IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アルストム レノバブレス エスパーニャ, エセ.エレ.の特許一覧

特開2023-75030風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム
<>
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図1
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図2
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図3
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図4
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図5
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図6
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図7
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図8
  • 特開-風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023075030
(43)【公開日】2023-05-30
(54)【発明の名称】風タービンブレードの表面状態及び風タービン制御を決定するための方法及びシステム
(51)【国際特許分類】
   F03D 17/00 20160101AFI20230523BHJP
   F03D 1/06 20060101ALI20230523BHJP
【FI】
F03D17/00
F03D1/06 A
【審査請求】未請求
【請求項の数】15
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022164394
(22)【出願日】2022-10-13
(31)【優先権主張番号】21383007.8
(32)【優先日】2021-11-05
(33)【優先権主張国・地域又は機関】EP
(71)【出願人】
【識別番号】513131419
【氏名又は名称】ゼネラル エレクトリック レノバブレス エスパーニャ, エセ.エレ.
(74)【代理人】
【識別番号】100105588
【弁理士】
【氏名又は名称】小倉 博
(74)【代理人】
【識別番号】100129779
【弁理士】
【氏名又は名称】黒川 俊久
(72)【発明者】
【氏名】マーク・カナル・ヴィラ
(72)【発明者】
【氏名】サスキア・ホンホフ
(72)【発明者】
【氏名】シャンムガ-プリヤン・スブラマニアン
(72)【発明者】
【氏名】トーマ・ジャン・ピカール
(57)【要約】      (修正有)
【課題】本開示は、風力タービンを制御及び運転するため、または、風力タービンの1つ以上の風力タービンブレードの表面状態を決定するための方法及びシステムに関する。
【解決手段】所定の回転条件において風の影響を受けて風力タービンロータを回転させる。所定の回転条件は、付加的な風力タービンブレードの少なくとも所定のピッチ角を含む。所定の回転条件で回転する際に、風力タービンの1つ以上のパラメータの現在の値を決定する。風力タービンの1つ以上のパラメータの現在の値を1つ以上の基準値と比較して、風力タービンブレードの表面状態を決定する。
【選択図】図4
【特許請求の範囲】
【請求項1】
第1の風力タービンブレード(221)及び1つ以上のさらなる風力タービンブレード(222,223)を含むロータ(18)を含む風力タービン(10)の1つ以上の風力タービンブレード(22)の表面状態を決定する方法(100)であって、
所定の回転条件の下で風の影響を受けて風力タービンロータ(18)を回転させるステップ(110)であって、所定の回転条件が、残りの風力タービンブレード(222,223)の少なくとも所定のピッチ角(252)を含むステップ(110)と、
所定の回転条件で回転するときの風力タービンの1つ以上のパラメータの現在の値を決定するステップ(120)と、
風力タービンの1つ以上のパラメータの現在の値を1つ以上の基準値(37)と比較して、風力タービンブレード(22)の表面状態を決定するステップ(130)と、
を含む方法。
【請求項2】
基準値(37)は、清浄なブレードに対応する、請求項1に記載の方法。
【請求項3】
所定の回転条件は、風力タービンのアイドリングを含む、請求項1又は2に記載の方法。
【請求項4】
所定の回転条件は、第1のブレード(221)の所定のピッチ角(251)を含み、風力タービンのパラメータは、回転速度を含む、請求項1乃至3のいずれかに記載の方法。
【請求項5】
所定の回転条件は、第1のブレード(221)の所定のピッチ角(251)を含み、風力タービンのパラメータは、先端速度比を含む、請求項1乃至3のいずれかに記載の方法。
【請求項6】
所定の回転条件は、所定のロータ速度を含み、風力タービンのパラメータは、所定のロータ速度を維持するための第1のブレード(221)のピッチ角を含む、請求項1乃至3のいずれかに記載の方法。
【請求項7】
所定の回転条件は、第1のブレード(221)のピッチ角及び所定のロータ速度を含み、風力タービンのパラメータは、所定のロータ速度を維持するための発電機トルクを含む、請求項1又は2に記載の方法。
【請求項8】
所定の回転条件における第1のブレード(221)のピッチ角(251)は、他のブレード(222,223)のピッチ角(252)よりも大きい、請求項1乃至7のいずれかに記載の方法。
【請求項9】
第1のブレード(221)のピッチ角(251)は、45から90°の範囲、特に60から80°の範囲内にあり、他のブレード(222,223)のピッチ角(252)は、0から30°の範囲、特に5から15°の範囲内にある、請求項8に記載の方法。
【請求項10】
回転(110)、決定(120)及び比較(130)のステップを、第1ブレード(221)として作用する1つ以上の他のブレード(222,223)で繰り返すステップをさらに含む、請求項1乃至9のいずれかに記載の方法。
【請求項11】
風力タービン(10)を運転する方法であって、
風力タービンをデフォルト制御設定で運転するステップと、
請求項1乃至10のいずれかに記載の方法(100)を実行するステップと、
パラメータの現在の値が基準値(37)と所定の閾値以上異なる場合に、風力タービンの作動を調整するステップと、
を含む、方法。
【請求項12】
風力タービンの作動前に所定の回転条件における1つ以上の風力タービンパラメータの1つ以上の基準値(37)を決定するステップをさらに含む、請求項11に記載の方法。
【請求項13】
第1のブレード(221)を第1のピッチ角(251)の基準値に配置し、残りのブレード(222,223)を第2のピッチ角(252)の基準値に配置して、風速の関数としての風力タービンロータ(18)の速度の基準曲線(45)を決定するステップをさらに含む、請求項12に記載の方法。
【請求項14】
風力タービン用の制御装置(36)であって、通信モジュール(43)と、プロセッサ(40)と、メモリ(41)とを含み、メモリ(41)は、プロセッサ(40)によって実行されると、プロセッサ(40)に請求項1乃至13のいずれかに記載の方法を実行させる命令を含む、制御装置。
【請求項15】
請求項14に記載の制御装置(36)を備える風力タービン(10)。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、風力タービンを制御及び運転するための方法に関する。より詳細には、本開示は、風力タービンブレードの粗さを決定又は検出する方法及び風力タービンを作動させる方法、並びに風力タービン制御装置(風力タービンコントローラ)及び風力タービンに関する。
【背景技術】
【0002】
今日、風力タービンは、一般に電力グリッド(電力網)に電力を供給するために使用されている。この種の風力タービンは、一般に、タワーと、タワー上に配置されたロータとを含む。ロータは、典型的には、ハブ及び複数のブレードを含み、ブレードに対する風の影響下で回転するように設定される。この回転は、直接(「直接駆動」又は「ギアレス」)又はギアボックスの使用のいずれかにより、ロータ軸を介して発電機に通常伝達されるトルクを発生する。このようにして、発電機は電力グリッドに供給することができる電気を発生させる。
【0003】
風力タービンハブは、ナセルの前部に回転可能に結合され得る。風力タービンハブは、ロータシャフトに接続されてもよく、次いで、ロータシャフトは、ナセル内のフレーム内に配置された1つ以上のロータシャフト軸受(ベアリング)を用いて、ナセル内に回転可能に取り付けられてもよい。ナセルは、風力タービンタワーの上部に配置されたハウジングであり、ギアボックス(存在する場合)及び発電機(ナセルの外側に配置されていない場合)を含み、保護することができ、また、風力タービンによっては、電力コンバータなどのさらなるコンポーネント及び補助システムを含むことができる。
【0004】
風力タービンの運転中に、風力タービンブレードの外面、特に前縁及び隣接する表面積が汚れることがある。例えば、塵、花粉、昆虫、塩又は氷が風力タービンブレードの外面に蓄積することがある。風力タービンブレードは、例えば雨、ひょう、風中の粒子によるブレードへの衝撃によっても腐食する可能性がある。汚れ及び/又は侵食されたブレードは、清浄な(クリーンな)ブレードよりも不規則な表面を有し、これは、ブレード周辺の空気流に重大な影響を与える可能性がある。荒れたブレードは、一般に、与えられた風の流れに対して、揚力が小さく、抗力が大きくなり、風力タービンが発生する電力が減少させる。例えば、ブレードが粗くなると、、年間エネルギー生産量(AEP)を2%~5%減少させる可能性があり、これは無視できない損失となる。
【0005】
ブレードの粗さは、ブレードの清掃や修理などの是正措置が必要かどうか、あるいは降雨によってブレードから汚れが取り除かれた後などに風力発電機の出力が増加するよう指示されるかどうかを確認するために監視されることがある。ブレードの検査には時間と費用がかかる場合があり、一般に、1人以上のオペレータの立会が必要となる。さらに、影響を受ける可能性のあるブレード領域へのアクセスは困難であり、監視装置は外部条件に敏感である可能性がある。いくつかの例では、ドローンが使用されてもよい。これらの例又は他の例では、画像は、例えば赤外線カメラで撮影されてもよいが、このような場合、画像の多くの後処理が必要な場合がある。
【0006】
本開示は、ブレードの粗さの改良された特定又は検出を提供することを目的とする。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本開示の態様において、第1の風力タービンブレード及び1つ以上のさらなる風力タービンブレードを含むロータを含む風力タービンの1つ以上の風力タービンブレードの表面状態を決定するための方法が提供される。本方法は、所定の回転条件において風の影響下で風力タービンロータを回転させることを含み、所定の回転条件は、追加の(その他の)風力タービンブレードの少なくとも所定のピッチ角を含む。本方法は、所定の回転条件で回転するときに、風力タービンの1つ以上のパラメータの現在の値(current values)を決定することをさらに含む。本方法はさらに、風力タービンの1つ以上のパラメータの現在の値を1つ以上の基準値と比較して、1つ以上の風力タービンブレードの表面状態を決定するステップを含む。
【0008】
この態様によれば、風力タービンロータが所定の回転条件で回転している間に、1つ以上のパラメータの1つ以上の値を決定し、対応する基準値と比較することができる。パラメータの基準値は既知であり、例えば、それらは特定の風力タービンロータ構成において以前に決定されている場合がある。
【0009】
所定の回転条件において決定された1つ以上の風力タービンパラメータの現在の値を比較することは、所定の回転条件が、第1の風力タービンブレード以外の風力タービンブレードの少なくとも所定のピッチ角を含む場合、基準値と比較することは、ブレード表面の状態、特に、ブレードセンサ又はドローンを使用せずに粗さの表示を検出するのに役立つ。演算子の存在を回避することもできる。また、撮影を省略することができるので、時間のかかる後処理を省略することもできる。したがって、ブレードの粗さのより高速でより自動的・自律的な検出(autonomous detection)を提供することができる。
【0010】
本開示を通して、風力タービンブレードのピッチ角は、基準線とブレードのコード(chord)との間の断面において測定され得る角度として理解され得る。基準線は、いくつかの例では、風力タービンロータ面内に実質的に平行であってもよく、例えば、風力タービンロータ内に含まれてもよい。
【0011】
本開示において、ブレードの粗さは、ブレードの外側表面又はブレードの外側表面の特定の領域がどの程度不規則であるかを指すことができる。ここで、粗いブレードとは、その表面が、ブレードがきれいであったとき又はよりきれいであったときのブレードの表面と異なり、粗さの影響が風力タービン性能に顕著に現れるブレードを指す場合がある。すなわち、ブレードの周りの空気の流れは、ブレードの揚力及び/又は抗力が、所定の迎え角及び所定の風速において異なる程度に影響を受ける。例えば、粗いブレードは、清浄度の基準が得られたときにブレードが含まなかった不規則性、例えば突起及び/又は凹部を含む場合があり、これらの不規則性は、一般的に負の方向で、風力タービンによって生成される電力に影響を与える場合がある。例えば、不規則性は、例えば、より乱れた流れ、より大きな後流、またはブレードから気流を分離する異なる点を作り出す可能性がある。
【0012】
本開示を通して、清浄なブレードは、平滑なブレード、すなわち、その外面が物質の堆積及び/又は浸食によってまだ影響を受けていないか、又は少なくとも著しく影響を受けていないブレードとして理解することができる。物質堆積は、例えば、土及び氷を含み得る。清浄なブレードの表面は、設計され製造された表面であってもよい。清浄なブレードは、例えば風力タービンの設置中に、風力タービンタワーの上部に取り付けられてもよい。清浄なブレードは、その耐用年数の最初にあるので、まだ汚れ、氷又は他のものを蓄積しておらず且つ/又は少なくとも顕著な方法で侵食されていないかもしれない。清浄なブレードは、最適な条件下で設計仕様に従って最大の出力を提供することができることが理解される。ブレードの取り付けの間、それはいくらかの汚れを蓄積し、及び/又はそれはわずかに侵食されるかもしれないが、これは一般に重要な効果を有さず、したがって、本開示の文脈におけるブレードは、清浄なブレードであると考えられる。清浄なブレードは、風力タービンが運転を開始した後のある期間、例えば、風力タービンの運転開始から数日、数週間、又は数か月後に決定された値を比較するための基準値を得るために使用することができる。
【0013】
本開示全体を通じて、準清浄ブレード(セミクリーンブレード)は、例えば、侵食またはブレードが修理された可能性があり、その表面が新しいときとわずかに異なるかもしれないという事実のために、ブレードが新しいとき、すなわち「きれい」であったときのブレード表面とは異なる外面を有するブレードを指す場合がある。準清浄ブレードは、例えば、洗浄されたブレードや修理されたブレードであってもよい。準清浄ブレードは、1つまたは複数のパラメータの基準値を決定するためのものでもある。
【0014】
本開示全体を通じて、風力タービンは、そのロータがエネルギーを生成するのに十分速い速度で回転し、風力タービンの発電機が電力を生成しているときに作動中(運転中)であることが理解され得る。
【0015】
本開示のさらなる態様において、風力タービン制御装置が提供される。制御装置は、通信モジュールと、プロセッサと、メモリとを含む。メモリは、プロセッサによって実行されると、プロセッサに本明細書に開示される方法ステップの1つ以上を実行させる命令を含む。
【0016】
本開示のさらに別の態様において、風力タービンを制御する方法が提供される。本方法は、風力タービンが作動を開始する前に、アイドル状態の風力タービンロータについて、第1のブレードが第1のピッチ角の基準値に配置され、残りのブレードが第2のピッチ角の基準値に配置された状態で、1つ以上の風力タービンパラメータの1つ以上の基準値を決定することを含む。本方法は、風力タービン運転を開始するステップをさらに含む。そして、一定時間後に、風力タービンロータのアイドリングを開始し、第1のブレードを第1のピッチ角の基準値に配置し、残りのブレードを第2のピッチ角の基準値に配置する。本方法は、1つ以上の風力タービンパラメータの1つ以上の現在の値を決定し、それらを対応する基準値と比較するステップをさらに含む。本方法は、比較に基づいて風力タービン運転を適応させることをさらに含む。
【図面の簡単な説明】
【0017】
図1】風力タービンの一実施例の斜視図を示す。
図2図1の風力タービンのナセルの一実施例の簡略化した内部図を示す。
図3】風力タービン用の制御装置(コントローラ)の一実施例を概略的に示す。
図4】ブレードの粗さを検出するための風力タービンを作動させる方法の一実施例のフローチャートを示す。
図5図5A図5B及び図5Cは、一実施例による風力タービンブレードの異なるピッチ角を概略的に示す。
図6】第1のブレードが第1のピッチ角に配置され、第2のブレードと第3のブレードが第2のピッチ角に配置され、第1のピッチ角の値が第2のピッチ角の値よりも高い風力タービンの一実施例の正面図を概略的に示す。
図7】基準値のセットを概略的に示す。
図8】風速の関数としての基準風力タービンロータ速度の発展の一実施例及びロータ速度の決定された現在の値の一実施例を概略的に示す。
図9】風力タービンを制御するための方法の一実施例のフローチャートを示す。
【発明を実施するための形態】
【0018】
ここで、本開示の実施形態を詳細に参照し、その1つ以上の例を図面に示す。各例は説明のためにのみ提供され、制限として提供されるものではない。実際、当業者には、本開示において様々な修正及び変形を行うことができることが明らかであろう。例えば、1つの実施形態の一部として図示又は説明される特徴を別の実施形態とともに使用して、さらに別の実施形態を得ることができる。従って、本開示は、添付の特許請求の範囲及びそれらの等価物の範囲内にあるような修正及び変形を包含することが意図される。
【0019】
図1は、風力タービン10の一実施例の斜視図である。この例では、風力タービン10は水平軸風車である。或いは、風力タービン10は、垂直軸風力タービンであってもよい。実施例では、風力タービン10は、地面12上の支持システム14から延びるタワー15と、タワー15上に取り付けられたナセル16と、ナセル16に結合されたロータ18とを含む。ロータ18は、回転可能なハブ20と、ハブに結合され、ハブ20から外側に延びる少なくとも1つのロータブレード22とを含む。この例では、ロータ18は3つのロータブレード22を有する。別の実施形態では、ロータ18は、3つ以上又は3つ未満のロータブレード22を含む。タワー15は、支持システム14とナセル16との間に空洞(図1には示されていない)を画定するために管状鋼から製造されてもよい。代替実施形態では、タワー15は、任意の適切な高さを有する任意の適切なタイプのタワーである。別の方法によれば、タワーは、コンクリート製部分と管状鋼部分とを含むハイブリッドタワーであり得る。また、タワーは、部分的又は完全な格子タワー(partial or full lattice tower)にすることもできる。
【0020】
ロータブレード22は、ハブ20の周りに間隔を置いて配置され、ロータ18の回転を容易にして、運動エネルギーを風から使用可能な機械エネルギー、その後に電気エネルギーに伝達することを可能にする。ローターブレード22は、ブレード根元領域24を、複数の荷重伝達領域(負荷伝達領域)26でハブ20に結合することによって、ハブ20に嵌合される。荷重伝達領域26は、ハブ荷重伝達領域及びブレード荷重伝達領域(いずれも図1には図示せず)を有することができる。ロータブレード22に誘起された荷重は、荷重伝達領域26を介してハブ20に伝達される。
【0021】
実施例では、ロータブレード22は、約15メートル(m)から約90メートル以上の範囲の長さを有することができる。ロータブレード22は、風力タービン10が本明細書に記載されるように機能することを可能にする任意の適切な長さを有することができる。例えば、ブレード長の非限定的な例としては、20m以下、37m、48.7m、50.2m、52.2m、又は91mを超える長さが挙げられる。風向28から風がロータブレード22に当たると、ロータ18はロータ軸30を中心に回転する。ロータブレード22が回転して遠心力を受けると、ロータブレード22もまた種々の力及びモーメントを受ける。このように、ロータブレード22は、中立位置又は非偏向位置から偏向位置まで偏向及び/又は回転することができる。
【0022】
さらに、ロータブレード22のピッチ角、例えば、風向に対するロータブレード22の向きを決定する角度は、ピッチシステム32によって変更され、風ベクトルに対する少なくとも1つのロータブレード22の角度位置を調整することによって、風力タービン10によって生成される負荷及び電力を制御することができる。ロータブレード22のピッチ軸34が示されている。風力タービン10の運転中、ピッチシステム32は、ロータブレード22のピッチ角を、ロータブレード(の一部)の迎え角(angle of attack)が減少し、回転速度の減少を容易にし、かつ/又はロータ18の失速を容易にするように、特に変更することができる。
【0023】
この例では、各ロータブレード22のブレードピッチは、風力タービン制御装置36又はピッチ制御システム80によって個別に制御される。或いは、すべてのロータブレード22のブレードピッチを、この制御システムによって同時に制御してもよい。
【0024】
さらに、本実施例では、風向28が変化するにつれて、ナセル16のヨー方向がヨー軸38を中心に回転して、風向28に対してロータブレード22を位置決めしてもよい。
【0025】
実施例では、風力タービン制御装置36は、ナセル16内に集中しているように示されているが、風力タービン制御装置36は、風力タービン10全体、支持システム14上、風力発電所内、及び/又は遠隔制御センターにおける分散制御システムであってもよい。風力タービン制御装置36は、本明細書に記載のステップ及び/又は方法を実行するように構成された1つ以上のプロセッサ40を含む。図3も参照のこと。さらに、本明細書に記載される他の構成要素の多くは、1つ以上のプロセッサを含む。
【0026】
図2は、風力タービン10の一部の拡大断面図である。実施例では、風力タービン10は、ナセル16と、ナセル16に回転可能に結合されたロータ18とを含む。具体的には、ロータ18のハブ20は、メインシャフト44、ギアボックス46、高速シャフト48及びカップリング50により、ナセル16内に位置する発電機42に回転自在に連結されている。この例では、メインシャフト44は、ナセル16の長手方向軸線(図示せず)と少なくとも部分的に同軸に配置されている。メインシャフト44の回転によりギアボックスが駆動され、ギアボックス46は、ロータ18及びメインシャフト44の比較的遅い回転運動を、高速シャフト48の比較的速い回転運動に変換することにより、その後高速シャフト48を駆動する。後者は、カップリング50の助けを借りて電気エネルギーを生成するために発電機42に接続される。さらに、例えば400Vから1000Vの間の電圧を有する発電機42によって生成された電気エネルギーを中電圧(例:10-35KV)を有する電気エネルギーに変換するために、変圧器90及び/又は適切な電子機器、スイッチ及び/又はインバータをナセル16内に配置することができる。洋上風力タービンは、例えば、650Vと3500Vとの間の発電機電圧を有することができ、変圧器電圧は、例えば、30kVと70kVとの間であることができる。この電気エネルギーは、ナセル16からタワー15へ電力ケーブルを介して伝導される。
【0027】
いくつかの例では、風力タービン10は、1つ以上の軸センサ51を含むことができる。軸センサは、メインシャフト44及び/又は高速シャフト48に作用するトルク負荷及び軸44,48の回転速度の少なくとも1つを監視するように構成されてもよい。いくつかの例では、風力タービン10は、1つ以上の発電機センサ53を含むことができる。発電機センサは、発電機42の回転速度及び発電機トルクの少なくとも一方を監視するように構成されてもよい。軸センサ51及び/又は発電機センサ53は、例えば、1つ又は複数のトルクセンサ(例えば、ひずみゲージ又は圧力センサー)、光学センサ、加速度計、磁気センサ、速度センサ、及びマイクロ慣性測定ユニット(MIMU)を含み得る。
【0028】
ギアボックス46、発電機42及び変圧器90は、オプションとしてメインフレーム52として具体化されるナセル16のメイン支持構造フレームによって支持され得る。ギアボックス46は、1つ以上のトルクアーム103によってメインフレーム52に接続されるギアボックスハウジングを含むことができる。実施例では、ナセル16はまた、主前方支持ベアリング60及び主後方支持ベアリング62を含む。さらに、特に、発電機42の振動がメインフレーム52に導入されて騒音放出源が発生するのを防止するために、デカップリング支持手段54によって発電機42をメインフレーム52に取り付けることができる。発電機42は、発電機42の振動がメインフレーム52に導入されて騒音放出源となることを防止するために、デカップリング支持手段54によってメインフレーム52に取り付けられることが可能である。
【0029】
任意選択的に、メインフレーム52は、ロータ18の重量及びナセル16の構成要素、並びに風及び回転負荷によって生じる全負荷を搬送し、さらにこれらの負荷を風力タービン10のタワー15に導入するように構成される。ロータシャフト44、発電機42、ギアボックス46、高速シャフト48、カップリング50、及び、これらに限定されるものではないが、支持体52、前方支持ベアリング60及び後方支持ベアリング62を含む関連する締結、支持、及び/又は固定装置は、駆動列64と称されることがある。
【0030】
いくつかの例では、風力タービンは、ギアボックス46のない直接駆動風力タービンであってもよい。発電機42は、直接駆動風力タービンのロータ18と同じ回転速度で動作する。したがって、それらは一般に、ギアボックスを有する風力タービンと同等な電力を供給するためのギアボックス46を有する風力タービンで使用される発電機よりもはるかに大きな直径を有する。
【0031】
ナセル16はまた、ナセル16を回転させ、それによってロータ18もヨー軸38を中心に回転させて、風向28に対するロータブレード22の遠近を制御するために使用されるヨー駆動機構56を含むことができる。
【0032】
ナセル16を風向28に対して適切に位置決めするために、ナセル16は、風向計及び風速計を含むことができる少なくとも1つの気象測定システムを含むこともできる。気象測定システム58は、風向28及び/又は風速を含む情報を風力タービン制御装置36に提供することができる。
【0033】
この例では、ピッチシステム32は、少なくとも部分的に、ハブ20内にピッチアセンブリ66として配置される。ピッチアセンブリ66は、1つ以上のピッチ駆動システム68及び少なくとも1つのセンサ70を含む。各ピッチ駆動システム68は、ピッチ軸34に沿ってロータブレード22のピッチ角を変調するために、各ロータブレード22(図1に示す)に結合されている。図2には、3つのピッチ駆動システム68のうちの1つのみが示されている。
【0034】
この例では、ピッチアセンブリ66は、それぞれのロータブレード22をピッチ軸34の周りに回転させるために、ハブ20及びそれぞれのロータブレード22(図1に示す)に結合された少なくとも1つのピッチベアリング72を含む。ピッチ駆動システム68は、ピッチ駆動モータ74と、ピッチ駆動ギアボックス76と、ピッチ駆動ピニオン78とを含む。ピッチ駆動モータ74は、ピッチ駆動モータ74がピッチ駆動ギアボックス76に機械力を付与するようにピッチ駆動ギアボックス76に結合されている。ピッチ駆動ギアボックス76は、ピッチ駆動ピニオン78がピッチ駆動ギアボックス76によって回転するように、ピッチ駆動ピニオン78に結合されている。ピッチベアリング72は、ピッチ駆動ピニオン78の回転によってピッチベアリング72が回転するように、ピッチ駆動ピニオン78に結合されている。
【0035】
ピッチ駆動システム68は、風力タービン制御装置36から1つ以上の信号を受け取ると、ロータブレード22のピッチ角を調整するために、風力タービン制御装置36に結合される。実施例では、ピッチ駆動モータ74は、電力及び/又は油圧システムによって駆動される任意の適切なモータであり、ピッチアセンブリ66が本明細書に記載されるように機能することを可能にする。或いは、ピッチアセンブリ66は、限定されるものではないが、油圧シリンダ、スプリング、及び/又はサーボ機構などの任意の適切な構造、構成、配置、及び/又は構成要素を含むことができる。特定の実施形態では、ピッチ駆動モータ74は、ハブ20の回転慣性及び/又は風力タービン10の構成要素にエネルギーを供給する蓄積エネルギー源(図示せず)から抽出されたエネルギーによって駆動される。
【0036】
ピッチアセンブリ66はまた、特定の優先順位付けされた状況の場合及び/又はロータ18の過速度の間に、風力タービン制御装置36からの制御信号に従ってピッチ駆動システム68を制御するための1つ以上のピッチ制御システム80を含むことができる。この例では、ピッチアセンブリ66は、風力タービン制御装置36から独立してピッチ駆動システム68を制御するために、それぞれのピッチ駆動システム68に通信可能に結合された少なくとも1つのピッチ制御システム80を含む。この例では、ピッチ制御システム80は、ピッチ駆動システム68及びセンサ70に結合されている。風力タービン10の通常動作中に、風力タービン制御装置36は、ロータブレード22のピッチ角を調整するためにピッチ駆動システム68を制御することができる。
【0037】
一実施形態によれば、例えば、バッテリ及び電気コンデンサ(キャパシタ)を含む発電機84がハブ20の内部又は内部に配置され、センサ70、ピッチ制御システム80、及びピッチ駆動システム68に結合されて、これらの構成要素に電力源を提供する。実施例では、風力発電機84は、風力タービン10の運転中にピッチアセンブリ66に電力の継続的な供給源を提供する。別の実施形態では、発電機84は、風力タービン10の電力損失事象の間にのみピッチアセンブリ66に電力を供給する。電力損失事象は、電力グリッドの損失又はディップ、風力タービン10の電気システムの誤動作、及び/又は風力タービン制御装置36の故障を含むことができる。電力損失事象の間、発電機84は、電力損失事象の間、ピッチアセンブリ66が動作できるように、ピッチアセンブリ66に電力を提供するように動作する。
【0038】
この実施例では、ピッチ駆動システム68、センサ70、ピッチ制御システム80、ケーブル、及び発電機84は、ハブ20の内面88によって画定されたキャビティ86内にそれぞれ配置されている。別の実施形態では、これらの構成要素は、ハブ20の外面に対して配置され、外面に直接又は間接的に結合され得る。
【0039】
図3は、風力タービン制御装置36又は制御システム36の一実施例を概略的に示す。制御装置36は、本明細書に開示される方法、ステップ、決定等のうちの1つ以上を実行するように構成することができる。本明細書で使用される「プロセッサ」という用語は、コンピュータとして当該技術分野で参照される集積回路に限定されるものではなく、コントローラ、マイクロコントローラ、マイクロコンピュータ、プログラマブルロジックコントローラ(PLC)、特定用途向け集積回路、及び他のプログラマブル回路を広く意味し、これらの用語は本明細書では互換的に使用される。
【0040】
制御システム36は、メモリ41、例えば1つ以上のメモリデバイスを含むこともできる。メモリ41は、コンピュータ可読媒体(例えば、ランダムアクセスメモリ(RAM))、コンピュータ可読不揮発性媒体(例えば、フラッシュメモリ)、フロッピーディスク(商標)、コンパクトディスク読取専用メモリ(CD-ROM)、光磁気ディスク(M°D)、ディジタル汎用ディスク(DVD)及び/又は他の適切なメモリ素子を含むが、これらに限定されないメモリ素子を含むことができる。このようなメモリデバイス41は、一般に、プロセッサ40によって実行されるときに、本明細書に開示される様々なステップを実行するか、又はその実行をトリガするように制御装置36を構成する適切なコンピュータ可読命令を格納するように構成することができる。メモリ41は、例えば測定及び/又は計算からのデータを記憶するように構成することもできる。
【0041】
さらに、制御システム36は、制御装置36と風力タービン10の様々な構成要素との間の通信を容易にする通信モジュール43を含むこともできる。例えば、通信モジュール43は、タービン制御装置36がロータブレード22のピッチ角を制御するためのピッチ駆動システム66に制御信号を送信することを可能にするインタフェースとして機能することができる。通信モジュール43は、制御システム36を風力タービン10の他の要素と通信可能に接続するように構成することができる。接続は、有線接続を介して、及び/又は無線接続を介して、例えば、当該技術分野で公知の任意の適切な無線通信プロトコルを使用して行うことができる。さらに、通信モジュール43は、センサインターフェース49、例えば、1つ以上のアナログデジタル変換器を含んで、1つ以上のセンサ51、53、58から送信される信号を、プロセッサ40によって理解及び処理可能な信号に変換することを可能にすることができる。
【0042】
第1の風力タービンブレード221及び1つ以上のさらなる風力タービンブレード222,223を含むロータ18を含む風力タービン10の1つ以上の風力タービンブレード22の表面状態を決定するための方法図100が提供される。この方法を図4のフローチャートに概略的に示す。この方法は、ブロック110において、所定の回転条件における風の影響下で風力タービンブレードのロータ18を回転させることを含む。所定の回転条件は、1つ以上の付加的な風力タービンブレード222,223の少なくとも所定のピッチ角252を含む。本方法はさらに、ブロック120において、所定の回転条件で回転する際に、風力タービン10の1つ以上のパラメータの現在の値を決定するステップを含む。本方法はさらに、ブロック130において、風力タービン10の1つ以上のパラメータの現在の値を1つ以上の基準値37と比較して、1つ以上の風力タービンブレード221,222,223の表面状態(特に粗さの指標又は状態)を決定するステップを含む。
【0043】
ここで、パラメータは、所定の回転条件における風力タービンの動作を定義又は記述するのに役立つ特性であると理解することができる。パラメータは、本明細書において、制御設定(すなわち、アクチュエータ又はピッチ角、発電機トルク又はその他の要素のための設定点)及び/又は測定された変数(例えばロータ速度)を含み得る。なお、「所定の」とは、回転条件が予め定められていること、すなわち、ある条件でのロータ18の回転が開始される前であることを意味している場合がある。「所定の」は、必ずしも一定の条件、例えば、一定のパラメータ値が、ロータの回転が生じる全期間にわたって一定に維持されるものとして解釈されるべきではない。いくつかの例では、これは上述の通りであり得るが(例えば、方法100を実行している間、1つ以上のピッチ角25は実質的に一定に保たれてもよい)、他の例ではそうでなくてもよい(例えば、特定のロータ速度が回転に設定されても、この速度はブレードの粗さのために時間と共に変化することがある)。
【0044】
本開示全体を通じて、風力タービンブレード22のピッチ角は、基準線26とブレード27のコードとの間の断面で測定され得る角度25として理解され得る(図5A、5B及び5C参照)。図5A図5B及び図5Cにおいて点線で示される基準線26は、風力タービン10のロータ面に実質的に平行であってもよい。図5A、5B及び5Cは、断面におけるブレード22を概略的に示す。これらの図では、風(矢印「TW」参照)が左から右に吹く場合がある。風力タービンブレード22は、ロータ18平面内で回転し、この図内で下向き方向に移動し、その結果、見かけ上の風の流れが生じる(矢印「AW」を参照)。見かけの風AWは、ブレードの回転による風と、ブレード22に対して軸方向TWに吹き付ける風とからなる。
【0045】
なお、図5に示すプロファイルの右側をブレードの負圧側、左側をブレードの圧力側と理解してもよい。
【0046】
図5Aでは、ブレードはピッチ角25の基準位置にある。基準位置において、ブレードのコード27は、基準線26と実質的に平行である。図5Aでは、ブレードのコード27と基準線26とが重なっている。したがって、ピッチ角25は、0°又は「デフォルトのピッチ角」であってもよい。デフォルトのピッチ角、すなわち「基準位置」は、風力タービンブレード22が低風速の範囲、例えば公称以下の風速を維持する位置であってもよい。
【0047】
図5Bでは、ブレードが基準位置から離れて傾斜している。したがって、図5Bにおけるピッチ角25は、図5Aにおけるよりも図5Bにおける方が大きい。図5Cでは、基準位置に対してピッチ角25がさらに大きくなっている。ピッチ角25を大きくすると、一般に、風力タービンロータを減速させることができ、すなわち、風力タービンブレードは、風力タービンロータの空気力学的トルクを減少させるために、より少ない揚力及びより多くの抗力を発生するように構成された位置に設定される。基準位置から約90°ブレード22をピッチすることにより、風力タービンをフェザー位置(feathered position)に置くことができ、場合によっては風力タービンを停止させるか、少なくともその回転速度を大幅に低下させることができる。ブレードのフェザー位置は、風力タービンが停止しているときにブレードを置くことができる位置である。同様に、例えばフェザー位置からピッチ角25を減少させると、風力タービンロータ18の回転速度を増加させることができる。
【0048】
したがって、ブレード22をピッチング(pitching)することによって、ロータ18の回転を加速及び減速することができる。風の影響を受けて所定の回転条件で風力タービンロータ18を回転させることは、例えば、少なくとも1つを除くすべてのブレードを既知のピッチ角25で回転させることは、1つ以上のブレード22が粗面化された表面を有するか否かを決定するのに役立つ。例えば、第1のブレード221は、他のブレード222,223、例えば他の2つのブレードの第2のピッチ角252よりも大きい第1のピッチ角251に配置することができる。したがって、この例では、所定の回転条件は、所定の第1のピッチ角251と所定の第2のピッチ角252とを含む。ロータが回転すると、第1のブレード221は、風力タービン10のロータ18を減速させる傾向があり、一方、他のブレード、例えば第2のブレード222及び第3のブレード223は、ロータ18を加速させる傾向がある。このような例の概略図が図6に示されている。図6の例では、第1の風力タービンブレード221は、第2のブレード222及び第3のブレード223のピッチ角252よりも大きいピッチ角251を有する。したがって、第2のブレード222及び第3のブレード223は、ロータ118の回転を加速する傾向があり、第1のブレード221は、この回転を妨げる(break:ブレークする)、すなわち、ロータ118の回転を減速する傾向がある。
【0049】
1つ又は複数のパラメータの1つ又は複数の現在の値を決定し、その1つ又は複数の決定値を対応する既知の基準値と比較することにより、例えば、残りのブレードが配置される所定の第2のピッチ角252よりも大きい所定の第1のピッチ角251に配置された第1のブレードにより、風力タービン10のある運転時間後にブレード22の粗さが増加したかどうかをチェックすることができる。現在の値の決定には、一般に、直接測定と間接測定の両方が含まれる。ブレード22にセンサを取り付ける代わりに、操作中にブレードが粗くなったかどうかをチェックするために追加の装置及び/又はオペレータを必要とするドローン、カメラ又は他の方法を使用して、方法100を使用することができる。この方法は、ブレードの粗さのチェックをより速く、より便利に、より安価に行うことができる。
【0050】
パラメータには1つ以上の値を指定できる。パラメータの値が、一定の既知の基準条件、例えば、清浄なブレード、及び例えば、残りのブレードの第2のピッチ角よりも大きい第1のピッチ角に配置されているブレードについて決定されている場合、これらの値は、基準値(reference value)と呼ばれ得る。したがって、いくつかの例では、基準値は清浄なブレードに対応する。一組の基準値37が図7に概略的に示されている。図7の例では、第1のピッチ角251は約70°の基準値を有し、第2のピッチ角252は約10°の基準値を有する。一組の基準値37は、風速の複数の値におけるロータ18の回転速度の複数の値をさらに含む。このようなデータの曲線は、図7Bではrs=f(ws)として表されている。
【0051】
いくつかの例では、所定の回転条件は、第1のブレード221の所定のピッチ角251を含むことができ、風力タービンのパラメータは回転速度を含むことができる。すなわち、風力タービンロータ18の速度の現在の値を求め、次いで風力タービンロータ速度の基準値と比較することができる。この判定はある風速で行うことができ、従って比較は実質的に同じ風速でのロータ速度の基準値とすることができる。例えば、第1のブレード221を第1のピッチ角251の基準値に位置決めし、残りのブレード222,223を第2のピッチ角252の基準値に位置決めしてもよい。現在の風速は、例えば、風速計などの気象測定システム58によって測定することができる。ロータ速度の現在の値は、例えば、軸センサ51又は発電機センサ53によって決定することができる。現在の風速における風力タービンロータの速度の現在の値は、対応する風速における風力タービンロータの速度の基準値と比較することができる。
【0052】
図8は、例えばメートル毎秒(m/s)で測定された風速の関数として、例えば毎分回転数(rpm)で測定された風力タービンロータ18の速度の基準曲線(破線45)の例を概略的に示す。ロータ速度データ(黒丸)は、データの中間値を得るために、適切な方程式、例えば線形方程式に従ってフィッティング(適合)することができる。破線45は、ロータ速度データに対する適合を表す。図8はまた、47と表示されている現在の風速における現在のロータ速度の値の例を示している。この例では、ロータ速度47の現在の値は、対応する基準ロータ速度55よりも低いので、ブレードは以前よりも粗くなっていると結論付けることができる。
【0053】
ロータ速度の値を比較することによって、現在の値が、ブレード22上に凹凸(irregularities:複数の不規則性)がないことを示し得る基準値と実質的に同じであるかどうか、又は、それが、ブレード22が粗化したことを示し得る基準速度よりも低いかどうかが分かる。風力タービンの運転は、比較の結果に応じて調整することができる。
【0054】
いくつかの例では、所定の回転条件は、第1のブレード22の所定のピッチ角251を含むことができ、測定されるか又は他の方法で決定される風力タービン10のパラメータは、先端速度比(TSR:tip speed ratio)を含むことができる。すなわち。の場合、先端速度比の現在の値を求め、TSRの基準値と比較してもよい。第1のブレード221は第1のピッチ角251の基準値に位置し、残りのブレード222,223は第2のピッチ角252の基準値に位置していてもよい。これらの例のいくつかにおいて、TSRは、最初に、例えばナセル風速計によって測定された現在の(例えば角度の)ロータ速度(rs)及び現在の風速(ws)を測定し、次いで、ブレード22の長さ(L)を考慮することによって現在の先端速度を計算することによって決定され得る。この値を測定された現在の風速(ws)で割ってTSRを求めることができる。風力タービンロータ18の現在の速度は、例えば、いくつかの例において、毎分回転数(rpm)で測定することができる。TSRを決定する他の方法も可能である。決定された現在のTSRは、基準TSRと比較することができる。
【0055】
TSRとは、ブレード先端の速度と風速の比である。TSRを決定し、それをTSR基準値と比較することは、ロータ速度を決定し、それを対応する基準値と比較することよりも制限的でない場合がある。ロータ速度基準曲線45の傾きは、基準TSRの値に関係してもよく、特に、TSRと傾きは、ブレードの長さを含む比例定数によって関係してもよい。図8はまた、風速57の関数としてのロータ速度の可能な現在の曲線の傾き、したがって現在のTSRの値が、基準曲線45の傾き、したがって基準TSRの値より小さくてもよいことを示している。
【0056】
いくつかの例では、所定の回転条件は、所定のロータ速度を含むことができ、風力タービンのパラメータは、所定のロータ速度を維持するための第1のブレード221のピッチ角251を含むことができる。これらの例のいくつかでは、残りのブレード222,223は、決定が行われる前に、第2のピッチ角252の基準値に配置されてもよく、任意に第1のブレード221は、第1のピッチ角251の基準値に配置されてもよい。他の例では、このような位置決めは省略することができる。制御装置36は、清浄なブレード又は準清浄ブレード22を用いて、ピッチ角251、252の選択された構成でロータ18の一定の速度が達成され得ることを知ることができる。ブレードの粗さチェックの間、第1のピッチ角251は、ロータ速度の特定の基準値に到達し、それを維持するように変化させることができる。特定のロータ速度を維持するために必要なピッチ角251は、ブレードが規則的な表面を維持しているかどうか、又は凹部及び/又は突出部のような不規則性がブレード表面に現れているかどうかを示すことができる。
【0057】
例えば、第1のピッチ角251の必要な現在の値(required current value)が第1のピッチ角251の対応する基準値と実質的に同じである場合、ブレードは清浄又は準清浄(クリーンまたはセミクリーン)のままであると結論することができる。しかしながら、実質的に一定のロータ速度を維持するために必要な第1のピッチ角251の値が、対応する基準値よりも低い場合、これは、1つ以上のブレードのブレード表面が変化し(modified)、風力タービン性能に悪影響を及ぼすことを意味し得る。図5A図6に関する説明によれば、第1のピッチ角251の現在の値が第1のピッチ角の基準値よりも低いということは、ロータ速度を一定に維持するためには、ロータ18の回転を有利にしなければならないことを意味している。すなわち。すなわち、ブレード、特に残りのブレード222又は223が粗くなった場合、すなわち粗面化した場合には、回転速度を上げるために第1のピッチ角251を小さくする必要があり、したがって基準回転速度に達することができる。
【0058】
また、第2のピッチ角252を基準ピッチ角25とするブレード222,223を用いて粗さチェックを行ってもよい。いくつかの例では、残りのブレード222,223のうちの一方のピッチ角252,253は、回転速度を実質的に一定に保つために変化させることができ、一方、第1のブレード221の第1のピッチ角251及び他のブレードの第2のピッチ角252は、実質的に一定に保つことができる。
【0059】
いくつかの例では、所定の回転条件は、第1のブレード221のピッチ角251及び所定のロータ速度を含むことができ、風力タービンのパラメータは、所定のロータ速度を維持するための発電機トルクを含むことができる。すなわち。風力タービンロータ18の既知の速度、例えばある基準速度を維持するために風力タービン発電機42によって与えられるトルクの値を決定し、次いでトルクの基準値と比較することができる。第1のブレード221は第1のピッチ角251の基準値に位置し、残りのブレード222,223は第2のピッチ角252の基準値に位置していてもよい。例えば、清浄又は準清浄なブレードでは、ピッチ角251,252の選択された構成でロータ18の一定速度を達成できることが知られている。そのロータ速度を維持するためには、発電機トルクの一定値が必要となる場合がある。粗さチェック中に、トルクを変化させて、所定のロータ速度に到達し、それを維持することができる。要求されるトルクの現在の値が対応する基準トルク値と実質的に同じである場合、ブレードは清浄又は準清浄のままであると結論付けることができる。しかしながら、実質的に一定のロータ速度を維持するために必要なトルクがトルクの基準値よりも低い場合、これは、1つ又は複数のブレードの表面粗さが増加していることを意味し得る。
【0060】
いくつかの例では、所定の回転条件は、風力タービン10のアイドリングを含むことができる。すなわち。いくつかの例では、本方法は、1つ以上のパラメータの現在の値を決定する前に、風力タービンロータ18をアイドル状態にすることをさらに含むことができる。ここで、アイドル又はアイドリングとは、風力タービンブレード22が(ゆっくりと)回転しているが、エネルギーが生成されていないこと、すなわち、発電機42がグリッドに接続されていないことを指す。アイドリングしているロータ18は、ブレードの粗さの変化の観察及び関連するパラメータの測定を容易にすることができる。ロータ18は、例えば、回転ロータ速度、先端速度比、又は1つ以上のピッチ角25の現在の値を決定する前にアイドルに設定されてもよい。いくつかの例では発電機トルクを変化させるために電力コンバータ及びグリッドを使用することができ、他の例では他の電源を使用することができる。例えば、風力タービン発電機42をモータとして使用するために、1つ以上の補助又は追加の電源を使用することができる。現在の値の決定がアイドリング中に行われる場合、直接比較をより意味のあるものにするために、基準値もアイドリング中に決定してもよい。
【0061】
第2のピッチ角252の値、及び任意に第1のピッチ角251の値については、所定の回転条件において、第1のブレード221のピッチ角251は、他のブレード222,223のピッチ角252,253よりも高くてもよい。これらの所定の値は、第2のピッチ角252のための基準値と同様に、第1のピッチ角251の任意選択の基準値と同様に、決定される1つ以上のパラメータにおける粗さの効果が、ピッチ角25の他の値に対して最大化されるか、又は少なくとも増加されるように選択され得る。
【0062】
いくつかの例では、第2のピッチ角252の所定値及び/又は基準値は失速位置の近くであってもよい。すなわち。この場合、第2のピッチ角252は、失速が生じるピッチ角よりも小さいが、この角度に近い角度であってもよい。このようなピッチ角では、粗いブレード表面の影響を容易に測定することができる。いくつかの例では、第2のピッチ角252の所定値及び/又は基準値は、0°から30°の間、より具体的には5°から15°の間であり得る。これらの例のいくつかでは、第2のピッチ角252の基準値は約10°である。
【0063】
測定条件を最適化するために、第1のピッチ角251の所定値及び/又は基準値を選択することができる。例えば、第1のピッチ角は、ロータ18の回転速度を適応させるために選択され得る。ロータの回転が速すぎると、過回転により風力タービンのブレードが破損する恐れがある。第1のピッチ角251はまた、決定された値が測定の精度と区別されるように選択されてもよく、例えば、ブレードの粗さに起因する関心パラメータの変動が、第1のピッチ角251の他の可能な値に対して増加されるように選択されてもよい。いくつかの例では、第1のピッチ角251の所定値及び/又は基準値は、45°と90°との間、より具体的には、60°と80°との間であり得る。これらの例のいくつかでは、第1のピッチ角252の基準値は約70°である。
【0064】
いくつかの例では、第1のブレード221のピッチ角251は、45°から90°の範囲、具体的には60°から80°の範囲にあり、他のブレード222,223のピッチ角252は、0°から30°の範囲、具体的には5°から15°の範囲にあり得る。
【0065】
ほとんどの実装ではブレードの粗さを一般的に、すなわち個々のブレードを区別せずに決定することで十分でありえる。ほとんどの場合、風力タービンローターのすべてのブレードにおいて、物質の蓄積または浸食が同様の速度で発生すると仮定することができる。
【0066】
しかしながら、異なるブレードが異なる速度で粗化することがある。これを考慮して、いくつかの例では、本方法は、第1のブレードとして作用する他のブレード222,223の1つ以上、例えば全てを回転、決定、比較するステップを繰り返すことをさらに含むことができる。1つ以上のパラメータの現在の値の決定を繰り返し、決定された現在の値を各ロータ構成、すなわち、特定のブレード221が特定の第1のピッチ角251に配置され、残りのブレード222,223が特定の第2のピッチ角252に配置される構成についての対応する基準値と比較することは、どのブレード22がより不規則である(粗い)かを、それらが異なる粗さの変化を経験した場合に区別するのに役立つ。
【0067】
説明のために、第1のブレード221が残りのブレード222,223よりも粗く、ロータの速度を略一定に保つための第1のピッチ角の現在の値を第1のピッチ角の基準値と比較する。このような状況において、ロータ構成毎に第1のピッチ角の現在の値を決定すると、第1のブレード221のピッチ角を変化させたロータ構成の現在の値が、残りのブレードのピッチ角を変化させた他のロータ構成の現在の値と異なることが分かる。
【0068】
なお、これらの方法の例は、選択された所定の回転条件に関わらず、その時点での風速で実行されてもよい。すなわち。これらの方法を実行する特定の風の条件を待つことは避けてもよい。
【0069】
いくつかの例では、上記の方法のいずれも、風力タービン10を作動させる方法の一部として実施することができる。風力タービン10を運転するこのような方法は、デフォルトの制御設定で風力タービンを運転することを含むことができる。この方法は、上記方法100を実行することをさらに含むことができる。この方法は、パラメータの現在の値が、所定の閾値によって、又はそれ以上基準値と異なる場合に、風力タービンの動作を調整することをさらに含むことができる。
【0070】
いくつかの例では、風力タービン10は、設置及び試運転後の運転開始時にデフォルトの制御設定で運転され得る。適切な管理設定は、プロトタイプ試験、シミュレーション及びその他に基づくことができる。ブレードの粗さを決定するための方法で使用される基準値は、すべてのブレードが取り付けられた後の風力タービンの設置又は試運転中に決定されてもよい。追加的に又は代替的に、基準値は、例えばブレード22が清掃され、交換され又は修理された後のような他の例における風力タービンの運転開始後のある事象の発生後に決定されてもよい。例えば、風力タービンが既にしばらくの間運転されている場合、そのブレードをクリーニングし、その後、クリーニングされたブレードの基準値を決定することができる。1つ以上の風力タービンブレードを交換し、基準値を新しいロータ18について決定することも可能である。交換したブレードは、清浄なブレードとみなされる場合がある。洗浄または清掃されたブレードは準清浄ブレードとみなすことができる。
【0071】
いくつかの実施例では、この動作方法は、風速の関数としての風力タービンロータの速度の基準曲線45を決定することをさらに含むことができ、例えば、清浄又は準清浄なブレード、第1のピッチ角251の基準値に配置された第1のブレード221、及び第2のピッチ角252の基準値に配置された残りのブレード222,223である。例えば、図7に概略的に示されているものと同様の曲線45が得られる。
【0072】
風速及びロータ18の速度の値は、ある期間中に決定され、次いで平均化され得る。いくつかの例では、それらは、1分間、5分間、10分間又はそれ以上の間に測定され得る。いくつかの例では、それらは、風速が実質的に一定であるか、又は実質的に一定であるとみなされ得る期間中に測定され得る。これらの例のいくつかでは、風速の値が、風速の平均値プラスマイナス10%によって定義される間隔、すなわち、ある間隔[0.9:平均風速、1.1:平均風速]内に留まるならば、ある期間の間、風速は実質的に一定であると考えられる。この説明は、任意の適切な基準値及び任意の適切な現在の値など、直接測定される任意の値に適用することができる。例えば、一組のパラメータのパラメータの現在の値は、ある期間、例えば10分間に測定された複数の値の平均値として決定され得る。
【0073】
ブレード22が清浄である場合、それらは全て等しく良好に動作するはずである。従って、単一のロータ構成に対して一組の基準値37を有することが十分であり得る。従って、いずれの清浄なブレードの基準ピッチ角251が大きいかは、これに関わらず、得られる基準値が同じであってもよいから問題はない。しかしながら、複数組の基準値37を決定すること、例えば、N組の基準値を決定すること、Nは風力タービン10のブレード22の数に等しいこと、は除外されず、実行可能である。これは、例えば、基準値を決定するために準清浄ブレードを使用する場合に実行することができる。
【0074】
いくつかの例では、風力タービン10の動作を調整することは、制御設定を変更すること、状態メッセージを出力すること、及び修正アクションを起動することのうちの1つ以上を含むことができる。いくつかの例では、メッセージは、特定のブレード、又は一般的にすべてのブレードが、以前と同じように清浄であるか、又はより粗いかを示すことができる。粗さのレベルが示されることがある。例えば、パラメータの対応する基準値に対するパラメータの現在の値の変動は、ある程度の粗さにリンクされ得る。絶対値(例えば、パラメータXが値Yに達した)又は相対値(例えば、パラメータXがY%を超えて変更された)のいずれかに関して、異なる閾値を作成することができる。現在の値が基準値とどの程度異なるかに応じて、異なるメッセージを構成したり、異なるアクションを実行したりできる。ブレードの粗さ、例えば、所定の閾値を超えるブレードの粗さが検出された場合には、是正措置がトリガー(起動)され得る。修正処置は、ブレードの粗さを減少させること、及び/又は粗さが出力を減少させた場合には風力タービンの出力を増加させることを目的とすることができる。是正処置は、1つ以上のブレードの修理、交換、クリーニング、除霜、ピッチング及びTSRの変更(repairing, replacing, cleaning, defrosting, pitching and varying a TSR)のうちの1つ以上を含むことができる。その他の是正措置が考えられる。状況メッセージは、特定の修正措置を推奨する場合もある。
【0075】
例において、制御設定は、風力タービンブレードの実際の状態を考慮して、風力タービンの運転を継続するように変更され得る。例えばPID設定、及び/又は発電機トルク制御及び/又は空力アクチュエータ(aerodynamic actuator)の設定は、ブレードの異なる表面粗さの検出後に変更することができる。
【0076】
いくつかの例では、この方法は、定期的な所定の間隔、例えば、毎日、1週間に1回又は1か月に1回で実施することができる。他の例では、この方法は、例えばオペレータによる手動指示又は要求の後に実行されてもよい。いくつかの例では、この方法は、特定の環境条件、例えば、雨、嵐又は雪の発生後にトリガされ得る。
【0077】
さらなる態様によれば、風力タービン10の制御装置36が設けられる。図3に関して説明したように、制御装置36は、通信モジュール43、プロセッサ40、及びメモリ41を含む。メモリ41は、プロセッサ40によって実行されると、プロセッサにここに開示された方法を実行させる命令を含む。このような制御装置36を備えた風力タービン10を設けることもできる。
【0078】
本開示のさらなる態様において、風力タービン10を制御するための方法200が提供される。この方法を図9のフローチャートに示す。方法100に関する態様及び説明は、組み合わせて方法200に適用することができ、逆もまた同様である。
【0079】
方法200は、ブロック210において、風力タービンが運転を開始する10前に、アイドル状態の風力タービンロータ18について、第1のブレード221が第1のピッチ角251の基準値に配置され、残りのブレード222,223が第2のピッチ角252の基準値に配置された状態で、1つ以上の風力タービンパラメータ35の1つ以上の基準値を決定するステップを含む。1つ以上の基準値を決定することは、いくつかの例において、風速の関数として風力タービンロータの速度の基準曲線を測定することを含むことができる。基準値の決定は、風力タービンの設置又は試運転中に、すべての風力タービンブレード22が風力タービン10に設置された後に行うことができる。いくつかの例では、第1のピッチ角251及び第2のピッチ角252の基準値は、それぞれ60°と80°との間、及び5°と20°との間であり得る。例えば、基準値は、第1のピッチ角251に対して約70°に設定され、第2のピッチ角に対して約10°に設定され得る。
【0080】
この方法は、ブロック220及び230において、風力タービン運転を開始するステップをさらに含む。そして、一定時間後に、風力タービンロータ18のアイドルを開始し、第1のブレード221を第1のピッチ角251の基準値に、残りのブレード222,223を第2のピッチ角252の基準値に位置決めする。
【0081】
本方法はさらに、ブロック240において、1つ以上の風力タービンパラメータの1つ以上の現在の値を決定し、それらの値を対応する基準値と比較するステップを含む。いくつかの例では、ロータ速度及び先端速度比の少なくとも1つについて、1つ以上の基準値及び1つ以上の現在の値が得られる。
【0082】
本方法はさらに、ブロック250において、比較に基づいて風力タービン運転に適応させるステップを含む。風力タービンの運転を適応させることは、1つ以上の状態メッセージを出力することと、ブレードの粗さが検出された場合に、前述したように修正措置又は動作変更をトリガーすることとを含むことができる。修正処置は、1つ以上のブレードの修理、交換、洗浄、除霜、ピッチング及び先端速度比の変更のうちの1つ以上を含むことができる。
【0083】
いくつかの例では、修正措置が実施された後、修正措置が成功したかどうかをチェックするためにステップ230及び240を再度実行することができる。例えば、1つ以上のブレード22上の氷の存在によるブレードの粗さが検出された場合、風力タービン10を停止させることができる。ブレードを除氷し、次いで、ロータ18をアイドリングし、ブレード22を適切なピッチ角までピッチ調整することができる(ステップ230)。パラメータの1つ以上の現在の値を決定し、対応する基準値と比較することができる(ステップ240)。これにより、除氷が成功したか否かを確認することができる。成功すれば、風力タービン10を再起動することができる。
【0084】
ここで記述された説明は、好ましい実施形態を含む教示を開示するために、また、任意の装置又はシステムを製造及び使用すること、及び任意の組み込まれた方法を実行することを含む教示を当業者が実施することを可能にするために、実施例を使用する。特許可能範囲は、特許請求の範囲によって定義され、当業者に生じる他の例を含むことができる。そのような他の例は、それらが特許請求の範囲の文字どおりの言語と異ならない構造要素を有する場合、又はそれらが特許請求の範囲の文字どおりの言語と実質的に異ならない同等の構造要素を含む場合、特許請求の範囲内にあることを意図している。記載された様々な実施形態からの局面、並びにそのような各局面に対する他の既知の等価物は、当業者の1人によって混合及び整合され、本出願の原理に従って追加の実施形態及び技術を構築することができる。図面に関連する参照符号が特許請求の範囲中に括弧書きされている場合は、それらは特許請求の範囲の理解度を増加させることのみを意図したものであり、特許請求の範囲を限定するものと解釈してはならない。
【符号の説明】
【0085】
10:風力タービン 12:地面 14:支持システム 15:タワー 16:ナセル 18:ロータ 20:ハブ 22:ロータブレード 24:ブレード根元部分 26:荷重伝達領域 25:ピッチ角 26:基準線 27:コード 28:風向 30:ロータ軸 32:ピッチシステム 34:ピッチ軸 36:風力タービン制御装置 37:基準値 38:ヨー軸 40:プロセッサ 41:メモリ 42:発電機 43:通信モジュール 44:メインシャフト 45:ロータ速度基準曲線 46:ギアボックス 48:高速シャフト 49:センサインターフェース 50:カップリング 51:軸センサ 52:メインフレーム 53:発電機センサ 54:デカップリング支持手段 56:ヨー駆動機構 58:気象測定システム 60:主前方支持ベアリング 62:後方支持ベアリング 64:駆動列 66:ピッチアセンブリ 68:ピッチ駆動システム 70:センサ 72:ピッチベアリング 74:ピッチ駆動モータ 76:ピッチ駆動ギアボックス 78:ピッチ駆動ピニオン 80:ピッチ制御システム 84:発電機 86:キャビティ 88:内面 90:変圧器 103:トルクアーム 221:第1のブレード 222:第2のブレード 223:第3のブレード 251:第1のピッチ角 252;第2のピッチ角
図1
図2
図3
図4
図5
図6
図7
図8
図9
【外国語明細書】