(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023075026
(43)【公開日】2023-05-30
(54)【発明の名称】横磁気偏光シリコンフォトニック変調器
(51)【国際特許分類】
G02F 1/025 20060101AFI20230523BHJP
【FI】
G02F1/025
【審査請求】未請求
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022144312
(22)【出願日】2022-09-12
(31)【優先権主張番号】17/529,321
(32)【優先日】2021-11-18
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】522361696
【氏名又は名称】アロエ セミコンダクター インク.
(74)【代理人】
【識別番号】100097456
【弁理士】
【氏名又は名称】石川 徹
(72)【発明者】
【氏名】クリストファー アール. ドエル
【テーマコード(参考)】
2K102
【Fターム(参考)】
2K102AA20
2K102AA34
2K102BA01
2K102BB01
2K102BB04
2K102BC04
2K102BD01
2K102DA05
2K102DB04
2K102DC07
2K102DD03
2K102EA03
2K102EA08
2K102EA12
2K102EA22
(57)【要約】 (修正有)
【課題】より高い帯域幅および/またはより低い駆動電圧を達成することができるシリコンフォトニクスにおける新規な電気光学変調器を提供する。
【解決手段】シリコンフォトニック光変調器は、少なくとも1つの光入力と、該少なくとも1つの光入力に接続された少なくとも1つの光導波路とを含む。少なくとも1つの光導波路は、準横磁気(準TM)偏光を伝搬するように構成され、少なくとも1つの光導波路のそれぞれは、スラブ上に配置されたリブを含むリブ導波路として構成される。また、シリコンフォトニック光変調器は、少なくとも1つの光導波路内の準TM偏光に少なくとも1つの電界を印加するように構成された少なくとも1つの電極を含む。いくつかの実施形態では、リブ導波路の高さは、0.85λ/nより大きく(ここで、λは光の自由空間波長、nはシリコンフォトニック光変調器のシリコンの屈折率である)、リブ導波路の幅はスラブの厚さより大きい。
【選択図】
図1
【特許請求の範囲】
【請求項1】
少なくとも1つの光入力;
該少なくとも1つの光入力に接続され、準横磁気(準TM)偏光を伝搬するように構成された少なくとも1つの光導波路であって、少なくとも1つの光導波路のそれぞれがスラブ上に配置されたリブを含むリブ導波路として構成されている、該光導波路;および
該少なくとも1つの光導波路内の準TM偏光に少なくとも1つの電界を印加するように構成された少なくとも1つの電極
を備える、シリコンフォトニック光変調器。
【請求項2】
前記シリコンフォトニック光変調器は、前記少なくとも1つの光導波路が少なくとも1つの半導体接合ダイオードを備える、シリコンフォトニックデプレッション型変調器として構成され、
前記少なくとも1つの電極は、該少なくとも1つの半導体接合ダイオード内の前記準TM偏光に前記少なくとも1つの電界を印加するように構成されている、
請求項1に記載のシリコンフォトニック光変調器。
【請求項3】
前記リブ導波路内のTM偏光2次元(2D)導波モードの実効屈折率が、前記スラブ内の横電場(TE)偏光1次元(1D)導波モードの実効屈折率より大きい、請求項1に記載のシリコンフォトニック光変調器。
【請求項4】
前記リブの最も近い側壁から100nm以内にある前記スラブの第1の部分において、ドーピング濃度が、前記リブの前記最も近い側壁から100nmより離れた前記スラブの第2の部分と比較して、1cm3当たり1017超の活性ドーパントだけ増加する、請求項1に記載のシリコンフォトニック光変調器。
【請求項5】
前記リブの前記最も近い側壁から50nm~500nmの範囲内にある前記スラブの前記第1の部分において、前記ドーピング濃度が、前記リブの前記最も近い側壁からより離れた前記スラブの前記第2の部分と比較して、1cm3当たり5×1017~1×1019の範囲内の値の活性ドーパントだけ増加する、請求項4に記載のシリコンフォトニック光変調器。
【請求項6】
前記シリコンフォトニック光変調器は、前記少なくとも1つの光導波路を有するマッハツェンダー干渉計を備え、
前記少なくとも1つの光導波路が、(i)第1の半導体接合ダイオードを有する第1の光導波路と、(ii)第2の半導体接合ダイオードを有する第2の光導波路と、を備え、
前記シリコンフォトニック光変調器は、前記第1の半導体接合ダイオードと前記第2の半導体接合ダイオードとを接続する半導体領域をさらに備える、
請求項1に記載のシリコンフォトニック光変調器。
【請求項7】
前記第1の光導波路と前記第2の光導波路との間の距離が、前記シリコンフォトニック光変調器の長手方向の少なくとも一部において、500nm未満である、請求項6に記載のシリコンフォトニック光変調器。
【請求項8】
前記第1の半導体接合ダイオードは、第1のpドープ領域と、第1のnドープ領域を有し、
前記第2の半導体接合ダイオードは、第2のpドープ領域と、第2のnドープ領域を有する、
請求項6に記載のシリコンフォトニック光変調器。
【請求項9】
前記第1のpドープ領域は、前記第1の半導体接合ダイオードと前記第2の半導体接合ダイオードとを接続する前記半導体領域内の第3のpドープ領域を介して前記第2のpドープ領域に接続され、
前記第3のpドープ領域は、100Ω未満のインピーダンスを有する外部電圧接続なしで構成される、
請求項8に記載のシリコンフォトニック光変調器。
【請求項10】
少なくとも1つの光入力;
該少なくとも1つの光入力から光を受け取るように構成された少なくとも1つの光導波路であって、前記少なくとも1つの光導波路のそれぞれは、スラブ上に配置されたリブを有するリブ導波路として構成されている、該光導波路;および
該少なくとも1つの光導波路内の光に少なくとも1つの電界を印加するように構成された少なくとも1つの電極、を備えるシリコンフォトニック光変調器であって、
該リブ導波路の高さは、0.85λ/n(ここで、λは光の自由空間波長、nは前記シリコンフォトニック光変調器におけるシリコンの屈折率である)より大きく、
該リブ導波路の幅は、該スラブの厚さより大きい、
前記シリコンフォトニック光変調器。
【請求項11】
前記リブ導波路の高さは、前記リブ導波路の幅よりも大きい、請求項10に記載のシリコンフォトニック光変調器。
【請求項12】
前記リブ導波路の高さは、320nm~500nmの範囲内であり、
前記リブ導波路の幅は、150nm~270nmの範囲内であり、
前記スラブの厚さは、50nm~140nmの範囲内である、
請求項11に記載のシリコンフォトニック光変調器。
【請求項13】
前記光の前記自由空間波長が1310nmに等しい場合、
前記リブ導波路の高さは、330nm~370nmの範囲内であり、
前記リブ導波路の幅は、200nm~240nmの範囲内であり、
前記スラブの厚さは、70nm~110nmの範囲内である、
請求項12に記載のシリコンフォトニック光変調器。
【請求項14】
前記少なくとも1つの光導波路は、第1のリブ導波路と第2のリブ導波路を有し、
該第1のリブ導波路と該第2のリブ導波路との間の距離が、500nm未満である、
請求項10に記載のシリコンフォトニック光変調器。
【請求項15】
前記第1のリブ導波路の高さが、前記シリコンフォトニック光変調器の少なくとも一部において、前記第2のリブ導波路の高さより大きい、請求項14に記載のシリコンフォトニック光変調器。
【請求項16】
前記シリコンフォトニック光変調器の第1の部分において、前記第1のリブ導波路の高さは、前記第2のリブ導波路の高さよりも少なくとも40nmだけ大きく、
前記シリコンフォトニック光変調器の第2の部分において、前記第2のリブ導波路の高さは、前記第1のリブ導波路の高さよりも少なくとも40nm大きい、請求項15に記載のシリコンフォトニック光変調器。
【請求項17】
前記リブの最も近い側壁から100nm以内にある前記スラブの第1の部分において、ドーピング濃度が、前記リブの前記最も近い側壁から100nmより離れた前記スラブの第2の部分と比較して、1cm3当たり1017超の活性ドーパントだけ増加する、請求項10に記載のシリコンフォトニック光変調器。
【請求項18】
準横磁気(TM)偏光を変調する方法であって、
入力された準TM偏光を少なくとも1つの光導波路に入力すること;および
該少なくとも1つの光導波路内の準TM偏光に少なくとも1つの電界を印加すること、を含む、前記方法。
【請求項19】
前記入力された準TM偏光を、第1の光導波路と第2の光導波路に分割すること、
該第1の光導波路と該第2の光導波路との間に100Ω未満のインピーダンスを介してバイアス電圧を印加することなく、該第1の光導波路内の準TM偏光と該第2の光導波路内の準TM偏光との間の位相差を変調すること;および
該第1の光導波路から出力された準TM偏光と該第2の光導波路から出力された準TM偏光を合波すること、をさらに含む請求項18に記載の方法。
【請求項20】
前記第1の光導波路内の準TM偏光と前記第2の光導波路内の準TM偏光との位相差が、前記第1の光導波路および前記第2の光導波路のそれぞれの半導体接合ダイオードの有限空乏領域を維持しながら変調される、請求項19に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、シリコンフォトニクスにおける電気光学変調器に関するものである。
【背景技術】
【0002】
光通信システムにおいて、電気光学変調器は、光波形を変調して情報を伝達する基本的なメカニズムを提供する。一般に電気光学変調器は、電気信号によって提供されるデジタルデータなどの情報に応じて、光波形の1つ以上の特性を変更することによって動作する。
【発明の概要】
【課題を解決するための手段】
【0003】
本開示の実施形態は、一般に、シリコンフォトニクスにおける電気光学変調器を対象とする。
【0004】
1つの一般的な態様は、少なくとも1つの光入力と、該少なくとも1つの光入力に接続された少なくとも1つの光導波路とを含むシリコンフォトニック光変調器を含む。少なくとも1つの光導波路は、準横磁気(準TM)偏光を伝搬するように構成され、少なくとも1つの光導波路のそれぞれは、スラブ上に配置されたリブを含むリブ導波路として構成される。また、シリコンフォトニック光変調器は、少なくとも1つの光導波路内の準TM偏光に少なくとも1つの電界を印加するように構成された少なくとも1つの電極を含む。
【0005】
実施形態には、以下の特徴のうちの1つ以上を含むことができる。少なくとも1つの光導波路が少なくとも1つの半導体接合ダイオードを含むシリコンフォトニックデプレッション型変調器として構成される、シリコンフォトニック光変調器。少なくとも1つの電極が、少なくとも1つの半導体接合ダイオード内の準TM偏光に少なくとも1つの電界を印加するように構成されている、シリコンフォトニック光変調器。リブ導波路内のTM偏光2次元(2D)導波モードの実効屈折率が、スラブ内の横電場(TE)偏光1次元(1D)導波モードの実効屈折率より大きい、シリコンフォトニック光変調器。リブの最も近い側壁から100nm以内にあるスラブの第1の部分において、ドーピング濃度が、リブの最も近い側壁から100nmより離れたスラブの第2の部分と比較して、1cm3当たり1017超の活性ドーパントだけ増加する、シリコンフォトニック光変調器。リブの最も近い側壁から50nm~500nmの範囲内にあるスラブの第1の部分において、ドーピング濃度が、リブの最も近い側壁からより離れたスラブの第2の部分と比較して、1cm3当たり5×1017~1×1019の範囲内の値の活性ドーパントだけ増加する、シリコンフォトニック光変調器。少なくとも1つの光導波路を含むマッハツェンダー干渉計をさらに含み、少なくとも1つの光導波路が、(i)第1の半導体接合ダイオードを含む第1の光導波路と、(ii)第2の半導体接合ダイオードを含む第2の光導波路と、を含むシリコンフォトニック光変調器。第1の半導体接合ダイオードと第2の半導体接合ダイオードとを接続する半導体領域をさらに含む、シリコンフォトニック光変調器。第1の光導波路と第2の光導波路との間の距離が、シリコンフォトニック光変調器の長手方向の少なくとも一部において、500nm未満である、シリコンフォトニック光変調器。第1の半導体接合ダイオードが、第1のpドープ領域と、第1のnドープ領域と、を含むシリコンフォトニック光変調器。第2の半導体接合ダイオードが、第2のpドープ領域と、第2のnドープ領域と、を含むシリコンフォトニック光変調器。第1のpドープ領域が、第1の半導体接合ダイオードと第2の半導体接合ダイオードとを接続する半導体領域内の第3のpドープ領域を介して第2のpドープ領域に接続されている、シリコンフォトニック光変調器。第3のpドープ領域は、100Ω未満のインピーダンスを有する外部電圧接続なしで構成される、シリコンフォトニック光変調器。
【0006】
別の一般的な態様は、少なくとも1つの光入力と、少なくとも1つの光導波路と、を含むシリコンフォトニック光変調器を含む。少なくとも1つの光導波路は、少なくとも1つの光入力から光を受け取るように構成され、少なくとも1つの光導波路のそれぞれは、スラブ上に配置されたリブを含むリブ導波路として構成される。また、シリコンフォトニック光変調器は、少なくとも1つの光導波路内の光に少なくとも1つの電界を印加するように構成された少なくとも1つの電極を含む。リブ導波路の高さは、0.85λ/n(ここで、λは光の自由空間波長、nはシリコンフォトニック光変調器におけるシリコンの屈折率である)より大きい、シリコンフォトニック光変調器。リブ導波路の幅は、スラブの厚さより大きい、シリコンフォトニック光変調器。
【0007】
実施形態には、以下の特徴のうちの1つ以上を含むことができる。リブ導波路の高さは、リブ導波路の幅よりも大きい、シリコンフォトニック光変調器。リブ導波路の高さは、320nm~500nmの範囲内である、シリコンフォトニック光変調器。リブ導波路の幅は、150nm~270nmの範囲内である、シリコンフォトニック光変調器。スラブの厚さは、50nm~140nmの範囲内である、シリコンフォトニック光変調器。光の自由空間波長が1310nmに等しい場合、リブ導波路の高さが330nm~370nmの範囲内である、シリコンフォトニック光変調器。リブ導波路の幅は、200nm~240nmの範囲内である、シリコンフォトニック光変調器。スラブの厚さは、70nm~110nmの範囲内である、シリコンフォトニック光変調器。少なくとも1つの光導波路が、第1のリブ導波路と、第2のリブ導波路と、を含む、シリコンフォトニック光変調器。第1のリブ導波路と第2のリブ導波路との間の距離が、500nm未満である、シリコンフォトニック光変調器。第1のリブ導波路の高さが、シリコンフォトニック光変調器の少なくとも一部において、第2のリブ導波路の高さより大きい、シリコンフォトニック光変調器。シリコンフォトニック光変調器の第1の部分において、第1のリブ導波路の高さは、第2のリブ導波路の高さよりも少なくとも40nmだけ大きい、シリコンフォトニック光変調器。シリコンフォトニック光変調器の第2の部分において、第2のリブ導波路の高さは、第1のリブ導波路の高さよりも少なくとも40nmだけ大きい、シリコンフォトニック光変調器。リブの最も近い側壁から100nm以内にあるスラブの第1の部分において、ドーピング濃度が、リブの最も近い側壁から100nmより離れたスラブの第2の部分と比較して、1cm3当たり1017超の活性ドーパントだけ増加する、シリコンフォトニック光変調器。
【0008】
別の一般的な態様は、準横磁気(TM)偏光を変調する方法を含み、この方法は、入力された準TM偏光を少なくとも1つの光導波路に入力すること、および少なくとも1つの光導波路内の準TM偏光に少なくとも1つの電界を印加すること、を含む。
【0009】
実施形態には、以下の特徴のうちの1つ以上を含むことができる。方法は、入力された準TM偏光を、第1の光導波路と第2の光導波路に分割すること、をさらに含む。また、方法は、第1の光導波路と第2の光導波路との間に100Ω未満のインピーダンスを介して、バイアス電圧を印加することなく、第1の光導波路内の準TM偏光と第2の光導波路内の準TM偏光との間の位相差を変調すること、を含み得る。また、方法は、第1の光導波路から出力された準TM偏光と第2の光導波路から出力された準TM偏光を合波すること、を含み得る。第1の光導波路内の準TM偏光と第2の光導波路内の準TM偏光との位相差が、第1の光導波路および第2の光導波路のそれぞれの半導体接合ダイオードの有限空乏領域を維持しながら変調される、方法。
【0010】
本開示の主題の1つ以上の実施態様の詳細は、添付の図面および以下の説明に記載されている。主題の他の特徴、態様および利点は、詳細な説明、図面、および特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0011】
【
図1】
図1は、本開示の実施形態が利用され得る変調器の上面図の一例を示す図である。
【0012】
【
図2】
図2は、本開示の実施態様に係る変調器の断面の一例を示す図である。
【0013】
【
図3】
図3は、本開示の実施態様に係る変調器の断面に沿った等価回路の一例を示す図である。
【0014】
【
図4】
図4Aおよび4Bは、本開示の実施態様に係る変調器のシングル導波路の詳細な断面の例を示す図である。
【0015】
【
図5】
図5Aおよび5Bは、それぞれ、シリコンリブ導波路におけるTEモードとTMモードの例を示す図である。
【0016】
【
図6】
図6は、本開示の実施態様に係る変調器の上面図の一例を示す図である。
【0017】
【
図7】
図7は、本開示の実施態様に係る変調器の上面図の他の例を示す図である。
【0018】
【
図8】
図8は、本開示の実施態様に係る変調器の断面の一例を示す図である。
【0019】
【
図9】
図9は、本開示の実施態様に係る変調器の断面に沿った等価回路の一例を示す図である。
【0020】
【
図10】
図10は、本開示の実施態様に係るTM偏波光信号を変調する一例を示すフローチャートである。
【発明を実施するための形態】
【0021】
本明細書では、従来の電気光学変調器と比較して、より高い帯域幅および/またはより低い駆動電圧を達成することができるシリコンフォトニクスにおける新規な電気光学変調器を提供するシステムおよび技術が開示されている。これは、変調器の光導波路のスラブ部分に漏れる光の量を減らす新規な実施形態によって達成される。これにより、同じ光損失でもスラブ内のより高いドーピングが可能になり、それによって、光損失を増加させることなく、より高い帯域幅の変調器を実現できる。これらの技術的利点は、変調器内で横電場(TE)偏光に代えて、横磁気(TM)偏光を使用できる変調器構造によって実現される。いくつかの実施形態では、導波路の高さが導波路の幅よりも大きいリブ導波路構造によって、これが可能になる。これにより、リブ導波路内では、TE光よりも高い実効屈折率を有するTM光が生じる。
【0022】
図1は、本開示の実施形態が利用され得る差動変調器100の上面図の一例を示す図である。この例では、変調器100は、マッハツェンダー干渉計(MZI)の実装に基づいており、光信号は、2つの光伝送路102および104に沿って(例えば、
図1の左から右へ)、変調器100の長さに沿って伝搬する。変調器100の入力では、光スプリッタ106が入力光を2つの光伝送路102および104に分割する。変調器100の出力では、光コンバイナ108が2つの光伝送路102および104から出力された光を結合する。光スプリッタ106および光コンバイナ108は、例えば、対称型、非対称型、または調整可能な光強度カプラを用いて、様々な方法で実装され得る。光伝送路102および104は、以下の
図2を参照してさらに詳細に説明するように、半導体構造116に形成された導波路によって実装され得る。いくつかの実施形態では、導波路、および/または光スプリッタ106、および/または光コンバイナ108の光コアは、シリコンリブを含むことができる。いくつかの実施形態では、準TM光が光伝送路102および104を伝搬するように入力光の位相を回転させる光位相ローテータが、変調器100の入力と光伝送路102および104との間に実装されてもよい。
【0023】
変調器100は、端子110および112に印加された電圧が、RF終端抵抗で終端されている無線周波数(RF)伝送線114に沿って伝搬する電気信号を生成する、進行波構成を使用する。RF伝送線114内の電気信号は、2つの光伝送路102および104に沿って伝搬する光と同じ速度で伝搬し、電気光学変調を誘導する。特に、RF伝送線114は、光伝送路102および104の一方または両方にわたって、それぞれの電圧、および結果として生じる電界を印加する電極(以下の
図2を参照してさらに詳細に説明する)を介して、半導体構造116に接続されている。印加電圧は、光伝送路102および104の一方または両方を伝搬する光に位相シフトを誘導する。いくつかの実施形態では、位相シフトは、光伝送路102と104との間で位相シフトの大きさが等しく、位相シフトの符号が反対であるという点で差動である。
【0024】
電気光学変調は、端子110および112の一方または両方の電圧を変化させて、第1の光伝送路102内の光の位相と第2の光伝送路104内の光の位相との間の差動位相シフトを変調することによって達成される。例えば、差動位相シフトが光コンバイナ108で破壊的な干渉を引き起こすように端子電圧が制御される場合、これは変調器100の「オフ」またはロジック「0」状態に対応する。対照的に、2つの光伝送路102と104との間の差動位相シフトが光コンバイナ108で積極的な干渉を引き起こすように端子電圧が制御される場合、これは変調器100の「オン」またはロジック「1」状態に対応する。
【0025】
また、2つの光伝送路102と104との間の差動位相シフトは、他の要因によっても影響を受ける可能性がある。例えば、光伝送路102および104の物理的な長さは、ゼロ固有差動位相シフトを提供するために同じであってもよく、または非ゼロ固有差動位相シフトを提供するために異なる長さであってもよい。さらに、いくつかの実施形態では、直流(DC)位相シフター122および124(例えば、光導波路ヒータなどの熱光学位相シフター)が、光伝送路102および104の端部付近に実装され、光コンバイナ108で結合される前に2つの光信号の相対位相を制御してもよい。
【0026】
いくつかの実施形態では、位相変調は、光伝送路102および104の両方において光の位相が変調される「プッシュプル」機構によって実行され、2つの経路間の相対的な位相シフトを制御してもよい。プッシュプル動作では、端子110の電圧V+が増加し、端子112の電圧V-が減少する(またはその逆)ため、光伝送路102および104のそれぞれで、対応する光の位相シフトが発生する。プッシュプル変調は、非プッシュプル変調に比べて、平均消費電力が小さくなる、変調信号のチャープが減少するなど、さまざまな利点を提供し得る。
【0027】
いくつかのシナリオでは、直流(DC)バイアス接続118は、2つの光伝送路102と104との間に接続され得る。DCバイアス接続118は、端子110および112に印加されるデータ信号がロジック1とロジック0との間で変化する場合でも、光伝送路102および104のそれぞれの半導体接合ダイオードが逆バイアスを維持するように実装される。さらなる詳細は、以下の
図2を参照して説明する。
【0028】
図2は、変調器200の断面(例えば、
図1の変調器100の断面126)の一例を示す図である。
【0029】
変調器200の断面は、MZI構造の詳細を示している。MZIは、第1の光導波路202と、第2の光導波路204と、を含む。いくつかの実施形態では、変調器200は、基板206(例えば、シリコン基板)、絶縁構造208(例えば、酸化物などの誘電体)、および半導体構造210(例えば、光導波路202および204を含むシリコン層)を含む。
【0030】
光導波路202および204は、例えば、スラブ上のシリコンリブ付き導波路として実装することができる。
図2の例では、光導波路202は、スラブ205の上に配置されたリブ203を含む。同様に、光導波路204は、スラブ209の上のリブ207を含む。リブ203、207およびスラブ205、209は、いずれも半導体構造体210の一部である。リブ付き導波路構造の更なる詳細については、以下の
図4Aおよび4Bを参照して説明する。
【0031】
光導波路202および204のそれぞれは、半導体接合を含む。半導体接合ダイオードは、例えば、PIN(P-type/intrinsic/N-type)接合ダイオード、またはP/N接合ダイオードによって実装することができる。変調器200では、光導波路202、204のそれぞれにP/N接合が埋め込まれ、各導波路内にダイオードを形成する。これらのダイオードは、第1の半導体接合ダイオード212と、第2の半導体接合ダイオード214として示されている。
【0032】
また、変調器200は、シリコン層210と物理的に接触している電極216および218(例えば、金属電極)を含む。いくつかの実施形態では、電極216および218は、シリコン層210のPドープ接点領域220および222と物理的に接触している。電極216および218は、例えば、絶縁層208をエッチングし、金属(例えば、タングステン、銅、および/またはアルミニウム)接点を形成することによって形成されてもよい。いくつかの実施形態では、変調器200において、Pドープ領域は、代わりにNドープ領域であってもよく、その逆であってもよい(例えば、接点領域220および222がPドープではなくNドープとなるように)。
【0033】
また、変調器200は、電極216および218の上に金属層224および226を含んでもよい。いくつかの実施形態では、金属層224および226は、RF伝送線のセグメント(例えば、
図1のRF伝送線114)を形成してもよい。
【0034】
いくつかのシナリオでは、DCバイアス接続228が2つの光導波路202および204の間に実装される。DCバイアス接続228は、半導体接合ダイオード212および214が変調中に逆バイアスを維持することを保証する。例えば、プッシュプルモードの変調では、差動電圧(例えば、V+とV-)が金属層224および226に(従って、電極216および218に)印加される。第1の電極216の電圧(例えば、V+)が増加し、第2の電極218の電圧(例えば、V-)が減少すると、第1の光導波路202の空乏領域の幅が減少するが、第2の光導波路204の空乏領域の幅が増加する(逆もまた同様)。空乏幅が変化すると、これにより、光導波路202および204のそれぞれに沿って進む光が受ける実効屈折率が変化し、対応する光の位相シフトが発生する。その結果、変調器200において、プッシュプル変調が達成され得る。
【0035】
変調器200の例では、DCバイアス接続228は、半導体接合ダイオード212および214のカソード230および232(Nドープ領域)に印加され、変動電圧V+およびV-が、半導体接合ダイオード212および214のアノード234および236(Pドープ領域)に印加される。DCバイアス接続228は、半導体接合ダイオード212および214が逆バイアスを維持することを保証する。例えば、変調器200の例において、DCバイアス接続部228で印加されるバイアス電圧が非常に低い(または存在しない)場合、これは、第1の半導体接合ダイオード212の空乏領域に注入された相当数のキャリアによって、第1の半導体接合ダイオード212の活性化(例えば、シリコンに対して約0.6V以上の順方向バイアス)をもたらし、順方向バイアスおよび低速動作をもたらし得る。DCバイアス接続228を十分に大きなバイアス電圧で実装することにより、半導体接合ダイオード212および214が変調下で逆バイアスを維持することが保証される。
【0036】
図3は、変調器の断面(例えば、
図1の変調器100の断面126)に沿った例示的な等価回路300を示す図である。
【0037】
図3の例では、第1の電極316と第1の半導体接合ダイオード312(例えば、
図2の半導体領域240に対応する)との間の電気直列抵抗340がR
p(例えば、単位はmΩ-m)と表記されている。第2の電極318と第2の半導体接合ダイオード314(例えば、
図2の半導体領域242に対応する)との間の電気直列抵抗342もR
pと表記されている(ただし、いくつかの実施形態では、電気直列抵抗340および342の実際の値は異なる場合がある)。半導体接合ダイオード312と314との間の電気直列抵抗338(例えば、
図2の半導体領域238に対応する)は、2*R
n(半導体接合ダイオード312および314のそれぞれとDCバイアス電圧接続部328との間の直列抵抗をR
nとする)である。
【0038】
図3に示す位相変調器の等価回路において、抵抗R
nおよびR
pは、主にスラブに由来し、変調器帯域幅の主な制限となっている。スラブのドーピングを増やすと抵抗が減少し、帯域幅が増加するが、ドープされたシリコンは吸収性があるため、光損失も増加する。
【0039】
図4Aおよび4Bは、シリコンフォトニック空乏位相変調器のシングル導波路(例えば、変調器100の伝送路102または104の1つにある導波路、あるいは
図2の導波路202または204の1つの導波路)の詳細な断面の例を示す図である。特に、
図4Aは、本開示の実施例に係る、いくつかのシステムで実装され得る、TE偏光用に構成された例示的な導波路400を示し、
図4Bは、TM偏光用に構成される例示的な導波路420を示している。
【0040】
図4Aおよび4Bのいずれにおいても、導波路400(および導波路420)は、スラブ404(スラブ424)の上にリブ402(リブ422)を有するリブ導波路構造によって実装される。光は、リブ402(リブ422)に沿って導光され、リブ402(リブ422)内の全反射により変調器の長手方向(
図4Aおよび4Bに示す断面に垂直な方向)に伝搬する。リブ構造は、スラブ404(スラブ424)の両側の領域を介してリブ402(リブ422)への電気的接続を可能にしつつ、リブ402(リブ422)内に閉じ込められた光学モードを可能にする。
図2を参照して上に説明したように、リブ402(リブ422)内の光の位相変調は、導波路400(導波路420)のnドープ領域とpドープ領域の間の電圧差を変調することによって達成される。例えば、nドープ領域とpドープ領域の間の電圧差を増加させると、空乏幅が広がるため、光学モードの実効屈折率が増加し、リブ402(リブ422)内の光の位相変調が可能になる。
【0041】
図4Aおよび4Bの導波路400と420は、いくつかの点で異なっている。最も顕著なのは、導波路400と420は寸法が異なり、導波路400(TE偏光用に構成されている)は幅広で短く、導波路420(TM偏光用に構成されている)は狭くて背が高いことである。
図4Bの導波路420の狭くて背が高い構成は、スラブ424にある光学モードの部分を減少させ、
図4Aの導波路400と比較して、同じ光学損失に対してスラブ424内のより高いドーピングを可能にする。スラブ424におけるより高いドーピングは、今度は、変調器400と比較して、光損失を増加させることなく、変調器420のより高い帯域幅を可能にする。これは、変調器420内に、横電場(TE)偏光の代わりに横磁気(TM)偏光を使用することによって行われる。実際の実装では、変調器400および420の導波光学モードは、導波2Dモードが純粋なTEまたはTMモードになることはほとんどないので、実際には準TEまたは準TMモードである。準TMモードでは、光の主要な偏光成分がy軸に沿って配列される。準TEモードでは、光の主要な偏光成分がx軸に沿って配列される。説明を簡潔にするために、本開示において導波光学モードの偏光を論じる場合、「準」という言葉が省略される場合がある。
【0042】
図4Aは、TE偏光用に構成された例示的な導波路400の断面を示す図である。変調器400は、スラブ404の上にリブ402を有する。リブは、高さ406(h
coreと表記される)および幅408(w
coreと表記される)を有する。図示されているように、TE偏光に構成された導波路400の典型的な実装では、リブ高さ406(h
core)は、リブ幅408(w
core)よりも小さい。これにより、リブ402内のTE 2D導波路モードの実効屈折率がTM 1Dスラブモードの実効屈折率よりも高くなり、したがって、導波TEモードは、導波TMモードと比較して、スラブ404へのリークがより少なくなることが保証される。
【0043】
変調器400などのシリコンフォトニック変調器がTE偏光用に構成される理由には様々な理由がある。
【0044】
第1に、リブ導波路を用いた変調器の場合、TM 2-Dリブモード屈折率は、通常、TE 1-Dスラブモード屈折率より著しく低くなる。リブ導波路は、横磁気(TM)光を導光するために、通常では満たされない特別な条件を必要とする。この条件は、TM 2-Dリブモードの実効屈折率がTE 1-Dスラブモードの実効屈折率よりも大きくならなければならないことである。スラブモードとは、リブ402がなく、スラブ404の幅が無限である場合に導光される1-Dモードを意味する。さもなければ、TMリブモードは、リブ402に対して所定の角度で伝搬するTEスラブモードと位相整合することになる。このような場合、小さな摂動によって、TMモードの光がスラブ404にリークしてしまう。
【0045】
第2に、TE偏光は、TM偏光と比較して、リブ402内により強い垂直方向の閉じ込めを有し、下の基板および上の層による損失を軽減する。例えば、いくつかの実施形態では、シリコンの上に金属配線層があり、TM偏光よりもTE偏光に大きな光損失を引き起こす前に、金属層をシリコンにかなり近づけることができる。
【0046】
第3に、ほとんどのシリコンフォトニック変調器において、導波路の高さ406は、導波路の幅408よりも小さく、その結果、TE偏光は、TM偏光より高い実効屈折率を有することになる。これにより、曲げ半径を小さくすることができ、シリコンフォトニックデバイスのサイズを小さくすることができる。
【0047】
第4に、シリコンフォトニック回路を構成する他のほとんどの素子がTE偏光用に設計されているため、シリコンフォトニック変調器の多くはTE偏光を採用している。例えば、ほとんどのグレーティングカプラはTE偏光用に構成されている。
【0048】
第5に、多くのシナリオにおいて、例えば、エッチングの深さを浅くすることによってリソグラフィープロセスが簡略化されるため、通常、高さよりも幅が大きい導波路構造を作製する方が容易である。
【0049】
しかし、TM偏光には明確な利点がある。例えば、TM偏光は、TE偏光と比較して、スラブ424内の光が少ないという利点を有する。TM偏光がTE偏光に比べてスラブ424内の光が少ない理由を理解するために、マクスウェルの方程式で与えられる光の電界の境界条件電場を考えることができる。シリコンなどの非磁性体では、横電界E∥は境界を越えて連続しており、一方、縦電界に誘電率をかけた(E⊥)(ε)は境界を越えて連続している。シリコンの誘電率は酸化物の誘電率の約5.8倍であるため、電界が酸化物で囲まれたシリコンの薄片に垂直な場合、シリコン内部の電界は周囲の酸化物よりも約5.8倍低くなる。したがって、TM偏光は、シリコンスラブ424の内部にほとんど電界を持たない。
【0050】
これは、シリコンリブ導波路におけるTEモードとTMモードをそれぞれ示す、
図5Aおよび5Bにおいて、視覚的に見ることができる。
図5Aは、TE偏光を用いた従来のシリコン位相変調器の計算されたモードの一例を示している。特に、
図5Aは、電界のx成分の大きさを示している。
図5Bは、本開示の実施形態に係るTM偏光を用いたシリコン位相変調器の計算されたモードの一例を示している。特に、
図5Bは、電界のy成分の大きさを示している。
【0051】
図示されているように、
図5Aのスラブにはかなりの光があるが、
図5Bのスラブにはほとんど光がない。したがって、
図5Bのスラブは、リブの近くで著しく高いドーピングを有することができ、したがって直列抵抗が著しく低くなる。
【0052】
また、
図5Aおよび5Bの例では、導波路リブの寸法が異なっている。いずれの場合も、スラブの厚さは90nmである。しかしながら、
図5Aでは、導波路のリブ高さおよびリブ幅が、それぞれ、220nmおよび420nmであるのに対し、
図5Bでは、導波路のリブ高さおよびリブ幅が、それぞれ、400nmおよび220nmとなっている。
図5Aの導波路は、TE偏光用に構成された典型的な変調器導波路である。前述のように、このような構成では、TM 2Dリブモードの実効屈折率がTE 1Dスラブモードの実効屈折率より低いため、導波TMモードがスラブ内にリークする(下記表1参照)。
【0053】
対照的に、
図5Bの導波路は、導波路リブがより高く、より狭いため、スラブにリークすることなくTMモードを導波することができる。表1に示すように、導波路リブを高くすると、TM 2D導波モードの実行屈折率がTE 1Dスラブモードの実効屈折率よりも高くなる。これは、導波路リブ高さが約0.85λ/nの閾値より大きい場合、および、導波路のリブ幅がスラブ高さより広い場合に発生する。ここで、λは光の自由空間波長、nはシリコンの屈折率である。これにより、TM偏光の場合、電界が導波路の上部と下部で低い値に低下し、境界条件によって導波路の外側に大きな電界が発生しないことが保証される。例えば、波長λ=1310nmの場合、閾値は0.85λ/n=320nmとなる。したがって、この例では、導波路のリブ高さは320nmより大きく、導波路のリブ幅は90nmより大きくする必要がある。
【0054】
表1 波長λ=1310nmの場合の有効モード屈折率
【表1】
【0055】
TM偏光用に構成された、本開示による変調器の実装は、(TE偏光用に構成された典型的な変調器と比較して)様々な技術的利点を提供することができる。例えば、スラブ内のドーピングを著しく増加させることができ、および/またはより高いドーピングをリブの近くに配置することができる。いくつかの実施形態では、ドーピング濃度は、リブの最も近い側壁から50nm~500nm(例えば、100nm)の範囲内にあるスラブの第1の部分において、リブの最も近い側壁から100nmより遠いスラブの第2の部分と比較して、1cm3当たり5×1017~1×1019の範囲内の値の活性ドーパントで増加することができる(例えば、1×1018~1×1019の範囲で増加する)。本開示のいくつかの実装は、TE偏光用に構成された典型的な変調器と比較して、約3.5倍低い直列抵抗を提供することができる。別の利点は、所定の電圧と所定の変調器長に対して位相変調効率を高めることができることである。これは、TM偏光が、空乏領域に垂直な導波路リブ内で水平方向により閉じ込められるためであり、その結果、所定の電圧変化に対する実効屈折率の変化がより大きくなる。
【0056】
また、本開示による変調器実装は、潜在的な技術的課題を軽減するように構成することができる。例えば、TM偏光用に構成された変調器では、導波路リブが(TE偏光用に設計された一般的な変調器の導波路リブと比較して)高く、薄く構成されているため、導波路の上部に接続するリブの垂直エッジに沿って直列抵抗が増加することがある。このような抵抗を軽減するために、好ましい実施形態は、導波路リブを閾値よりわずかに高く構成して、TM 2Dリブの実効屈折率をTE 1Dスラブの実効屈折率より高くすることである。例えば、いくつかの実施形態では、導波路のリブ高さは350nm、導波路のリブ幅は220nmであり、波長1310nmで90nmのスラブを有する。
【0057】
別の課題は、空乏領域が高くなった結果として、導波路のp-n接合(例えば、
図2の半導体接合ダイオード212および214)の静電容量が増加する可能性があることである。しかし、これらの構造では、フリンジング場が静電容量にかなり寄与しており、その結果、静電容量の増加は高さの増加に対して劣線形となる。そのため、導波路のリブ高さを2倍にすると、静電容量は約1.5倍にしかならない。
【0058】
図6-9は、本開示の他の実施形態に係る変調器に関するものである。
図1-3の変調器とは対照的に、
図6-9の変調器は、導波路間にバイアス電圧接続を一切実装していないため、電極間の直列抵抗が著しく小さくなり、変調の帯域幅がさらに高くなる。さらに、
図6-9では、変調器は、近接して配置された導波路間の有害な光結合を軽減するために、高さが変化する導波路構造を実装している。
【0059】
図6-9を参照して説明した特徴は、
図1-3の変調器の構造を様々な面で改善するのに役立ち得る。例えば、
図2のDCバイアス接続228の存在は、半導体接合ダイオード212と214との間の半導体(例えば、シリコン)領域238の物理的距離を増加させる。このため、半導体接合ダイオード212と214とを接続する半導体領域238には大きな電気直列抵抗が発生する。半導体構造のシリコンドーピングを増加するなど、このような電気直列抵抗を低減するための一般的な技術は、光吸収を増加させるなどの悪影響をもたらすことがある。
【0060】
さらに、
図2の半導体領域240および242(半導体接合ダイオード212および214のそれぞれと、それぞれの電極216および218とを接続する)は、Nドープ半導体材料よりも高い抵抗を有する(同じ光吸収に対して)Pドープ半導体材料である。このため、電極216および218と、半導体接合ダイオード212および214との間の半導体領域240および242には、大きな電気直列抵抗が生じる。
【0061】
その結果、
図2の電極216と218との間の全電気直列抵抗は、ダイオード容量の充放電により変調器200に沿った電圧を著しく減衰させることができる。さらに、この減衰は、通常、変調周波数が増加するにつれて増加する。変調器200に沿って生じるRF損失は、変調器200の帯域幅に悪影響を与える可能性がある。
【0062】
図6は、本開示の実施態様に係る変調器600の上面図の一例を示す図である。
【0063】
変調器600は、2つの光伝送路602および604、光スプリッタ606、および光コンバイナ608を含むMZI実装に基づくものである。変調器600は、端子610および端子612など、電圧を印加することができる端子をさらに含む。電圧は、それぞれの電圧を印加する電極を介して半導体構造616に接続されたRF伝送線614に沿って伝搬し、光伝送路602および604の一方または両方にわたって電界が生じる。いくつかの実施形態では、準TM光が光伝送路602および604を伝搬するように入力光の位相を回転させる光位相ローテータが、変調器600の入力と光伝送路602および604との間に実装されてもよい。
【0064】
図1の変調器100とは対照的に、変調器600は、2つの光伝送路602と604との間にいかなるDCバイアス接続も実装しない。これにより、2つの光伝送路602および604を互いにより近接して配置して、それらの間の電気直列抵抗を低減することが可能になる。例えば、いくつかの実施形態では、2つの光伝送路602および604の導波路間の距離は、光伝送路602および604の長手方向の少なくとも一部について、0.5μm未満である。いくつかの実施形態では、導波路間の距離は、光伝送路602および604の長手方向の少なくとも一部について、2.0μm未満である。いくつかの実施形態では、導波路間の距離は、光伝送路602および604の長手方向の少なくとも一部について、0.1μm~2.0μmの範囲内である。いくつかの実施形態では、導波路間の距離は、変調器600の長手方向に沿った所定の点(例えば、
図6の点605)における、2つの導波路の内側側壁の間の距離として定義される。
【0065】
しかしながら、2つの光伝送路602および604がより近接して配置されているため、光伝送路602内の光と光伝送路604内の光との間のより重大な有害な光結合のリスクがある。このような光結合を軽減するために、いくつかの実施形態では、光伝送路(602または604)の一方の導波路は、変調器600の長さに沿って同じ距離で、他方の伝送路よりも大きな高さを有するように設計されている。これによって、光伝送路602および604の導波路内を進む光が位相整合しないようにし、2つの導波路間の光結合を軽減している。異なる導波路の高さを使用することの重要性を理解する別の方法は、光伝送路602および604の結合された導波路の2つの固有モードに注目することである。導波路の高さが等しい場合、最低次の固有モードは偶数固有モードであり、2番目に低い固有モードは奇数固有モードである。このようなシナリオでは、差動変調は起こりえない。しかしながら、一方の導波路が他方よりも十分に高い場合、最低次の固有モードは高い方の導波路に主に存在する光からなり、2番目の最低固有モードは低い方の導波路に主に存在する。これにより、近接した導波路にもかかわらず、差動変調が可能になる。例えば、いくつかの実施形態では、光伝送路702または704の一方の導波路は、他方の光伝送路の導波路よりも少なくとも40nmだけ高い。いくつかの実施形態では、導波路の高さの差は、40nm~120nmの範囲内である。
【0066】
さらに、そのような実施形態では、2つの導波路の高さの変化は、各導波路における高い部分の全長が等しく、また、各導波路における低い部分の全長が等しくなるように、変調器600に沿って交換されてもよい。
図6の例では、左から右に移動すると、第1の光伝送路602の導波路は、第2の光伝送路604の導波路よりも高くなり、その後、第2の光伝送路604の導波路よりも低くなる(代替的に、第1の光伝送路602が低く始まり、高くなる場合もある)。変調器600の中央部に、相対的な高さのこのような交換の1つがあってもよいが、いくつかの実施形態では、例えば、高さ交換の間の距離が、2つの導波路内の2つの固有モード間のビート長(典型的には10μm)よりも著しく長い限り、追加の高さ交換が含まれてもよい。これにより、2つの導波路間の光結合を軽減することができる。いくつかの実施形態では、奇数回の交換が好ましい。これにより、開始と終了の遷移が互いに打ち消し合うことが保証されるからである。
【0067】
上記の
図6の説明では、2つの光伝送路602および604に高さの変わる導波路を有する変調器600の例を示したが、他の実施形態では、導波路は変調器600の長さに沿って一定の高さを有していてもよい。
【0068】
さらに、
図6の説明では、物理的なDCバイアス接続のない変調器600の例を示したが、いくつかの実施形態では、高インピーダンスを介してではあるが、2つの光伝送路602と604との間に、DCバイアス接続が実装されてもよい。例えば、いくつかの実施形態では、高インピーダンスは、1kohmを超えるインピーダンスで達成される。別の例として、いくつかの実施形態では、高インピーダンスは、100ohmを超えるインピーダンスで達成される。高インピーダンスを介するDCバイアス接続のこのようなシナリオでは、電流は、(i)外部電圧と、(ii)外部電圧が印加されていない場合に光伝送路602と604との間に存在するであろう電圧と、の間の電圧差によって生成されるであろう。この生成された電流は、ダイオードのリーク電流にダイオード内の光生成電流を加えたものよりも小さく、このため、回路は主に外部DCバイアス電圧が印加されていないかのように動作する(例えば、真のフローティング電圧に似ている)。したがって、物理的なDCバイアス接続がない
図6-9に示されるような本開示の実施形態は、高インピーダンスを介してではあるが、DCバイアス接続を用いて実装することもできることを理解されたい。
【0069】
変調器600は、RF伝送線614が半導体構造616に連続的に接続された、連続進行波構造の一例を実装している。あるいは、以下で
図7を参照して説明するように、セグメント化された進行波構造が実装されてもよい。
【0070】
図7は、本開示の実施態様に係る変調器700の上面図の他の例を示す図である。変調器700は、セグメント化された進行波構造の実装の一例である。
【0071】
変調器700も、2つの光伝送路702および704、光スプリッタ706、および光コンバイナ708を含むMZI実装に基づくものである。変調器700は、端子710および端子712など、電圧を印加することができる端子をさらに含む。電圧は、それぞれの電圧を印加する電極を介して半導体構造716に接続されたRF伝送線714に沿って伝搬し、光伝送路702および704の一方または両方にわたって電界が生じる。変調器700も、2つの光伝送路702と704との間にいかなるDCバイアス接続も実装しない。よって、これらの間の距離を減少させる。例えば、いくつかの実施形態では、2つの光伝送路702および704の導波路間の距離は、光伝送路702および704の長手方向の少なくとも一部について、0.5μm未満である。いくつかの実施形態では、導波路間の距離は、光伝送路702および704の長手方向の少なくとも一部について、2.0μm未満である。いくつかの実施形態では、導波路間の距離は、光伝送路702および704の長手方向の少なくとも一部について、0.1μm~2.0μmの範囲内である。いくつかの実施形態では、導波路間の距離は、変調器700の長手方向に沿った所定の点(例えば、
図7の点705)における、2つの導波路の内側側壁の間の距離として定義される。
【0072】
図6の変調器600と
図7の変調器700との違いは、半導体構造(616、716)の構成と、RF伝送線(614、714)が半導体構造(616、716)に接続される方法に起因する。
図6の変調器600は、RF伝送線614が半導体構造616に連続的に直接接続された、連続進行波構造を実装している。対照的に、
図7の変調器700は、RF伝送線714が半導体構造716のセグメントに間欠的に接続され、光伝送路702および704に沿って半導体構造が存在しない間欠領域720を有する、セグメント化された進行波構造を実装する。変調器700のこの構造は、容量負荷進行波構造と呼ぶことができ、例えば、RF伝送線714の単位長さ当たりの平均静電容量など、RF伝送線714の実装において付加的な自由度を提供するという利点を有している。集中素子変調器も、本明細書に開示された技術の恩恵を受けることができる。
【0073】
さらに、変調器700では、光伝送路702および704の導波路は、
図6の変調器600における導波路の構成と同様に、変調器700の異なるセクションで異なる幅を有している。導波路の幅の変化のさらなる詳細について、さらに後述する。
【0074】
図8は、本開示の実施態様に係る変調器800の断面の一例を示す(例えば、
図6の変調器600の点605における断面、または
図7の変調器700の点705における断面である)。特に、
図8の変調器800は、一方の導波路が他方の導波路より高い、差動近接配置設計の一例である。
【0075】
変調器800の断面は、MZI構造の詳細を示している。MZIは、第1の光導波路802と、第2の光導波路804と、を含む。光導波路802および804は、例えば、スラブ上のシリコンリブ付き導波路として実装することができる。いくつかの実施形態では、変調器800は、基板806(例えば、シリコン基板)、絶縁構造808(例えば、酸化物などの誘電体)、および半導体構造810(例えば、光導波路802および804を含むシリコン層)を含む。
【0076】
いくつかの実施形態では、上述の
図6および7に関して説明したように、光導波路802および804の一方は、他方の光導波路よりも高い。例えば、
図8では、第2の光導波路804は、第1の光導波路802よりも少なくとも40nmだけ高い。いくつかの実施形態では、導波路の高さの差は、40nm~120nmの範囲内である。
【0077】
光導波路802および804のそれぞれは、半導体接合を含む。半導体接合ダイオードは、例えば、PIN(P-type/intrinsic/N-type)接合ダイオード、またはP/N接合ダイオードによって実装することができる。変調器800では、光導波路802、804のそれぞれにP/N接合が埋め込まれ、各導波路内にダイオードを形成する。これらのダイオードは、第1の半導体接合ダイオード812と、第2の半導体接合ダイオード814として示されている。
【0078】
また、変調器800は、シリコン層810と物理的に接触している電極816および818(例えば、金属電極)を含む。いくつかの実施形態では、電極816および818は、シリコン層810のNドープ接点領域820および822と物理的に接触している。電極816および818は、例えば、絶縁層808をエッチングし、金属(例えば、タングステン、銅、および/またはアルミニウム)接点を形成することによって形成されてもよい。また、変調器800は、電極816および818の上に金属層824および826を含んでもよい。いくつかの実施形態では、金属層824および826は、RF伝送線のセグメント(例えば、
図1のRF伝送線114)を形成してもよい。いくつかの実施形態では、変調器800において、Pドープ領域は、代わりにNドープ領域であってもよく、その逆であってもよい(例えば、接点領域820および822がPドープではなくNドープとなるように)。
【0079】
変調器800と
図2の変調器200の間には、多数の相違点がある。最も注目すべきは、変調器800は、(DCバイアス接続228を実装する変調器200と比較して)半導体接合ダイオード812と814との間に、いかなるDCバイアス電圧接続も実装しないことである。その代わりに、半導体接合ダイオード812および814は、逆極性で直列に接続されている(アノード834と836が一緒に接続されている)。これにより、連続的な電流が半導体接合ダイオード812および814を通して流れることがない。この構成は、電極816および818に印加され得る変調電圧(例えば、V+およびV-)の変動にもかかわらず、2つの半導体接合ダイオード812および814にわたる電圧が自然に自己調整され、ダイオード812および814が逆バイアスを維持することを保証する。半導体接合ダイオード812と814との間にフローティング電圧を実装すると、ダイオード812および814が、位相シフト毎ボルトの観点で、変調器の最も効率的なポイントで自動的にバイアスされる。これは、ダイオード812および814がターンオン未満であるところである。いくつかの実施形態では、この位相シフト毎ボルトが変調器の「利得」になる。
【0080】
変調器800と
図2の変調器200との別の相違点は、変調器200と比較して、半導体接合ダイオード812および814の極性が反転していることである。特に、半導体接合ダイオード812および814は、変調器800の中心近くに、それぞれの(Pドープ)アノード834および836を有し、変調器800の端部近くに、それぞれの(Nドープ)カソード830および832を有する。このように、半導体接合ダイオード812と814との間の半導体領域838はPドープであり、半導体領域840および842(半導体接合ダイオード812および814のそれぞれとそれぞれの電極816および818とを接続する)はNドープである。
【0081】
これらの前述の相違点は、
図2の変調器200と比較して、変調器800に多数の技術的利点を提供する。1つの利点は、変調器800にDCバイアス電圧接続がないため、
図2の変調器200と比較して、2つの光導波路802および804を互いにかなり接近して実装できることである。これにより、半導体接合ダイオード812と814とを接続する半導体領域838のサイズを大幅に縮小することができ、半導体接合ダイオード812と814との間の電気直列抵抗が大幅に低減される。例えば、いくつかの実施形態では、2つの光導波路802と804との間の距離(
図8では805と表記される)は、0.5μm未満である。いくつかの実施形態では、2つの光導波路802と804との間の距離805は、2.0μm未満である。いくつかの実施形態では、2つの光導波路802と804との間の距離805は、0.1μm~2.0μmの範囲内である。いくつかの実施形態では、導波路間の距離805は、変調器800の長手方向に沿った所定の点における、2つの導波路の内側側壁間の距離として定義され得る(例えば、
図8に示すように変調器800の断面で測定される)。
【0082】
別の利点は、PドープシリコンはNドープシリコンよりも抵抗率が高いため(同じ光吸収の場合)、小さい半導体領域838(半導体接合ダイオード812と814との間)には抵抗率の高いPドープ材料を使用し、大きい半導体領域840および842(半導体接合ダイオード812および814と電極816および818を接続する)には抵抗値の低いNドープ材料を使用することである。あるいは、いくつかの実施形態では、Nドープ材料をより小さい半導体領域838に使用することができ、Pドープ材料をより大きい半導体領域840および842に使用することができる。
【0083】
その結果、電極816と818との間の全直列抵抗が大幅に減少し、変調の帯域幅と速度が大幅に改善される。
【0084】
変調器800におけるDCバイアス電圧接続の欠如は、半導体接合ダイオード812および814における逆バイアスの量を調整する能力における自由度を奪うが、いくつかのシナリオにおいて、例えば、変調の帯域幅および速度の改善など、変調器800の構成によって提供される大きな利益がそのような制限を上回る。
【0085】
図9は、本開示の実施形態に係る変調器の断面(例えば、
図8の変調器800の断面)に沿った例示的な等価回路900を示す図である。
【0086】
図9の例では、第1の電極916と第1の半導体接合ダイオード912(例えば、
図8の半導体領域840に対応する)との間の電気直列抵抗940は、3.7 mΩ-mである。第2の電極918と第2の半導体接合ダイオード914(例えば、
図8の半導体領域842に対応する)との間の電気直列抵抗942は、3.7mΩ-mである。半導体接合ダイオード912と914との間の電気直列抵抗938(例えば、
図8の半導体領域838に対応する)は、4.6 mΩ-mである(ダイオード間にDCバイアス電圧接続がない場合)。
【0087】
この例に見られるように、電極916と918との間の全直列抵抗は、
図3の等価回路300と比較して、約2分の1に減少する。この全直列抵抗の減少により、変調器の性能を大幅に向上させることができる。例えば、変調器に沿ったRF損失を低減することによって、変調帯域幅を拡大することができる。あるいは、変調器効率を向上させることができる。例えば、より薄いスラブを利用することができ、これは全直列抵抗を増加させるが、光導波路802および804内の光閉じ込めも増加させ、したがって変調器効率を改善する。代わりに、より厚い導波路を利用することもでき、これは静電容量を増加させるが、光閉じ込めも増加させる。
【0088】
本開示の実施形態に係る変調器は、多くの用途で使用することができる。例えば、用途の1つは、NRZ(Non-Return-to-Zero)やPAM(Pulse Amplitude Modulation)などのIM-DD(Intensity Modulated Direct Detection)フォーマットを生成する高速光強度変調器である。別の用途は、変調器を90度の相対位相差を持つ第2の変調器と組み合わせて大型の干渉計の一部として使用し、直交位相シフトキーイング(QPSK)変調や直交振幅変調(QAM)など、コヒーレント検出用のより複雑な変調フォーマットを生成することである。例えば、これは、ネストされた変調器を含む同相/直交(IQ)変調器構造(変調器(外側変調器)の2つのブランチのそれぞれが別の変調器(内側変調器)を実装している)によって実現することができる。いくつかの実施形態では、内側変調器と外側変調器に対してそれぞれ180度と90度の位相差を設定する位相シフターを実装することができる。本開示で説明するように、このようなネストされた変調器構造の各変調器を実装することができる。
【0089】
図10は、本開示の実施態様に係る、準TM偏波光信号を変調する例示的な方法1000を示すフローチャートである。方法1000は、本明細書に開示されるような変調器を使用することによって実行され得る。
【0090】
方法1000は、準TM偏光を第1の光伝送路と第2の光伝送路とに分割することを含む(1002)。いくつかの実施形態では、準TM光が光伝送路を伝搬するように入力光の位相を回転させる光位相ローテータが、変調器の入力に実装されてもよい。
【0091】
方法1000は、第1の光伝送路と第2の光伝送路との間にバイアス電圧を印加することなく、第1の光伝送路の準TM偏光と第2の光伝送路の準TM偏光との間の位相差を変調することをさらに含む(1004)。いくつかの実施形態では、第1の光伝送路および第2の光伝送路のそれぞれの半導体接合ダイオードに有限の空乏領域を維持しながら、第1の光伝送路における準TM偏光と第2の光伝送路における準TM偏光との間の位相差が変調される。例えば、この変調は、上述した変調器のフローティングアノード構造を用いて行うことができる。
【0092】
方法1000は、第1の光伝送路から出力される準TM偏光と、第2の光伝送路から出力される準TM偏光とを合波することをさらに含む(1006)。
【0093】
本開示には多くの具体的な実装の詳細が含まれているが、これらは、発明の範囲または特許請求の範囲に対する制限として解釈されるべきではなく、むしろ、特定の発明の特定の実装に固有の特徴の説明として解釈されるべきである。本開示において、個別の実施形態の文脈で説明されている特定の特徴は、単一の実施形態で組み合わせて実装することもできる。逆に、単一の実施形態の文脈で説明されている様々な特徴は、複数の実施形態で別々に、または任意の適切なサブコンビネーションで実装することもできる。さらに、特徴は、特定の組み合わせで作用するものとして上述され、当初はそのように主張されることさえあるが、主張された組み合わせからの1つ以上の特徴は、場合によっては組み合わせから削除され、主張された組み合わせが、サブコンビネーションまたはサブコンビネーションのバリエーションを対象とする場合がある。
【0094】
同様に、図面には特定の順序で操作が描かれているが、これは、望ましい結果を達成するために、そのような操作が示された特定の順序、または順次実行されること、または図示されたすべての操作が実行されることを要求するものとして理解されるべきではない。
【外国語明細書】