IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧

特開2023-7250機器状態監視装置、風力発電システムおよび機器状態監視方法
<>
  • 特開-機器状態監視装置、風力発電システムおよび機器状態監視方法 図1
  • 特開-機器状態監視装置、風力発電システムおよび機器状態監視方法 図2
  • 特開-機器状態監視装置、風力発電システムおよび機器状態監視方法 図3
  • 特開-機器状態監視装置、風力発電システムおよび機器状態監視方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023007250
(43)【公開日】2023-01-18
(54)【発明の名称】機器状態監視装置、風力発電システムおよび機器状態監視方法
(51)【国際特許分類】
   G01M 99/00 20110101AFI20230111BHJP
   G01R 23/16 20060101ALI20230111BHJP
   G01R 23/173 20060101ALI20230111BHJP
   G01H 17/00 20060101ALI20230111BHJP
【FI】
G01M99/00 A
G01R23/16 C
G01R23/173 F
G01H17/00 A
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021110372
(22)【出願日】2021-07-01
(71)【出願人】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110001807
【氏名又は名称】弁理士法人磯野国際特許商標事務所
(72)【発明者】
【氏名】大野 耕作
(72)【発明者】
【氏名】平野 正博
【テーマコード(参考)】
2G024
2G064
【Fターム(参考)】
2G024AD01
2G024AD23
2G024BA11
2G024CA13
2G024FA04
2G024FA06
2G024FA11
2G064AA01
2G064AA11
2G064AB01
2G064AB02
2G064AB22
2G064BA02
2G064BD02
2G064CC41
2G064DD02
(57)【要約】
【課題】機器状態を適切に監視できる機器状態監視装置を提供する。
【解決手段】監視対象機器10が発生した振動の周波数スペクトラムSP1を出力する周波数分析部31と、前記監視対象機器10の状態に関する周波数である特徴周波数の強度と、前記特徴周波数の側帯波周波数の強度と、を抽出する強度抽出部32と、前記特徴周波数fcの強度に対応する強度対応値と、前記側帯波周波数の強度に対応する強度対応値と、を用いて所定の演算を行う信号演算部33と、を機器状態監視装置100に設けた。
【選択図】図1
【特許請求の範囲】
【請求項1】
監視対象機器が発生した振動の周波数スペクトラムを出力する周波数分析部と、
前記監視対象機器の状態に関する周波数である特徴周波数の強度と、前記特徴周波数の側帯波周波数の強度と、を抽出する強度抽出部と、
前記特徴周波数の強度に対応する強度対応値と、前記側帯波周波数の強度に対応する強度対応値と、を用いて所定の演算を行う信号演算部と、を備える
ことを特徴とする機器状態監視装置。
【請求項2】
前記周波数スペクトラムにおいて強度のピークが生じる周波数を検出し、検出結果に基づいて前記特徴周波数および前記側帯波周波数を決定するピーク検出部をさらに備える
ことを特徴とする請求項1に記載の機器状態監視装置。
【請求項3】
前記監視対象機器は一または複数の回転軸を備えるものであり、
前記側帯波周波数は、前記特徴周波数に対して、前記回転軸の回転周波数の整数倍を増減した周波数である
ことを特徴とする請求項1または2に記載の機器状態監視装置。
【請求項4】
前記監視対象機器が発生した振動を、所定の収集条件に基づいて収集する信号収集部をさらに備える
ことを特徴とする請求項1ないし3の何れか一項に記載の機器状態監視装置。
【請求項5】
前記監視対象機器は、風力発電システムの一部である
ことを特徴とする請求項1ないし4の何れか一項に記載の機器状態監視装置。
【請求項6】
監視対象機器と、
前記監視対象機器が発生した振動の周波数スペクトラムを出力する周波数分析部と、
前記監視対象機器の状態に関する周波数である特徴周波数の強度と、前記特徴周波数の側帯波周波数の強度と、を抽出する強度抽出部と、
前記特徴周波数の強度に対応する強度対応値と、前記側帯波周波数の強度に対応する強度対応値と、を用いて所定の演算を行う信号演算部と、を備える
ことを特徴とする風力発電システム。
【請求項7】
監視対象機器が発生した振動の周波数スペクトラムを出力する周波数分析過程と、
前記監視対象機器の状態に関する周波数である特徴周波数の強度と、前記特徴周波数の側帯波周波数の強度と、を抽出する強度抽出過程と、
前記特徴周波数の強度に対応する強度対応値と、前記側帯波周波数の強度に対応する強度対応値と、を用いて所定の演算を行う信号演算過程と、を有する
ことを特徴とする機器状態監視方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機器状態監視装置、風力発電システムおよび機器状態監視方法に関する。
【背景技術】
【0002】
本技術分野の背景技術として、下記特許文献1の要約には、「異常診断方法は、回転速度信号および軸受設計諸元に基づき算出された軸受の損傷に起因した基本周波数と高調波周波数の各々に主モニタリング帯域を設定し(S3)、測定データに対して周波数分析を実行し、基本周波数および高調波周波数の各々における主モニタリング帯域での周波数成分のパワーの合計を示す第1の値Σmと、主モニタリング帯域以外の副モニタリング帯域での周波数成分のパワーの合計を示す第2の値Σoとを用いて、診断対象の軸受の異常を判定する(S5~S9)。」と記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2019-86349号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上述した技術に対して、機器状態を一層適切に監視したいという要望がある。
この発明は上述した事情に鑑みてなされたものであり、機器状態を適切に監視できる機器状態監視装置、風力発電システムおよび機器状態監視方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
上記課題を解決するため本発明の機器状態監視装置は、監視対象機器が発生した振動の周波数スペクトラムを出力する周波数分析部と、前記監視対象機器の状態に関する周波数である特徴周波数の強度と、前記特徴周波数の側帯波周波数の強度と、を抽出する強度抽出部と、前記特徴周波数の強度に対応する強度対応値と、前記側帯波周波数の強度に対応する強度対応値と、を用いて所定の演算を行う信号演算部と、を備えることを特徴とする。
【発明の効果】
【0006】
本発明によれば、機器状態を適切に監視できる。
【図面の簡単な説明】
【0007】
図1】第1実施形態による風力発電システムの要部のブロック図である。
図2】第1実施形態において得られる周波数スペクトラムの一例を示す図である。
図3】第2実施形態による風力発電システムの要部のブロック図である。
図4】第2実施形態において得られる周波数スペクトラムの一例を示す図である。
【発明を実施するための形態】
【0008】
[実施形態の前提]
自動で運転制御されるプラント機器の中には、ほぼ無人状態で運用されるシステムも存在し、このような場合には、設備点検員に代わって機器の健全性を診断する計測装置の必要性が高い。
例えば、一般的な風力発電システムにおいて、発電運転は自動制御されるため、運転員を兼ねた設備点検員が機械室内に留まって、機器の運転状態を確認することは少ない。このような場合、機器の健全性を評価する計測装置をシステムに予め組み込み、運転中の機器の状態を計測し、システムから離れた監視所に計測結果を伝送して、運転状態が正常であるか否かを評価することがある。
【0009】
このような計測装置では、例えば回転軸を支持する転がり軸受の振動を計測し、軸受が発生する特徴的な振動の周波数成分を分離抽出し、その時間変化を監視することにより、軸受の健全性を評価する方法がよく用いられる。しかし、例えば軸の回転速度が低い場合等、振動信号の大きさが十分ではない場合には、信号の大きさと環境ノイズのレベルとが近くなり、信号の時間変化を感度よく取得することが困難になる場合がある。
【0010】
上述した特許文献1の技術を応用すると、ある程度は、この種の問題を解決できると考えられる。すなわち、基本周波数および高調波周波数の周波数成分のパワーの合計を求めることにより、診断対象である軸受等の異常を検出しやすくなると考えられる。
【0011】
しかし、上述のように構成された計測装置では、高い周波数領域に亘って信号の収集が必要となるため、高速の信号収集装置を備える必要性が生じ、計測装置のコストが増大する可能性がある。評価対象システムの導入時期が古く、この種の高精度な計測機器を持たない場合には、コストの増大は計測装置導入の阻害要因となる場合がある。また、振動波や音波は、一般的に周波数が高くなるほど減衰率が高くなるため、高次高調波の周波数成分から得られる情報は比較的少なくなる。
以上のことから、後述する実施形態は、設置コストが低く、対象システムの設備構成と無関係に適用可能な機器状態監視装置および方法を提供する。
【0012】
[第1実施形態]
図1は、第1実施形態による風力発電システム1の要部のブロック図である。
風力発電システム1は、軸受機構10(監視対象機器)と、機器状態監視装置100と、を備えている。ここで、軸受機構10は、例えば、風力発電システム1に設けられている風車(図示せず)を支持するものである。また、機器状態監視装置100は、軸受機構10の状態を監視するものである。
【0013】
風車用の軸受機構10は、回転軸11と、転がり軸受12と、軸受ケーシング13と、軸受カバー14と、を備えている。回転軸11は、略円柱状に形成されている。転がり軸受12の詳細については図示を省略するが、転がり軸受12は、略円環状の内輪と、内輪の外周側に設けられた略円環状の外輪と、内輪と外輪とに挟まれた球状または円柱状の複数の転動体と、各転動体間の距離を保つ保持器と、を備えている。転がり軸受12の内輪は回転軸11に固定されている。また、軸受ケーシング13は、転がり軸受12の外輪を固定する。軸受カバー14は、転がり軸受12の露出部分を覆うように形成されている。
【0014】
機器状態監視装置100は、信号収録装置20と、信号分析装置30と、を備えている。ここで、信号収録装置20は、信号センサ21と、信号収集部22と、収集制御部23と、を備えている。信号分析装置30は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエア(何れも図示略)を備えており、ROMには、CPUによって実行される制御プログラムや、各種データ等が格納されている。
【0015】
図1において、信号分析装置30の内部は、制御プログラム等によって実現される機能を、ブロックとして示している。すなわち、信号分析装置30は、周波数分析部31と、強度抽出部32と、信号演算部33と、信号時系列化部34と、周波数記憶部35と、を備えている。
【0016】
信号収録装置20における収集制御部23は、所定タイミング毎に信号取得指令を信号収集部22に供給する。信号収集部22は、信号取得指令に同期して、所定の収集条件に基づいて、信号センサ21から、転がり軸受12が発生する振動信号S1を取得し、その結果を波形情報として記憶する。なお、所定の収集条件とは、例えば、「回転軸11の回転速度が所定速度に達した」等の条件である。
【0017】
信号分析装置30における周波数分析部31は、信号収集部22に記憶された波形情報を読み出して周波数分析を行い、振動信号S1のスペクトラムデータSP1(周波数スペクトラム)を取得する。スペクトラムデータSP1は、振動信号S1の各周波数の周波数と、振動加速度の振幅(強度)と、を含んでいる。
【0018】
図2は、第1実施形態において得られるスペクトラムデータSP1の一例を示す図である。
図2において横軸は振動周波数、縦軸は各周波数成分の振動加速度の振幅(強度)である。このように、図2は、監視対象である転がり軸受12が、如何なる周波数および振幅で振動しているかを表している。
図2において、回転周波数frは、回転軸11の回転周波数である。この回転周波数frは、回転軸11の偏心等に由来して発生する。また、特徴周波数fcは、転がり軸受12において発生する振動の周波数成分であり、例えば以下に列挙する周波数のうち何れかである。
・転動体の内輪通過周波数
・転動体の外輪通過周波数
・転動体の自転周波数
・保持器の回転周波数
【0019】
回転周波数frおよび特徴周波数fcは、スペクトラムデータSP1の中にピークとして現れる。そして、特徴周波数fcの周波数成分の時系列変化を解析することにより、監視対象である転がり軸受12の健全性を評価することができる。また、図示の例では、特徴周波数fcの周辺において、その側帯波成分の周波数にピークが生じている。図示の例において、負側および正側の1次側帯波成分の周波数は、fm1=fc-frおよびfp1=fc+frである。
【0020】
また、負側および正側の2次側帯波成分の周波数は、fm2=fc-2frおよびfp2=fc+2frである。なお、図示は省略するが、さらに3次や4次の側帯波成分が生じることもある。これらの側帯波成分は、転がり軸受12の特徴周波数fcの成分に由来する振動成分であり、側帯波成分を抽出することで、特徴周波数fcの成分の振動をより精度よく評価できると考えられる。
【0021】
図1に戻り、周波数記憶部35は、周波数データD1を記憶している。周波数データD1は、転がり軸受12の特徴周波数fc(図2参照)と、側帯波周波数fm1,fm2,fp1,fp2と、を含む。強度抽出部32は、スペクトラムデータSP1から、周波数データD1によって指定された複数の周波数成分の強度を抽出する。なお、回転軸11の回転速度が所定値である場合にスペクトラムデータSP1を取得するのであれば、特徴周波数fcおよび側帯波周波数は一定になる場合が多い。従って、このような場合、周波数記憶部35が記憶する周波数データD1も一定でよい。
【0022】
信号積算演算部33は特徴周波数fcおよび各側帯波成分の強度を加算する。即ち、信号演算部33は所定の演算として、特徴周波数fcの強度に対応する強度対応値と、側帯波周波数の強度に対応する強度対応値と、を加算する。「強度対応値」とは「強度に対応する値」であって、「強度」そのものであってもよい。上述の例においては、信号積算演算部33は、特徴周波数fcおよび各側帯波周波数fm1,fm2,fp1,fp2の強度を加算する。これにより、加算結果(演算結果)には、転がり軸受12の状態がより高精度に現れる。なお、信号積算演算部33は、特徴周波数fcの強度と、各側帯波成分の強度との算術和を求めてもよいが、二乗和を求めたほうが定量性に優れており、より望ましい。なお、所定の演算は、加算でも乗算でもよいし、課題を解決しうる他の演算でもよい。
【0023】
特徴周波数fcの強度およびその二乗値は、ともに特徴周波数fcの強度に対応する値、すなわち「強度対応値」であると考えることができる。同様に、各側帯波成分の強度およびこれらの二乗値は、各側帯波成分の強度に対応する「強度対応値」であると考えることができる。「強度対応値」は、上述した以外にも様々なものが考えられる。そこで、信号演算部33は、特徴周波数fcおよび各側帯波成分の、上述した以外の様々な強度対応値に対して所定の演算を行ってもよい。
【0024】
信号演算部33は、抽出された複数の周波数成分の強度を加算する。信号時系列化部34は、信号演算部33における加算結果を時系列に沿って配列し、その結果を診断信号S2として出力する。診断信号S2の時系列値は、監視対象(上述の例では転がり軸受12)が発生する振動成分が時系列に変化する状況を表しており、監視対象の健全性を評価する指標として用いることができる。すなわち、診断信号S2のグラフを作業員が目視することにより、転がり軸受12の異常等を発見できる。また、診断信号S2の値が所定値の閾値を超えたか否か等によって、転がり軸受12の異常の有無等を自動判別してもよい。
【0025】
[第2実施形態]
図3は、第2実施形態による風力発電システム2の要部のブロック図である。なお、以下の説明において、上述した第1実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
風力発電システム2は、歯車機構50と、機器状態監視装置102と、を備えている。歯車機構50は、例えば、風力発電システム1に設けられている風車(図示せず)の回転速度を減速する機構である。
【0026】
図3において、風車用の歯車機構50は、歯車51,52を備えている。歯車51,52は噛合し、それぞれ回転軸51a,52aを中心として回動する。また、図3において、機器状態監視装置102は、信号収録装置20と、信号分析装置130と、を備えている。
【0027】
ここで、信号収録装置20の構成は第1実施形態のもの(図1参照)と同様である。また、信号分析装置130のハードウエア構成は、第1実施形態の信号分析装置30と同様であるが、その機能は、第1実施形態のものに加えて、ピーク検出部137を備えている。また、本実施形態において、周波数分析部31が出力するスペクトラムデータをSP2と呼ぶ。
【0028】
図4は、第2実施形態において得られるスペクトラムデータSP2の一例を示す図である。
図4において回転周波数fr1,fr2は、それぞれ歯車51,52の回転周波数である。特徴周波数fcは、例えば歯車51,52の噛み合い周波数である。図示の例において、特徴周波数fcの周辺には、回転周波数fr1,fr2の双方に基づく側帯波成分が発生している。すなわち、歯車51による負側および正側の1次側帯波成分の周波数は、fn1=fc-fr1およびfq1=fc+fr1である。また、歯車51による負側および正側の2次側帯波成分の周波数は、fn2=fc-2fr1およびfq2=fc+2fr1である。また、歯車52による負側および正側の1次側帯波成分の周波数は、fm1=fc-fr2およびfp1=fc+fr2である。また、歯車52による負側および正側の2次側帯波成分の周波数は、fm2=fc-2fr2およびfp2=fc+2fr2である。
【0029】
図3に戻り、ピーク検出部137は、周波数分析部31によって生成されたスペクトラムデータSP2に対して、ピーク検出を行う。そして、検出されたピークの分布形状等に基づいて、特徴周波数fcと、その側帯波成分の周波数とを特定し、特定した周波数を周波数記憶部35に記憶させる。すなわち、図4に示した例において、ピーク検出部137は、特徴周波数fcと、側帯波周波数fm1,fm2,fp1,fp2,fn1,fn2,fq1,fq2とを特定し、特定した周波数を周波数記憶部35に記憶させる。そして、信号演算部33は、特徴周波数fcおよび各側帯波周波数の強度を加算する。
【0030】
上述した以外の本実施形態の構成および動作は第1実施形態のものと同様である。本実施形態によれば、側帯波成分が発生している場合には、その周波数および強度を検出し、特徴周波数fcの強度に対応する値(強度対応値)と、各側帯波成分の強度に対応する値(強度対応値)と、を加算することができる。これにより、第1実施形態のものと同様に、歯車機構50の状態を高精度に検出することができる。
【0031】
[実施形態の効果]
以上のように上述した実施形態によれば、機器状態監視装置100,102は、監視対象機器(10,50)が発生した振動の周波数スペクトラム(SP1,SP2)を出力する周波数分析部(31)と、監視対象機器(10,50)の状態に関する周波数である特徴周波数(fc)の強度と、特徴周波数(fc)の側帯波周波数(fm1,fp1,fn1,fq1,…)の強度と、を抽出する強度抽出部(32)と、特徴周波数(fc)の強度に対応する強度対応値と、側帯波周波数(fm1,fp1,fn1,fq1,…)の強度に対応する強度対応値と、を用いて所定の演算を行う信号演算部(33)と、を備える。
【0032】
また、上述の実施形態は、他の見地によれば、監視対象機器(10,50)が発生した振動の周波数スペクトラム(SP1,SP2)を出力する周波数分析過程(31)と、監視対象機器(10,50)の状態に関する周波数である特徴周波数(fc)の強度と、特徴周波数(fc)の側帯波周波数(fm1,fp1,fn1,fq1,…)の強度と、を抽出する強度抽出過程(32)と、特徴周波数(fc)の強度に対応する強度対応値と、側帯波周波数(fm1,fp1,fn1,fq1,…)の強度に対応する強度対応値と、を用いて所定の演算を行う信号演算過程(33)と、を有することを特徴とする機器状態監視方法である。
【0033】
これにより、上述の実施形態によれば、特徴周波数fcの強度と側帯波周波数(fm1,fp1,fn1,fq1,…)の強度とに基づいて、機器状態を高精度、かつ適切に監視できる。より具体的には、比較的低い周波数帯域に属する特徴周波数fcおよび側帯波周波数に基づいて監視対象機器(10,50)の状態を判定するため、高い周波数領域に渡る信号を収集する必要がなくなる。さらに、比較的低い周波数帯域に属する振動波や音波は、空気や金属等の媒体中における減衰率が低いため、比較的強度の高い信号が得られる。これにより、低コストで高精度に監視対象機器(10,50)を監視することができる。
【0034】
また、機器状態監視装置102のように、周波数スペクトラムSP2において強度のピークが生じる周波数を検出し、検出結果に基づいて特徴周波数fcおよび側帯波周波数(fm1,fp1,fn1,fq1,…)を決定するピーク検出部137をさらに備えると一層好ましい。これにより、周波数スペクトラムSP2の状態に基づいて、機器状態を一層高精度、かつ適切に監視できる。
【0035】
また、監視対象機器(10,50)は一または複数の回転軸11,51a,52aを備えるものであり、側帯波周波数(fm1,fp1,fn1,fq1,…)は、特徴周波数fcに対して、回転軸11,51a,52aの回転周波数fr,fr1,fr2の整数倍を増減した周波数であると一層好ましい。これにより、回転周波数fr,fr1,fr2に基づいて発生した側帯波成分により、機器状態を一層高精度、かつ適切に監視できる。
【0036】
また、機器状態監視装置100,102は、監視対象機器(10,50)が発生した振動を、所定の収集条件に基づいて収集する信号収集部22をさらに備えると一層好ましい。これにより、収集条件に応じた周波数スペクトラム(SP1,SP2)を収集することができ、機器状態を一層高精度、かつ適切に監視できる。
【0037】
また、監視対象機器(10,50)は、風力発電システム1,2の一部であると一層好ましい。これにより、風力発電システム1,2の状態を一層高精度、かつ適切に監視できる。
【0038】
[変形例]
本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、もしくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
【0039】
(1)上記各実施形態は、風力発電システム1,2の構成要素である軸受機構10または歯車機構50を監視するものであったが、本発明の用途はこれに限定されるわけではない。すなわち、本発明は、種々のプラント機械において、回転軸系に付随する軸受や歯車などの機械要素の状態監視に適用することができる。
【0040】
(2)上記実施形態における信号分析装置30のハードウエアは一般的なコンピュータによって実現できるため、上述した各種処理を実行するプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。
【0041】
(3)上述した信号分析装置30の各処理は、上記実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(Field Programmable Gate Array)等を用いたハードウエア的な処理に置き換えてもよい。
【0042】
(4)信号分析装置30において実行される各種処理は、図示せぬネットワーク経由でサーバコンピュータが実行してもよく、上記実施形態において記憶される各種データも該サーバコンピュータに記憶させるようにしてもよい。
【符号の説明】
【0043】
1,2 風力発電システム
10 軸受機構(監視対象機器)
11,51a,52a 回転軸
22 信号収集部
31 周波数分析部(周波数分析過程)
32 強度抽出部(強度抽出過程)
33 信号演算部(信号演算過程)
50 歯車機構(監視対象機器)
100,102 機器状態監視装置
137 ピーク検出部
D1 周波数データ
fc 特徴周波数
SP1,SP2 スペクトラムデータ(周波数スペクトラム)
fr,fr1,fr2 回転周波数
fm1,fm2,fp1,fp2,fn1,fn2,fq1,fq2 側帯波周波数
図1
図2
図3
図4