(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023007292
(43)【公開日】2023-01-18
(54)【発明の名称】ハイブリッド発電システム
(51)【国際特許分類】
F03D 9/25 20160101AFI20230111BHJP
F03D 9/11 20160101ALI20230111BHJP
【FI】
F03D9/25
F03D9/11
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2021143994
(22)【出願日】2021-09-03
(31)【優先権主張番号】P 2021129372
(32)【優先日】2021-06-28
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】503405830
【氏名又は名称】吉峰 幹夫
(74)【代理人】
【識別番号】100111132
【弁理士】
【氏名又は名称】井上 浩
(72)【発明者】
【氏名】吉峰 幹夫
【テーマコード(参考)】
3H178
【Fターム(参考)】
3H178AA03
3H178AA40
3H178AA43
3H178AA62
3H178BB02
3H178BB04
3H178BB31
3H178DD13X
3H178DD22X
3H178DD52X
3H178DD70X
3H178EE23
(57)【要約】
【課題】風力発電と太陽光発電を同時に実行可能であり、複雑な回路を必要とせず、風力発電の効率を高めつつ電力の安定供給が可能なハイブリッド発電システムを提供する。
【解決手段】ハイブリッド発電システム1は、蓄電池17を備えた太陽光発電装置7と、ブレード3を回転させて発電する発電機12と蓄電池17に貯蔵された電力を発電機12に供給してモーターとして駆動させるように制御する給電制御装置14を備えた風力発電装置2を有し、給電制御装置14は、ローター軸10にかかる摩擦力が最大静止摩擦力を超えるまでブレード3の回転力をアシストするための電力を発電機12に供給するように制御する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
太陽光パネルを備えて太陽光発電を行う太陽光発電装置と、ブレードを風力で回転させて発電する発電機を備えた風力発電装置を有するハイブリッド発電システムであって、前記太陽光発電装置は前記太陽光パネルで発電した電力を貯蔵する蓄電池を備え、前記風力発電装置は前記蓄電池に貯蔵された前記電力を前記発電機に供給してモーターとして駆動させるように制御する給電制御装置を備え、
前記給電制御装置は、前記ブレードを備えるローター軸にかかる摩擦力fxのときブレードが受けている回転力をFxとして、前記摩擦力fxが動摩擦力fdと同一の静止摩擦力となる場合の前記回転力をFdとし、前記摩擦力fxが最大静止摩擦力fsとなる場合の前記回転力をFsとすると、前記Fsと前記Fxの差分の前記回転力を生成することが可能な前記電力を前記発電機に供給して前記モーターとして駆動するように制御することを特徴とするハイブリッド発電システム。
【請求項2】
前記Fxが前記Fdを下回るか、前記Fsを上回る場合には前記給電制御装置は前記電力を前記発電機に供給しないことを特徴とする請求項1記載のハイブリッド発電システム。
【請求項3】
風向計と風速計を備え、予め風向と風速をパラメーターとして、前記Fx、前記Fd及び前記Fsを求めておき、前記給電制御装置は、前記風向計の出力と前記風速計の出力を用いて前記Fx、前記Fd及び前記Fsを演算することを特徴とする請求項1又は請求項2に記載のハイブリッド発電システム。
【請求項4】
前記太陽光パネルは、前記風力発電装置の前記発電機を支持するタワーの外壁に設置されることを特徴とする請求項1乃至請求項3のいずれか1項に記載のハイブリッド発電システム。
【請求項5】
前記太陽光発電装置は、前記太陽光パネルの受光面の向きを時刻に合わせて制御可能な受光面制御装置を有することを特徴とする請求項4記載のハイブリッド発電システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、風力発電と太陽光発電を組み合わせて、天候や昼夜を問わず自然エネルギーに基づく電力の安定供給が効率的に可能な発電システムに関するものである。
【背景技術】
【0002】
従来、風力発電と太陽光発電を組み合わせて、天候や昼夜を問わず電力を供給するハイブリッド発電システムが存在する。また、十分な風力が得られない状況で風力発電の発電機の回転を補助する技術も開示されている。
例えば、特許文献1には「風力発電装置及びその運転方法」という名称で、低風速時に蓄電池から双方向直流チョッパから可逆電力変換装置を介して発電機に電力を供給し電動機として回転駆動させる発明が開示されている。
また、特許文献2では「ハイブリッド型発電装置」という名称で、風力発電の発電機の回転を補助する回転アシスト制御手段を着脱可能に別体として設けた発明が開示されている。この発明では、風力発電と太陽光発電で得られた電力を蓄電池に貯蔵し、十分な風速が得られない場合に蓄電池で貯蔵されている電力を、回転アシスト制御手段を経由して風車を回転させている。
さらに、特許文献3では「風車補助駆動装置」という名称で、風力発電と太陽光発電の両方を行いつつ、太陽光発電で得た電力を直接風力発電の風車補助駆動するモーターあるいは風力発電のために風を起こすブロアに供給したり、あるいは風力発電で得た電力を貯蔵する蓄電池から電力を発電機へ供給して風車を回転させる発明が開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2004-64806号公報
【特許文献2】特開2008-11589号公報
【特許文献3】特開2007-77895号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に開示される発明では、風車の回転アシストのために利用される蓄電池は風力発電による電力を貯蔵するものであり、発電機の出力側にインバーターと双方向昇降圧コンバーターが必要であり、回路が複雑化し、制御も煩雑という課題があった。
また、特許文献2に開示される発明では、風車の回転アシストのための補助装置を別体として、回路の複雑化を解消したものの、回転アシストのために蓄電池から供給される電力の制御は風車が低速で回転していることあるいは回転していないことを前提とするものであり、回転アシスト制御手段の起動は、発電機の交流電圧を整流した後の直流電圧を一定に制御する発電電力貯蔵手段を通流する直流電流値が低い場合や蓄電池から直流電流が流入しているときに実行される。したがって、回転アシスト制御手段の起動によって、蓄電池から電力を供給し、供給した電力以上の発電が可能であるか、すなわち、発電効率が向上するか否かが不明であるという課題があった。
さらに、特許文献3に開示される発明では、太陽光発電で得た電力を直接風力発電の風車補助駆動するモーターあるいは風力発電のために風を起こすブロアに供給する発明が開示されており、風車の回転アシストのための回路も複雑化を避けることが可能であるが、この発明では、本来風車が回転しない風速でも風車を回転させることを目的としており、風力発電の効率を向上させることができない可能性が高いという課題があった。
本発明はかかる従来の事情に対処してなされたものであり、風力発電と太陽光発電を同時に実行可能であり、複雑な回路を必要とせず、風力発電の効率を高めつつ電力の安定供給が可能なハイブリッド発電システムを提供することを目的とする。
【課題を解決するための手段】
【0005】
上記目的を達成するため、第1の発明であるハイブリッド発電システムは、太陽光パネルを備えて太陽光発電を行う太陽光発電装置と、ブレードを風力で回転させて発電する発電機を備えた風力発電装置を有するハイブリッド発電システムであって、前記太陽光発電装置は前記太陽光パネルで発電した電力を貯蔵する蓄電池を備え、前記風力発電装置は前記蓄電池に貯蔵された前記電力を前記発電機に供給してモーターとして駆動させるように制御する給電制御装置を備え、 前記給電制御装置は、前記ブレードを備えるローター軸にかかる摩擦力fxのときブレードが受けている回転力をFxとして、前記摩擦力fxが動摩擦力fdと同一の静止摩擦力となる場合の前記回転力をFdとし、前記摩擦力fxが最大静止摩擦力fsとなる場合の前記回転力をFsとすると、前記Fsと前記Fxの差分の前記回転力を生成することが可能な前記電力を前記発電機に供給して前記モーターとして駆動するように制御することを特徴とするものである。
上記構成のハイブリッド発電システムにおいては、ローター軸にかかる摩擦力fxが最大静止摩擦力fsを超えて回転を始めるために必要な回転力のうち不足する回転力を発揮するための電力を蓄電池から供給するように作用する。
本願におけるローター軸にかかる摩擦力とは、ローター軸の軸受や発電機の磁界に抗して発生する摩擦力を意味する。したがって、ローター軸が回転を開始することと風力発電装置が発電を開始することは同義である。
【0006】
第2の発明であるハイブリッド発電システムは、第1の発明において前記Fxが前記Fdを下回るか、前記Fsを上回る場合には前記給電制御装置は前記電力を前記発電機に供給しないことを特徴とするものである。
上記構成のハイブリッド発電システムにおいては、第1の発明の作用に加えて、回転力Fxが回転力Fdを下回る場合には、給電制御装置が蓄電池から電力を発電機に供給しても、継続的に電力を供給しないと発電できず、発電量よりも電力消費量が大きい可能性があるため、給電制御装置は発電機に電力を供給しないように制御される。
一方、回転力Fxが回転力Fsを上回る場合には、給電制御装置が発電機に電力を供給しなくてもブレードは風力で回転することから、電力を供給しないように制御される。
【0007】
第3の発明であるハイブリッド発電システムは、第1又は第2の発明において、風向計と風速計を備え、予め風向と風速をパラメーターとして、前記Fx、前記Fd及び前記Fsを求めておき、前記給電制御装置は、前記風向計の出力と前記風速計の出力を用いて前記Fx、前記Fd及び前記Fsを演算することを特徴とするものである。
上記構成のハイブリッド発電システムにおいては、第1又は第2の発明の作用に加えて、風向と風速をパラメーターとして、予め理論や試験等からローター軸の回転力Fdと回転力Fsと、さらに静止摩擦力全体を網羅する回転力Fxを求めておき、ハイブリッド発電システムに備えられている風向計と風速計からの出力を基に、前記給電制御装置は予めパラメーターを振って求めておいたFx、FdとFsから実際のFx、FdとFsを演算するように作用する。
なお、本願ではヨー制御については述べていないが、風向計を用いてヨー制御を行う場合でも同様に実際のFx、FdとFsの演算は可能である。ヨー制御を行う場合には概ね常にブレードは風上を向き、風を正面から受けるので、正面から風を受けた場合に風速を振って予め求めたFx、FdとFsを用いることで、風速計からの出力で演算が可能となる。また、風向計と風速計の出力を用いた「演算」とは、理論式や経験式等の関数から実際のFx、FdとFsを求める場合はもちろんのこと、例えば予め風向と風速をパラメーターとして求めたFx、FdとFsのデータテーブルから、風向計と風速計の出力値に対応する実際のFx、FdとFsをそれぞれ抽出する場合も含む概念である。
【0008】
第4の発明であるハイブリッド発電システムは、第1乃至第3のいずれか1つの発明において、前記太陽光パネルは、前記風力発電装置の前記発電機を支持するタワーの外壁に設置されることを特徴とするものである。
上記構成のハイブリッド発電システムにおいては、第1乃至第3のいずれか1つの発明の作用に加えて、太陽光パネルの設置場所をタワーの外壁とすることで、既存の風力発電装置に対しても新たな太陽光パネル設置場所を確保する必要がない。また、洋上風力発電装置においては、洋上で太陽光パネルを設置する場合の塩害や腐食を抑制するように作用する。
【0009】
第5の発明であるハイブリッド発電システムは、第4の発明において、前記太陽光発電装置は、前記太陽光パネルの受光面の向きを時刻に合わせて制御可能な受光面制御装置を有することを特徴とするものである。
上記構成のハイブリッド発電システムにおいては、第4の発明の作用に加えて、受光面制御装置が太陽光パネルの受光面の向きを時刻に合わせて太陽光を効率的に受光するように制御する。
【発明の効果】
【0010】
第1の発明であるハイブリッド発電システムでは、ローター軸にかかる静止摩擦力fxが最大静止摩擦力fsを超えて回転を始めるために必要な回転力のうち不足する回転力を補うための電力を蓄電池から供給するので、停止しているブレードを回転させて発電させることが可能であり、しかも、供給する電力を必要最低限として節約することが可能でハイブリッド発電システム全体の発電効率を高めることが可能である。また、風力発電による電力は蓄電池には貯蔵せず、太陽光発電装置でのみ発電した電力を回転のアシストに用いるので回路の構成が複雑でなく、運用や管理も容易である。
【0011】
第2の発明であるハイブリッド発電システムでは、第1の発明の効果に加えて、FxがFdを下回る場合には電力を供給しないので、蓄電池からの電力供給を停止すると風力だけで発電できないような場合には、電力の供給をしないことで蓄電池に貯蔵されている電力を節約可能であり、FxがFsを上回る場合にも電力を供給しないので、蓄電池から電力供給をしなくとも回転している場合には、電力を供給しないことで蓄電池に貯蔵されている電力を節約することが可能である。したがって、ハイブリッド発電システム全体の発電効率を高めることが可能である。
【0012】
第3の発明であるハイブリッド発電システムでは、第1又は第2の発明の効果に加えて、予め風向と風速をパラメーターにFx、FdとFsを求めておくことと給電制御装置が風向計と風速計の出力を用いて実際のFx、FdとFsを演算することで、より精度の高い給電制御を行うことが可能であり、よって、ハイブリッド発電システム全体で安定して発電効率を高めることが可能である。
【0013】
第4の発明であるハイブリッド発電システムでは、第1乃至第3のいずれか1つの発明の効果に加えて、太陽光パネルの設置場所をタワーの外壁とすることで、太陽光パネルの設置場所を設ける必要がなく、既存の風力発電装置や洋上の風力発電装置に対して容易に設置することが可能である。
【0014】
第5の発明であるハイブリッド発電システムでは、第4の発明の効果に加えて、受光面制御装置が時刻に合わせて太陽光パネルの向きを制御することで、太陽光発電の効率を高めることが可能である。
【図面の簡単な説明】
【0015】
【
図1】(a)本発明の実施の形態に係るハイブリッド発電システムの外観概略図であり、(b)は(a)に示すA-A線矢視断面図である。
【
図2】本発明の実施の形態に係るハイブリッド発電システムのシステム構成図である。
【
図3】風力発電装置のブレードが受ける回転力と発電機のローター軸にかかる静止摩擦力及び動摩擦力の関係を示す概念図である。
【
図4】風力発電装置のブレードが停止している場合にブレードが受ける風速とブレードが受ける回転力の関係を示す概念図である。
【
図5】本発明の実施の形態に係るハイブリッド発電システムの給電制御装置による制御のフロー図である。
【発明を実施するための形態】
【0016】
以下に本発明の実施の形態に係るハイブリッド発電システムについて
図1-
図5を参照しながら説明する。
図1は本発明の実施の形態に係るハイブリッド発電システムの外観概略図であり、
図2はそのハイブリッド発電システムのシステム構成図である。
図1,2において、ハイブリッド発電システム1は、風力発電装置2と太陽光発電装置7から構成され、風力発電装置2はタワー6の最上部に設置されるナセル5と、ナセル5内から延設されるローター軸10と、そのローター軸10の先端に設けられたハブ4を中心として放射状に設置される複数のブレード3を備えている。
また、ナセル5の内部では、ローター軸10にブレード3による回転速度を増速する増速機11と、増速機11で発電に適した回転速度で運動エネルギーを電気エネルギーに変換する発電機12が接続されている。
発電機12で発電した電力は、変圧器及び系統安定化装置等を経て電力系統19へ送出される。
また、風力発電装置2は、風速計15及び風向計16(いずれも
図1には図示せず)を備えており、それらの出力は発電機制御装置13及び給電制御装置14へ送信されている。発電機制御装置13は風速計15の出力を受信し、発電機12からローター軸10の回転数と発電機12の出力を受信し、さらに、電力系統19から出力要求を受信する等して発電機12へ制御信号を送信する。また、ナセル5の下部等にブレード3を風上に向けるためのヨー制御装置(図示せず;選択的構成要素)を備えている場合には、発電機制御装置13は風向計16からの出力を用いて、ヨー制御装置に対して制御信号を送信し、ブレード3を風上に向ける制御を行う。
【0017】
給電制御装置14について説明する前に、太陽光発電装置7について説明する。
太陽光発電装置7は、
図2に示されるとおり、太陽光を受けて発電する太陽光パネル8と、発電された電力を貯蔵する蓄電池17と、蓄電池17に貯蔵された直流電力を交流電力へ変換するインバーター18と、太陽光パネル8の受光面の向きを時刻に合わせて制御可能な受光面制御装置20(選択的構成要素)を備えている。
また、
図1(a),(b)に示されるように、太陽光パネル8は風力発電装置2のタワー6の外壁に支持腕9を介して設置されている。
図1では太陽光パネル8はタワー6の外壁の一部にのみ設置されているが、タワー6の耐荷重に応じて全周に亘って設置されてもよいし、
図1に示されるよりも小さな面積で設置されてもよい。また、外壁の一部に設置される場合には、支持腕9を可動とする受光面制御装置20を設けて、時刻に応じて太陽光パネル8の受光面が太陽光を効率的に受光できるように太陽の位置及び高度に追従する制御が可能としてもよい。
蓄電池17によって貯蔵されている電力はインバーター18を介して、風力発電によって発電された電力と同様に、変圧器及び系統安定化装置等を経て電力系統19へ送出される。
また、蓄電池17によって貯蔵されている電力は、後述する給電制御装置14を介して、ブレード3が停止している際に一定の条件に基づいて給電制御装置14を介して発電機12をモーターとして回転させるために発電機12に供給される。
【0018】
次に、
図2に戻って給電制御装置14について説明する。
まず、予め風速計15及び風向計16からの出力を想定して、これらの出力値をパラメーターとして、停止中のブレード3が受ける回転力Fx、Fd及びFsを理論的あるいは試験結果等から求めておく。給電制御装置14は、風速計15及び風向計16の出力と予め得たこれらFx、Fd及びFsを用いて、ブレード3が実際に受けている回転力Fx、Fd及びFsを演算する。
【0019】
具体的に
図3及び
図4を参照しながら説明する。
図3は風力発電装置のブレードが受ける回転力と発電機のローター軸にかかる静止摩擦力及び動摩擦力の関係を示す概念図であり、
図4は風力発電装置のブレードが停止している場合にブレードが受ける風速とブレードが受ける回転力の関係を示す概念図である。
図3において、横軸はブレード3が受ける回転力で、縦軸は発電機12のローター軸10にかかる摩擦力を示している。本図で「回転力」という語は、ブレード3が回転している場合に加え、停止している状態でブレード3が受ける回転しようとする力を便宜上「回転力」として表現している。
図3中、符号Fxはブレード3が停止中に風力によって受ける回転力で、その際に発電機12のローター軸10に発生する静止摩擦力fxを、Fxとローター軸10の静止摩擦係数μとの積として表現している。符号Fdはブレード3が回転している場合にローター軸10に発生する動摩擦力fdを静止摩擦係数μで除した値であり、ブレード3が停止している場合に、ローター軸10に動摩擦力fdと同じ静止摩擦力fdを発生させる際にブレード3が受けている回転力である。そして、符号Fsは発電機12のローター軸10に最大静止摩擦力fsが発生するときにブレード3が受けている回転力である。
符号Faはブレード3が停止中に受ける回転力Fxとローター軸10に最大静止摩擦力fsが発生するときにブレード3が受ける回転力Fsの差分である。この差分Faを補うように太陽光発電装置7で発電した電力を貯蔵した蓄電池17から給電制御装置14を介して発電機12に供給することでブレード3の回転をアシストするものである。
【0020】
次に、
図4において、横軸はブレード3が受ける風速を示し、縦軸はブレード3が受ける回転力を示している。
停止しているブレード3が風を受けて生じる風圧は風速の2乗に比例することから、ブレード3が受ける回転力はブレード3が受ける風速の2乗に比例する。
図4ではブレード3が停止している状態でブレード3が受ける力を回転しようとする力として前述のとおり便宜上「回転力」として表現している。
図4における回転力はブレードが受ける風速がわかれば、図示されるような二次曲線として演算することが可能である。
図4中、vxはブレード3が受けている風速で、風速vdはブレード3が回転している場合に発電機12のローター軸10に生じる動摩擦力fd(
図3参照)と同じ静止摩擦力fdを、ブレード3の停止時に生じさせるブレード3の回転力Fd(
図3参照)を与えるために必要な風速であり、風速vsはブレード3の回転力Fs(
図3参照)を与えるために必要な風速である。
なお、ハイブリッド発電システム1では、ブレード3に対する風向と風速をパラメーターとして、予め理論や試験等からローター軸10の回転力Fx、動摩擦力fdと同一の静止摩擦力を与える回転力Fdと最大静止摩擦力fsを与える回転力Fsを求めておき、ハイブリッド発電システム1に備えられている風速計15と風向計16からの出力を基に、給電制御装置14は予め求めておいたFx、FdとFsから実際のFx、FdとFsを演算する。具体的には、予め求めておいたFx、FdとFsを風向と風速の関数としておき、風速計15と風向計16の出力である実際の風向と風速をその関数に入力することで実際のFx、Fd及びFsを演算する。
予め求めたFx、FdとFsは理論式や経験式のような関数として給電制御装置14内に記憶させておいてもよいし、データテーブルのような形で給電制御装置14内に記憶させておき、風向データと風速データが定まるとそれぞれFx、FdとFsが一義的に対応するようにしておいてもよい。
【0021】
さらに、ハイブリッド発電システム1において、ヨー制御装置を備えてヨー制御を行う場合には、発電機制御装置13が、風向計16からの出力を用いて制御信号をヨー制御装置へ送信するが、その場合でも同様に実際のFx、Fd及びFsの演算は可能である。ヨー制御を行う場合には概ね常にブレードは風上を向き、風を正面から受けることになるので、正面から風を受けた場合に風速を振って予め求めたFx、FdとFsを用いることで、風速計15からの出力で実際のFx、Fd及びFsを演算することが可能となる。
給電制御装置14は、演算したFsとFxの差分Faも演算し、この差分Faに相当する回転力をアシスト可能な電力の供給を太陽光発電装置7の蓄電池17から受ける。給電制御装置14はこの電力を発電機12に送り、発電機12はローター軸10に対して差分Faに相当する回転力を生じて、ローター軸10及びブレード3は回転する。
このようにしてブレード3の回転を不足している回転力のみを補うようにアシストすることで、太陽光発電装置7によって発電された電力を節約しながら、風力発電装置2による発電を促進してハイブリッド発電システム1全体としての発電効率の向上を図っている。
【0022】
次に、具体的な給電制御装置14による制御について、
図5を参照しながら説明する。
図5は、本発明の実施の形態に係るハイブリッド発電システムの給電制御装置による制御のフロー図である。
図5において、給電制御装置14による制御の開始(スタート)から、ステップS1では、風速計15の実際の出力として風速vxが風速vd以上であればステップS2へ進み、ステップS2では風速vxが風速vs以下であればステップS3へ進んで給電制御装置14はモーター駆動モードを起動する。
ステップS3では、給電制御装置14はモーター駆動モードにおいて、回転力Fxと回転力Fs及び差分Faを演算して、Faに相当する回転力を補充可能な電力の供給を受けるために蓄電池17に対して制御信号を送信する。
その後、ステップS1及びステップS2に戻り、風速vxが風速vsを上回った場合には、ステップS4へ進み、給電制御装置14はモーター駆動モードを終了する。vxがvs以下の場合にはステップS3へ進み、モーター駆動モードの起動を維持し、上述の演算を行いながら蓄電池17に対して制御信号を送信する。
【0023】
なお、ステップS1で風速vxが風速vdを下回る場合にはステップS5へ進んでモーター駆動モードを停止する、あるいは停止している場合には停止を維持する。
これは、この状態では太陽光発電装置7からの電力補助がない場合にローター軸10が停止してしまうため、常に蓄電池17から電力を補充しなければ風力発電装置2の発電機12で発電ができず、ハイブリッド発電システム1全体としての発電効率が必ずしも向上されるとは限らないためである。そこで、蓄電池17に貯蔵される電力を失わないようにして、風力が回復してvxがvd以上となる場合まで温存することを優先するように制御されている。
ステップS5でモーター駆動モードが停止した後は、風速計15からの入力に対して再びステップS1から風速vxに対する判断を継続する。
なお、この
図5では風向計16の出力を用いて給電制御装置14が制御する内容が示されていない。これは、給電制御装置14が風向計16の出力を得て、風向に対するブレード3の向きが定まり、あるいは前述のヨー制御装置を備えている場合にはヨー制御によってブレード3の向きが風上を向き、Fx、Fd及びFsがブレード3の向きを考慮したvx、vd及びvsの関数あるいはデータテーブルとして表現可能となった後の工程を示しているためである。
以上説明したハイブリッド発電システム1では、ローター軸10にかかる静止摩擦力fxが最大静止摩擦力fsを超えて回転を始めるために必要な回転力のうち不足する回転力を補うためだけに電力を蓄電池17から供給するので、供給する電力を必要最低限として節約することが可能でハイブリッド発電システム全体の発電効率を高めることが可能である。
また、風力発電による電力は蓄電池17には貯蔵せず、太陽光発電装置7でのみ発電した電力を回転のアシストに用いるので回路の構成が複雑でなく、運用や管理も容易である。
さらに、回転力Fxが回転力Fdを下回る場合には、電力を蓄電池17から供給し続けなければ発電されないので、給電制御装置14は発電機12に電力を供給しないように制御され、回転力Fxが回転力Fsを上回る場合には、電力を供給しなくとも発電可能であるので、給電制御装置14が発電機12に電力を供給しないように制御することで、太陽光発電装置7によって発電された電力を効率的に安定して運用することが可能であるので、ハイブリッド発電システム1全体の発電効率を高めることが可能である。
そして、予め風向と風速をパラメーターにFx、FdとFsを求めておくことと給電制御装置14が風向計16と風速計15の出力を用いて実際のFx、FdとFsを演算することで、より精度の高い給電制御を行うことが可能であり、このことからも、ハイブリッド発電システム1全体で安定して発電効率を高めることが可能である。
太陽光パネル8の設置場所をタワー6の外壁とすることで、太陽光パネル8の設置場所を周辺に設ける必要がなく、既存の風力発電装置や洋上の風力発電装置に対して比較的容易に設置することが可能である。また、受光面制御装置20が時刻に合わせて太陽光パネル8の向きを制御することで、太陽光発電の効率を高めることが可能である。
なお、今回の発明では既存の風力発電装置に対し、その風力発電装置のナセル5の内部等に給電制御装置14を設置し、加えて太陽光発電装置7を増設することでハイブリッド発電システム1とすることも可能である。したがって、既存の風力発電装置で稼働率が低いものがあれば、新規に建設することなく改修、増設工事を行うことでコストを抑制しながら発電効率を向上させることが可能である。
【産業上の利用可能性】
【0024】
以上説明したように、本発明の請求項1-請求項5に記載された発明は、安定的かつ効率的に自然エネルギーによって発電された電力を供給するために、風力発電装置に太陽光発電装置を付加したハイブリッド発電システムとして広く利用が可能である。
【符号の説明】
【0025】
1…ハイブリッド発電システム 2…風力発電装置 3…ブレード 4…ハブ 5…ナセル 6…タワー 7…太陽光発電装置 8…太陽光パネル 9…支持腕 10…ローター軸 11…増速機 12…発電機 13…発電機制御装置 14…給電制御装置 15…風速計 16…風向計 17…蓄電池 18…インバーター 19…電力系統 20…受光面制御装置