IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シチズンファインテックミヨタ株式会社の特許一覧 ▶ シチズンホールディングス株式会社の特許一覧

<>
  • 特開-圧力センサ及び圧力センサ装置 図1
  • 特開-圧力センサ及び圧力センサ装置 図2
  • 特開-圧力センサ及び圧力センサ装置 図3
  • 特開-圧力センサ及び圧力センサ装置 図4
  • 特開-圧力センサ及び圧力センサ装置 図5
  • 特開-圧力センサ及び圧力センサ装置 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023008303
(43)【公開日】2023-01-19
(54)【発明の名称】圧力センサ及び圧力センサ装置
(51)【国際特許分類】
   G01L 11/02 20060101AFI20230112BHJP
   G01R 33/032 20060101ALI20230112BHJP
【FI】
G01L11/02
G01R33/032
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2021111745
(22)【出願日】2021-07-05
(71)【出願人】
【識別番号】000166948
【氏名又は名称】シチズンファインデバイス株式会社
(71)【出願人】
【識別番号】000001960
【氏名又は名称】シチズン時計株式会社
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100114018
【弁理士】
【氏名又は名称】南山 知広
(74)【代理人】
【識別番号】100180806
【弁理士】
【氏名又は名称】三浦 剛
(74)【代理人】
【識別番号】100151459
【弁理士】
【氏名又は名称】中村 健一
(72)【発明者】
【氏名】宮本 光教
【テーマコード(参考)】
2F055
2G017
【Fターム(参考)】
2F055AA40
2F055BB20
2F055CC02
2F055DD11
2F055EE31
2F055FF11
2F055GG49
2G017AA02
2G017AD12
2G017CB15
2G017CB24
(57)【要約】
【課題】本発明は、印加される圧力が小さい場合であっても検出することが可能な圧力センサを提供することを目的とする。
【解決手段】本開示の一実施形態に係る圧力センサは、連通する開口部を有する筐体と、磁場の変化により、直線偏光の旋光角度を変調させるファラデー効果を生じさせる磁性膜と、直線偏光を磁性膜に入射させ、磁性膜からの戻り光を受光し、且つ、開口部の一方の側に配置された光ファイバと、開口部の他方の側に、磁性膜と所定間隔隔てて配置され、且つ、印加された圧力に応じて少なくとも一部が変位する弾性膜と、磁性膜側とは反対側の弾性膜の表面上に形成され、且つ、弾性膜への水分の浸透を防止する防湿膜と、磁性膜側の弾性膜の表面上に配置され、且つ、弾性膜の変位に応じて磁性膜における磁場を変化させる磁性体と、を有することを特徴とする。
【選択図】図2
【特許請求の範囲】
【請求項1】
連通する開口部を有する筐体と、
磁場の変化により、直線偏光の旋光角度を変調させるファラデー効果を生じさせる磁性膜と、
直線偏光を前記磁性膜に入射させ、前記磁性膜からの戻り光を受光し、且つ、前記開口部の一方の側に配置された光ファイバと、
前記開口部の他方の側に、前記磁性膜と所定間隔隔てて配置され、且つ、印加された圧力に応じて少なくとも一部が変位する弾性膜と、
前記磁性膜側とは反対側の前記弾性膜の表面上に形成され、且つ、前記弾性膜への水分の浸透を防止する防湿膜と、
前記磁性膜側の前記弾性膜の表面上に配置され、且つ、前記弾性膜の変位に応じて前記磁性膜における磁場を変化させる磁性体と、
を有することを特徴とする圧力センサ。
【請求項2】
前記弾性膜は、樹脂を含む、請求項1に記載の圧力センサ。
【請求項3】
前記樹脂は、ポリイミドである、請求項2に記載の圧力センサ。
【請求項4】
前記磁性体は、粉末磁石を含む、請求項1乃至3のいずれか一項に記載の圧力センサ。
【請求項5】
前記磁性体は、粒径が1~20μmである、請求項4に記載の圧力センサ。
【請求項6】
前記磁性体は、SmCo及びNdFeBの少なくとも一方を含む、請求項1乃至4のいずれか一項に記載の圧力センサ。
【請求項7】
前記防湿膜は、強磁性金属薄膜を含む、請求項1乃至6のいずれか一項に記載の圧力センサ。
【請求項8】
前記防湿膜の膜厚は、10~100nmである、請求項1乃至7のいずれか一項に記載の圧力センサ。
【請求項9】
前記磁性体は、前記磁性膜に向かって突出した凸状構造を有する、請求項1乃至8のいずれか一項に記載の圧力センサ。
【請求項10】
前記磁性膜上にさらに第2の弾性膜を有する、請求項1乃至9のいずれか一項に記載の圧力センサ。
【請求項11】
前記磁性膜上に配置され、光源からの入射光を光源側に反射させる反射膜をさらに有する、請求項1乃至10のいずれか一項に記載の圧力センサ。
【請求項12】
光源を備える発光部と、
請求項1乃至11のいずれか一項に記載の圧力センサに前記光ファイバを介して光学的に接続され、前記戻り光に基づいて、前記圧力センサに印加される圧力に応じた検出信号を出力する検出信号発生部と、
を有する圧力センサ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧力センサ及び圧力センサ装置に関する。
【背景技術】
【0002】
これまでに、光ファイバの先端にファラデー素子と全反射ミラーを配置し、そのさらに外側に磁石が取り付けられたシリコン製ダイヤフラムを配置した、光学式微小圧力センサが開発されている(例えば、特許文献1)。
【0003】
従来の圧力センサ装置によれば、狭小部における圧力を検出することが可能であり、且つ、低コストで製造することができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特願2021-014906号
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の圧力センサでは、ダイヤフラムがシリコンにより形成されているために、ダイヤフラムに圧力を加えたときの変位量が比較的小さくなり、微小な圧力を正確に検出することが難しいという問題があった。
【0006】
本発明は、印加される圧力が小さい場合であっても、圧力を正確に検出することが可能な圧力センサを提供することを目的とする。
【課題を解決するための手段】
【0007】
本開示の一実施形態に係る圧力センサは、連通する開口部を有する筐体と、磁場の変化により、直線偏光の旋光角度を変調させるファラデー効果を生じさせる磁性膜と、直線偏光を磁性膜に入射させ、磁性膜からの戻り光を受光し、且つ、開口部の一方の側に配置された光ファイバと、開口部の他方の側に、磁性膜と所定間隔隔てて配置され、且つ、印加された圧力に応じて少なくとも一部が変位する弾性膜と、磁性膜側とは反対側の弾性膜の表面上に形成され、且つ、弾性膜への水分の浸透を防止する防湿膜と、磁性膜側の弾性膜の表面上に配置され、且つ、弾性膜の変位に応じて磁性膜における磁場を変化させる磁性体と、を有することを特徴とする。
【0008】
本開示の一実施形態に係る圧力センサにおいて、弾性膜は、樹脂を含むことが好ましい。
【0009】
本開示の一実施形態に係る圧力センサにおいて、樹脂は、ポリイミドであることが好ましい。
【0010】
本開示の一実施形態に係る圧力センサにおいて、磁性体は、粉末磁石を含むことが好ましい。
【0011】
本開示の一実施形態に係る圧力センサにおいて、磁性体は、粒径が1~20μmであることが好ましい。
【0012】
本開示の一実施形態に係る圧力センサにおいて、磁性体は、SmCo及びNdFeBの少なくとも一方を含むことが好ましい。
【0013】
本開示の一実施形態に係る圧力センサにおいて、防湿膜は、強磁性金属薄膜を含むことが好ましい。
【0014】
本開示の一実施形態に係る圧力センサにおいて、防湿膜の膜厚は、10~100nmであることが好ましい。
【0015】
本開示の一実施形態に係る圧力センサにおいて、磁性体は、磁性膜に向かって突出した凸状構造を有することが好ましい。
【0016】
本開示の一実施形態に係る圧力センサにおいて、磁性膜上にさらに第2の弾性膜を有することが好ましい。
【0017】
本開示の一実施形態に係る圧力センサにおいて、磁性膜上に配置され、光源からの入射光を光源側に反射させる反射膜をさらに有することが好ましい。
【0018】
本開示の一実施形態に係る圧力センサ装置は、光源を備える発光部と、上記の圧力センサに光ファイバを介して光学的に接続され、戻り光に基づいて、圧力センサに印加される圧力に応じた検出信号を出力する検出信号発生部と、を有することを特徴とする。
【発明の効果】
【0019】
本開示の一実施形態に係る圧力センサによれば、印加される圧力が小さい場合であっても、圧力を正確に検出することが可能な圧力センサを提供することができる。
【図面の簡単な説明】
【0020】
図1】本開示の実施例1に係る圧力センサ装置の概略構成図である。
図2】(a)及び(b)は、本開示の実施例1に係る圧力センサの断面図であり、(a)は圧力を印加する前の状態を示し、(b)は圧力を印加した後の状態を示す。
図3】(a)は図2(a)の領域Aの拡大図であり、(b)は図2(b)の領域Bの拡大図である。
図4】本開示の実施例1に係る圧力センサにおいて、弾性膜への印加圧力と弾性膜の変形量との間の関係を示すグラフである。
図5】本開示の実施例1に係る圧力センサにおいて、弾性膜の変形量と磁性膜における磁界強度との間の関係を示すグラフである。
図6】(a)及び(b)は、本開示の実施例2に係る圧力センサの断面図であり、(a)は弾性膜に圧力を印加する前の状態を示し、(b)は弾性膜に圧力を印加した後の状態を示す。
【発明を実施するための形態】
【0021】
以下、図面を参照して、本発明に係る圧力センサ及び圧力センサ装置について説明する。ただし、本発明の技術的範囲はそれらの実施の形態には限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
【0022】
[実施例1]
まず、本開示の実施例1に係る圧力センサ装置について説明する。図1に、本開示の実施例1に係る圧力センサ装置1000の概略構成図を示す。
【0023】
圧力センサ装置1000は、発光部10と、サーキュレータ20と、第1光学素子30と、光路部40と、圧力センサ101と、検出信号発生部60とを有する。発光部10、サーキュレータ20、第1光学素子30、光路部40、及び検出信号発生部60の間の光路は、PANDA(Polarization-maintaining AND Absorption-reducing)ファイバ80によって構成される。光路部40と圧力センサ101との間の光路は、光ファイバ3により形成される。光ファイバ3は、PANDAファイバ80と同様の構成を有してよい。PANDAファイバ80の外径は、一例では125μmである。なお、第1光学素子30、光路部40、圧力センサ101及び検出信号発生部60の間の光路は、ボウタイ(Bow-tie)ファイバ及び楕円ジャケット(Elliptical Jacket)ファイバ等の偏波保持型の光ファイバによって形成されてもよい。
【0024】
発光部10は、発光素子11と、アイソレータ12と、偏光子13とを有する。発光素子11は、例えば、半導体レーザ又は発光ダイオードである。具体的には、発光素子11として、ファブリペローレーザ、スーパールミネッセンスダイオード等を用いることができる。
【0025】
アイソレータ12は、発光素子11から入射された光を光分岐部であるサーキュレータ20側に透過すると共に、サーキュレータ20から入射された光を発光素子11側に透過しないようにすることで、発光素子11を保護する。アイソレータ12は、例えば、偏光依存型光アイソレータである。ただし、このような例には限られず、アイソレータ12は、偏光無依存型光アイソレータであってもよい。
【0026】
偏光子13は、発光素子11から出射された光を直線偏波光にするための光学素子であり、その種類は特に限定されない。偏光子13で得られる第1直線偏波光は、サーキュレータ20を介して第1光学素子30に入射される。
【0027】
サーキュレータ20は、発光部10から出射された第1直線偏波光を第1光学素子30に透過すると共に、第1光学素子30から出射された第2直線偏波光を検出信号発生部60に分岐する光分岐部である。サーキュレータ20は、例えば、ファラデー回転子、1/2波長板、偏光ビームスプリッタ、及び反射ミラーによって形成されてよい。
【0028】
第1光学素子30は、例えば、サーキュレータ20から入射される第1直線偏波光の偏光面に対して、方位角が22.5度になるように配置された1/2波長板である。第1光学素子30は、サーキュレータ20から入射される第1直線偏波光の偏光面を45度回転させ、光路部40に第1直線偏波光を出射する。第1光学素子30で偏光面が45度回転した第1直線偏波光は、P偏光である第1直線偏光CW1と、第1直線偏光CW1に直交するS偏光である第2直線偏光CCW1とを含む。
【0029】
また、第1光学素子30は、光路部40から入射される直線偏波光である第2直線偏波光の偏光面を45度回転させ、サーキュレータ20に出射する。
【0030】
光路部40は、第1ビームスプリッタ41と、第2ビームスプリッタ42と、第1光路43と、第2光路44と、第2光学素子45とを有する。
【0031】
第1ビームスプリッタ41は、第1直線偏光CW1を第1光路43に出射すると共に、第2直線偏光CCW1を第2光路44に出射する。また、第1ビームスプリッタ41は、第3直線偏光CW2が第2光路44から入射されると共に、第4直線偏光CCW2が第1光路43から入射される。第3直線偏光CW2及び第4直線偏光CCW2は、第1光学素子30に出射される第2直線偏波光の互いに直交する偏光成分である。
【0032】
第2ビームスプリッタ42は、第1直線偏光CW1が第1光路43から入射されると共に、第2直線偏光CCW1が第2光路44から入射される。また、第2ビームスプリッタ42は、第3直線偏光CW2を第2光路44に出射すると共に、第4直線偏光CCW2を第1光路43に出射する。
【0033】
第1ビームスプリッタ41及び第2ビームスプリッタ42は、入射光をP偏光成分とS偏光成分とに分離し、且つ、P偏光成分とS偏光成分とを合成し出射する。第1ビームスプリッタ41及び第2ビームスプリッタ42は、例えば、プリズム型ビームスプリッタである。ただし、このような例には限られず、第1ビームスプリッタ41及び第2ビームスプリッタ42は、平面型ビームスプリッタ又はウェッジ型ビームスプリッタであってもよい。
【0034】
第1光路43は、第1ビームスプリッタ41から導入された第1直線偏光CW1を第2ビームスプリッタ42に導出すると共に、第2ビームスプリッタ42から導入された第4直線偏光CCW2を第1ビームスプリッタ41に導出する。第2光路44は、第1ビームスプリッタ41から導入された第2直線偏光CCW2を第2ビームスプリッタ42に導出すると共に、第2ビームスプリッタ42から導入された第3直線偏光CW2を第1ビームスプリッタ41に導出する。
【0035】
第1光路43は、一端が第1ビームスプリッタ41に光学的に接続され、且つ、他端が第2ビームスプリッタ42に光学的に接続されたPANDAファイバである。第2光路44は、一端が第1ビームスプリッタ41に光学的に接続され、且つ、他端が第2ビームスプリッタ42に光学的に接続されたPANDAファイバである。なお、第1光路43及び第2光路44は、ボウタイファイバ及び楕円ジャケットファイバ等の偏波保持ファイバであってもよい。第2光路44には、第2光学素子45が配置される。
【0036】
第2光学素子45は、第1四分の一波長板46と、第2四分の一波長板47と、45度ファラデー回転子48とを有する。
【0037】
第1四分の一波長板46は、第2光路44を形成するPANDAファイバの遅相軸及び進相軸に対して、光学軸が45度傾斜して配置される四分の一(1/4)波長板である。第1四分の一波長板46は、直線偏光を円偏光に変換すると共に、円偏光を直線偏光に変換する。
【0038】
第2四分の一波長板47は、第2光路44を形成するPANDAファイバの遅相軸及び進相軸に対して、光学軸が-45度傾斜して配置される四分の一波長板である。第2四分の一波長板47は、45度ファラデー回転子48から円偏光を直線偏光に変換すると共に、直線偏光を円偏光に変換する。
【0039】
45度ファラデー回転子48は、第1四分の一波長板46及び第2四分の一波長板47のそれぞれから入射される円偏光の位相を変化させるファラデー回転子である。
【0040】
45度ファラデー回転子48は、第2四分の一波長板47から出射される第2直線偏光CCW1の位相が、第1四分の一波長板46に入射される直線偏光である第2直線偏光CCW1の位相から45度シフトするように、第1四分の一波長板46から入射される円偏光の位相を変化させる。また、45度ファラデー回転子48は、第1四分の一波長板46から出射される第3直線偏光CW2の位相が第2四分の一波長板47に入射される第3直線偏光CW2の位相から-45度シフトするように、円偏光の位相を変化させる。
【0041】
圧力センサ101は、光ファイバ3の先端に配置され、光ファイバ3を介して第2ビームスプリッタ42に光学的に接続される。圧力センサ101は、発光部10が出射した直線偏波光が入射光として入射されると共に、光ファイバ3を介して入射光が入射されたときに、印加される圧力に応じた戻り光を出射する。
【0042】
検出信号発生部60は、第3ビームスプリッタ61と、第1受光素子62と、第2受光素子63と、信号処理回路70とを有し、サーキュレータ20で分岐された第2直線偏波光を受光する。検出信号発生部60は、第2直線偏波光をS偏光成分及びP偏光成分に分離し、S偏光成分及びP偏光成分を受光して電気信号に変換して差動増幅することで、圧力センサ101に印加される圧力に応じた検出信号Edを出力する。
【0043】
第3ビームスプリッタ61は、プリズム型、平面型、ウェッジ基板型及び光導波路型等の偏光ビームスプリッタ(PBS)であり、サーキュレータ20で分岐された第2直線偏波光をS偏光成分64とP偏光成分65とに分離する。
【0044】
第1受光素子62及び第2受光素子63のそれぞれは、例えばPINフォトダイオードである。第1受光素子62はS偏光成分64を受光し、第2受光素子63はP偏光成分65を受光する。第1受光素子62及び第2受光素子63のそれぞれは、受光した光を光電変換して、受光した光の光量に応じた電気信号を出力する。信号処理回路70は、S偏光成分を示す電気信号及びP偏光成分を示す電気信号を差動増幅することにより、圧力センサ101に印加される圧力に応じた検出信号Edを出力する。
【0045】
次に、実施例1に係る圧力センサについて説明する。図2(a)及び(b)に、本開示の実施例1に係る圧力センサ101の断面図を示す。図2(a)は、圧力を印加する前の状態を示し、図2(b)は、圧力を印加した後の状態を示す。
【0046】
圧力センサ101は、筐体1と、ファラデー回転子である磁性膜2と、光ファイバ3と、弾性膜4と、防湿膜5と、磁性体6と、を有する。圧力センサ101は、PANDAファイバである光ファイバ3の先端に配置され、光路部40及び光ファイバ3を介して入射光が入射されたときに、弾性膜4に印加される圧力に応じて戻り光を出射する。
【0047】
筐体1は、連通する開口部を有する。筐体1は、例えば、筒状構造を備えてよい。筐体1は、例えば、シリコンにより形成することができる。ただし、このような例には限られない。筐体1は、内周側に突出した凸部1aを備えていてもよい。凸部1aを設けることにより、弾性膜4に圧力が印加された場合であっても、筐体1の位置ずれを防止することができる。また、筐体1を光ファイバ3に固定するために接着剤8を用いてよい。
【0048】
磁性膜2は、磁場の変化により、直線偏光の旋光角度を変調させるファラデー効果を生じさせる。磁性膜2は、誘電体中にナノオーダの磁性体粒子が分散した構造を有するグラニュラー膜である。磁性膜2は、1/4波長板31の端面に配置され、磁界を検出する磁界センサ素子である。磁性体粒子は、例えば、最表層等のごく一部では酸化物等の金属化合物が形成されていてもよいが、磁性膜2の全体では、磁性体粒子が、バインダとなる誘電体と化合物を作らずに、単独で薄膜中に分散している。磁性膜2内における磁性体粒子の分布は、完全に一様でなくてもよく、多少偏っていてもよい。誘電体中に磁性体粒子が光の波長よりも小さいサイズで存在することにより、磁性膜2は光透過性を有する。
【0049】
磁性膜2は、単層のものに限らず、グラニュラー膜と誘電体膜とが交互に積層した多層膜であってもよい。グラニュラー膜を多層膜として磁性膜2を形成することにより、グラニュラー膜内での多重反射によって、より大きなファラデー回転角を得ることができる。
【0050】
磁性膜2の誘電体は、フッ化マグネシウム(MgF2)、フッ化アルミニウム(AlF3)、フッ化イットリウム(YF3)等のフッ化物(金属フッ化物)が好ましい。また、誘電体は、酸化タンタル(Ta25)、二酸化ケイ素(SiO2)、二酸化チタン(TiO2)、五酸化二ニオビウム(Nb25)、二酸化ジルコニウム(ZrO2)、二酸化ハフニウム(HfO2)、及び三酸化二アルミニウム(Al23)等の酸化物であってもよい。誘電体と磁性体粒子との良好な相分離のためには、酸化物よりもフッ化物の方が好ましく、透過率が高いフッ化マグネシウムが特に好ましい。
【0051】
磁性体粒子の材質は、ファラデー効果を生じるものであればよく、特に限定されない。磁性体粒子の材質としては、例えば、強磁性金属である鉄(Fe)、コバルト(Co)、及びニッケル(Ni)、並びに、これらの合金が挙げられる。Fe、Co及びNiの合金としては、例えば、FeNi合金、FeCo合金、FeNiCo合金、NiCo合金が挙げられる。Fe、Co及びNiの単位長さ当たりのファラデー回転角は、従来のファラデー回転子に適用されている磁性ガーネットに比べて2~3桁近く大きい。
【0052】
磁性膜2は、上記グラニュラー膜に限定されず、光透過性とファラデー効果を有する材料であれば良く、従来ある磁性ガーネット結晶やフェライト、コバルトフェライト等を用いることができる。
【0053】
磁性膜2上に配置され、光源からの入射光を光源側に反射させる反射膜7をさらに有することが好ましい。反射膜7は、磁性膜2上に形成されており、磁性膜2を透過した光を磁性膜2に向けて反射する。反射膜7としては、例えば、銀(Ag)膜、金(Au)膜、アルミニウム(Al)膜、又は、誘電体多層膜ミラー等を用いることができる。特に、反射率の高いAg膜、及び耐食性が高いAu膜が、製造プロセスが簡便であるため好ましい。反射膜7の厚さは、98%以上の十分な反射率を確保できる大きさであればよく、例えばAg膜の場合には、50nm以上かつ200nm以下であることが好ましい。反射膜7を用いて磁性膜2内で光を往復させることにより、ファラデー回転角を大きくすることができる。
【0054】
光ファイバ3は、直線偏光を磁性膜2に入射させ、磁性膜2からの戻り光を受光する。光ファイバ3は、筐体1の開口部の一方の側に配置されてよい。光ファイバ3は、コア32と、クラッド33とを有する。コア32は、酸化ケイ素(SiO2)により形成されるクラッド33よりも屈折率が大きくなるように、例えば、二酸化ケイ素に二酸化ゲルマニウム(GeO2)を添加して形成されることが好ましい。
【0055】
光ファイバ3の先端部には、1/4波長板31が設けられている。1/4波長板31は、第2ビームスプリッタ42との間を光学的に接続する光ファイバ3の遅相軸及び進相軸に対して光学軸が45度傾斜して配置される1/4波長板である。1/4波長板31は、直線偏光である入射光の偏光状態を円偏光に変換すると共に、磁性膜2から円偏光として入射される戻り光の偏光状態を直線偏光に変換する。
【0056】
弾性膜4は、光ファイバ3が配置された側と反対側である、筐体1の開口部の他方の側に、磁性膜2と所定間隔隔てて配置されている。また、弾性膜4は、印加された圧力に応じて少なくとも一部が変位するように構成されている。弾性膜4は、樹脂を含むことが好ましい。樹脂として、例えば、ポリイミドを用いることができる。ただし、このような例には限られず、弾性膜4を他の樹脂により形成するようにしてもよい。
【0057】
弾性膜4をポリイミド等の樹脂により形成することにより、弾性膜4に印加する圧力が小さい場合であっても、弾性膜4の変位量を大きくすることができる。しかしながら、樹脂が透湿性を有する場合には、外部環境によって膨張し、あるいは、収縮してしまう恐れがあり、圧力検出におけるゼロ点が不安定になるという問題が生じる恐れがある。そこで、実施例1に係る圧力センサ101においては、弾性膜4上に防湿膜5を設けている。防湿膜5は、磁性膜2側とは反対側の弾性膜4の表面上に形成されている。防湿膜5を弾性膜4上に配置することにより、外部環境から弾性膜4への水分の浸透を防止することができる。
【0058】
防湿膜5は、強磁性金属薄膜を含むことが好ましい。強磁性金属薄膜として、例えば、鉄、コバルト、及びニッケルからなる金属群より選択された少なくとも1種の金属を含有した薄膜等を用いることができる。防湿膜5が強磁性金属薄膜を含むことにより、後述するように、粉末磁石等の磁性体6を弾性膜4に吸着させることができる。
【0059】
防湿膜5の膜厚は、10~100nmであることが好ましい。弾性膜4は、印加した圧力に応じて変位する必要がある。防湿膜5を強磁性金属薄膜により形成した場合であっても、膜厚が10~100nm程度であれば弾性膜4の変位に合わせて湾曲することができるため、防湿膜5を設けた弾性膜4に圧力を印加した場合であっても、弾性膜4を湾曲させることができる。
【0060】
磁性体6は、磁性膜2側の弾性膜4の表面上に配置される。例えば、図2(a)に示すように、防湿膜5が弾性膜4上に形成され、防湿膜5が磁性材料を含んで構成されている場合は、磁性体6は、防湿膜5との間に作用する磁力により引き寄せられ、弾性膜4上に配置させることができる。また、防湿膜5が磁性材料を含んでいない場合であっても、弾性膜4が磁性材料を含んでいる場合には、弾性膜4に含まれる磁性材料と磁性体6との間で磁力が働き、磁性体6を弾性膜4上に配置させることができる。
【0061】
また、磁性体6は、弾性膜4の変位に応じて磁性膜2における磁場を変化させる。磁性体6は、粉末磁石を含んで構成されることが好ましい。磁性体6を構成する粉末磁石は、粒径が1~20μmであることが好ましい。磁性体6を構成する粉末磁石は、SmCo(サマリウムコバルト)及びNdFeB(ネオジム)の少なくとも一方を含むことが好ましい。
【0062】
磁性体6を、粉末磁石を用いて形成することにより、弾性膜4の変形に応じて磁性体6も変形することができる。図3(a)に、図2(a)の領域Aの拡大図を示し、図3(b)に、図2(b)の領域Bの拡大図を示す。磁性体6が弾性膜4の表面4aに配置されているものとする。例えば、弾性膜4の表面4a上に、粉末磁石(6a、6b、6c、6d)が配置されているものとする。このとき、粉末磁石(6a、6b、6c、6d)は、弾性膜4の表面4a上を自由に移動することができる。図3(b)に示すように、弾性膜4に圧力が印加されると、弾性膜4の表面4bは湾曲する。この場合、磁性体6が粉末磁石を含んで構成されている場合、粉末磁石(6a、6b、6c、6d)は、湾曲した表面4bに沿って移動することができるため、磁性体6と弾性膜4とは密着した状態を維持することができる。
【0063】
図2(b)に示すように、防湿膜5を設けた弾性膜4に対して、弾性膜4の外部から圧力P1を印加すると、弾性膜4は、筐体1の内側へ向かって中央部が凹むように湾曲する。弾性膜4が、筐体1の内側へ向かって湾曲することにより、磁性体6の頂上部6Tは、磁性膜2の方向に変位する。例えば、図2(a)に示すように、弾性膜4に圧力を印加する前の状態において、磁性体6の頂上部6Tから磁性膜2の表面2aまでの距離がd1であった場合、図2(b)に示すように、弾性膜4に圧力P1を印加した場合には、磁性体6の頂上部6Tから磁性膜2の表面2aまでの距離はd2に変化する。ここで、弾性膜4に圧力P1を印加することにより、磁性体6の頂上部6Tが磁性膜2の表面2aに近づくため、d2はd1より小さい値となる。この場合、図2(a)に示すように、弾性膜4に圧力を印加する前に、磁性体6によって生じる、磁性膜2の表面2aにおける磁界の強度がH1であったとすると、図2(b)に示すように、弾性膜4に圧力P1を印加した場合には、磁性膜2の表面2aにおける磁界の強度がH2に変化する。磁性膜2における磁界強度の変化により、検出されるファラデー回転角の大きさが変化する。従って、ファラデー回転角の大きさから、弾性膜4への印加圧力を算出することができる。
【0064】
次に、印加圧力の具体的な測定例について説明する。図4は、本開示の実施例1に係る圧力センサ101における弾性膜4への印加圧力と弾性膜4の変形量との間の関係を示すグラフである。図4から、弾性膜4に印加する圧力を増加させると、ほぼ比例して弾性膜4の変形量が増加することが分かる。例えば、印加圧力が150[mmHg]の場合の変形量は6[μm]であり、印加圧力が300[mmHg]の場合の変形量は12[μm]である。
【0065】
図5は、本開示の実施例1に係る圧力センサ101における弾性膜4の変形量と磁性膜2における磁界強度との間の関係を示すグラフである。図5から、弾性膜4の変形量が増加すると、磁性体6における磁界強度が増加することが分かる。例えば、弾性膜4の変形量が6[μm]の場合の磁界強度は351[Oe]であり、弾性膜4の変形量が12[μm]の場合の磁界強度は373[Oe]である。
【0066】
以上の測定例から、弾性膜4への印加圧力に応じて、弾性膜4の変形量が一意的に決まり、弾性膜4の変形量から磁性膜2における磁界強度の変化量を算出することができる。まず、弾性膜4に圧力を印加する前の状態の磁性膜2における磁界強度を求める。図5に示した例では、弾性膜4の変形量が0[μm]の場合の磁界強度が331[Oe]と求められる。この値を用いることにより、弾性膜4への印加圧力と磁性膜2における磁界強度の変化量との関係を求めることができる。例えば、弾性膜4へ150[mmHg]の圧力を印加すると、磁性膜2における磁界強度は331[Oe]から351[Oe]に変化するため、磁界強度の変化量は20[Oe]となる。磁性膜2における磁界強度の変化量に基づいてファラデー回転角が決まるため、検出信号発生部60で算出されたファラデー回転角から磁界強度の変化量が算出され、算出された磁界強度の変化量から弾性膜への印加圧力を算出することができる。
【0067】
具体的には、1/4波長板31から磁性膜2に入射した円偏光は、磁性膜2を透過し、反射膜7で反射し、再び磁性膜2を透過して戻り光となる。磁性膜2を透過した戻り光は、1/4波長板31に再度入射される。
【0068】
1/4波長板31から磁性膜2に入射した円偏光は、磁性膜2に印加される磁界に応じて位相を変化させる。また、反射膜7で反射した円偏光は、磁性膜2に印加される磁界に応じて位相を更に変化させる。圧力センサ101を用いることにより、磁性膜2と磁性体6との間の距離に応じて変化する磁性膜2における磁界強度の変化量を検出することにより、圧力センサ101に印加される圧力を検出することができる。
【0069】
磁性体6は、磁性膜2に向かって突出した凸状構造を有することが好ましい。また、磁性体6は、図2(a)及び(b)に示すように、円錐状あるいは角錐状に形成されるようにしてもよい。磁性体6の形状を凸状構造とすることにより、磁性体6と磁性膜2との間の距離を短くすることができ、磁性膜2における磁界強度を大きくすることができるため、圧力センサの感度を向上させることができる。
【0070】
[実施例2]
次に、実施例2に係る圧力センサについて説明する。図6(a)及び(b)に、本開示の実施例2に係る圧力センサ102の断面図を示す。図6(a)は、弾性膜4に圧力を印加する前の状態を示し、図6(b)は、弾性膜4に圧力を印加した後の状態を示す。実施例2に係る圧力センサ102が、実施例1に係る圧力センサ101と異なっている点は、磁性体6上にさらに第2の弾性膜9を有する点である。実施例2に係る圧力センサ102のその他の構成は、実施例1に係る圧力センサ101における構成と同様であるため、詳細な説明は省略する。
【0071】
磁性体6の磁性膜2側の表面上に第2の弾性膜9を設けることにより、磁性体6を粉末磁石により形成した場合であっても磁性体6の形状を維持することができる。第2の弾性膜9は、弾性膜4と同じ材料を用いて形成するようにしてもよい。
【0072】
なお、図6(a)及び(b)に示した例では、平坦な形状を有する磁性体6を覆うようにして第2の弾性膜9を設ける例について示したが、このような例には限られない。即ち、磁性体6を図2(a)及び(b)に示すように、凸状構造を有するように形成し、そのような凸状構造を有する磁性体6を覆うようにして第2の弾性膜9を設けるようにしてもよい。このような構成により、弾性膜4に対して、繰り返し圧力を印加した場合であっても、磁性体6の凸状構造を維持することができる。
【0073】
図6(b)に示すように、防湿膜5を設けた弾性膜4に対して圧力P2を印加すると、弾性膜4は中央部が凹むように変位する。これに伴って、磁性体6の表面中央部6Uは、磁性膜2の方向に変位する。例えば、図6(a)に示すように、弾性膜4に圧力を印加する前の状態において、磁性体6の表面中央部6Uから磁性膜2の表面2aまでの距離がd3であった場合、図6(b)に示すように、弾性膜4に圧力P2を印加した場合には、磁性体6の表面中央部6Uから磁性膜2の表面2aまでの距離はd4に変化する。ここで、d4はd3より小さい値となる。この場合、図6(a)に示すように、弾性膜4に圧力を印加する前に、磁性体6によって、磁性膜2の表面2aにおける磁界の強度がH3であったとすると、図6(b)に示すように、弾性膜4に圧力P2を印加した場合には、磁性膜2の表面2aにおける磁界の強度がH4に変化する。
【0074】
実施例2に係る圧力センサ102においても、磁界強度の変化量に応じて、磁性膜2におけるファラデー回転の角度が変化するため、ファラデー回転の角度から磁性体6の変位量を算出でき、弾性膜4に印加された圧力を算出することができる。
【符号の説明】
【0075】
1 筐体
2 磁性膜
3 光ファイバ
4 弾性膜
5 防湿膜
6 磁性体
7 反射膜
10 発光部
20 サーキュレータ
30 第1光学素子
40 光路部
60 検出信号発生部
101、102 圧力センサ
図1
図2
図3
図4
図5
図6