IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社シードの特許一覧

特開2023-79665コンタクトレンズ、およびコンタクトレンズの設計方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023079665
(43)【公開日】2023-06-08
(54)【発明の名称】コンタクトレンズ、およびコンタクトレンズの設計方法
(51)【国際特許分類】
   G02C 7/04 20060101AFI20230601BHJP
【FI】
G02C7/04
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2021193243
(22)【出願日】2021-11-29
【新規性喪失の例外の表示】特許法第30条第2項適用申請有り 令和3年8月中旬に第57回日本眼光学学会総会・抄録集第78頁に掲載 〔刊行物等〕 令和3年8月12日にウェブサイト(https://convention.jtbcom.co.jp/57jsoo/index.html)に掲載 〔刊行物等〕 令和3年9月5日に第57回日本眼光学学会の総会にて発表 〔刊行物等〕 令和3年5月24日に千葉大学の予備審査にて発表
(71)【出願人】
【識別番号】000131245
【氏名又は名称】株式会社シード
(74)【代理人】
【識別番号】110001357
【氏名又は名称】弁理士法人つばさ国際特許事務所
(72)【発明者】
【氏名】佐伯 謙太朗
(72)【発明者】
【氏名】大沼 一彦
【テーマコード(参考)】
2H006
【Fターム(参考)】
2H006BC00
(57)【要約】
【課題】装用者の角膜形状等に起因する収差の矯正を行うことを可能にする。
【解決手段】本発明のコンタクトレンズは、装用者の角膜後面から所望の距離にある光軸上の基準点から射出され、角膜を介して所望のレンズ領域内に入射した光線が光軸に対して平行に射出されることとなるような形状とされたレンズ前面、を備える。
【選択図】図12
【特許請求の範囲】
【請求項1】
装用者の角膜後面から所望の距離にある光軸上の基準点から仮想的に射出され、角膜を介して所望のレンズ領域内に入射した仮想的な光線が前記光軸に対して平行に射出されることとなるような形状とされたレンズ前面、を備える
コンタクトレンズ。
【請求項2】
前記装用者の角膜前面形状と同一形状または近似された形状とされたレンズ後面、をさらに備える
請求項1に記載のコンタクトレンズ。
【請求項3】
前記レンズ前面の形状は、スネルの法則による光線追跡によって、前記基準点から射出された仮想的な光線が角膜後面、角膜前面、涙液層、および、レンズ後面を通過する際のそれぞれの座標位置および角度の情報に基づいて算出されたものである
請求項1または2に記載のコンタクトレンズ。
【請求項4】
前記装用者の眼球に装着された状態において、前記基準点から仮想的に射出され前記所望のレンズ領域内に入射した仮想的な全ての光線について、前記基準点から前記レンズ前面の頂点に直交する面までの光路長が、前記光軸上における前記基準点から前記レンズ前面の頂点までの光路長と同一となるように構成されている
請求項1ないし3のいずれか1項に記載のコンタクトレンズ。
【請求項5】
前記所望のレンズ領域として、少なくとも第1のレンズ領域と第2のレンズ領域とを含み、
前記基準点として、少なくとも、前記第1のレンズ領域に対応する光軸上の第1の基準点と前記第2のレンズ領域に対応する光軸上の第2の基準点とを含み、
前記第1のレンズ領域に対応する前記レンズ前面の形状が、前記第1の基準点から仮想的に射出され、角膜を介して前記第1のレンズ領域内に入射した仮想的な光線が前記光軸に対して平行に射出されることとなるような形状とされ、
前記第2のレンズ領域に対応する前記レンズ前面の形状が、前記第2の基準点から仮想的に射出され、角膜を介して前記第2のレンズ領域内に入射した仮想的な光線が前記光軸に対して平行に射出されることとなるような形状とされている
請求項1ないし4のいずれか1項に記載のコンタクトレンズ。
【請求項6】
レンズ前面を、装用者の角膜後面から所望の距離にある光軸上の基準点から仮想的に射出され、角膜を介して所望のレンズ領域内に入射した仮想的な光線が前記光軸に対して平行に射出されることとなるような形状にすることを含む
コンタクトレンズの設計方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンタクトレンズ、およびコンタクトレンズの設計方法に関する。
【背景技術】
【0002】
角膜形状の異常に起因する収差を矯正するためのコンタクトレンズの設計手法が種々、開発されている(例えば特許文献1,2参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特表2008-542831号公報
【特許文献2】特表2003-506175号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1,2に記載の設計手法では、収差の矯正が十分ではない。
【0005】
装用者ごとの角膜形状等に起因する収差の矯正を行うことを可能にするコンタクトレンズ、およびコンタクトレンズの設計方法を提供することが望ましい。
【課題を解決するための手段】
【0006】
本発明の一実施の形態に係るコンタクトレンズは、装用者の角膜後面から所望の距離にある光軸上の基準点から仮想的に射出され、角膜を介して所望のレンズ領域内に入射した仮想的な光線が光軸に対して平行に射出されることとなるような形状とされたレンズ前面、を備える。
【0007】
本発明の一実施の形態に係るコンタクトレンズの設計方法は、レンズ前面を、装用者の角膜後面から所望の距離にある光軸上の基準点から仮想的に射出され、角膜を介して所望のレンズ領域内に入射した仮想的な光線が光軸に対して平行に射出されることとなるような形状にすることを含む。
【0008】
本発明の一実施の形態に係るコンタクトレンズ、およびコンタクトレンズの設計方法では、装用者の角膜後面から所望の距離にある光軸上の基準点から仮想的に射出され、角膜を介して所望のレンズ領域内に入射した仮想的な光線が、レンズ前面から、光軸に対して平行に射出される。
【発明の効果】
【0009】
本発明の一実施の形態に係るコンタクトレンズ、またはコンタクトレンズの設計方法によれば、装用者の角膜後面から所望の距離にある光軸上の基準点から仮想的に射出され、角膜を介して所望のレンズ領域内に入射した仮想的な光線が、レンズ前面から、光軸に対して平行に射出される。これにより、装用者の角膜形状等に起因する収差の矯正を行うことが可能となる。
【図面の簡単な説明】
【0010】
図1】眼の見え方の矯正の概要を示す説明図である。
図2】正乱視における光線の結像状態を模式的に示す説明図である。
図3】不正乱視における光線の結像状態を模式的に示す説明図である。
図4】正常な角膜と円錐角膜の概要を示す説明図である。
図5】不正乱視の矯正手法の概要を示す説明図である。
図6】不正乱視の矯正手法の概要を示す説明図である。
図7】Stage1の円錐角膜の初期段階がみられる乱視眼(左眼)の角膜前面(左図)および角膜後面(右図)の屈折力分布の一例を示す図である。
図8】Stage1の円錐角膜眼(右眼)の角膜前面(左図)および角膜後面(右図)の屈折力分布の一例を示す図である。
図9】Stage4の円錐角膜眼(左眼)の角膜前面(左図)および角膜後面(右図)の屈折力分布の一例を示す図である。
図10】Stage4の円錐角膜眼の断面の一例を示す角膜断面図である。
図11】スネルの法則の概要を示す説明図である。
図12】光路長の概要を示す説明図である。
図13】一実施の形態に係るコンタクトレンズの設計方法による2次元光線追跡の概要を示す説明図である。
図14】一実施の形態に係るコンタクトレンズの設計方法による2次元光線追跡の概要を示す説明図である。
図15】一実施の形態に係るコンタクトレンズの設計方法による2次元光線追跡に用いたパラメータの一例を示す説明図である。
図16】Stage4の円錐角膜眼の突出部の断面形状の解析結果および解析結果に基づいて設計したレンズ形状(上段)と、その曲面近似のイメージ(下段)を示す説明図である。
図17】Stage1の円錐角膜の初期段階がみられる乱視眼(図7)のレンズ装用前後の収差量を示す図である。
図18】Stage1の円錐角膜眼(図8)のレンズ装用前後の収差量を示す図である。
図19】Stage4の円錐角膜眼(図9)のレンズ装用前後の収差量を示す図である。
図20】Stage1の円錐角膜の初期段階がみられる乱視眼(図7)のレンズ装用前後のMTFを示す図である。
図21】Stage1の円錐角膜眼(図8)のレンズ装用前後のMTFを示す図である。
図22】Stage4の円錐角膜眼(図9)のレンズ装用前後のMTFを示す図である。
図23】角膜モデルレンズ単体での屈折力分布の測定結果の一例を示す図である。
図24】補正用レンズ単体での屈折力分布の測定結果の一例を示す図である。
図25】角膜モデルレンズと補正用レンズとを2枚重ねた場合の屈折力分布の測定結果の一例を示す図である。
図26】2重焦点のコンタクトレンズの設計方法の一例を概略的に示す断面図である。
図27】一実施の形態に係るコンタクトレンズの設計方法の応用例を示す説明図である。
図28】一実施の形態に係るコンタクトレンズの設計方法の応用例を示す説明図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
0.比較例および背景技術(図1図6
1.一実施の形態
1.1 コンタクトレンズの設計方法(図7図25
1.2 変形例・応用例(図26図28
1.3 効果
【0012】
<0.比較例および背景技術>
眼の屈折異常に対しては、使用者の眼の光学特性に応じて処方される、眼鏡レンズやコンタクトレンズなどの眼用レンズを用いて、眼球光学特性である収差を矯正することにより、良好な見え方が提供されている。
【0013】
ところが、一般的に用いられる眼鏡レンズやコンタクトレンズは、近視、遠視、老視、および、乱視の原因となる収差の矯正に対しては適するものの、角膜前面形状、あるいは、角膜後面形状の異常による不規則な屈折面に起因する収差を矯正するためには不十分であった。
【0014】
さらに、角膜前面形状および角膜後面形状は収差の矯正を必要とする被験者固有のものであることから、より高度なQOV(Quolity of View:見え方の質)を提供するためには、被験者の一人ひとりに対して、角膜形状に合わせた矯正効果を有する眼用レンズを提供することが求められている。
【0015】
そこで、角膜形状の異常に起因する収差を矯正するための眼用レンズの提供について、種々の研究が行われており、例えば、角膜トポグラフィーを用いて測定された角膜前面形状から角膜後面形状を推定することにより角膜全体の収差を補正する方法が提案されている(特許文献1参照)。また、波面センサと角膜トポグラフィーを用いることで測定された眼球光学系全体の収差と角膜前面の収差とから、眼球光学系全体の収差を補正することにより、収差を矯正するコンタクトレンズの設計方法が提案されている(特許文献2参照)。
【0016】
ところが、特許文献1で提案されている方法は、角膜前面形状と角膜後面形状との相関性は限られた場合にのみ適応できるものであって、全ての場合に適応できるものでないことから、汎用性に対して課題を有する。また、特許文献2で提案されている方法において、波面センサにより測定できる収差は光軸上の収差のみであることから、提案されている方法に基づきコンタクトレンズを形成した場合であっても、当該コンタクトレンズにより補正ができるのは光軸上の収差のみである。このため、光軸以外の角度からの光線に基づく収差に対する補正効果が十分ではないため、良好な像を得ることが難しいばかりか、当該コンタクトレンズの装用時における回転運動や並進運動に対する、位置安定性の考慮も求められる。
【0017】
図1に、眼の見え方の矯正の概要を示す。図2に、正乱視において眼球10に入射する光線の結像状態を模式的に示す。図3には、不正乱視において眼球10に入射する光線の結像状態を模式的に示す。
【0018】
図1に示したように、近視、遠視等は既存の一般的な眼用レンズで矯正可能である。正乱視は、既存の一般的な乱視用レンズで矯正可能である。不正乱視は、不正乱視用レンズで矯正することが求められる。
【0019】
図4に、正常な角膜(A)と円錐角膜(B)の概要を示す。図5に、不正乱視の矯正手法の概要を示す。
不正乱視は、例えば円錐角膜眼のような眼疾患や眼損傷により発生する。円錐角膜眼は、角膜11の中心付近の厚みが薄くなり、円錐状に前方に突出する眼疾患である。不正乱視用レンズとしては、球面ハードコンタクトレンズ、波面収差を利用したコンタクトレンズ、およびスクレラルレンズなどがある。球面ハードコンタクトレンズは、角膜前面に対してレンズ後面が2点接触や3点接触となり、装用感が悪い。波面収差を利用したコンタクトレンズは、測定された波面収差に対して、収差を打ち消すように設計される。スクレラルレンズは、レンズ後面と角膜前面との間を人工涙液で満たすことで涙液レンズと同様の効果が得られる。しかしながら、これまでに開発されている波面収差を利用したコンタクトレンズ、およびスクレラルレンズでは、視力の矯正の点で不十分である。波面収差を利用したコンタクトレンズは、波面収差として使用する項の選択が曖昧であることや測定環境にとても敏感であり、特に角膜形状の変化が大きい眼に対しては適用が困難である。また、スクレラルレンズに関しては、素材によっては角膜が極度の低酸素状態にさらされることや人工涙液の交換を装用中に複数回行う必要がある。波面収差を利用したコンタクトレンズ、およびスクレラルレンズは、高次収差は効果的に補正されるものの、良好な視力が得られないという報告もある。
【0020】
そこで、角膜前面形状あるいは角膜後面形状の異常に起因する収差の矯正をも可能にすると共に、被験者一人ひとりの角膜形状に適した収差の矯正を、より簡便に行うことができるコンタクトレンズの開発が望まれる。また、そのようなコンタクトレンズを設計する方法の開発が望まれる。
【0021】
<1.一実施の形態>
[1.1 コンタクトレンズの設計方法]
本発明の一実施の形態は、コンタクトレンズ、および、当該コンタクトレンズの設計方法に関する。詳しくは、角膜収差を軽減することで見え方の質(QOV)が改善されたコンタクトレンズ、および、当該コンタクトレンズを設計する方法に関する。
【0022】
図6に、不正乱視の矯正手法の概要を示す。
本願発明者は、上記したような課題を解決するために、不正乱視による収差をゼロにする方法について検討を行う中で、レンズ前面およびレンズ後面を各々個別に設計し形成したコンタクトレンズ1が、角膜形状の異常に起因する収差を、被験者一人ひとりの角膜形状に適する形で簡便に補正することができることを確認した。
【0023】
(設計方法の概要)
レンズ設計の手法として、光路長を一定にし、3次元光線追跡により球面収差と非点収差を失くす数学モデルが報告されている(Rafael G. Gonzalez-Acuna, Hector A. Chaparro-Romo et al: General formula to design a freeform singlet free of spherical aberration and astigmatism. Applied Optics 58(4): 1010-1015, 2019)。報告では、光線追跡をする際に全ての光線の光路長を同一にする条件を用いて、様々な自由曲面形状に対して3次元光線追跡を行ったシミュレーション結果が記載されている。光路長を一定にすることで、各光線の焦点を結ぶ位置を理論的に一点にすることができる。つまり、収差のないレンズ設計が可能である。しかしながら、報告では球面収差および非点収差のみに注目しており、コンタクトレンズ設計の観点からは一般的に球面収差はコーニック定数により非球面性を持たせること、非点収差は乱視用レンズで矯正することが可能であるが、球面収差および非点収差以外の収差の矯正に関しては不十分である。
【0024】
そこで、本実施の形態では、角膜形状解析装置であるOCT(Optical Coherence Tomography)による角膜前後面形状データを用いた角膜収差を軽減する新しいコンタクトレンズ設計手法の提案を行う。コンタクトレンズ設計に際して、前眼部OCTのCASIA(登録商標)による角膜前後面形状データを用いた。また、光線追跡に関しては、OCTが断層測定であることを考慮し、2次元光線追跡による手法を考案した。
【0025】
図7図10にOCTによる解析対象の角膜11の例を示す。解析対象としたのは、Stage1の円錐角膜の初期段階がみられる乱視眼(左眼)、Stage1の円錐角膜眼(右眼)、およびStage4の円錐角膜眼(左眼)である。後述するように、解析した角膜11およびコンタクトレンズ1の前後面形状の結果は、光学シミュレーションソフトであるOpticStudio Zemax(登録商標)にグリッドデータとして入力し、本実施の形態に係るコンタクトレンズ1の設計方法の有効性を評価した。
【0026】
図7に、Stage1の円錐角膜の初期段階がみられる乱視眼(左眼)の角膜前面(左図)および角膜後面(右図)の屈折力分布の一例を示す。図8に、Stage1の円錐角膜眼(右眼)の角膜前面(左図)および角膜後面(右図)の屈折力分布の一例を示す。図9に、Stage4の円錐角膜眼(左眼)の角膜前面(左図)および角膜後面(右図)の屈折力分布の一例を示す。図10は、Stage4の円錐角膜眼の断面の一例を示す角膜断面図である。
【0027】
本実施の形態では、レンズ設計に際し、波面センサでは収差測定ができない場合でも角膜形状測定が可能であるOCTによる出力データの角膜前後面のHeight dataを使用した。前眼部OCTを選択した理由として、角膜前面形状のみならず角膜後面形状が測定可能であるため、より実用的なレンズ設計が可能であると判断したからである。
【0028】
測定データは、角度が11.25°ごとの32方向(16スライス分の角膜断面情報)、半径が5.1mmの形式である。図7図9には、直径10mmのデータを示す。図7図9における数値の単位は、Diopter(以下D)である。乱視眼における角膜前面の最大屈折力が44.9Dに対して、Stage1およびStage4の円錐角膜眼の最大屈折力はそれぞれ49.4D、71.7Dであった。また、角膜後面の最大屈折力は、乱視眼で-6.4Dに対して、Stage1およびStage4の円錐角膜眼の最大屈折力はそれぞれ-8.2D、-13.3Dであった。図10には、Stage4の円錐突出を認めた方向の角膜断面図を示す。図10から、特に角膜後面の左右の曲率が違うこと、中心付近の角膜厚が菲薄化していることが読み取れ、同時に角膜後面形状を考慮した設計が必要であることが分かる。
【0029】
(設計方法の詳細)
次に、図11ないし図15を参照して、本実施の形態に係るコンタクトレンズ1の設計方法の具体例を説明する。図11には、スネルの法則の概要を示す。図12には、光路長の概要を示す。図13および図14には、本設計方法による2次元光線追跡の概要を示す。図15には、本設計方法による2次元光線追跡に用いたパラメータの一例を示す。
【0030】
本実施の形態に係るコンタクトレンズ1の設計方法は、以下の特徴を有する。
(1)レンズ前面CLfは、装用者の角膜後面Crから所望の距離にある光軸Za上の基準点ZCから仮想的に射出され、角膜11を介して所望のレンズ領域内に入射した仮想的な光線が光軸Zaに対して平行に射出されることとなるような形状とする(図13および図14参照)。ここで、基準点ZCは例えば、網膜上の点であってもよい。なお、所望のレンズ領域とは、例えばレンズの有効径(直径)内の領域である。
(2)レンズ後面CLrは、装用者の角膜前面Cfの形状と同一形状とする。なお、レンズ後面CLrは、完全に同一形状にせず、装用者の角膜前面Cfの形状に近似された形状にしてもよい。
(3)レンズ前面CLfの形状は、スネルの法則(図11参照)による光線追跡によって、基準点ZCから射出された仮想的な光線が角膜後面Cr、角膜前面Cf、涙液層12、および、レンズ後面CLrを通過する際のそれぞれの座標位置および角度の情報に基づいて算出する(図13および図14参照)。
(4)装用者の眼球10に装着された状態において、基準点ZCから仮想的に射出され所望のレンズ領域内に入射した仮想的な全ての光線について、基準点ZCからレンズ前面CLfの頂点P1に直交する面までの光路長(図13におけるOP1~OP5)が、光軸Za上における基準点ZCからレンズ前面CLfの頂点P1までの光路長LC図14参照)と同一となるようにする。なお、光路長は、光がある媒質中を進むときと同時間内に真空中を進む距離であり、媒質の屈折率をn、距離(経路)をdとすると、それらの積ndで表される(図12参照)。
【0031】
本設計方法では、より実用的なレンズ形状の算出を行うために、光線の光路長を同一にするだけではなく、従来考慮していない角膜後面Crおよび涙液層12を解析に使用し、かつ従来の球面ハードコンタクトレンズのような点接触ではなく、面接触になるようにレンズ後面CLrの形状を角膜前面Cfの形状と同様の形状で設計することで装用感に対しても配慮した。さらに、レンズ後面CLrの形状と角膜前面Cfの形状とを同一形状にすることで、瞬目等でレンズが動いても元の位置に戻ることが報告されているため、軸安定性の設計工夫とし、最適な位置におけるレンズ前面CLfの形状を算出した。
【0032】
図13に示した2次元光線追跡手法の模式図において、n1は房水屈折率(例えば1.336)、n2は角膜屈折率(例えば1.376)、n3は涙液屈折率(例えば1.336)、n4はレンズ屈折率(例えば1.455)である(図15参照)。涙液層12の厚みに関しては症例によりレンズ下での厚みは変わるが、本実施の形態では光学面のみ形状算出を行っている点や角膜前面Cfとレンズ後面CLrとを同一形状にしていることから厚み変化は少ないものとみなし、涙液層12の厚みを0.01mmと一定にした(図15参照)。また、レンズの種類としてハードコンタクトレンズを想定し、レンズ中心厚み0.2mmを使用した(図15参照)。光線追跡に関しては、網膜位置を基準点ZCとしてスタートし、レンズ前面CLfから平行光が出射するよう計算した。ただし、本設計方法は、平行光として出射させる場合に限らず、ある位置に焦点を持つように光線を出射させる設計にすることも可能である。
【0033】
図13において、初めに光線は、光軸Za上の基準点ZCから発散光として出射し、OCTによって測定された各角膜後面座標へと入射する。光線が角膜後面Crに到達後、その入射位置での法線ベクトルを算出するために、3次曲線による近似を行う。この近似曲線を微分することで法線ベクトルを算出し、入射光の単位ベクトルとの内積計算をすることで、入射角θを決定した。それからスネルの法則に従い、屈折角θ’を算出する。同様の方法を用いて角膜後面Cr~角膜前面Cf、角膜前面Cf~レンズ後面CLr(涙液層12)の光線追跡を行った。
【0034】
ここで、レンズ前面CLfの形状座標の計算方法を示す。本設計方法では、前述した通り光軸Za上の光路長の総和(基準点ZCからレンズ前面CLfの頂点P1までの光路長)を算出し、他の光線の光路長も同様とした。光軸Za上の光路長の総和は、基準点ZC(網膜位置)~角膜後面Cr(OP1)、角膜後面Cr~角膜前面Cf(角膜厚み)(OP2)、角膜前面Cf~レンズ後面CLr(涙液層12)(OP3)、レンズ後面CLr~レンズ前面CLf(レンズ中心厚み)(OP4)にそれぞれの屈折率を掛け合わし、足し合わせることで算出した。光線追跡により、基準点ZC(網膜位置)~レンズ後面CLrまでの光路長(OP1~OP3)が算出可能であるため、光路長の総和からの差分計算をすることで、OP4およびOP5の光路長が算出できる。この光路長とスネルの法則によって算出したレンズ後面CLrの屈折光線の傾きmhおよびレンズ後面CLrの座標(x1,z1)からレンズ前面CLfの座標(x2,z2)が算出できる(図14参照)。
【0035】
レンズ前面CLfの座標(x2,z2)は、以下のように算出できる。
C=L1+d14+d2
C=L1+d14+(L2-d1cosθa
1=(LC-L1-L2)/(n4-cosθa
2=x1+d1/(1+mh 21/2
2=mh(x2-x1)+z1
ここで、
C:網膜位置からレンズ頂点P1までの光路長
1:網膜位置からレンズ後面CLrまでの光路長
2:レンズ後面CLrからレンズ頂点P1までの光路長
h:レンズ後面CLrからの屈折光線の傾き
4:レンズの屈折率
とする。
【0036】
(レンズ性能評価)
図16に、Stage4の円錐角膜眼の突出部の断面形状(68°、-248°方向の断面形状)の解析結果および解析結果に基づいて設計したレンズ形状(上段)と、その曲面近似のイメージ(下段)を示す。
【0037】
図16の上段に示した断面方向におけるレンズ形状をみると、Stage4の円錐突出を認めた位置においても波状のような自由曲面形状でないことが分かる。これは、たとえ角膜後面Crの突出部の急峻な位置であっても、角膜11と房水の屈折率差がほとんどないために光路長に差がなく単純なカーブで形成されたことによる。
【0038】
角膜前後面の座標およびレンズ前後面の座標は、光学シミュレーションソフトであるOpticStudio Zemaxに入力できる形式にするために、図16の下段に示したように、32方向のデータを用いて3次元曲面近似を行い、グリッドデータ化した。OCTの測定データは半径5.1mmであるが、周辺部はノイズを多く含み、また本実施の形態では近似曲線および近似曲面を使用することを考慮すると、周辺部の精度が悪くなることが予想される。そのため、グリッドデータは一辺4mmに制限し、グリッドステップを0.01mmとした。本実施の形態では、レンズ中心と角膜中心とが一致する最適な位置関係でのレンズ装用前後での収差量、およびModulation Transfer Function(MTF)を用いてレンズの性能評価をした。
【0039】
図17に、Stage1の円錐角膜の初期段階がみられる乱視眼(図7)のレンズ装用前後の収差量を示す。図18に、Stage1の円錐角膜眼(図8)のレンズ装用前後の収差量を示す。図19に、Stage4の円錐角膜眼(図9)のレンズ装用前後の収差量を示す。図20に、Stage1の円錐角膜の初期段階がみられる乱視眼(図7)のレンズ装用前後のMTFを示す。図21に、Stage1の円錐角膜眼(図8)のレンズ装用前後のMTFを示す。図22に、Stage4の円錐角膜眼(図9)のレンズ装用前後のMTFを示す。
【0040】
図17図19、および図20図22には、波長0.546μm、瞳孔径4mmで算出した各眼のレンズ装用前後の収差量およびMTFを示す。図17図19において、ゼルニケ係数は、Zernike Standard Polynomialにより算出し、Optical Society of America(OSA)のスケールに準拠し、Z3~Z14までを示す。図17図19、および図20図22の結果は、レンズ中心と角膜中心とが一致する最適な位置関係でのレンズ結像位置における収差量およびMTFである。
【0041】
(収差量)
図17に示す乱視眼の収差量は、レンズ装用前は乱視成分を示すZ3が最大で-0.644μmであったが、レンズ装用後は0.001μmと大きく改善した。他の項に関しても、Z4~Z7において約±0.1μm程度の収差を持っていたが、レンズ装用後にはそれぞれ改善を示した。ここで、3次から5次までの収差量をまとめてRMS値(RMS=√(Z12+・・・+Zn2))で示すと、レンズ装用前が0.689μmに対して、レンズ装用後は0.025μmとなった。
【0042】
図18に示すStage1の円錐角膜眼の収差量は、レンズ装用前はZ5が最大で-0.928μmであったが、レンズ装用後は-0.057μmと改善した。他の項は、乱視眼と比較すると大きく、Z3が-0.541μm、Z4が0.458μm、Z6が-0.332μmであったが、いずれもZ3が-0.010μm、Z4が-0.062μm、Z6が-0.037μmと改善した。3次から5次までの収差量のRMS値は、レンズ装用前が1.229μmに対して、レンズ装用後は0.102μmとなった。
【0043】
図19に示すStage4の円錐角膜眼の収差量に関しては、乱視眼およびStage1の円錐角膜眼に比べて角膜形状変化が大きいため、全体的な収差量のスケールが大きい。レンズ装用前は、Z4が最大であり4.299μm、Z3が-2.992μm、Z5が1.151μmでありデフォーカス成分および乱視成分が大きかった。また、円錐角膜眼において特徴的な収差であるコマ収差成分のZ7、Z8はそれぞれ-1.059μm、0.269μmであった。レンズ装用後は、Z4が0.195μm、Z3が-1.068μm、Z5が-0.208μmとなり改善した。また、Z6およびZ10において収差量が増えたが、円錐角膜眼において特徴的に発生するコマ収差に関しては、Z7が-0.381μm、Z8が-0.046μmと改善した。RMS値に関しては、レンズ装用前は5.483μmであったが、レンズ装用後は1.273μmとなった。
【0044】
(MTF)
図20図22において、破線はレンズ装用なし、実線は本設計方法によるレンズ装用時のMTFの結果を示す。また、図22には、さらに一点鎖線で、球面のハードコンタクトレンズ(HCL)を装用した場合のMTFの結果を示す。*はタンジェンシャル方向、+はサジタル方向のMTFを示す。
【0045】
本実施の形態では水晶体を考慮していないが、無収差の理想レンズとして仮定すると、一般に、空間周波数が100cycles/mmのときにMTFが0.1であれば、視力が1.0であると推定されている。ここでは、その指標を評価に使用する。
【0046】
図20に示す乱視眼では、レンズ装用前は、空間周波数が100cycles/mmのときにタンジェンシャル方向のMTFが0.009、サジタル方向が0.016であるのに対して、レンズ装用をすることで、タンジェンシャル方向のMTFが0.304、サジタル方向が0.280と改善した。これより、水晶体に収差がないと仮定すると、視力が1.0以上であることが予想される。また、両方向のMTFが同じ傾向を持つため、同じコントラストおよび視力が得られると考えられる。
【0047】
図21に示すStage1の円錐角膜眼では、レンズ装用前は、空間周波数が100cycles/mmのときにタンジェンシャル方向のMTFが0.037、サジタル方向が0.001であるのに対して、レンズ装用をすることで、タンジェンシャル方向のMTFが0.117、サジタル方向が0.212と改善した。両方向で差があるものの、水晶体に収差がないと仮定すると、視力は1.0以上であることが予想される。
【0048】
図22に示すStage4の円錐角膜眼では、レンズ装用前は空間周波数が100cycles/mmのときにタンジェンシャル方向のMTFが0.001、サジタル方向が0.003であり、両方向のMTFが0.01以下と小さく、コントラストおよび視力が出ないことが明白である。それに対して、レンズ装用することで、タンジェンシャル方向のMTFが0.075、サジタル方向が0.038と改善した。レンズ装用時では、空間周波数が50cycles/mmのMTFの値から、視力換算すると0.4~0.5程度であると予想される。さらに、球面のハードコンタクトレンズの場合と比較すると、低周波域は球面のハードコンタクトレンズの方がやや優位であるが、高周波域は本設計方法によるレンズ装用をした場合が優位であった。
【0049】
以上のように、本実施の形態に係るコンタクトレンズ1の設計方法は、収差の補正に対して有効性を示した。またMTFに関してもレンズ装用前後で改善を示し、たとえ角膜形状変化が大きい眼に対しても視力の改善が示唆された。
【0050】
(実施例)
角膜形状測定装置で測定し、その実測値から作製したレンズ(角膜モデルレンズ)および本設計方法で解析した座標データから作製したコンタクトレンズ1(補正用レンズ)をパワーマッピング装置で測定した。
【0051】
図23に、角膜モデルレンズ単体での屈折力分布の測定結果の一例を示す。図24に、補正用レンズ単体での屈折力分布の測定結果の一例を示す。図25に、角膜モデルレンズと補正用レンズとを2枚重ねた場合の屈折力分布の測定結果の一例を示す。図25から分かるように、角膜モデルレンズ単体での屈折力分布が本設計方法に基づいて作製した補正用レンズによって矯正されることが確認できた。
【0052】
(まとめ)
以上のように、本実施の形態に係るコンタクトレンズ1の設計方法では、たとえ複雑な角膜形状であっても収差の補正がなされ、MTFからもその有効性が認められた。従来の不正乱視を補正する手法として、波面収差を用いたコンタクトレンズ設計がある。波面収差は、使用する項の選択が曖昧であることや測定環境にとても敏感であり、シャック・ハルトマンの原理を用いて波面収差を測定する波面センサは、Stage4の円錐角膜眼のような角膜形状変化が大きい眼に対しては適用が困難である。これは、眼損傷のある角膜11に対しても同様である。本設計方法では、そのような眼に対しても有効なOCTを用いて角膜前後面形状を取得しているため、形状を選ばずに適用できる点が利点である。また不正乱視矯正としては、ハードコンタクトレンズあるいはカスタムメイドタイプが望ましい。ハードコンタクトレンズの場合は、涙液レンズの効果を利用し矯正されるが、カスタムメイドタイプの場合は個人の角膜形状が異なるため、角膜前後面形状や眼軸長を正確に測定することが望ましい。本設計方法は、角膜前面Cfのみならず角膜後面Crや涙液層12を考慮したコンタクトレンズ設計であり、収差量やMTFの結果から有効である。また円錐角膜眼のような眼疾患で発生する角膜突出部とレンズとの点接触による従来の課題である装用時の不快感を解消するよう、本設計方法ではレンズ後面CLrの形状を角膜前面Cfの形状と同様の形状として設計している。これにより、点接触から面接触となり、装用感の向上が見込まれる。
【0053】
本設計方法では、光路長を一定という条件を設定しコンタクトレンズ1の形状を算出することで理論的に焦点が一点に集まり収差がゼロになるはずであるが、特に角膜形状変化の大きい対象において収差が一部残っている。これは、前眼部OCT CASIAで測定していない部分は曲面近似を行い算出しているため、角膜形状変化の大きい対象において、補完位置が急峻な曲面になり結果に影響を及ぼした可能性がある。本設計方法では、2つのStageの円錐角膜眼を例にしたが、角膜突出の具合が大きくなるにつれて角膜11の円周方向にあたる回転方向の形状変化が大きくなる。OCTの断層測定に対応して2次元光線追跡での解析を行ったが、光学シミュレーションソフトに入力する際に、32方向の断層データから3次元曲面近似を行い、グリッドデータを作成した。使用したデータが11.25°ごとであるため、グリッドデータを作成時に3次元曲面近似式により測定していない位置はデータ補完をしている。円錐角膜眼のように回転方向の角膜形状変化が大きい眼に対しては、補完位置が急峻な曲面となり、そのことが結果に影響を及ぼしたと考えられる。特に、波面形状および収差量よりStage4の円錐角膜眼に対しては、デフォーカス成分は改善したが、トレフォイル成分においては一部収差量が大きくなっている。そのため、眼疾患のような形状変化が大きい眼に適用する際には、最適な補完方法の検討およびOCT測定での回転角度を小さくすることが望ましい。また、本設計方法ではOCTの3次元形状データに対して、断層ごとの2次元光線追跡を行ったが3次元光線追跡での解析も行うことが望ましい。
【0054】
[1.2 変形例・応用例]
以上で説明した設計方法では、コンタクトレンズ1の有効径(所望のレンズ領域)に対して焦点位置(基準点ZC)を1つとしたが、有効径に対して2以上の焦点を持つような多重焦点レンズの設計も可能である。この場合、光線追跡の開始位置となる基準点ZCを複数設定することで実現できる。
【0055】
図26に、多重焦点レンズの設計方法の一例として、2重焦点のコンタクトレンズ1Aの設計方法の一例を概略的に示す。なお、所望のレンズ領域として、3つ以上のレンズ領域を含み、基準点として、3つ以上のレンズ領域のそれぞれに対応する3つ以上の基準点を含む設定にすることで、3以上の焦点を持つような多重焦点レンズの設計も可能である。
【0056】
2重焦点のコンタクトレンズ1Aは、所望のレンズ領域として、例えば有効径内において、第1のレンズ領域101と第2のレンズ領域102とを含む。この設計方法では、基準点ZCとして、第1のレンズ領域101に対応する光軸Za上の第1の基準点ZC1と第2のレンズ領域102に対応する光軸Za上の第2の基準点ZC2とを設定する。
【0057】
各領域内のレンズ設計方法は、上述のレンズ設計方法と同様である。第1のレンズ領域101に対応するレンズ前面CLfの形状は、第1の基準点ZC1から射出され、角膜11を介して第1のレンズ領域101内に入射した光線(第1の光線領域111の光線)が光軸Zaに対して平行に射出されることとなるような形状とする。第2のレンズ領域に対応するレンズ前面CLfの形状は、第2の基準点ZC2から射出され、角膜11を介して第2のレンズ領域内に入射した光線(第2の光線領域112の光線)が光軸Zaに対して平行に射出されることとなるような形状とする。レンズ後面CLrは、第1のレンズ領域101および第2のレンズ領域102の双方において。装用者の角膜前面Cfの形状と同一形状とする。
【0058】
図27および図28に、本実施の形態に係るコンタクトレンズ1の設計方法の応用例を示す。
【0059】
本実施の形態に係るコンタクトレンズ1の設計方法によれば、図27に示したように、装用者ごとの実際の角膜形状データ20、涙液層データ21、およびその他データ22を設計に反映することで、各個人の眼の収差および視力の矯正力を持つ、各個人にカスタマイズされたコンタクトレンズ1を作製することが可能である。
【0060】
さらに、このように各個人にカスタマイズされたコンタクトレンズ1の設計データ20を、図28に示したように、データベース31に蓄積することで、疾患別または重症度別による特徴や傾向の究明が可能となる。カスタムメイドタイプのレンズに関しては、設計されたレンズ形状をデータベース化することで設計側からも眼疾患別や重症度別の傾向の究明が行え、新しいレンズ設計の思想に繋がると考えられる。本設計方法は、主要な角膜疾患として、例えば、水疱性角膜症、角膜ヘルペス、角膜潰瘍後、Stevens-Johnson症候群、角膜移植後、外傷後角膜瘢痕、角膜ジストロフィ、円錐角膜、角膜フリクテン等の光学解析にも適用可能性がある。本設計方法を各個人のコンタクトレンズ作製に適応する場合は、中心部の平均角膜度数を求め、その度数になるよう光線追跡の開始位置を定めることが望ましい。本設計方法では水晶体の収差のことは考慮していないが、もし水晶体に乱視がある場合にはその乱視補正も設計の中に取り入れることが可能である。その場合は、光線追跡の開始位置を水晶体のパワー分布を考慮して、角度ごとに異なる位置にすればよい。さらに、本設計方法では、上述したように、多重重焦点のコンタクトレンズ1Aを作成することも可能である。本設計方法は、設計に自由度がある点が基礎研究をする上では利点になり得る。
【0061】
[1.3 効果]
以上説明したように、本実施の形態に係るコンタクトレンズ1、およびコンタクトレンズ1の設計方法によれば、装用者の角膜後面Crから所望の距離にある光軸上の基準点ZCから射出され、角膜11を介して所望のレンズ領域内に入射した光線が、レンズ前面から、光軸に対して平行に射出される。これにより、装用者の角膜形状等に起因する収差の矯正を行うことが可能となる。
【符号の説明】
【0062】
1,1A…コンタクトレンズ、10…眼球、11…角膜、12…涙液層、20…角膜形状データ、21…涙液層データ、22…その他データ、30…設計データ、31…データベース、101…第1のレンズ領域、102…第2のレンズ領域、111…第1の光線領域、112…第2の光線領域、CLf…レンズ前面、CLr…レンズ後面、Cr…角膜後面、Cf…角膜前面、LC…基準点ZCからレンズ前面CLfの頂点P1までの光路長、P1…レンズ前面CLfの頂点P1(レンズ頂点)、ZC…基準点、ZC1…第1の基準点、ZC2…第2の基準点、Za…光軸。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28