増加、および揚力の減少につながる。エンジンのエアインテーク(吸気口)などの構造では、前縁への着氷は気流の問題を生じて氷の吸い込み(ice ingestion)を招き、エンジン動作が損なわれ、またはエンジン部品が破損するおそれがある。
【発明の概要】
【発明が解決しようとする課題】
【0004】
着氷に伴う危険を防ぐため、航空機の着氷を防ぎ、および/または機体表面に付着した氷が剥がれ落ちるのを防ぐ数多くの防氷システムが長年にわたり開発されてきた。今日使用されている主な防氷システムは、空気が燃焼室に入る前にエンジンから圧縮空気の一部を取り出して使う抽気システムである。この圧縮空気は加圧した熱気で、航空機の表面を加熱して着氷を防ぐために使用される。抽気システムは効果的だが、エンジンの効率を低下させ、航空機の重量を増やしてしまう。そのため、公知システムの欠点に煩わされない防氷システムが長年必要とされてきた。
【課題を解決するための手段】
【0005】
以上に照らし、本発明の態様によれば、被加熱航空機構造が提供される。当該被加熱航空機構造は、炭素繊維強化熱可塑性の上層と、炭素繊維強化熱可塑性の下層と、炭素繊維強化熱可塑性のヒーター層とを有する複合構造を含む。前記ヒーター層は、複数の導電炭素繊維と、前記導電繊維に電気接続された第1の電極と、前記導電繊維に電気接続された第2の電極とを含む。前記導電炭素繊維は、前記第1の電極と当該第2の電極間に電気経路を提供する。前記航空機構造は、電源に接続されたコントローラであって、前記第1の電極に提供される電力を制御するコントローラも含む。前記第1の電極および前記導電炭素繊維は、前記第1の電極に供給される電力が前記導電炭素繊維に伝わることにより、前記複合構造を加熱して前記複合構造上における氷の形成を妨げるうえで十分な抵抗加熱をもたらすよう、接続される。
【0006】
さらに別の態様によると、本発明は、コントローラを有する被加熱航空機構造を提供し、前記コントローラは、前記航空機構造上における氷の存在を示す特徴を検出するセンサーから受信された信号に応答して、前記第1の電極に提供される電力を制御するよう動作可能である。
【0007】
さらに、本発明は、ポリアリールエーテルケトン類の半結晶性の熱可塑性材料を有した上層を有する被加熱航空機構造を提供する。さらに、本発明は、ポリアリールエーテルケトン類の半結晶性の熱可塑性材料を有した下層を有する被加熱航空機構造を提供する。
【0008】
さらに、本発明は、前記ヒーター層と、上層および下層の少なくとも一方とが、同様な熱可塑性材料を有する被加熱航空機構造を提供する。
【0009】
さらに別の態様によれば、本発明は、ポリアリールエーテルケトン類の半結晶性の熱可塑性材料を有したヒーター層と上層と下層とを有する被加熱航空機構造を提供する。
【0010】
さらに別の態様によれば、本発明は、上層を前記ヒーター層から絶縁する第1の絶縁層を有する被加熱航空機構造を提供する。同様に、本発明は、前記下層を前記ヒーター層から絶縁する第2の絶縁層を有する被加熱航空機構造も提供する。任意選択的に、前記第1および第2の絶縁層のどちらか一方または双方は、熱可塑性材料を有することができる。さらに、任意選択的に、前記第1の絶縁層は、前記熱可塑性材料内に埋め込まれた強化繊維を有する複合材料を有する。
【0011】
さらに別の態様によれば、本発明は、ヒーター層の熱可塑性材料内に埋め込まれた金属メッシュを有する第1の電極を含む被加熱航空機構造を提供する。
【0012】
さらに別の態様によれば、本発明は、エアフォイルの一部を形成する複合構造を有する被加熱航空機構造を提供する。
【0013】
さらに別の態様によれば、本発明は、ナセルの一部を形成する複合構造を有する被加熱航空機構造を提供する。
【0014】
さらに別の態様によれば、本発明は、複数の炭素繊維強化熱可塑性の薄膜を有した上層を有する被加熱航空機構造を提供する。同様に、本発明は、複数の炭素繊維強化熱可塑性の薄膜を有した下層を有することができる被加熱航空機構造を提供する。任意選択的に、前記ヒーター層、前記上層、および前記下層の各々の熱可塑性材料は、隣接する層の前記熱可塑性材料と融合する。
【0015】
別の態様によれば、本発明は、強化熱可塑性の上層と、強化熱可塑性の下層と、強化熱可塑性のヒーター層とで形成された複合構造を含む被加熱航空機構造を提供する。前記ヒーター層は、複数の導電性非金属繊維と、前記導電性非金属繊維に電気接続された第1の電極と、前記導電性非金属繊維に電気接続された第2の電極とを含み、前記導電性非金属繊維が前記第1の電極と当該第2の電極間に電気経路を提供するようになっている。センサーは、前記積層体上における氷の形成を示す特徴を検出し、前記センサーおよび電源に接続されたコントローラは、前記第1の電極に提供される電力を制御する。前記第1の電極および前記導電性非金属繊維は、前記第1の電極に供給される電力が前記導電性非金属繊維に伝わることにより、前記複合構造を加熱して前記複合構造上における氷の形成を妨げるうえで十分な抵抗加熱をもたらすよう、接続される。
【0016】
さらに別の態様によれば、本発明は、炭素繊維強化熱可塑性の上層と、炭素繊維強化熱可塑性の下層と、炭素繊維強化熱可塑性のヒーター層とを含む複合構造を提供する。前記ヒーター層は、複数の導電炭素繊維と、前記導電炭素繊維に電気接続された第1の電極と、前記導電炭素繊維に電気接続された第2の電極とを含むことができ、前記導電炭素繊維が前記第1の電極と当該第2の電極間に電気経路を提供するようになっている。前記第1の電極および前記導電炭素繊維は接続され、これにより前記第1の電極に供給される電力が前記導電炭素繊維を伝わり、少なくとも華氏50度、すなわち摂氏約30度の温度上昇を前記加熱層が達成するうえで十分な抵抗加熱をもたらすようにできる。任意選択で、前記加熱層の前記炭素繊維は前記第1の電極と接続され、これにより前記第1の電極に供給される電力が前記導電性の炭素繊維を伝わり、少なくとも華氏100度、すなわち摂氏約55度の温度上昇を前記加熱層が達成するうえで十分な抵抗加熱をもたらすようにできる。さらに、前記加熱層の前記炭素繊維は前記第1の電極と接続することができ、これにより前記第1の電極に供給される電力が前記導電炭素繊維を伝わり、少なくとも華氏200度、すなわち摂氏約110度の温度上昇を前記加熱層が達成するうえで十分な抵抗加熱をもたらすようにできる。
【0017】
別の態様によれば、本発明は、被加熱複合構造を形成する方法を提供する。本方法は、熱可塑性材料のマトリックス内に埋め込まれた複数の炭素繊維を提供する工程と、ヒーター層を形成するため、前記炭素繊維を第1および第2の電極と電気接続する工程とを含む。本方法は、さらに、前記熱可塑性材料のマトリックスの融点を超えて前記層を加熱する工程と、強化熱可塑性薄膜の複数の層を加熱する工程とを含む。前記薄膜内の熱可塑性材料は融点を有し、前記複数の層を加熱する工程は、前記薄膜内の前記熱可塑性材料の融点を超えて前記層を加熱する工程を有する。また、前記方法は、前記ヒーター層および前記複数の層の冷却後に前記ヒーターが前記複数の層に融合するよう、前記加熱された複数の層を、前記加熱された加熱層に付着させる工程を含む。
【0018】
さらに別の態様によれば、本発明は、複合構造を加熱する方法を提供する。本方法は、炭素繊維強化熱可塑性の層で形成された複合構造を提供する工程を含み、その場合、炭素繊維は第1および第2の電極と接続される。前記第1および第2の電極は電源に接続され、前記電源から前記第1の電極への電流は、電流が前記第1の電極から前記炭素繊維を通じて前記第2の電極に流れて、前記複合構造を加熱するうえで十分な抵抗加熱をもたらすよう制御される。
【0019】
さらに別の態様によれば、本発明は、複合構造を加熱する方法を提供し、前記制御工程は、前記複合構造を加熱して前記複合構造上における氷の形成を妨げるうえで十分な抵抗加熱をもたらすため、前記電流を制御する工程を有する。
【0020】
さらに別の態様によれば、本発明は、前記複合構造の温度を監視する工程と、前記監視工程に応答して電流を制御する工程とを含む方法を提供する。
【0021】
さらに別の態様によれば、本発明は、炭素繊維強化熱可塑性の上層と、炭素繊維強化熱可塑性の下層と、炭素繊維強化熱可塑性のヒーター層とを含む複合構造を提供する。前記上層、下層、およびヒーター層は、固結されて積層体を形成する。前記ヒーター層は複数の導電炭素繊維を有し、前記ヒーター層は、当該ヒーター層の前記導電炭素繊維が電源と接続可能であるよう構成され、これにより、当該ヒーター層の前記導電炭素繊維内を電気が流れることにより当該ヒーター層が前記積層体の少なくとも一部を少なくともおよそ華氏50度、すなわち摂氏30度加熱するうえで十分な抵抗加熱を提供できる。任意選択的に、前記構造は、前記積層体の外面上における氷の形成を示す特徴を検出するよう動作可能なセンサーを含む。また、前記構造は、任意選択的に、前記センサーおよび電源に接続されたコントローラであって、前記ヒーター層に提供される電力を制御するコントローラを含むことができる。さらに、前記構造は、任意選択的に、前記積層体内に埋め込まれて前記導電炭素繊維と電気的に接触した第1および第2の電極を含むことができ、これにより前記第1の電極に供給される電力が前記導電炭素繊維に伝わることにより、前記複合構造を加熱して前記複合構造上における氷の形成を妨げるうえで十分な抵抗加熱をもたらすようになっている。また、前記コントローラは、前記センサーから受信された信号に応答して、ヒーター層に提供される電力を制御するよう動作可能にできる。
【0022】
本明細書ではいくつかの実施形態および例示的な図面を例にとって方法および装置を説明するが、当業者であれば、進歩性のある一体型加熱要素付き航空機構造およびそのような航空機構造を作製する方法は、前記説明する実施形態または図面に限定されるものではないことが理解されるであろう。図面とその詳細な説明は、開示する特定の形態に実施形態を限定することを目的としたものではないことを理解すべきである。むしろ、添付の請求項で定義されている1若しくはそれ以上の動的に再構成可能な仕分けアレイを使って物品を仕分けする方法および装置の要旨の範囲に含まれる変更形態と、同等物と、代替形態とをすべて包含するよう意図されている。本明細書で使用する見出しのいずれも、単なる構成上のものであり、説明または特許請求の範囲を限定することを目的としたものではない。本明細書における表現「できる」または「場合がある」(may)は、強制的な意味合い(すなわち、しなければならないという意味)ではなく、許可的な意味合い(すなわち、可能性があるという意味)で使用される。本明細書における表現「を含む」は、「を含み、かつこれらに限定されない」ことを意味する。
【図面の簡単な説明】
【0023】
本発明の好適な実施例に関する以上の要約および以下の詳細な説明は、以下の添付の図面と併せて読むことにより最もよく理解される。
図1図1は、一体型の加熱アセンブリを備えた複合構造の図式的な斜視図である。
図2図2は、図1に例示した複合構造の加熱アセンブリの平面図である。
図3図3は、図1に例示した複合構造を実装したシステムを図式的に示したものである。
図4図4は、一体型の加熱アセンブリを実装した複合航空機構造の部分破断斜視図である。
図5図5は、図4に例示した複合航空機構造の分解斜視図である。
図6図6は、一体型の加熱アセンブリを実装した代替複合構造の分解斜視図である。
図7図7は、図6に例示した航空機構造の加熱層の平面図である。
図8図8は、図7に例示した加熱層の加熱ゾーンの平面図である。
図9図9は、図7に例示した加熱層の一部の斜視図である。
【発明を実施するための形態】
【0024】
ここで図面全般を参照し、特に図1~3を参照すると、一体型の加熱アセンブリを備えた複合構造を実装したシステムが全体として10で示されている。このシステムは、積層体20と、電源60と、前記積層体への給電を制御するコントローラ70とを含む。前記積層体は、構造的な層25、26と、加熱アセンブリ30とを含む。前記加熱層30は、当該構造に十分な熱を提供して前記積層体20の上面および/または下面を加熱するよう構成できる。
【0025】
ここで図1を参照し、以下、前記積層体20の細部を詳しく説明する。この積層体20は、構造的な層の中に埋め込まれた加熱要素30を含む。特に、前記加熱要素30は、上側の構造的な層25および下側の構造的な層26に挟持されている。前記上側および下側の構造的な層25、26は、それぞれ1若しくはそれ以上の複合薄膜が積層されたもので形成される。現在の例において、それぞれの構造的な層は、複数の複合薄膜を有する。各複合薄膜は、マトリックス材料に埋め込まれた強化要素を有する。用途に応じ、この強化要素は、いかなる種類の強化材料であってもよい。例として、この強化要素は、細長いストランド、またはガラスか炭素の繊維であってよい。例えば、例示的な炭素繊維は、連続的な高強度、高ひずみ速度のPAN系繊維で、トウは3,000本~12,000本である。特に、現在の例における強化要素は、Hexcel Corporation(米国コネチカット州Stamford)製のHEXTOW、例えばHEXTOW AS4Dの製品名で販売されている炭素繊維である。これらの強化繊維は表面処理でき、サイズ調整によりマトリックス材料との層間せん断特性を改良できる。ただし、これらの材料は例示的な材料として意図されたことを理解すべきである。前記積層体の使用環境に応じて他の材料も利用できる。
【0026】
前記強化要素は、マトリックス材料、例えばポリマーに埋め込まれる。用途に応じ、いかなる種類のポリマーも前記マトリックス材料に使用でき、これには非結晶性、結晶性、および半結晶性のポリマーが含まれる。現在の例において、前記マトリックス材料は熱可塑性材料、例えば熱可塑性エラストマーである。より具体的にいうと、前記熱可塑性材料は、半結晶性の熱可塑性物質である。特に、この熱可塑性材料は、ポリエーテルエーテルケトン(polyetheretherketone:PEEK)およびポリエーテルケトンケトン(polyetherketoneketone:PEKK)を含み、かつこれらに限定されないポリアリールエーテルケトン(polyaryletherketone:PAEK)類の熱可塑性ポリマーであってよい。
【0027】
上述のように、前記構造的な層25、26は1若しくはそれ以上の複合薄膜で形成され、これは炭素繊維強化熱可塑性材料であってよい。特に、前記薄膜は熱可塑性プリプレグであってよく、これはあらかじめ補強材に樹脂を含浸させた薄膜である。例えば、前記プリプレグは、繊維補強材を熱可塑性マトリックスでコーティングして製造された熱可塑性プリプレグであってよい。そのようなプリプレグ薄膜は、熱可塑性マトリックスの融点以上に当該薄膜を加熱して再加熱および再成形することができる。前記構造的な層25、26の形成に使用できるいくつかの例示的なプリプレグ材料は、これに限定されるものではないが、TenCate Advanced Composites USA(米国カリフォルニア州Morgan Hill)製のCETEX、例えばTC1200、TC1225、およびTC1320の製品名で販売されている材料を含む。TC1200は、炭素繊維強化半結晶性PEEK複合材料で、ガラス転移点(T)143℃/289゜F、融点(T)343℃/649゜Fである。TC1225は、炭素繊維強化半結晶性PAEK複合材料で、Tが147℃/297゜F、Tが305℃/581゜Fである。TC1320は、炭素繊維強化半結晶性PEKK複合材料で、Tが150℃/318゜F、Tが337℃/639゜Fである。
【0028】
再び図1を参照すると、前記積層体は、前記上側および下側の構造的な層25、26の間に設けられた加熱層30を有する。これらの構造的な層は、複合薄膜で形成され、構造的な荷重を担持するよう構成される。前記加熱層は構造的な荷重を担持するよう構成できるが、現在の例における加熱層30は、著しい構造的な荷重(該当する場合)を担持することなく前記積層体20を加熱するよう構成される。特に、この加熱層30は、当該構造に十分な熱を提供して前記積層体の上面22および/または下面23の温度を高めるよう構成される。
【0029】
前記加熱層30は、当該加熱要素として動作する1若しくはそれ以上の抵抗要素40に通電することにより、抵抗加熱を提供するよう構成される。その抵抗要素40は導電性であるが、電流が流れると十分な電気抵抗を提供して抵抗加熱をもたらす。当該加熱層30には種々の抵抗要素を実装可能できるが、現在の例において、前記抵抗要素は非金属要素で形成される。さらに、前記加熱要素は、前記構造的な層25、26の一方または双方の前記強化要素と同じかこれと実質的に同様なものにできる。例えば、現在の例において、前記抵抗要素40は炭素繊維である。具体的にいうと、前記抵抗要素40は炭素繊維、例えば、前記構造的な層25、26に関連して上述した前記連続的な高強度、高ひずみ速度のPAN系繊維である。
【0030】
図1~2を参照すると、前記抵抗要素40は、入力電極50および出力電極52と接続されている。この抵抗要素40は、これら第1および第2の電極50、52間に連続した経路を提供する。この抵抗要素40は、前記積層体20中で、当該積層体の長手方向に沿って、当該積層体の少なくとも一部を加熱するよう配向される。現在の例において、この抵抗要素40は炭素繊維であり、その繊維は当該積層体の長さ方向にわたり蛇行したパターンを形成するよう配向される。各抵抗要素は、前記積層体の長さおよび/または幅にわたり延長してよいが、現在の例において、前記抵抗要素は、前記積層体の長さの一部にわたり延長する。例えば、第1の抵抗要素40aは前記第1の電極50と接続された第1の端部42aと、前記第2の電極52と接続された第2の端部44aとを有する。同様に、付加的な抵抗要素40b、40cは、電極50、52間に延長する。
【0031】
以上の説明では、各抵抗要素40a、40b、40cを個別の要素として説明したが、各抵抗要素は複数の別個の抵抗要素を有してよいことを理解すべきである。特に、前記抵抗要素が炭素繊維の場合、各抵抗要素は、当該抵抗要素の長手方向に沿って延長する数百または数千の個別のストランドまたは繊維を有することができる。
【0032】
前記炭素繊維の抵抗要素40は、マトリックス材料に埋め込まれる。そのマトリックス材料は、前記積層体の他の層と加熱融合可能な熱可塑性材料であることが好ましい。前記加熱層のマトリックス材料を加熱溶融することにより、その加熱層は前記積層体と一体的に形成される。特に、現在の例において、前記加熱アセンブリは、前記構造的な層25、26を形成する複合材料と実質的に同様な複合材料で形成される。例えば、前記抵抗要素は炭素繊維で、前記マトリックス材料は熱可塑性材料、例えばポリアリールエーテルケトン(PAEK)類の半結晶性熱可塑性材料である。また、現在の例において、前記抵抗要素は、単一方向性の炭素繊維材料の薄膜から形成される。その単一方向繊維は、相互接続することにより前記第1の端部42から前記第2の端部44まで連続した抵抗要素を形成する複数のセグメントへと形成される。現在の例において、各抵抗要素の個々のセグメントは、導電要素、例えば銅により相互接続される。また、本実施形態では単一方向性の繊維を組み込んでいるが、前記抵抗要素は、導電材料でできた複数の連続ストランドまたは繊維で形成できることを理解すべきである。例えば、前記抵抗要素は、炭素繊維が直線状でなく図2に示した蛇行パターンのような曲線状要素を形成する、複数の連続した炭素繊維を有するようにできる。例えば、前記炭素繊維は波状の複合材料で形成でき、その場合、繊維は正弦波と同様な周期的な波のパターンで配置される。
【0033】
前記抵抗要素40が炭素繊維である場合、その炭素繊維は、当該炭素繊維と前記マトリックス材料の接合を改善するようサイジング剤でコーティングできる。ただし、サイジング剤は、傾向として炭素繊維を電気的に絶縁して前記電極50、52との電気接続を妨げる可能性がある。そのため、前記炭素繊維と前記電極の間で潜在的な電気接続点の数を増やす導電要素を利用することが望ましい場合もある。また、サイジング剤で覆われていない前記炭素繊維の端部に接触する可能性がより高い導電要素を利用することが望ましい場合もある。例えば、現在の例において、前記電極50、52は、導電性の金属メッシュ、例えば銅メッシュを有する。その金属メッシュは、各抵抗要素40の端部の長手方向に沿って複数の接点をもたらす。前記銅メッシュの構成は場合に応じて異なるが、そのメッシュは、当該メッシュの開いた部分(メッシュ1平方インチあたりの孔部分の面積)が当該メッシュの閉じた部分(メッシュ1平方インチあたりの銅部分の面積)を超えるよう構成されることが好ましい。また、当該メッシュの開いた部分は、約60%を超えるようにできる。一部の構成では、当該メッシュの開いた部分が、約70%を超えるようにできる。
【0034】
上述のように、前記加熱層30は、導電要素、例えば前記入力電極50および前記出力電極52に電気接続された複数の炭素繊維を有する。前記炭素繊維は、マトリックス材料、例えば熱可塑性材料に埋め込まれる。同様に、前記構造的な層25、26も、炭素繊維強化熱可塑性材料で形成できる。そのため、それらの構造的要素内の前記炭素繊維も導電性である。前記加熱層30の前記要素が前記構造的な層25、26内の前記炭素繊維と絶対に電気接続しないようにするため、前記積層体には、絶縁層を含めることができる。その絶縁層28は、前記加熱層30と前記構造的な層の間に設けられる。特に、前記積層体は、前記加熱層30の上面と前記上側の構造的な層25との間に第1の絶縁層28を、そして前記加熱層30の下面と前記下側の構造的な層26との間に第2の絶縁層28を含むことができる。前記絶縁層28は、前記構造的な層と、前記加熱層30の前記導電要素(例えば、抵抗要素40、入力電極50、出力電極52)とを電気的に絶縁する。
【0035】
前記絶縁層28は、いかなる種類の電気絶縁材料も有することができる。この絶縁層28は、熱可塑性材料を有することが好ましい。現在の例において、この絶縁層は、ガラス強化熱可塑性材料の1若しくはそれ以上の薄膜を有する。
【0036】
上記のように、前記構造的な層25、26、前記加熱層30、および前記絶縁層28は、それぞれ強化熱可塑性複合材料の層を有することができる。そのため、前記上側の構造的な層25、下側の構造的な層、前記加熱層、および任意の絶縁層は、それらの層を溶融させることにより一体的に連結できる。具体的にいうと、前記層は、十分な熱を加え、前記熱可塑性マトリックスの融点を超えるまで加熱し、十分な圧力を与えて前記層を一体的に融合させることにより固結できる。これにより、前記加熱層30は、前記積層体内で前記上側および下側の構造的な層25、26間に埋め込まれる。
【0037】
前記図における前記層の厚さは縮尺どおりではなく、一部のケースでは、単に例示目的で厚さが誇張されていることに注意すべきである。例えば、図1では、前記加熱層30が前記絶縁層28よりも厚いものとして示されている。しかし、当該加熱層30は、単に1枚の複合材料薄膜である場合もある。同様に、前記絶縁層が1枚の複合材料薄膜の場合もある。さらに、上述のように、各絶縁層28は、1若しくはそれ以上の薄膜を有することができる。また、前記構造的な層の厚さは、前記加熱層の厚さよりも著しく厚くすることができる。例えば、前記上側の層25を、強化複合材料の3若しくはそれ以上の薄膜から形成して、前記構造的な層が前記加熱層の厚さよりも実質的に厚くなるようにできる。また、図2に示すように、前記加熱層30は、必ずしも、図1に示すような、前記積層体の全長および全幅にわたり延長する連続した層でなくてもよい。その代わり、前記加熱層30は、前記絶縁層28内に埋め込むことができる。
【0038】
ここで図3を参照すると、上述のように前記被加熱積層体20は、制御された加熱を提供するシステム内に実装できる。このシステムは、被加熱積層体20にコントローラ70を通じて接続された電源60を内蔵している。前記コントローラは、任意の種類の電子コントローラであって、P、PD、PI、PIDコントローラまたはマイクロプロセッサを含み、かつこれらに限定されない。前記被加熱積層体の前記電極50、52は、前記コントローラ70が当該積層体への電流を制御するよう、前記コントローラと接続される。信号に応答し、前記コントローラ70は、前記加熱アセンブリ30と前記電源間の回路を閉じて、前記加熱層をオンにする。同様に、信号に応答し、当該コントローラは、前記加熱層と前記電源の接続を切り離して、前記加熱層をオフにする。同様に、当該コントローラは、電力の特徴を増減させ、例えば前記加熱層に供給される電流を増減させるよう構成できる。
【0039】
前記コントローラは、種々の制御に基づき、前記加熱アセンブリへの電流を制御できる。例えば、前記システムは、手動で操作可能なスイッチを含むようにでき、そのスイッチの作動に応答して前記コントローラが当該システムを制御するようにできる(すなわち、前記加熱層30は、前記スイッチがオンのときは前記電源に接続され、前記スイッチがオフのときは前記電源から切り離される)。また、前記システム10は、フィードバックループを含むようにでき、そのフィードバックに応答して前記コントローラが当該システムを制御するようにできる。例えば、前記システムは、前記アセンブリの特徴を検出するために使用されるセンサーを含むことができ、前記コントローラは、前記検出された特徴に応答して前記加熱層の操作を制御できる。例示的なセンサーは、前記積層体20上における氷の形成を示す特徴を検出するセンサーである。例えば、前記システムは、氷検出器、例えば前記積層体、例えば前記上面22における氷の存在を検出するよう構成された光学トランスデューサ・プローブを含むことができる。前記氷検出器は、前記コントローラに接続されて、氷の存在を示す信号を前記コントローラに提供する。信号が氷の存在を示す場合、前記コントローラは前記加熱層30を前記電源に接続して、前記加熱層をオンにする。同様に、前記コントローラは、氷がないことを示す信号を前記センサー75から受け取ると、前記加熱層を前記電源から切り離して、前記加熱層をオフにする。
【0040】
上述のように構成された前記システムは、航空機構造の1若しくはそれ以上の表面の温度を高めて、当該航空機構造上における氷の形成を妨げ、または当該航空機構造上に形成された氷を解かすよう構成することができる。具体的にいうと、前記第1の電極および前記導電性の炭素繊維は接続され、これにより前記第1の電極に供給される電力が前記導電性の炭素繊維を伝わり、少なくとも華氏50度、すなわち摂氏約30度の温度上昇を前記加熱層が達成するうえで十分な抵抗加熱をもたらすようにできる。任意選択で、前記加熱層の前記炭素繊維は前記第1の電極と接続され、これにより前記第1の電極に供給される電力が前記導電性の炭素繊維を伝わり、少なくとも華氏100度、すなわち摂氏約55度の温度上昇を前記加熱層が達成するうえで十分な抵抗加熱をもたらすようにできる。さらに、前記加熱層の前記炭素繊維は前記第1の電極と接続することができ、これにより前記第1の電極に供給される電力が前記導電性の炭素繊維を伝わり、少なくとも華氏200度、すなわち摂氏約110度の温度上昇を前記加熱層が達成するうえで十分な抵抗加熱をもたらすようにできる。
【0041】
前記被加熱積層体20は、種々の工程を使って形成できる。ここで、複数の強化熱可塑性層から前記被加熱積層体を形成する工程を詳述する。
【0042】
炭素繊維強化熱可塑性テープの複数の層が順次上から敷かれて、下側の構造的な層26を形成する複数の層を形成する。この層内の繊維配向には変化が加えられる。例えば、この底部の層は、0、+45°、90°、-45°に配向された4つの層で形成できる。次に、ガラス繊維強化熱可塑性材料の1若しくはそれ以上の層が、前記底部の4層の上に敷かれる。細長い導電金属ストリップの形態をした、例えば金属メッシュの2つの電極が、互いに離間され、第1の端部から第2の端部へ向かって延長するようにガラス繊維層上に構成される。前記抵抗要素30を形成する前記炭素繊維強化熱可塑性テープが、次いで前記ガラス繊維層の上に重ね合わされ、これにより前記炭素繊維テープの一端が前記銅メッシュの第1の長さに重なり合い、前記炭素繊維テープの第2の端部が前記銅メッシュの第2の長さに重なり合うようにされる。また、前記炭素繊維テープをつなぎ合わせて蛇行パターンを形成し、隣接しあう炭素繊維テープ片の接合部の上に金属メッシュが重なるようにして、連続した電気的経路を形成することができる。前記下側のガラス繊維層および前記銅メッシュの上に前記加熱要素が構成されると、2層のガラス繊維強化熱可塑性材料が前記加熱要素の上に敷かれる。前記底部の4層と同様な4層の炭素繊維テープが、次に前記ガラス繊維層の上に敷かれる。炭素繊維熱可塑性テープの最上層は、前記上側の構造的な層を形成する。前記下側の構造的な層のように、前記上側の構造的な層の諸層におけるこの繊維の配向には変化が加えられる。例えば、前記上側の層は、0、+45°、90°、-45°に配向された4つの層で形成できる。この例示的な積層体では、前記上側の構造的な層、前記加熱層、および前記下側の構造的な層の前記炭素繊維層は、PEEK/AS4炭素繊維強化単一方向テープで形成され、前記絶縁層は、PEEK/S2ガラス繊維強化熱可塑性単一方向テープで形成される。
【0043】
前記積層体は、次いで前記組み立てられた層を圧力下で加熱して固結させる。例えば、このアセンブリは、その融点を超える温度まで加熱される。次に圧力が取り除かれ、前記固結した積層体が周囲温度に冷却される。
【0044】
このような工程により形成された積層体は、次いで電源に接続された。特に、28 VDC 8アンペアの電源が前記積層体に接続された。前記積層体に供電すると、前記加熱要素は、前記入力電極と出力電極間で25Vの電圧低下をもたらすうえで十分な抵抗を提供した。その結果得られた抵抗加熱により、華氏230°の温度上昇が得られた。この温度上昇では、前記積層体のマトリックス材料のガラス転移点に届かず、融点よりも著しく低かった。
【0045】
以上の説明において、前記積層体は、フラットパネル積層体として説明されている。ただし、本発明はフラットパネル構造に限定されないことを理解すべきである。例えば、前記被加熱積層体は、種々の構造で種々の分野において使用でき、航空宇宙分野においては種々の構成要素用に防氷システムを提供するという特定の用途を有することができ、前記種々の構成要素は、機体、ナセル、およびエアフォイル、例えば翼、エレベーターなどを含み、かつこれらに限定されない。上記の前記積層体20は、湾曲構造に形成して、上述のシステム10と同様なシステムに実装することにより、被加熱積層体構造を提供できる。
【0046】
例えば、航空機構造を形成する例示的な積層体120を図4~5に例示した。以下さらに説明する点を除き、本積層体120の特徴は、上述した積層体20の特徴と同様である。この例示した積層体120は、ジェットエンジンのエアインテーク周囲で前縁を形成するナセルの部分を形成する。この積層体120は、当該構造の前縁を加熱層130が上から包み込むよう形成される。特に、この積層体は、頂部121と、上方の面122と、下方の面123とを有した凸状の曲線を有する。
【0047】
前記積層体120は、上記の積層体20と同様に形成される。特に、当該積層体は、複数の強化複合薄膜で形成された上側の構造的な層125と、複数の強化複合薄膜で形成された下側の構造的な層126とを含む。加熱層130は、前記上側および下側の構造的な層125、126間に埋め込まれる。また、上側の電気絶縁層128は、前記加熱層と前記上側の構造的な層との間に設け、下側の電気絶縁層は、前記加熱層と前記下側の構造的な層との間に設けることができる。前記加熱層は、入力電極150と出力電極152間に電気的経路を形成する複数の抵抗要素を有する。この加熱層は、任意の種類の要素であってよく、現在の例において、この加熱層は、非金属導電要素、例えば炭素繊維で形成される。
【0048】
前記加熱層は、本積層体の前記上方の面または下方の面のどちらか一方に重なり合うよう構成できるが、現在の例において、当該加熱層は、前記上方の面および下方の面の双方と重なり合うよう構成される。より具体的にいうと、この加熱層130は、前記抵抗要素140の一部が前記上方の面に重なり合うよう前記薄膜内に構成される。また、前記抵抗要素は、当該抵抗要素の一部が前記曲線の前記頂部121上に延長したのち、前記下方の面123の上へと延長するよう構成される。このように、前記加熱要素は、前記ナセルの前記前縁を包み込む。
【0049】
前記ナセルの層は固結されて、当該積層体内に埋め込まれた前記加熱層と一体型の積層体を形成する。例えば、当該積層体120は、この積層体が前記組み立てられた層を高温圧力下で加熱することにより固結されるよう、上述した強化熱可塑性複合材料で形成できる。
【0050】
上述のように、図3に例示したシステムでは、図3に例示した複合要素20の代わりに、図4~5に例示した複合要素120を実装できる。同様に、図6~9は、図3に例示したシステムにおいて複合要素20の代わりに実装できる代替複合要素220を例示している。適宜、複合要素220について以下詳述する。
【0051】
前記複合要素220は、上側の構造的な層225と、下側の構造的な層226と、前記上側の構造的な層225および前記下側の構造的な層226間に設けられた加熱層230とを含むことができる。前記上側および下側の構造的な層225、226の構造は場合により異なる。特に、これらの構造的な層225、226は、強化複合材料、例えば炭素繊維またはガラス繊維強化材料の1若しくはそれ以上の層で形成できる。現在の例において、これらの構造的な層225、226は、同じ材料で形成される。例えば、現在の例では、炭素繊維強化熱可塑性テープの複数の層が順次上から重ねられて、下側の構造的な層226を形成する複数の層を形成する。この層内の繊維配向には変化が加えられる。例えば、この底部の層は、0、+45°、90°、-45°に配向された炭素繊維強化熱可塑性材料の4つの層で形成できる。前記上側の構造的な層225は、前記下側の層226と同様に形成できる。前記加熱層240は、炭素繊維強化熱可塑性材料で形成された1若しくはそれ以上の抵抗要素240を有する。この抵抗要素は、前記構造的な層225、226を形成した材料と実質的に同様な炭素繊維強化熱可塑性材料で形成することが好ましい。
【0052】
前記加熱層230は、複数の抵抗要素から成る。上記のとおり、この加熱層は、単一の抵抗要素40、140で形成できる。あるいは、前記加熱層230に、個別に制御できる複数の加熱ゾーンを含めることもできる。例えば、図6~9で例示した実施形態において、前記加熱層230は、3つの加熱ゾーン250、270、および290を含む。以下さらに説明するように、前記加熱層240は複数の層を有し、前記3つの加熱ゾーンは、当該加熱層内の2つの異なる層に散在する。ただし、前記加熱層は、単一の層であっても2より多くの層であってもよいことを理解すべきである。
【0053】
ここで図7~8を参照しながら、前記加熱層の細部について詳しく説明していく。図8は、前記加熱要素の第1のゾーン250の細部を最も明瞭に例示したものである。この第1のゾーンは、複数の導電要素265、266間に延長する1若しくはそれ以上の抵抗要素255を含む。この抵抗要素255の数は場合により異なるが、現在の例において、当該第1のゾーン250は、255A~255Eで示す5つの抵抗要素を含む。当該抵抗要素は、種々の構成を有することができるが、現在の例において、各抵抗要素255A~255Eは実質的に同様で、実質的に同様な抵抗値を有する。このように、抵抗要素255に関する以下の説明は、抵抗要素255A~255Eの各々にあてはまる。
【0054】
抵抗要素255は、3つのセクション、すなわち第1の端部におけるリード257と、第2の端部におけるテール258と、前記リードと前記テール間に延長する本体部260とを有する。前記リード257は、導電要素265と電気接続を形成し、前記テールは、導電要素266と電気接続を形成する。前記本体は、前記リードと前記テール間に電気経路を提供する。特に、前記本体260は、この本体に電流が流れたときに前記加熱層230の温度を上昇させるうえで十分なジュール熱を提供するのに十分な抵抗を有した電気経路を提供する。
【0055】
前記抵抗要素255は、任意の種類の構成で構成できる。例えば、前記本体260は、前記第1の導体265と前記第2の導体266間に延長する全体的に直線状または線状の本体とすることができる。このように、ゾーン1は、前記第1の導体265と前記第2の導体266間に延長する複数の直線状の抵抗要素を有することができる。ただし、現在の例において、前記抵抗要素255の本体260は、各加熱要素の実効加熱面積を増やすよう複雑な経路を有する。具体的にいうと、前記本体260は、複数のレッグ(区間)を有する蛇行した構成を有することができる。特に、この蛇行経路は、複数の全体的または実質的に平行なレッグを含むことができる。この蛇行経路は、前記リード257と前記テール258間のどこにおいても、前記本体の当該蛇行経路がそれ自体と交差し、または重なり合うことがないよう、単一の層内または薄膜内に制約されることが好ましい。すなわち、前記本体260は、当該本体の長手方向に沿って実質的に一定の公称厚さを有することができる。また、前記本体は複雑な往復経路を形成できるが、当該本体がそれ自体と交差して、当該本体の前記公称厚さの2倍の厚さを前記抵抗要素が有する点または面積を形成することはない。
【0056】
前記抵抗要素255は、前記第1および第2の導電要素255、265間で並列に接続されることが好ましい。これにより、前記加熱要素230の前記第1のゾーン250は第1の回路を有し、この第1の回路では、前記導体265が第1のリードまたは電極を形成し、前記第2の導体266が第2のリードまたは電極を形成し、前記抵抗要素がこれら2つの電極を電気接続する。前記2つの電極265、266は電源に接続され、電流は前記抵抗要素255を流れて、ジュール熱による加熱を生じる。図8に例示した実施形態において、前記抵抗要素は、前記2つの導電要素265、266間の連続した電気経路である。特に、前記抵抗要素は、複数の連続した単一方向の炭素繊維を有して、複雑な電気的経路、例えば蛇行経路を、前記第1の電極265と前記第2の電極266間に形成する。現在の例において、前記炭素繊維は、熱可塑性材料のマトリックスに埋め込まれる。より具体的にいうと、前記炭素繊維は、前記構造的な層の前記マトリックス材料を形成する熱可塑性材料と実質的に同じ熱可塑性樹脂に埋め込まれることが好ましい。例えば、前記抵抗要素は、幅狭の単一方向テープ、例えば幅0.12インチのAS4D/PAEK単一方向プリプレグ・テープで形成できる。例示的な単一方向炭素繊維テープは、上記で参照した、Tencateから販売されているTC1225である。
【0057】
特に、前記抵抗要素255は、前記材料内の炭素繊維が実質的にすべて平行になるよう、単一方向性の材料を有することが好ましい。より具体的にいうと、実質的にすべての前記炭素繊維は、実質的にすべての当該炭素繊維が前記抵抗要素255の全長にわたり前記リード257から前記テール258まで延長するよう、第1の端部および第2の端部を有することが好ましい。この文脈において、実質的にすべての前記炭素繊維とは、前記抵抗要素中の前記炭素繊維の少なくとも90%を意味する。
【0058】
前記抵抗要素255は、熱により複雑な形状に形成されて、前記単一方向繊維テープを形成する。具体的には、ある長さの単一方向テープを十分な温度に加熱して、前記熱可塑性材料を軟化させる。例えば、前記テープの熱可塑性マトリックス材料のガラス転移点Tを超える温度まで、前記テープを加熱する。さらに、前記ガラス転移点よりも著しく高い温度、例えば前記熱可塑性マトリックス材料の融点Tmまたはそれ以上の温度まで、前記テープを加熱することが望ましい場合がある(前記熱可塑性材料に融点がある場合)。PAEKまたはPEEK熱可塑性樹脂の例では、約300℃を超えて前記テープを加熱することができる。Tmを超えて前記テープを加熱した時点で、前記テープを複雑な形状をもたらす型に巻き付ける。このように形成すると、前記抵抗要素は、それ自体に交差しない複雑な経路を形成し、前記抵抗要素がその全長にわたり、前記テープの単一厚さと実質的に同じになるようにできる。前記テープは、前記複雑な形状に形成されたのち、前記ガラス転移点より低い温度まで冷却される。
【0059】
上述のように、前記抵抗要素255は、電気的経路を提供する。前記炭素繊維は単一方向性であるため、前記電気的経路は、前記第1の電極265から前記第2の電極266まで前記抵抗要素の構成に沿ったものとなる。例えば、図8に示すように、各抵抗要素は、複雑な経路、例えば蛇行経路に沿ったものとなる。前記抵抗要素255は、前記蛇行経路に沿って前記リード257から前記テールまで延長する中心軸を有する。前記抵抗要素中の前記炭素繊維は、前記中心軸に沿う。すなわち、前記抵抗要素中の前記炭素繊維のすべてまたは実質的にすべては、互いに実質的に平行であり、前記中心軸に実質的に平行である。
【0060】
前記抵抗要素255は、前記抵抗要素の前記炭素繊維が前記導電要素265、266に電気接続されるよう、前記導電要素に接続される。より具体的にいうと、前記導電要素は、前記炭素繊維の炭素に直接接触する。特に、前記炭素繊維は、サイジングと呼ばれるコーティングを有する場合があることに注意すべきである。前記導電要素265、266は、前記炭素繊維が前記導電要素265、266間に電気的経路をもたらすよう、前記炭素繊維に直接接触することが好ましい。より具体的にいうと、前記炭素繊維がサイジング(例えば、前記炭素繊維と前記熱可塑性樹脂の接合を促進するコーティング)を含む場合、そのサイジングは、前記炭素繊維よりも著しく導電性が低いため、前記炭素繊維は、前記抵抗要素の前記第1の導体と前記第2の導体間を流れる電流の少なくとも大半、好ましくは実質的にすべてを伝導するようにできる。
【0061】
前記第1のゾーン250の例示的構成で上述のように構成された各抵抗要素255A~255Eは、約46オームの抵抗を提供する。これにより、100ボルトのACにおける前記第1のゾーンの公称ワット値は、約1100ワットである。そのため、前記加熱要素230は、前記要素220の前記熱可塑性マトリックス材料のガラス転移点を超えて当該要素220の温度を上昇させることなく、上側の構造的な層225の外面の表面温度を高めるうえで十分なジュール熱を提供する。
【0062】
ここで図7を参照し、第2および第3の加熱ゾーン270、290を詳しく説明していく。前記第2の加熱ゾーン270は、前記第1の加熱ゾーン250と実質的に同様に構成される。具体的にいうと、前記第2の加熱ゾーン270は、複数の抵抗要素275A~275Eを有する。前記抵抗要素275は、それぞれ第3の導電要素285に電気接続されたリード277と、第4の導電要素286に電気接続されたテールとを含む。前記抵抗要素275A~275Eは、前記2つの導電要素285、286間で並列に接続されることが好ましい。
【0063】
前記抵抗要素275A~275Eは、前記第1の加熱ゾーン250の前記抵抗要素255A~255Eと実質的に同一に形成できる。ただし、前記第2の加熱ゾーンの前記抵抗要素の構成を変えて、当該第2の加熱ゾーンの加熱特性を変えることが望ましい場合もある。例えば、現在の例において、前記抵抗要素275は、抵抗要素255よりも実質的に長い。特に、前記抵抗要素275の本体280は、前記抵抗要素255の本体260の約2倍の長さにすることができる。これにより、前記抵抗要素275が前記抵抗要素255と同じ材料で形成される場合、前記抵抗要素275は、前記抵抗要素255よりも実質的に高い抵抗を有することになる。これにより、同じ電圧では、前記第2のゾーンの公称ワット値は、前記第1のゾーン250の公称ワット値よりも著しく低くなる。例えば、100ボルトACにおいて、前記第1の加熱ゾーンのワット値が約1100ワットであるのに対し、前記第2の加熱ゾーンのワット値は約800ワットになる場合がある。
【0064】
図7は、さらに前記第3の加熱ゾーン290を例示しており、この第3の加熱ゾーン290は、前記第4の導電要素286および第5の導電要素287に並列接続された複数の抵抗要素295A~295Eを含む。前記抵抗要素295A~295Eは、抵抗要素275A~275Eと異なる態様で構成できるが、現在の例において、抵抗要素295A~295Eは、抵抗要素275A~275Eと実質的に同一である。
【0065】
図7に示したように、前記第1の加熱ゾーン250は、前記第2および第3の加熱ゾーン270、290とは別個の層上にある。特に、これら3つの加熱ゾーンは、各抵抗要素255A~255Eの前記本体260が前記第2および第3の加熱ゾーンの下に配置されることにより、各抵抗要素275、295の前記本体が、前記第1の加熱ゾーンの各抵抗要素の前記本体260の上に重ならないよう構成される。これにより、前記第2および第3の加熱ゾーンにより提供される前記加熱領域は、前記第1の加熱ゾーンにより生成される前記加熱領域とは実質的に重なり合わない。
【0066】
図7に示すように、前記加熱要素の異なる層は、絶縁層により分離される。例えば、前記第1の加熱ゾーン250を有する前記層と、前記第2および第3の加熱ゾーンを有する前記層との間には、1若しくはそれ以上の絶縁層を配置することができる。特に、ガラス繊維強化熱可塑性材料で形成した絶縁層を前記第1の加熱ゾーンの上に重ねると、前記第1の抵抗要素255を、前記第2および第3の抵抗要素275、295から電気的に絶縁できる。前記絶縁層は、上記のようにS2 PEEK層で形成できる。
【0067】
前記積層体220は、前記組み立てた層225、226、230を圧力下で加熱することにより固結される。例えば、このアセンブリは、その融点を超える温度まで加熱される。次に圧力が取り除かれ、前記固結した積層体が周囲温度に冷却される。
【0068】
このような工程により形成された積層体を、次に電源に接続することにより、図3に示した前記回路と同様な回路が作製される。ただし、図6~9の前記積層体220は、3つの加熱ゾーンを含み、前記回路は、前記3つの加熱ゾーンの各々に供給される電力を制御する1若しくはそれ以上のスイッチを含むことができる。それらのスイッチにより、前記3つの加熱ゾーン250、270、290のうち1若しくはそれ以上に個別に供電することができる。例えば、図6~9に例示した前記積層体が航空機構造内に形成される場合、前記異なる加熱ゾーンは、その航空機構造の異なる部分を加熱するよう配置構成することができる。エアフォイルの場合、そのエアフォイルは、前縁、上面、および下面を有する。前記3つの加熱ゾーンは、前記第1の加熱ゾーン250が前記エアフォイルの前記前縁の上から重なり、前記第2の加熱ゾーンが前記エアフォイルの前記上面の上から重なり、前記第3の加熱ゾーンが前記エアフォイルの前記下面の上から重なるように配置できる。そのような構成において、前記3つの加熱ゾーン250、270、290の前記抵抗要素は、前記積層体の1若しくはそれ以上の表面の温度を、少なくとも華氏50度すなわち摂氏約30度高めるうえで十分な加熱を提供するよう構成される。例えば、前記第1の加熱ゾーンは、前記前縁の外面の温度を少なくとも華氏約50度すなわち摂氏約30度高めるよう配向して構成できる。同様に、前記第2のゾーンは前記上面を加熱でき、前記第3のゾーンは前記下面を加熱できる。
【0069】
前記システムは、複数のセンサーを含むこともできる。例えば、前記システムは、第1の領域の特徴を検出する第1のセンサーと、第2の領域の特徴を検出する第2のセンサーと、第3の領域の特徴を検出する第3のセンサーとを含むことができる。前記3つのセンサーから受信された信号に基づき、当該システムは、前記3つの加熱ゾーンのそれぞれに供給される電力を独立して制御できる。一例において、前記第1のセンサーは、前記前縁上における氷の存在を検出し、前記システムは、前記第1のセンサーからの信号に応答して前記第1の加熱ゾーンに供給される電力を制御する。特に、前記第1のセンサーが氷の存在を示す特徴を検出した場合、前記システムは、前記第1の加熱ゾーンに供給される電力を増やして、前記前縁の温度を高めることができる。また、前記システムは、前記前縁に氷が存在しないことを示す特徴を前記第1のセンサーが検出した場合、前記第1の加熱ゾーンに供給される電力を低減し、または止めることにより、前記第1の加熱ゾーンに供給される電力を制御することができる。このように、前記システムは、前記第1のゾーンの加熱を制御して前記前縁の温度を増減させることにより、前記前縁上において氷の形成を妨げ若しくはすでに形成された氷を解かすことができる。同様に、前記第2のセンサーから受信された信号に応答して、前記システムは、前記第2の加熱ゾーンに供給される電力を制御して、前記上面上において氷の形成を妨げ若しくはすでに形成された氷を解かすことができる。さらに、前記第3のセンサーから受信された信号に応答して、前記システムは、前記第3の加熱ゾーンに供給される電力を制御して、前記下面上において氷の形成を妨げ若しくはすでに形成された氷を解かすことができる。
【0070】
当業者であれば、本発明の要旨を変更しない範囲で上記実施形態を変更または修正できることが理解されるであろう。したがって、本発明は本明細書に説明した特定の実施形態に限定されず、添付の請求項に記載した本発明の要旨に含まれるすべての変更形態を含むよう意図されていると理解すべきである。
【符号の説明】
【0071】
10...システム
20...積層体
20...複合要素
20...被加熱積層体
22...下面
25...上側の構造的な層
26...下側の構造的な層
28...絶縁層
28...第1の絶縁層
28...第2の絶縁層
30...加熱アセンブリ
30...加熱層
40...抵抗要素
40a...第1の抵抗要素
40b...抵抗要素
40c...抵抗要素
42a...第1の端部
44a...第2の端部
50...入力電極
50...第1の電極
52...出力電極
52...第2の電極
60...電源
70...コントローラ
75...センサー
120...積層体
120...複合要素
121...頂部
122...上方の面
123...下方の面
125...上側の構造的な層
126...下側の構造的な層
128...上側の電気絶縁層
130...加熱層
140...抵抗要素
150...入力電極
152...出力電極
220...複合要素
225...上側の構造的な層
226...下側の構造的な層
230...加熱層
250...第1のゾーン
255...抵抗要素
255A~255E...抵抗要素
257...リード
258...テール
260...本体部
260...本体
265...導電要素
265...電極
265...第1の導体
266...導電要素
266...電極
266...第2の導体
270...第2の加熱ゾーン
275A~275E...抵抗要素
277...リード
280...本体
285...第3の導電要素
286...第4の導電要素
287...第5の導電要素
290...第3の加熱ゾーン
295A~295E...抵抗要素
図1
図2
図3
図4
図5
図6
図7
図8
図9
【外国語明細書】