IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社パスコの特許一覧

特開2023-74392地形図出力装置、地形図出力方法およびプログラム
<>
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図1
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図2
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図3
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図4
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図5
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図6
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図7
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図8
  • 特開-地形図出力装置、地形図出力方法およびプログラム 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023074392
(43)【公開日】2023-05-29
(54)【発明の名称】地形図出力装置、地形図出力方法およびプログラム
(51)【国際特許分類】
   G09B 29/00 20060101AFI20230522BHJP
   G06T 11/60 20060101ALI20230522BHJP
【FI】
G09B29/00 A
G06T11/60 300
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021187340
(22)【出願日】2021-11-17
(11)【特許番号】
(45)【特許公報発行日】2023-01-19
(71)【出願人】
【識別番号】000135771
【氏名又は名称】株式会社パスコ
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100114018
【弁理士】
【氏名又は名称】南山 知広
(74)【代理人】
【識別番号】100180806
【弁理士】
【氏名又は名称】三浦 剛
(74)【代理人】
【識別番号】100207778
【弁理士】
【氏名又は名称】阿形 直起
(72)【発明者】
【氏名】坂元 光輝
【テーマコード(参考)】
2C032
5B050
【Fターム(参考)】
2C032HC22
2C032HC23
5B050AA07
5B050BA06
5B050BA17
5B050CA07
5B050EA19
5B050FA02
5B050FA05
(57)【要約】
【課題】全方位における勾配が適切に反映され、かつ、ノイズデータの把握に適した地形図を出力することを可能とする地形図出力装置、地形図出力方法およびプログラムを提供する。
【解決手段】地形図出力装置は、対象領域を所定の形状に区画した複数の単位領域の標高値を記憶する記憶手段と、各単位領域について、単位領域を中心領域とする所定の参照範囲内の第1範囲に含まれる全ての単位領域の標高値の最大値を検出するとともに参照範囲内の第2範囲に含まれる全ての単位領域の標高値の最小値を検出し、中心領域と最大値が検出された単位領域との間の第1勾配量と、中心領域と最小値が検出された単位領域との間の第2勾配量とに基づいて合成勾配量を算出する算出手段と、合成勾配量に基づく態様で各単位領域を表示する地形図を出力する出力手段と、を有する。
【選択図】図3
【特許請求の範囲】
【請求項1】
対象領域を所定の形状に区画した複数の単位領域の標高値を記憶する記憶手段と、
各単位領域について、当該単位領域を中心領域とする所定の参照範囲内の第1範囲に含まれる全ての単位領域の標高値の最大値を検出するとともに前記参照範囲内の第2範囲に含まれる全ての単位領域の標高値の最小値を検出し、前記中心領域と前記最大値が検出された単位領域との間の第1勾配量と、前記中心領域と前記最小値が検出された単位領域との間の第2勾配量とに基づいて合成勾配量を算出する算出手段と、
前記合成勾配量に基づく態様で各単位領域を表示する地形図を出力する出力手段と、
を有することを特徴とする地形図出力装置。
【請求項2】
前記算出手段は、
前記中心領域の標高値から前記最大値を減じた差を、前記中心領域と前記最大値が検出された単位領域との間の距離で除した第1正弦を前記第1勾配量として算出し、
前記中心領域の標高値から前記最小値を減じた差を、前記中心領域と前記最小値が検出された単位領域との間の距離で除した第2正弦を前記第2勾配量として算出する、
請求項1に記載の地形図出力装置。
【請求項3】
前記記憶手段は、正弦と角度との対応関係を示すテーブルを記憶し、
前記算出手段は、
前記中心領域の標高値から前記最大値を減じた差を、前記中心領域と前記最大値が検出された単位領域との間の距離で除した第1正弦を算出し、
前記中心領域の標高値から前記最小値を減じた差を、前記中心領域と前記最小値が検出された単位領域との間の距離で除した第2正弦を算出し、
前記第1正弦および前記第2正弦に対応する第1角度および第2角度を前記テーブルからそれぞれ取得し、
前記第1角度および前記第2角度に基づいて前記第1勾配量および前記第2勾配量をそれぞれ算出する、
請求項1に記載の地形図出力装置。
【請求項4】
前記算出手段は、
各単位領域について、前記参照範囲よりも小さな広さから前記参照範囲と同じ広さまで段階的に拡大させて複数の広さの算出範囲を設定し、各算出範囲について、順次、標高値の最大値および標高値の最小値を検出し、
後段階の前記算出範囲における標高値の最大値である後段最大値が前段階までの前記算出範囲における標高値の最大値である前段最大値よりも大きい場合にのみ、前記後段最大値に基づく勾配量を算出するとともに、前記前段最大値に基づく勾配量と前記後段最大値に基づく勾配量とのうちの小さい方を前記第1勾配量として選択し、
後段階の前記算出範囲における標高値の最小値である後段最小値が前段階までの前記算出範囲における標高値の最小値である前段最小値よりも小さい場合にのみ、前記後段最小値に基づく勾配量を算出するとともに、前記前段最小値に基づく勾配量と前記後段最小値に基づく勾配量とのうちの大きい方を前記第2勾配量として選択し、
各広さの算出範囲における前記第1勾配量および前記第2勾配量の選択が終わったときに選択されている第1勾配量および第2勾配量に基づいて前記合成勾配量を算出する、
請求項1-3のいずれか一項に記載の地形図出力装置。
【請求項5】
前記算出手段は、前記算出範囲の広さを段階的に拡大することにおいて、後段階ほど拡大量を大きくする、
請求項4に記載の地形図出力装置。
【請求項6】
前記算出手段は、
前記対象領域に複数の局所範囲を設定し、
前記複数の局所範囲のそれぞれについて標高値の最大値および標高値の最小値を検出し、
第1単位領域を中心領域とする第1算出範囲における標高値の最大値と、前記第1算出範囲に含まれず、かつ前記第1単位領域に隣接する第2単位領域を中心領域とする第2算出範囲に含まれる局所範囲における標高値の最大値とに基づいて、前記第2算出範囲の標高値の最大値を検出し、
前記第1算出範囲における標高値の最小値と、前記第1算出範囲に含まれず、かつ前記第2算出範囲に含まれる局所範囲における標高値の最小値とに基づいて、前記第2算出範囲の標高値の最小値を検出する、
請求項4または5に記載の地形図出力装置。
【請求項7】
前記算出手段は、前記第1勾配量と前記第2勾配量とを加算することにより、前記合成勾配量を算出する、
請求項1-6のいずれか一項に記載の地形図出力装置。
【請求項8】
地形図出力装置によって実行される地形図出力方法であって、
対象領域を所定の形状に区画した複数の単位領域の標高値を記憶し、
各単位領域について、当該単位領域を中心領域とする所定の参照範囲内の第1範囲に含まれる全ての単位領域の標高値の最大値を検出するとともに前記参照範囲内の第2範囲に含まれる全ての単位領域の標高値の最小値を検出し、前記中心領域と前記最大値が検出された単位領域との間の第1勾配量と、前記中心領域と前記最小値が検出された単位領域との間の第2勾配量とに基づいて合成勾配量を算出し、
前記合成勾配量に基づく態様で各単位領域を表示する地形図を出力する、
ことを含むことを特徴とする地形図出力方法。
【請求項9】
対象領域を所定の形状に区画した複数の単位領域の標高値を記憶する記憶部を有するコンピュータのプログラムであって、
各単位領域について、当該単位領域を中心領域とする所定の参照範囲内の第1範囲に含まれる全ての単位領域の標高値の最大値を検出するとともに前記参照範囲内の第2範囲に含まれる全ての単位領域の標高値の最小値を検出し、前記中心領域と前記最大値が検出された単位領域との間の第1勾配量と、前記中心領域と前記最小値が検出された単位領域との間の第2勾配量とに基づいて合成勾配量を算出し、
前記合成勾配量に基づく態様で各単位領域を表示する地形図を出力する、
ことを前記コンピュータに実行させることを特徴とするプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地形図出力装置、地形図出力方法およびプログラムに関する。
【背景技術】
【0002】
従来、地表の微細な凹凸や周辺の地形に対する相対的な標高値等による微地形を表現した地形解析図が用いられている。例えば、特許文献1には、地上開度と地下開度との差分を用いることにより、微地形による凹凸を強調する地形図について記載されている。特許文献2には、各地点の標高値と、その地点の周辺の標高値の平均値とに基づく起伏特徴量を用いることにより、微地形による凹凸を強調する地形図について記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第3670274号公報
【特許文献2】特許第6893307号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載された地形図では、各地点の地上開度および地下開度は、その地点を中心とする8方向の地形にのみ基づいて算出されるため、全方位における勾配が適切に反映されないおそれがある。特許文献2に記載された地形図では、起伏特徴量の算出に際して標高値が平均化されるため、標高値データに局所的なノイズが含まれる場合に、そのノイズの影響が希釈化されてノイズを把握することが困難となり、誤判読が生ずるおそれがある。特許文献1に記載された地形図においても平均化により同様の問題が生ずるおそれがある。そこで、全方位における勾配が適切に反映され、かつ、ノイズデータの把握に適した地形図が求められている。
【0005】
本発明は、上述の課題を解決するためになされたものであり、全方位における勾配が適切に反映され、かつ、ノイズデータの把握に適した地形図を出力することを可能とする地形図出力装置、地形図出力方法およびプログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明に係る地形図出力装置は、対象領域を所定の形状に区画した複数の単位領域の標高値を記憶する記憶手段と、各単位領域について、単位領域を中心領域とする所定の参照範囲内の第1範囲に含まれる全ての単位領域の標高値の最大値を検出するとともに参照範囲内の第2範囲に含まれる全ての単位領域の標高値の最小値を検出し、中心領域と最大値が検出された単位領域との間の第1勾配量と、中心領域と最小値が検出された単位領域との間の第2勾配量とに基づいて合成勾配量を算出する算出手段と、合成勾配量に基づく態様で各単位領域を表示する地形図を出力する出力手段と、を有することを特徴とする。
【0007】
また、本発明に係る地形図出力装置において、算出手段は、中心領域の標高値から最大値を減じた差を、中心領域と最大値を示す単位領域との間の距離で除した第1正弦を第1勾配量として算出し、中心領域の標高値から最小値を減じた差を、中心領域と最小値を示す単位領域との間の距離で除した第2正弦を第2勾配量として算出する、ことが好ましい。
【0008】
また、本発明に係る地形図出力装置において、記憶手段は、正弦と角度との対応関係を示すテーブルを記憶し、算出手段は、中心領域の標高値から最大値を減じた差を、中心領域と最大値が検出された単位領域との間の距離で除した第1正弦を算出し、中心領域の標高値から最小値を減じた差を、中心領域と最小値が検出された単位領域との間の距離で除した第2正弦を算出し、第1正弦および第2正弦に対応する第1角度および第2角度をテーブルからそれぞれ取得し、第1角度および第2角度に基づいて第1勾配量および第2勾配量をそれぞれ算出する、ことが好ましい。
【0009】
また、本発明に係る地形図出力装置において、算出手段は、各単位領域について、参照範囲よりも小さな広さから参照範囲と同じ広さまで段階的に拡大させて複数の広さの算出範囲を設定し、各算出範囲について、順次、標高値の最大値および標高値の最小値を検出し、後段階の前記算出範囲における標高値の最大値である後段最大値が前段階までの算出範囲における標高値の最大値である前段最大値よりも大きい場合にのみ、後段最大値に基づく勾配量を算出するとともに、前段最大値に基づく勾配量と後段最大値に基づく勾配量とのうちの小さい方を第1勾配量として選択し、後段階の算出範囲における標高値の最小値である後段最小値が前段階までの算出範囲における標高値の最小値である前段最小値よりも小さい場合にのみ、後段最小値に基づく勾配量を算出するとともに、前段最小値に基づく勾配量と後段最小値に基づく勾配量とのうちの大きい方を第2勾配量として選択し、各算出範囲における第1勾配量および第2勾配量の選択が終わったときに選択されている第1勾配量および第2勾配量に基づいて合成勾配量を算出する、ことが好ましい。
【0010】
また、本発明に係る地形図出力装置において、算出手段は、算出範囲の広さを段階的に拡大することにおいて、後段階ほど拡大量を大きくする、ことが好ましい。
【0011】
また、本発明に係る地形図出力装置において、算出手段は、対象領域に複数の局所範囲を設定し、複数の局所範囲のそれぞれについて標高値の最大値および標高値の最小値を検出し、第1単位領域を中心領域とする第1算出範囲における標高値の最大値と、第1算出範囲に含まれず、かつ第1単位領域に隣接する第2単位領域を中心領域とする第2算出範囲に含まれる局所範囲における標高値の最大値とに基づいて、第2算出範囲の標高値の最大値を検出し、第1算出範囲における標高値の最小値と、第1算出範囲に含まれず、かつ第2算出範囲に含まれる局所範囲における標高値の最小値とに基づいて、第2算出範囲の標高値の最小値を検出する、ことが好ましい。
【0012】
また、本発明に係る地形図出力装置において、算出手段は、第1勾配量と第2勾配量とを加算することにより、合成勾配量を算出する、ことが好ましい。
【0013】
本発明に係る地形図出力方法は、地形図出力装置によって実行される地形図出力方法であって、対象領域を所定の形状に区画した複数の単位領域の標高値を記憶し、各単位領域について、単位領域を中心領域とする所定の参照範囲内の第1範囲に含まれる全ての単位領域の標高値の最大値を検出するとともに参照範囲内の第2範囲に含まれる全ての単位領域の標高値の最小値を検出し、中心領域と最大値が検出された単位領域との間の第1勾配量と、中心領域と最小値が検出された単位領域との間の第2勾配量とに基づいて合成勾配量を算出し、合成勾配量に基づく態様で各単位領域を表示する地形図を出力する、ことを含むことを特徴とする。
【0014】
本発明に係るプログラムは、対象領域を所定の形状に区画した複数の単位領域の標高値を記憶する記憶部を有するコンピュータのプログラムであって、各単位領域について、単位領域を中心領域とする所定の参照範囲内の第1範囲に含まれる全ての単位領域の標高値の最大値を検出するとともに参照範囲内の第2範囲に含まれる全ての単位領域の標高値の最小値を検出し、中心領域と最大値が検出された単位領域との間の第1勾配量と、中心領域と最小値が検出された単位領域との間の第2勾配量とに基づいて合成勾配量を算出し、合成勾配量に基づく態様で各単位領域を表示する地形図を出力する、ことをコンピュータに実行させることを特徴とする。
【発明の効果】
【0015】
本発明に係る地形図出力装置、地形図出力方法およびプログラムは、全方位における勾配が適切に反映され、かつ、ノイズデータの把握に適した地形図を出力することを可能とする。
【図面の簡単な説明】
【0016】
図1】地形図出力装置1の概略構成を示すブロック図である。
図2】標高値テーブルT1のデータ構造を示す図である。
図3】地形図出力処理の流れを示すフロー図である。
図4】中心グリッドの設定の順序について説明するための模式図である。
図5】勾配量算出処理の流れを示すフロー図である。
図6】(A)は算出範囲における最大値および最小値の検出について説明するための模式図であり、(B)は局所範囲における局所最大値および局所最小値の検出について説明するための模式図である。
図7】第1勾配量の算出について説明するための模式図である。
図8】(A)は対象領域の標高段彩図であり、(B)は対象領域について地形図出力装置1が生成した地形図である。
図9】(A)および(B)は対象領域について地形図出力装置1が生成した地形図である。
【発明を実施するための形態】
【0017】
以下、図面を参照しつつ、本発明の様々な実施形態について説明する。本発明の技術的範囲はそれらの実施形態に限定されず、特許請求の範囲に記載された発明及びその均等物に及ぶ点に留意されたい。
【0018】
図1は、実施形態に係る地形図出力装置1の概略構成を示すブロック図である。地形図出力装置1は、DEM(Digital Elevation Model)等の標高値データに基づいて地形図を生成して出力する。地形図出力装置1は、記憶部11、通信部12、表示部13、操作部14および処理部15を備える。記憶部11は、記憶手段の一例である。
【0019】
記憶部11は、プログラム又はデータを記憶するための構成であり、例えば、半導体メモリ装置を備える。記憶部11は、処理部15による処理に用いられるオペレーティングシステムプログラム、ドライバプログラム、アプリケーションプログラム、データ等を記憶する。プログラムは、CD(Compact Disc)-ROM(Read Only Memory)、DVD(Digital Versatile Disc)-ROM等のコンピュータ読み取り可能かつ非一時的な可搬型記憶媒体から記憶部11にインストールされる。
【0020】
通信部12は、地形図出力装置1を他の装置と通信可能にする構成であり、通信インタフェース回路を備える。通信部12が備える通信インタフェース回路は、有線LAN(Local Area Network)又は無線LAN等の通信インタフェース回路である。通信部12は、データを他の装置から受信して処理部15に供給するとともに、処理部15から供給されたデータを他の装置に送信する。
【0021】
表示部13は、画像を表示するための構成であり、例えば、液晶ディスプレイ又は有機EL(Electro-Luminescence)ディスプレイを備える。表示部13は、処理部15から供給された表示データに基づいて画像を表示する。
【0022】
操作部14は、地形図出力装置1に対するユーザの入力操作を受付けるための構成であり、例えば、キーパッド、キーボード又はマウスを備える。操作部14は、表示部13と一体化されたタッチパネルを備えてもよい。操作部14は、ユーザの入力操作に応じた信号を生成して処理部15に供給する。
【0023】
処理部15は、地形図出力装置1の動作を統括的に制御するデバイスであり、一又は複数個のプロセッサ及びその周辺回路を備える。処理部15は、例えば、CPU(Central Processing Unit)を備える。処理部15は、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等を備えてもよい。処理部15は、記憶部11に記憶されているプログラム並びに通信部12及び操作部14からの入力に基づいて地形図出力装置1の各種処理が適切な手順で実行されるように、各構成の動作を制御するとともに、各種の処理を実行する。
【0024】
処理部15は、算出部151および出力部152をその機能ブロックとして備える。これらの各部は、処理部15によって実行されるプログラムによって実現される機能モジュールである。これらの各部は、ファームウェアとして地形図出力装置1に実装されてもよい。なお、算出部151および出力部152は、算出手段および出力手段の一例である。
【0025】
図2は、記憶部11に記憶される標高値テーブルT1のデータ構造の一例を示す図である。標高値テーブルT1は、地形図によって表示される対象領域を緯度方向および経度方向に等間隔な格子状の直線により矩形状に区画した複数の地理的領域と、各地理的領域の標高値とを関連付ける。図2に示す例では、各地理的領域には、その中心位置における緯度および経度が関連付けられている。矩形状の地理的領域は、単位領域の一例であり、グリッド、セルまたはメッシュ等と称されるが、以下では主にグリッドと称する。他の実施形態においては対象領域を六角形状に区画した複数の地理的領域に対応する単位領域が用いられてもよい。また、対象領域は、任意の所定の形状に区画されてもよい。
【0026】
図3は、地形図出力装置1によって実行される地形図出力処理の流れを示すフロー図である。地形図出力処理は、対象領域に含まれる各グリッドの標高値に基づいて各グリッドの勾配に関する特徴量を算出し、各グリッドを特徴量に基づく態様で表示する地形図を出力する処理である。地形図出力処理は、記憶部11に記憶されたプログラムに基づいて、処理部15が地形図出力装置1の各構成と協働することにより実現される。
【0027】
最初に、算出部151は、算出範囲の広さを規定するグリッド数Rを初期値に設定する(ステップS11)。算出範囲は、第1範囲および第2範囲の一例である。算出範囲は、各グリッドの特徴量を算出するときに参照されるグリッドの範囲であり、例えば、算出対象のグリッドを中心グリッドとする正方形の領域である。算出範囲は、算出対象のグリッドから、緯度方向および経度方向にR個のグリッドまでを含む。すなわち、算出範囲の広さは、(2R+1)×(2R+1)となる。
【0028】
算出範囲は、後述するように、初期値から所定の参照範囲と同じ広さまで段階的に拡大される。すなわち、Rの初期値は小さい値に設定され、例えば1である。この場合、初期の算出範囲は、3×3個のグリッドを含む。なお、算出範囲は正方形に限られず、多角形や円形等の任意の形状を有してもよい。初期の算出範囲の広さ、および参照範囲の広さ(すなわち、算出範囲の広さの上限値)は、あらかじめ記憶部11に記憶されていてもよく、ユーザの操作部14に対する入力操作によって設定されてもよい。
【0029】
次に、算出部151は、算出範囲の中心グリッドを初期グリッドに設定する(ステップS12)。初期グリッドは、対象領域に含まれるグリッドのうちから、利用者の操作部14に対する入力操作によって選択されたグリッドである。初期グリッドは任意に選択されてよいが、矩形である対象領域の四隅のグリッドのいずれかが選択されると、後述する勾配量算出処理の計算が効率化されるため好ましい。
【0030】
次に、算出部151は、勾配量算出処理を実行する(ステップS13)。勾配量算出処理においては、中心グリッドと算出範囲に含まれるグリッドのうち最大の標高値を有するグリッドとの間の第1勾配量と、中心グリッドと算出範囲に含まれるグリッドのうち最小の標高値を有するグリッドとの間の第2勾配量が算出される。
【0031】
次に、算出部151は、対象領域に含まれる全てのグリッドについて勾配量算出処理が実行されたか否かを判定する(ステップS14)。全てのグリッドについて勾配量算出処理が実行されていない場合(ステップS14-No)、算出部151は、算出範囲の中心グリッドを算出対象のグリッドの次のグリッドに設定し(ステップS14a)、ステップS13に進む。すなわち、算出部151は、対象領域に含まれる全てのグリッドについて、順次、勾配量算出処理を実行する。
【0032】
図4は、中心グリッドの設定の順序について説明するための模式図である。図4では、各グリッドが円形により図示されており、各グリッドは相互に垂直なX方向およびY方向に格子状に配列されている。
【0033】
図4に示す例では、中心グリッドの初期値として対象領域の四隅のグリッドのうちの一つであるグリッドG[1][1]が選択されている。算出対象であるグリッドG[1][1]について勾配量算出処理が実行されると、グリッドG[1][1]にX方向に隣接するグリッドG[2][1]が次の中心グリッドとして選択される。同様に、勾配量算出処理が実行されるごとに、算出対象のグリッドにX方向に隣接するグリッドが次の中心グリッドとして選択される。
【0034】
対象領域のX方向の端部に位置するグリッドG[Nx][1]について勾配量算出処理が実行されると、グリッドG1にY方向に隣接するグリッドG[1][2]が次の中心グリッドとして選択される。その後は、同様に、X方向に隣接するグリッドが次の中心グリッドとして選択される。このように、次の中心グリッドとしてX方向に隣接するグリッドが順次選択され、X方向の端部に位置するグリッドが中心グリッドとして選択されると、次の中心グリッドがY方向に隣接するグリッド列から同様に選択される。Y方向の端部をNyとすると、中心グリッドの設定は以上の順序でG[Nx][Ny]に達するまで行われる。
【0035】
上述した中心グリッドの設定の順序は一例であり、中心グリッドは任意の順序で設定されてよい。もっとも、上述した例のように、算出対象であるグリッドにX方向又はY方向に隣接するグリッドが次の中心グリッドとして選択されると、後述するように勾配量算出処理の計算が効率化されるため好ましい。例えば、グリッドG[Nx][1]について勾配量算出処理が実行されたときに、グリッドG[Nx][1]にY方向に隣接するグリッドG[Nx][2]が次の中心グリッドとして選択されてもよい。この場合、グリッドG[Nx][2]の次の中心グリッドとして、グリッドG[Nx][2]にX方向に隣接するグリッドG[Nx-1][2]が選択される。
【0036】
図3に戻り、全てのグリッドについて勾配量算出処理が実行された場合(ステップS14-Yes)、算出部151は、算出範囲の広さを規定するグリッド数Rが上限値であるか否か、すなわち算出範囲が参照範囲と同じ広さであるか否かを判定する(ステップS15)。Rが上限値でない場合(ステップS15-No)、算出部151は、算出範囲を拡大し(ステップS15a)、ステップS12に進む。例えば、算出部151は、Rを所定数だけ増加させることにより、算出範囲を拡大する。すなわち、算出部151は、Rが上限値になるまで段階的にRを大きくし、各Rに応じた広さの算出範囲を用いて、対象領域に含まれる各グリッドについて勾配量算出処理を実行する。
【0037】
算出範囲が参照範囲と同じ広さである場合(ステップS15-Yes)、算出部151は、各グリッドの第1勾配量と第2勾配量とに基づいて、各グリッドの合成勾配量を算出する(ステップS16)。例えば、算出部151は、第1勾配量と第2勾配量を加算することにより、合成勾配量を算出する。合成勾配量の意義については後述する。
【0038】
次に、出力部152は、合成勾配量に基づく態様で各グリッドを表示する地形図を出力し(ステップS17)、地形図出力処理を終了する。合成勾配量に基づく態様は、例えば、合成勾配量の値に応じた輝度や色相である。出力部152は、地形図の表示データを表示部13に供給し、表示部13に地形図の画像を表示させることにより地形図を出力する。出力部152は、通信部12を介して地形図の表示データを他の装置に送信することにより地形図を出力してもよい。地形図の表示データは画像データでもよく、各グリッドの合成勾配量を示すデータでもよい。合成勾配量に基づく態様の他の例として、合成勾配量の絶対値が予め定めたしきい値以上(例えば、後述するように合成勾配量が角度である場合、45度以上または-45度以下)である単位領域のみに色を設定した地形図とすることもできる。その場合、出力部152は、例えば、標高値テーブルT1のデータから生成されてグレースケールで表現された他の地形図(例えば特許文献2の起伏特徴量を用いた地形図)の画像データに、合成勾配量を用いた地形図の画像データを透過合成して出力することで、局所的なノイズが生じている可能性がある単位領域を色で示すことができる。
【0039】
図5は、勾配量算出処理の流れを示すフロー図である。
【0040】
最初に、算出部151は、算出範囲に含まれる全てのグリッドの標高値のうちから、最大の標高値および最小の標高値を検出する(ステップS21)。
【0041】
図6(A)は、算出範囲における最大の標高値および最小の標高値の検出について説明するための模式図である。図6(A)に示すように、算出部151は、対象領域Tに複数の局所範囲(図6(A)に示す例では、U1、U2、U3およびU4)を設定する。各局所範囲は、Y方向に連続する(2R+1)個のグリッドが含まれるように設定される。算出部151は、あらかじめ、各局所範囲に含まれるグリッドの標高値のうち最大の標高値を局所最大値として、最小の標高値を局所最小値としてそれぞれ検出する。
【0042】
まず、初期の算出範囲V1の最大の標高値および最小の標高値を検出する場合について説明する。算出部151は、算出範囲V1を構成する(2R+1)個の局所範囲(図6(A)に示す例では、局所範囲U1、U2およびU3)を特定する。算出部151は、特定した局所範囲の局所最大値のうち最も大きいものを算出範囲V1の最大値として検出する。同様に、算出部151は、特定した局所範囲の局所最小値のうち最も小さいものを算出範囲V1の最小値として検出する。
【0043】
次に、直前の算出範囲V1の中心グリッドに隣接するグリッドを中心グリッドとする算出範囲V2の最大の標高値および最小の標高値を検出する場合について説明する。図6(A)に示す例では、算出範囲V2には局所範囲U2、U3およびU4が含まれる。算出部151は、直前の算出範囲V1の最大値として検出された局所最大値を示す局所範囲が算出範囲V2に含まれるか否かを判定する。図6(A)に示す例では、算出部151は、局所範囲U1の局所最大値が算出範囲V1の最大値として検出されなかった(すなわち局所範囲U2またはU3の局所最大値が算出範囲V1の最大値として検出された)のであれば算出範囲V2に含まれると判定し、局所範囲U1の局所最大値が算出範囲V1の最大値として検出されたのであれば算出範囲V2に含まれないと判定する。
【0044】
算出範囲V1の最大値が検出された局所範囲が算出範囲V2に含まれる場合、算出部151は、算出範囲V1における最大値と、算出範囲V1に含まれず、かつ算出範囲V2に含まれる局所範囲の局所最大値とのうちの大きいものを算出範囲V2の最大値として検出する。図6(A)に示す例では、局所範囲U4が、算出範囲V1に含まれずかつ算出範囲V2に含まれる局所範囲である。他方、算出範囲V1の最大値が検出された局所範囲が算出範囲V2に含まれない場合、算出部151は、算出範囲V1の場合と同様に、算出範囲V2に含まれる局所範囲U2、U3およびU4の局所最大値のうち最も大きいものを算出範囲V2の最大値として検出する。
【0045】
同様に、算出部151は、算出範囲V1の最小値が検出された局所範囲が算出範囲V2に含まれるか否かを判定する。算出範囲V1の最小値が検出された局所範囲が算出範囲V2に含まれる場合、算出部151は、算出範囲V1の最小値と、算出範囲V1に含まれず、かつ算出範囲V2に含まれる局所範囲U4の局所最小値とのうちの小さいものを算出範囲V2の最小値として検出する。他方、算出範囲V1の最小値が検出された局所範囲Uが算出範囲V2に含まれない場合、算出部151は、算出範囲V1の場合と同様に、算出範囲V2に含まれる局所範囲U2、U3およびU4の局所最小値のうちから最も小さいものを算出範囲V2の最小値として検出する。
【0046】
このように最大値および最小値を検出することにより、計算が効率化される。すなわち、算出範囲V1の最大値が検出された局所範囲が算出範囲V2に含まれる場合には、算出部151は、1回の比較演算で最大値を検出することができる。他方で、算出範囲V1の最大値が検出された局所範囲が算出範囲V2に含まれない場合には、算出範囲V2には(2R+1)個の局所範囲が含まれるため、算出部151は、最大値を検出するために(2R)回の比較演算をする必要がある。しかしながら、隣接するグリッドが順に中心グリッドとして選択される場合には、算出範囲は1グリッドずつスライドするため、算出範囲V1の最大値が検出された局所範囲が算出範囲V2に含まれない確率は1/(2R+1)にすぎない。したがって、算出範囲の広さを規定するグリッド数Rが大きい場合には平均して約2回の比較演算で最大値が検出されるため、計算が効率化される。最小値の検出についても同様である。
【0047】
図6(B)は、局所範囲における局所最大値および局所最小値の検出について説明するための模式図である。中心グリッドがY方向に移動する場合(図4において、G[Nx][1]の次にG[1][2]が中心グリッドとして選択されるような場合)、各局所範囲を改めて設定し、算出部151は、局所最大値および局所最小値を改めて検出する。
【0048】
図6(B)に示す例では、既に局所最大値を検出済みである局所範囲U1にはグリッドG1、G2およびG3が含まれ、局所範囲U2にはグリッドG2、G3およびG4が含まれる。算出部151は、直前の局所範囲U1の局所最大値として検出された標高値のグリッドが局所範囲U2に含まれるか否かを判定する。図6(B)に示す例では、算出部151は、グリッドG1の標高値が局所範囲U1の局所最大値として検出されなかった(すなわちグリッドG2またはG3の標高値が局所範囲U1の局所最大値として検出された)のであれば局所範囲U2に含まれると判定し、グリッドG1の標高値が局所範囲U1の局所最大値として検出されたのであれば局所範囲U2に含まれないと判定する。
【0049】
局所範囲U1の局所最大値として検出された標高値のグリッドが局所範囲U2に含まれる場合、算出部151は、局所範囲U1の局所最大値と、局所範囲U1に含まれず、かつ局所範囲U2に含まれるグリッドの標高値とのうち大きいものを局所範囲U2の局所最大値として検出する。図6(B)に示す例では、グリッドG4が局所範囲U1に含まれず、かつ局所範囲U2に含まれるグリッドである。局所範囲U1の局所最小値として検出された標高値のグリッドが局所範囲U2に含まれない場合、算出部151は、局所範囲U2に含まれるグリッドG2、G3およびG4の標高値のうち最も大きいものを局所範囲U2の最大値として検出する。
【0050】
同様に、算出部151は、局所範囲U1の局所最小値として検出された標高値のグリッドが局所範囲U2に含まれるか否かを判定する。局所範囲U1の局所最小値として検出された標高値のグリッドが局所範囲U2に含まれる場合、算出部151は、局所範囲U1の局所最小値と、局所範囲U1に含まれず、かつ局所範囲U2に含まれるグリッドG4の標高値とのうちの小さいものを局所範囲U2の局所最小値として検出する。局所範囲U1の局所最小値として検出された標高値のグリッドが局所範囲U2に含まれない場合、算出部151は、局所範囲U2に含まれるグリッドG2、G3およびG4の標高値のうちから最も小さいものを局所範囲U2の最小値として検出する。
【0051】
このように局所最大値および局所最小値が検出されることにより、計算が効率化される。すなわち、局所範囲U1の局所最大値として検出された標高値のグリッドが局所範囲U2に含まれる場合には、算出部151は1回の比較演算で局所最大値を検出することができる。したがって、算出範囲の広さを規定するグリッド数Rが大きい場合には平均して約2回の比較演算で局所最大値が検出され、計算が効率化される。局所最小値の検出についても同様である。
【0052】
図5に戻り、算出部151は、第1勾配量を算出する第1条件および第2勾配量を算出する第2条件が満たされたか否かをそれぞれ判定する(ステップS22)。第1条件は、ステップS21で検出された最大値が前段階までの算出範囲(すなわち、現在の算出範囲よりも狭い算出範囲)における最大値よりも大きいことである。第2条件は、ステップS11で検出された最小値が前段階までの算出範囲における最小値よりも小さいことである。なお、算出範囲が初期の算出範囲である場合には、第1条件および第2条件のいずれもが満たされるものとする。
【0053】
第1条件および第2条件のいずれもが満たされない場合(ステップS22-No)、勾配量算出処理は終了する。
【0054】
第1条件または第2条件が満たされた場合(ステップS22-Yes)、算出部151は、満たされた条件に応じて第1条件又は第2条件を算出する(ステップS23)。すなわち、第1条件が満たされた場合、算出部151は第1勾配量を算出し、第2条件が満たされた場合、算出部151は第2勾配量を算出する。
【0055】
第1勾配量F1は、中心グリッドの標高値Hから最大値Hmaxを減じた差を、中心グリッドと最大値Hmaxを示すグリッドとの間の距離L(距離Lは、グリッド間の水平距離ではなく、標高値の差を考慮した三次元距離である。)で除した値である。すなわち、第1勾配量F1は、中心グリッドから最大値Hmaxを示すグリッドを見たときの仰角の正弦の負値である。ただし、最大値Hmaxを示すグリッドが中心グリッドであり、距離Lが0のときは、第1勾配量F1は0であるものとする。すなわち、第1勾配量F1は次の式により表される。
【数1】
ここで、算出範囲における最大値Hmaxは算出範囲の中心グリッドの標高値H以上であるから、第1勾配量F1は-1より大きく0以下の値をとり、-1に近いほど中心グリッドから最大値Hmaxを示すグリッドを見たときの仰角が大きいことを示す。
【0056】
第2勾配量F2は、中心グリッドの標高値Hから最小値Hminを減じた差を、中心グリッドと最小値Hminを示すグリッドとの間の距離Lで除した値である。すなわち、第2勾配量F2は、中心グリッドから最小値Hminを示すグリッドを見たときの俯角の正弦である。ただし、最小値Hminを示すグリッドが中心グリッドであり、距離Lが0のときは、第2勾配量F2は0であるものとする。すなわち、第2勾配量F2は次の式により表される。
【数2】
ここで、算出範囲における最小値Hminは、算出範囲の中心グリッドの標高値H以下であるから、第2勾配量F2は、0以上であり1より小さい値をとり、1に近いほど中心グリッドから最小値Hminを示すグリッドを見たときの俯角が大きいことを示す。
【0057】
次に、算出部151は、ステップS23で算出された第1勾配量と前段階までの第1勾配量とのうちの小さいものを、現段階の算出範囲における第1勾配量として選択する(ステップS24)。また、算出部151は、ステップS23で算出された第2勾配量と前段階までの第2勾配量とのうちの大きいものを、現段階の算出範囲における第2勾配量として選択し(ステップS24)、勾配量算出処理を終了する。すなわち、ステップS24で選択された第1勾配量は、現段階までの算出範囲についての第1勾配量のうち最も小さいものである。また、ステップS24で選択された第2勾配量は、現段階までの算出範囲についての第2勾配量のうち最も大きいものである。なお、現段階の算出範囲が初期の算出範囲である場合には、ステップS23で算出された勾配量が現段階の算出範囲における勾配量として選択される。ステップS23で算出された勾配量が現段階の算出範囲における勾配量として選択された場合、算出部151は、その勾配量に対応する最大値または最小値を現段階における最大値または最小値として記憶する。
【0058】
このように、算出部151は、参照範囲よりも小さな広さから参照範囲と同じ広さまで段階的に拡大させて複数の広さの算出範囲を設定し、各広さの算出範囲について、順次、ステップS21において標高の最大値および最小値を検出する。そして、後段階の算出範囲における最大値が前段階までの算出範囲における最大値よりも大きい場合にのみ、ステップS23において第1勾配量を算出する。また、後段階の算出範囲における最小値が前段階までの算出範囲における最小値よりも小さい場合にのみ、ステップS23において第2勾配量を算出する。このようにすることで、計算が効率化される。
【0059】
すなわち、後段階の算出範囲において新たに算出範囲に含まれたグリッドは、前段階の算出範囲に含まれていたグリッドよりも中心グリッドとの間の距離Lが大きい可能性が高い。したがって、後段階の最大値が前段階の最大値以下である場合には、後段階の第1勾配量が前段階までの第1勾配量よりも小さく(すなわち、絶対値が大きく)ならず、ステップS24で後段階の第1勾配量が選択される可能性は小さい。このような場合に後段階の第1勾配量の算出を省略することにより、計算が効率化される。第2勾配量の算出についても、同様に計算が効率化される。
【0060】
また、ステップS24において、算出部151は、前段階までの最大値に基づく第1勾配量と後段階の最大値に基づく第1勾配量とのうちの小さい方を現段階の第1勾配量として選択する。また、算出部151は、前段階までの最小値に基づく第2勾配量と後段階の最大値に基づく第2勾配量とのうちの大きい方を現段階の第2勾配量として選択する。このようにすることで、図7を用いて説明するように、傾斜を適切に反映した特徴量が算出される。
【0061】
図7は、勾配量の選択について説明するための模式図である。図7に示す例では、前段階の算出範囲V1には中心グリッドAと最大値を示すグリッドBが含まれている。この場合、ステップS21において、最大値としてグリッドBの標高値Hbが検出され、ステップS23においてグリッドAとグリッドBとの間の第1勾配量Fbが算出される。そして、ステップS24において第1勾配量Fbが選択される。
【0062】
グリッドAを中心グリッドとする後段階の算出範囲V2には、グリッドBの標高値Hbよりも大きい標高値Hcを有するグリッドCが含まれている。この場合、ステップS21において、最大値としてグリッドCの標高値Hcが検出され、ステップS23においてグリッドAとグリッドCとの間の第1勾配量Fcが算出される。しかしながら、グリッドAからグリッドCに向かう上りの勾配はグリッドBに向かう上りの勾配よりも小さく、第1勾配量Fcは第1勾配量Fbよりも大きい(すなわち、絶対値が小さい)ため、ステップS24において第1勾配量Fbが選択される。
【0063】
図7に示すように、第1勾配量Fbは、グリッドAから算出範囲内の他のグリッドを見たときの仰角の最大値に対応する特徴量である。すなわち、第1勾配量は、微地形による最大の傾斜を適切に反映できる。また、方向についての平均化を行わないため、局所的な標高値のノイズによって生じる最大の傾斜も希釈させることなく反映できる。
【0064】
仮に、算出範囲を段階的に拡大することなく、初期の算出範囲を算出範囲V2のように広く設定した場合、図7に示す例では、グリッドCの標高値Hcが最大値として検出され、グリッドCに対応する第1勾配量Fcが選択される。図7に示すように、この第1勾配量FcはグリッドAにおける傾斜を適切に反映した値ではないと考えられるから、算出範囲を段階的に拡大することなく初期の算出範囲を広くした場合には、勾配量に傾斜が適切に反映されない場合がある。
【0065】
勾配量は、各グリッドの標高値だけではなく、各グリッドと中心グリッドとの間の距離にも基づく値である。したがって、本来は、標高値の最大値または最小値が検出されたグリッドのみについて勾配量を算出しても、傾斜が適切に反映された勾配量を算出することはできない。しかしながら、初期の算出範囲を狭く設定することにより、各グリッドと中心グリッドとの間の距離はいずれも近しい値となるため、各グリッドの勾配量の大小関係は標高値の大小関係と概ね一致する。したがって、初期の算出範囲においては、標高値の最大値または最小値が検出されたグリッドのみについて勾配量が算出されれば、勾配量に傾斜が適切に反映される。
【0066】
また、算出範囲を段階的に拡大することにより、新たに算出範囲に含まれた各グリッドと中心グリッドとの間の距離もいずれも近しい値となるため、新たに算出範囲に含まれた各グリッドの勾配量の大小関係は標高値の大小関係と概ね一致する。したがって、段階的に拡大された算出範囲においても、初期の算出範囲の場合と同様に、標高値の最大値または最小値が検出されたグリッドのみについて勾配量が算出されれば、勾配量に傾斜が適切に反映される。
【0067】
また、勾配量が算出されるグリッドは標高値の最大値または最小値が検出されたグリッドであり、そのグリッドが中心グリッドに対してどの方位に位置するかにかかわらない。したがって、このように算出された勾配量には、全方位における傾斜が適切に反映されている。すなわち、地形図出力装置1は、算出範囲の広さを段階的に拡大しながら各広さの算出範囲について勾配量算出処理を実行することにより、計算を効率化しながら、全方位における傾斜を適切に反映した勾配量を算出することができる。
【0068】
ステップS16においては、第1勾配量と第2勾配量を加算することにより合成勾配量が算出されるため、合成勾配量は、-1より大きく1より小さい値をとる。例えば、全方位に向けて上りの傾斜がある谷のような地点においては、上りの勾配を示す第1勾配量が-1に近い値をとり、下りの勾配を示す第2勾配量が0に近い値をとるため、合成勾配量は-1に近い値をとる。全方位に向けて下りの傾斜がある尾根のような地点においては、上りの勾配を示す第1勾配量が0に近い値をとり、下りの勾配を示す第2勾配量が1に近い値をとるため、合成勾配量は1に近い値をとる。全方位について傾斜が小さい地点や、方位に応じて上りの傾斜も下りの傾斜もある地点においては、合成勾配量は0に近い値をとる。すなわち、合成勾配量は、地形の傾斜が尾根状であるか谷状であるかを示す指標として用いることができる。
【0069】
この合成勾配量は、いずれも有限な値域を有する正弦である第1勾配量および第2勾配量を加算することにより算出されるため、同様に有限な値域を有する。これにより、各グリッドを合成勾配量に基づく態様で表示する際に、微小な合成勾配量の差が適切に表示態様に反映される。すなわち、地形図出力装置1は、微小な傾斜を地形図に適切に反映させることができる。
【0070】
以上説明したように、地形図出力装置1は、算出範囲に含まれる全てのグリッドの標高値のうちから最大値および最小値を検出する。また、地形図出力装置1は、中心グリッドと最大値が検出されたグリッドとの間の第1勾配量と、中心領域と最小値が検出されたグリッドとの間の第2勾配量とに基づいて合成勾配量を算出し、合成勾配量に基づく態様で各グリッドを表示する地形図を出力する。これにより、地形図出力装置1は、全方位における傾斜を地形図に適切に反映させることを可能とする。
【0071】
また、地形図出力処理においては、各グリッドの標高値等を平均化する処理が含まれない。したがって、標高値テーブルT1に局所的に標高値が変化しているようなノイズデータが含まれる場合にも、このようなノイズデータの影響が希釈化されることはない。したがって、地形図出力装置1は、全方位における勾配が適切に反映され、かつ、ノイズデータの把握に適した地形図を出力することを可能とする。
【0072】
地形図出力装置1には、次に述べるような各種の変形例が適用されてもよい。
【0073】
上述した説明では、ステップS23で算出される第1勾配量および第2勾配量はいずれも正弦であるものとしたが、このような例に限られない。第1勾配量および第2勾配量は、正弦に対応する角度であってもよい。
【0074】
この場合、算出部151は、ステップS23において、中心グリッドの標高値Hから最大値Hmaxを減じた差を、中心グリッドと最大値Hmaxを示すグリッドとの間の距離Lで除した第1正弦を算出する。そして、算出部151は、第1正弦の逆正弦(arcsin)、すなわち第1正弦に対応する第1角度を第1勾配量として算出する。同様に、算出部151は、ステップS23において、中心グリッドの標高値Hから最小値Hminを減じた差を、中心グリッドと最小値Hminを示すグリッドとの間の距離Lで除した第2正弦を算出する。そして、算出部151は、第2正弦の逆正弦、すなわち第2正弦に対応する第2角度を第2勾配量として算出する。なお、算出部151は、第1角度および第2角度に基づく値(例えば、第1角度および第2角度を正規化した値)を第1勾配量および第2勾配量として用いてもよい。
【0075】
このようにすることで、多様な傾斜を適切に地形図に反映することができる。すなわち、角度が0度に近いときは、角度に対する正弦の変化率は大きいが、角度が±90度に近づくに伴い、角度に対する正弦の変化率は小さくなる。すなわち、正弦は、角度が0度に近い場合には分解能が高いが、角度が±90度に近い場合には分解能が低い。これに対し、角度を勾配量として用いることにより、角度が±90度に近い場合でも分解能が低くなることが防止され、傾斜角が±90度に近いような傾斜が高い分解能で地形図に反映される。もっとも、一般的には、傾斜角が±90度よりも0度に近いような地形が多く、そのような場合には正弦を勾配量として用いることで、多くの傾斜が高い分解能で地形図に反映される。
【0076】
また、角度を勾配量として用いる場合において、記憶部11は正弦と角度との対応関係を示すテーブルを記憶してもよい。この場合、算出部151は、第1正弦に対応する第1角度と第2正弦に対応する第2角度とをそれぞれテーブルから取得する。これにより、逆正弦の演算負荷が低減され、計算が効率化される。
【0077】
上述した説明では、算出部151は、ステップS23で第1勾配量および第2勾配量を算出するものとしたが、これに代えて、各勾配量の二乗値を算出するようにしてもよい。この場合、ステップS16において、算出部151は、第2勾配量の二乗値の平方根から、第1勾配量の二乗値の平方根を減ずることにより合成勾配量を算出する。
【0078】
一般に、標高値テーブルT1で示したようなDEMにおいては、各グリッドの緯度、経度および標高値が記憶されている。したがって、勾配量の算出に必要となる、中心グリッドから最大値または最小値を示すグリッドまでの距離Lを算出するためには、積和演算よりも演算負荷が大きい平方根の演算が必要となる。そして、ステップS23における第1勾配量および第2勾配量の算出は第1条件および第2条件が満たされるたびに実行されるから、平方根の演算が繰り返し実行されることとなり、演算負荷が大きくなる。これに対し、第1勾配量および第2勾配量の二乗値を算出する場合には、ステップS23における平方根の演算は不要となり、ステップS16において各グリッドについて一回ずつ平方根の演算を行なえば足りることとなる。したがって、計算が効率化される。
【0079】
上述した説明では、算出部151は、ステップS15およびS15aにおいて算出範囲の広さを規定するグリッド数Rを所定数ずつ増加させることにより算出範囲を拡大するものとしたが、このような例に限られない。算出部151は、算出範囲の広さを段階的に拡大することにおいて、後段階ほど拡大量(拡大後の算出範囲についてのRと拡大前の算出範囲についてのRとの差をいう。)を大きくしてもよい。例えば、算出部151は、拡大後の算出範囲の広さが拡大前の算出範囲の広さの所定数倍となるように算出範囲を拡大してもよい。算出範囲が広いほど勾配量の算出に用いられる、中心グリッドと最大値または最小値を示すグリッドとの間の距離Lが大きくなるため、勾配量は0に近い値になりやすい。したがって、ステップS23において、後段階の算出範囲における勾配量が選択される可能性は小さいため、算出範囲の変化率を大きくして計算の精度を抑えたとしても誤差が生じにくくなる。すなわち、後段階ほど拡大量を大きくすることで、計算の精度の低下を抑えつつ計算が効率化される。
【0080】
また、算出部151は、ステップS15を実行しなくてもよい。すなわち、算出部151は、複数の算出範囲を設定することなく、参照範囲を算出範囲として用いて勾配量算出処理を実行してもよい。上述したように、算出範囲が狭い場合には、各グリッドと中心グリッドとの間の距離はいずれも近しい値となるため、最大値および最小値に基づいて勾配量が適切に算出される。したがって、ごく近傍の地形の傾斜のみを地形図に反映させたい場合には、一つの算出範囲を用いるだけでもよい。
【0081】
また、算出部151は、ステップS11において算出範囲の広さを参照範囲の広さに設定し、ステップS15およびS15aにおいて算出範囲の広さが下限値になるまで算出範囲を段階的に縮小してもよい。この場合、勾配量算出処理のステップS22が省略され、算出部151は、最大値または最小値が検出されたグリッドについて必ず第1勾配量および第2勾配量を算出する。算出範囲の広さを縮小していく場合、必ずステップS23およびS24が実行されるため、算出範囲の広さを拡大していく場合よりも計算量が多くなるものの、一定程度計算が効率化される。
【0082】
上述した説明では、算出部151は、ステップS16において第1勾配量および第2勾配量を加算することにより合成勾配量を算出するものとしたが、このような例に限られない。算出部151は、第1勾配量および第2勾配量の重み付け和を合成勾配量として算出してもよい。このようにすることで、尾根または谷のいずれか一方を強調した地形図を出力することができる。
【0083】
以下では、地形図出力装置1によって出力される地形図の例について説明する。
【0084】
図8(A)は対象領域の標高段彩図であり、図8(B)、図9(A)および図9(B)は対象領域について地形図出力装置1が出力した地形図である。図8(A)においては、標高値が大きいほど輝度が大きくなるように各グリッドが表示されている。また、図8(B)、図9(A)および図9(B)においては、合成勾配量が大きいほど輝度が大きくなるように各グリッドが表示されている。図8(B)は参照範囲の広さ(すなわち、算出範囲の広さの上限値)を3とした場合の図であり、図9(A)および図9(B)は参照範囲の広さを21とした場合の図である。
【0085】
図8(B)では、参照範囲が狭いため、局所的な傾斜、すなわち段差が強調されているが、広域的な傾斜は反映されていない。これに対し、図9(A)および(B)では、参照範囲が広いため、段差に加えて、広域的な傾斜(例えば、尾根や谷)が強調されている。すなわち、参照範囲を適切に設定することで、局所的な傾斜と広域的な傾斜との両方が地形図に適切に反映されている。
【0086】
図9(A)は算出範囲の広さを規定するグリッド数Rを1から上限値である21まで1ずつ増加させた場合の図であり、図9(B)はRを1から8まで1ずつ増加させ、以降はRを順次1.5倍に大きくした場合の図である。図9(A)および(B)の間には実用上問題となるような差はみられなかった。すなわち、算出範囲を拡大することにおいて、後段階ほど拡大量を大きくすることにより、計算精度を低下させることなく計算が効率化されることが確認された。
【0087】
当業者は、本発明の精神および範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であることを理解されたい。例えば、上述した実施形態及び変形例は、本発明の範囲において、適宜に組み合わせて実施されてもよい。
【符号の説明】
【0088】
1 地形図出力装置
11 記憶部
151 算出部
152 出力部
図1
図2
図3
図4
図5
図6
図7
図8
図9