(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023083513
(43)【公開日】2023-06-15
(54)【発明の名称】危険予知活動支援システム、危険予知活動支援方法、及びプログラム
(51)【国際特許分類】
G06Q 50/08 20120101AFI20230608BHJP
【FI】
G06Q50/08
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2023070449
(22)【出願日】2023-04-21
(62)【分割の表示】P 2018095129の分割
【原出願日】2018-05-17
(71)【出願人】
【識別番号】303057365
【氏名又は名称】株式会社安藤・間
(71)【出願人】
【識別番号】399052431
【氏名又は名称】株式会社ライフビジネスウェザー
(74)【代理人】
【識別番号】100118038
【弁理士】
【氏名又は名称】田中 勲
(72)【発明者】
【氏名】早川 健太郎
(72)【発明者】
【氏名】黒台 昌弘
(72)【発明者】
【氏名】仲野 健一
(72)【発明者】
【氏名】秋田 宏行
(72)【発明者】
【氏名】清水 充子
(72)【発明者】
【氏名】前田 充宏
(72)【発明者】
【氏名】櫻本 美香
(57)【要約】
【課題】工事現場等において効果的な危険予知活動を行うことができるように支援する。
【解決手段】過去に発生した労働災害の事例を気象要素の実績情報と対応付けて記憶した事例データベースと、所定の現場における前記気象要素の予測情報に基づいて前記事例を抽出する事例抽出部と、抽出された前記事例及び前記予測情報を出力する出力部と、を具備する危険予知活動支援システム。前記気象要素の生体に対する影響を説明した説明情報を記憶した説明データベースと、抽出された前記事例に対応する前記気象要素の前記説明情報を読み出す説明取得部と、を更に具備し、前記出力部は更に、読み出された前記説明情報を出力してもよい。
【選択図】
図9
【特許請求の範囲】
【請求項1】
過去に発生した労働災害の事例を気象要素の実績情報と対応付けて記憶した事例データベースと、
所定の現場における前記気象要素の予測情報に基づいて前記事例を抽出する事例抽出部と、
抽出された前記事例を出力する出力部と、
を具備する危険予知活動支援システム。
【請求項2】
前記気象要素の生体に対する影響を説明した説明情報を記憶した説明データベースと、
抽出された前記事例に対応する前記気象要素の前記説明情報を読み出す説明取得部と、を更に具備し、
前記出力部は更に、読み出された前記説明情報を出力する
請求項1に記載の危険予知活動支援システム。
【請求項3】
前記実績情報は、前記労働災害の発生時における発生現場での前記実績情報と、当該発生時よりも前の時点における前記発生現場での前記実績情報と、の差分を含み、
前記事例抽出部は、前記予測情報と前記実績情報との差分に基づいて前記事例を抽出する
請求項1又は2に記載の危険予知活動支援システム。
【請求項4】
前記労働災害の種類ごとに、当該種類の労働災害と前記実績情報との関係を示す統計モデルを作成する予測モデル作成部と、
前記予測情報と前記統計モデルとに基づいて、前記労働災害の種類ごとにその発生の蓋然性の評価を行う評価部と、を更に具備し、
前記事例抽出部は、前記評価の結果に基づいて前記災害事例を抽出する
請求項1~3のいずれかに記載の危険予知活動支援システム。
【請求項5】
前記評価部は、前記気象要素の予測情報の、前記労働災害の種類ごとの前記気象要素の代表値からの乖離度に基づいて、前記評価を行う
請求項4に記載の危険予知活動支援システム。
【請求項6】
コンピュータが、
所定の現場における気象要素の予測情報に基づいて、過去に発生した労働災害の事例を前記気象要素と対応付けて記憶するデータベースから、前記事例を抽出するステップと、
抽出した前記事例及び前記予測情報を出力するステップと、
を実行する危険予知活動支援方法。
【請求項7】
コンピュータに対して、
所定の現場における気象要素の予測値に基づいて、過去に発生した労働災害の事例を前記気象要素と対応付けて記憶するデータベースから、前記事例を抽出するステップと、
抽出した前記事例及び前記予測情報を出力するステップと、
を実行させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、危険予知活動を支援するための危険予知活動支援システム、危険予知活動支援方法、及びプログラムに関する。
【背景技術】
【0002】
建設・土木の現場では、労働災害を防止するべく、作業開始前に危険予知活動が行われている。例えば特許文献1は、過去に発生した労働災害について、発生時に行っていた作業と発生時の状況及び発生要因とを対応させて記憶しておき、これから実施する作業が入力されると、安全情報一覧表に、重要度の高い災害から順に、工事の概要、被災者情報、災害の概要を表示する安全情報システムを開示している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、一般に、注意すべき労働災害は多く、特にどのような災害に気を付けるべきかを判断することが難しい。したがって、上記の安全情報一覧表による注意喚起では、危険予知活動の効果に疑問がある。
【0005】
本発明は、このような背景を鑑みてなされたものであり、効果的な危険予知活動を行うことができるように支援することができる危険予知活動支援システム、危険予知活動支援方法、及びプログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するための本発明の主たる発明は、過去に発生した労働災害の事例を気象要素の実績情報と対応付けて記憶した事例データベースと、所定の現場における前記気象要素の予測情報に基づいて前記事例を抽出する事例抽出部と、抽出された前記事例及び前記予測情報を出力する出力部と、を具備することとする。
【0007】
その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。
【発明の効果】
【0008】
本発明によれば、効果的な危険予知活動を行うことができるように支援することができる。
【図面の簡単な説明】
【0009】
【
図1】本実施形態におけるユーザ端末10、危険予知活動(KY)支援システム20、気象システム30及び安全システム40を含むシステムの全体構成例を示す図である。
【
図2】危険予知活動支援システム20として用いられるコンピュータのハードウェア構成例を示す図である。
【
図3】危険予知活動支援システム20のソフトウェア構成例を示す図である。
【
図4】事例データベース(DB)の構成例を示す図である。
【
図5】気象実績データベース(DB)の構成例を示す図である。
【
図7】説明データベース(DB)の構成例を示す図である。
【
図8】解析処理の流れを示すフローチャートである。
【
図9】情報配信処理の流れを示すフローチャートである。
【
図10】危険度の計算処理の流れを示すフローチャートである。
【
図12】説明の取得処理の流れを示すフローチャートである。
【発明を実施するための形態】
【0010】
以下、図面を参照して、本発明の一実施形態に係る危険予知活動支援システムについて説明する。本実施形態の危険予知活動支援システムは、工事現場における危険予知活動を支援することを想定しているが、本発明は、工事現場における危険予知活動の支援に限定されるものではない。
【0011】
(全体構成)
図1を参照して、本実施形態におけるシステムの全体構成を説明する。
図1は、本実施形態におけるユーザ端末10、危険予知活動(KY)支援システム20、気象システム30及び安全システム40を含むシステムの全体構成例を示す図である。ユーザ端末10、気象システム30及び安全システム40はそれぞれ、危険予知活動支援システム20と有線又は無線で通信可能に接続されている。
【0012】
本実施形態では、ユーザ端末10、危険予知活動支援システム20、気象システム30及び安全システム40が互いに独立していることを想定している。ただし、例えば、ユーザ端末10が危険予知活動支援システム20を含んでもよいし、また危険予知活動支援システム20が安全システム40を含んでもよい。
【0013】
ユーザ端末10は、例えば現場の作業者や監督者などの、危険予知活動を行う者(ユーザ)が使用する端末である。本実施形態では、ユーザ端末10としてスマートフォンやタブレット端末のような携帯端末を想定しているが、これに限られるものではない。かかるユーザ端末10は、危険予知活動支援システム20から、現場における気象予報と危険予知に関する情報を受信し、表示するものとする。ここで表示とは電子メールによる通知のほか、ポップアップ表示、音声出力など情報を出力するもの一般を含むものとする。
【0014】
危険予知活動支援システム20は、ユーザによる危険予知活動を支援する1台又は複数台のコンピュータである。危険予知活動支援システム20の具体的な構成及び動作については追って述べる。
【0015】
気象システム30は、危険予知活動支援システム20に気象データを提供するコンピュータであり、例えば気象会社のサーバである。ここで、気象データは、例えば現場などの該当場所における、所定の時間帯ごとの、気象要素の実測値、解析値及び予測値を含んでいてよい。解析値とは、不規則に分布した観測データに基づいて、例えば時間軸や空間軸などの内挿(客観解析)を行うことにより、所定の地点における実測値を算出した値である。気象要素としては、気温、気圧、風速、湿度、日照時間、体幹気温、不快指数などを含んでいてよい。また、気象要素の値としては、最高値、最低値、平均値、前日差、日較差、傾き、標準偏差などの統計情報が含まれてよい。
【0016】
安全システム40は、労働災害の発生日時、発生場所、種類及び内容を含む事例データを収集し、要求に応じて危険予知活動支援システム20に事例データを提供するコンピュータである。安全システム40は、例えば建設会社のサーバである。なお、労働災害の発生日時、発生場所、種類及び内容については、
図4に示す事例データベースとの関係で詳述する。
【0017】
(危険予知活動支援システムの構成)
図2~
図7を参照して、危険予知活動支援システム20の構成を詳細に説明する。
図2は、危険予知活動支援システム20として用いられるコンピュータのハードウェア構成例を示す図である。危険予知活動支援システム20は、CPU201、メモリ202、記憶装置203、通信装置204、入力装置205及び出力装置206を含んで構成されている。
【0018】
CPU201は、各種プログラムをメモリ202に読み出して実行することで、追って述べる危険予知活動支援システム20の各種機能を実現する。
記憶装置203は、各種のデータやプログラムを記憶する、例えばハードディスクドライブやソリッドステートドライブ、フラッシュメモリなどである。
通信装置204は、通信ネットワークに接続するためのインタフェースであり、例えばイーサネット(登録商標)に接続するためのアダプタ、公衆電話回線網に接続するためのモデム、無線通信を行うための無線通信機、シリアル通信のためのUSB(Universal Serial Bus)コネクタやRS232Cコネクタなどである。
入力装置205は、データを入力する、例えばキーボードやマウス、タッチパネル、ボタン、マイクロフォンなどである。
出力装置206は、データを出力する、例えばディスプレイやプリンタ、スピーカなどである。
【0019】
図3は、危険予知活動支援システム20のソフトウェア構成例を示す図である。危険予知活動支援システム20は、事例登録部211、予測モデル作成部212、気象予測取得部213、評価値算出部214、事例抽出部215、説明取得部216、危険予知活動(KY)支援情報送信部217、事例データベース(DB)231、気象実績データベース(DB)232、評価モデル記憶部233、説明データベース(DB)234を含んで構成されている。
【0020】
事例登録部211、予測モデル作成部212、気象予測取得部213、評価値算出部214、事例抽出部215、説明取得部216の各機能は、CPU201が記憶装置203に記憶された実行プログラムをメモリ202に読み出して実行することによって実現される。また、KY支援情報送信部217の機能は、通信装置204によって実現される。事例DB231、気象実績DB232、評価モデル記憶部233、説明DB234の各機能は、記憶装置203の機能に対応する。以下、これらの機能部について説明する。
【0021】
事例登録部211は、安全システム40から事例データを受け取り、事例DB231に登録する。
図4を参照して、事例DB231について説明する。
図4は、事例DBの構成例を示す図である。事例DB231は、事例データに含まれる労働災害と当該労働災害が発生した地図上の位置とを対応付けて記憶している、例えば事故・ヒヤリハット集のような労働災害事例集である。
【0022】
具体的には、事例登録部211は、労働災害(事故)の発生日時、発生場所、種類及び内容を示す情報を含む。ここで、場所は、市区町村のような行政区画でもよいし、緯度経度でもよい。種類は、例えば「切れ・こすれ」のような労働災害の分類であり、予め設定されている。内容は、例えば「作業員が誤って手を切った」のような、労働災害の具体的内容である。
【0023】
次いで、予測モデル作成部212は、後述する危険度の評価のための統計モデル(予測モデル)を作成し、評価モデル記憶部233に記憶する。本実施形態では、予測モデルとして、労働災害の種類に対応した各気象要素の分布を想定しているが、これに限らず、各気象要素と各種類の労働災害の発生との関係を示す統計情報であればよい。なお、予測モデル作成部212の具体的な動作例は、
図8との関係で説明する。
【0024】
気象予測取得部213は、気象システム30から、現場における気象要素の予測値を示す予測データを受け取る。この予測データは、後述する危険度の算出のために使用される。気象予測取得部213は、危険予知活動支援システム20の起動時や所定の時刻(例えば朝8時)などに、この予測データを受信するものとする。
【0025】
評価値算出部214は、上述した気象要素の予測値に基づき、労働災害の種類に応じて当該種類の労働災害が発生する危険度を評価する。ここに危険度とは、予測される気象要素の下で当該種類の労働災害が生じる蓋然性(危険性)を示す指標である。本実施形態では、気象要素の予測値を、予測モデル作成部212が作成した評価モデルが示す、特定種類の労働災害の発生時の気象要素の分布と比較することで危険度を評価する。危険度の具体的な算出手順については、
図10及び
図11との関係で説明する。
【0026】
事例抽出部215は、選択した種類の労働災害に関わる具体的な事例を事例DB231から読み出す。本実施形態では、事例抽出部215は、危険度の最も高い種類に該当する事例をランダムに1つ読み出すこととしているが、ユーザの注意力を過度に分散させない限り、複数の事例を読み出してもよい。また、事例抽出部215は、危険度の高い順に複数の種類に該当する事例を1つまたは複数読み出すようにしてもよい。
【0027】
説明取得部216は、選択した種類の労働災害の要因となり得る気象要素の説明(説明データ)を説明DB234から取得する。本実施形態では、1つの気象要素に対する説明が説明DB234に登録されていることを想定しているので、説明取得部216は、1つの気象要素に対する説明を取得することになる。ただし、説明DB234が複数の気象要素の組み合わせに対応付けて説明を登録している場合には、説明取得部216は、複数の気象要素に対する説明を取得してもよい。説明取得部216による説明の取得手順については、
図12との関係で説明する。
【0028】
KY支援情報送信部217は、危険予知を支援する情報(以下、KY支援情報という。)をユーザ端末10に送信する。本実施形態において、KY支援情報には、気象要素の予測値、選択した労働災害の事例及び気象要素の説明が含まれるものとする。
【0029】
次いで、
図5~
図7を参照して、記憶装置203に関連する諸機能を説明する。
図5は、気象実績DBの構成例を示す図である。気象実績DB232は、気象システム30から受信した、気象要素の実績を示す実績データを記憶している。ここで、気象要素の実績は、所定の日時における、所定の場所(現場の所在地など)での気象要素(気温など)の観測値や解析値であり、後述する相関解析のための説明変数となる。
【0030】
図6は、評価モデル記憶部233の構成例を示す図である。評価モデル記憶部233は、労働災害の種類ごとに、相関する気象要素と、相関関係を示す情報とを記憶している。本実施形態では、相関を示す情報として、気象要素のばらつき具合を想定することとし、一例として、当該気象要素の最大値、平均値、最小値を採用している。
【0031】
例えば
図6では、「切れ・こすれ」という種類の労働災害に関連し得る気象要素「最高気温」について、最大値「24」、平均値「14」、最小値「10」が記憶されている。ただし、最大値に代えて第1四分位点を採用してもよいし、平均値に代えて最頻値を採用してもよい。あるいは、評価モデル記憶部233は、相関情報として、重回帰による回帰係数を記憶するようにしてもよい。また、相関情報として、例えば平均と分散など、各種の確率分布を示す値を記憶することもできる。
後述するように、本実施形態では、各気象要素が分布の平均に近いほど高い点数をつけてスコアリングすることで、特定の種類の労働災害が発生する危険度を評価している。
【0032】
図7は、説明DB234の構成例を示す図である。説明DB234は、所定の気象要素の条件下において、労働災害が発生した場合に想定される当該労働災害の原因となりうる理由を説明したコメントを記憶するデータベースである。
【0033】
コメントは、例えば生気象学の観点から説明したものであってよい。生気象学とは、気象現象が生体に与える影響を調べる学問分野である。この場合、説明DB234は、各気象要素がどういう条件になったら、どういう身体の反応が出うるかを記述していることになる。例えば
図7では、気象要素「気圧の前日差」が「-10hPa」又は「+10hPa」に達する状況に対して、「前日からの気圧差が大きいときは、自律神経のバランスが・・・」と説明される。また、気象要素は差分でなく、ある特定時点における値に対する説明であってよく、例えば、気温0℃に対して、単に寒くて手が動かずに物を落とすという説明であってもよい。また、コメントは、生気象学に基づかない説明であってもよく、例えば、風が強いので物が吹き飛ぶという説明であってもよい。
【0034】
本実施形態では、1つの気象要素に対する説明が説明DB234に登録されているものとしたが、説明DB234には、複数の気象要素の組み合わせに対応付けて説明が登録されていてもよい。
【0035】
(危険予知活動支援システムの動作)
図8~
図12を参照して、危険予知活動支援システム20の動作を説明する。
危険予知活動支援システム20の動作は、大きく、労働災害の事例データ及び気象要素の実績データに基づいて統計解析を行い、危険度の評価モデル(予測モデル)を作成する手順と、気象要素の予測データを評価モデルに適用して危険度を評価する手順とに分かれる。以下、これら手順を順に説明する。
【0036】
図8を参照して、統計解析による評価モデルの作成手順を説明する。
図8は、解析処理の流れを示すフローチャートである。ここでは、気象実績は予め気象実績DB232に登録されているものとする(
図5参照)。
【0037】
まず事例登録部211は、安全システム40から労働災害の事例データを受領し、
図4に示すように事例DB231に登録する(ステップS11)。
【0038】
次いで、予測モデル作成部212は、気象実績DB232から気象要素の実績値を抽出し(ステップS12)、抽出した気象要素の実績値から分析用の気象要素を作成する(ステップS13)。ここで、分析用の気象要素の作成には、気象要素の差分等の計算値を計算することが含まれる。具体例としては、気象実績DB232に記憶された実績データを用いて、当日の気圧の実績値からその前日の気圧の実績値を引いて気圧の前日差を計算したり、3日分の気温の平均値を計算したり、72時間分の気温の実績値からその分散や平均、トレンド(近似直線の傾き)を計算したりすることが挙げられる。なお、このような計算値を示すデータが予め気象システム30から提供されている場合には、この提供データを利用すればよい。
【0039】
そして、予測モデル作成部212は、労働災害の種類ごとに、当該労働災害が発生したときの各気象要素の分布を求める(ステップS14)。この手順は、各気象要素と種類別の労働災害の発生との関連性を求める統計解析の一例である。その結果、
図6に例示する評価モデル(分布)が得られる。
【0040】
あるいは、変形例として、予測モデル作成部212は、重回帰分析やニューラルネットワーク(ディープラーニング)などの解析手法・学習手法を用いて、各気象要素の下で特定種類の労働災害が発生する可能性を予測する評価モデルを作成してもよい。
【0041】
予測モデル作成部212は、作成した評価モデルを評価モデル記憶部233に登録し(ステップS15)、一連の評価モデルの作成手順が終了する。
【0042】
次に、
図9~
図12を参照して、KY支援システム20がユーザ端末10に情報配信する手順を説明する。この情報配信の処理は、予め設定された時刻(例えば毎朝6時)に実行されてもよいし、ユーザ端末10の要求に応じて行われてもよい。
【0043】
図9は、情報配信処理の全体的な流れを示すフローチャートである。
まず気象予測取得部213は、気象システム30から気象要素の予測値を取得する(ステップS21)。
【0044】
次いで、評価値算出部214は、分析用の気象要素を作成する(ステップS22)。分析用の気象要素の作成には、
図8のステップS13と同様に、気象要素の差分や分散など各種の計算値を計算する処理が含まれる。ただし、ここでは、気象要素の予測値が使用されるものとする。
【0045】
そして、評価値算出部214は、各種類の労働災害について危険度を計算する(ステップS23)。危険度は、各種類の労働災害に関連し得る各気象要素の分布(つまり評価モデル)と、当該気象要素の予測値とに基づいて算出される。本実施形態では、当該種類の労働災害の発生時における気象要素と予測対象日の気象要素との類似性を危険度として評価する。具体的には、各気象要素について、当該種類の労働災害が過去に発生したときの当該気象要素の分布の平均にどれだけ近いか(その乖離度がどれだけ小さいか)により危険度を算出する(
図11参照)。
【0046】
ここで、
図10及び
図11を参照して、危険度の計算処理を具体的に説明する。
図10は、危険度の計算処理の流れを示すフローチャートである。
図11は、乖離度の説明図である。
【0047】
まず評価値算出部214は、ある種類の労働災害について、それに関連し得る各気象要素の予測値の、平均からの乖離度を計算する(
図10のステップS31)。
【0048】
本実施形態では、乖離度は、該当する種別の労働災害に関連し得る気象要素における、予測値の平均からの乖離(差分の絶対値)を標準化した値である。例えば、ある評価モデルにおいて、「切れ・こすれ」という種類の労働災害に対して、気象要素「最高気温」は、最高値「24」、平均値「14」、最低値「10」という分布を得たとする(
図6参照)。
図11に示すように、ある現場において最高気温の予測値が12℃であるとき、予測値の、この分布における平均からの乖離は2℃であり、最高値から最低値までの幅は12℃であるから、当該乖離を百分率に標準化した乖離度は14.3%(=(平均14℃-予測値12℃)/最高値から最低値までの幅14℃)となる。
【0049】
危険度の計算処理に戻ると、評価値算出部214は、計算された乖離度を平均し(ステップS32)、平均の乖離度から危険度を算出する(ステップS33)。ここで、乖離度は百分率で表されてもよく、この場合、危険度は、「危険度=1-(乖離度の合計)」の計算式で算出される。
【0050】
そして、評価値算出部214は、各種類の労働災害についてステップS31~S33を繰り返し、一連の危険度の計算処理が終了する。
【0051】
更に情報配信処理に戻ると、評価値算出部214は、危険度の最も高い種類の労働災害を選択する(
図9のステップS24)。
【0052】
そして、説明取得部216は、ステップS24で選択された種類の労働災害に関し、最も乖離度(
図10のステップS31で計算したもの)の小さい気象要素の説明を取得する(ステップS25)。
【0053】
ここで、
図12を参照して、特定の気象要素の説明の取得処理を具体的に説明する。
図12は、説明の取得処理の流れを示すフローチャートである。
【0054】
まず説明取得部216は、選択された種類の労働災害に対応する気象要素のうち、最も乖離度の小さい気象要素(以下、「選択要素」ということがある)を選択する(ステップS41)。つまり、説明取得部216は、乖離度に基づき、選択された種類の労働災害を招来する危険性が最も大きいと予測される気象要素を選択要素として抽出するのである。
【0055】
次いで説明取得部216は、選択要素に対応する説明を説明DB234から検索する(ステップS42)。選択要素に対応する説明がない場合には、説明取得部216は、次に小さい乖離度を有する気象要素を選択要素として抽出し(ステップS43)、上記のステップS42を再び実行する。そして、説明取得部216は、ステップS42において該当する説明を発見すると、一連の説明取得処理を終了する。
【0056】
本実施形態では、1つの気象要素に対する説明が説明DB234に登録されているものと想定して、選択要素に対応する説明の取得処理を説明したが、これに限られない。例えば、説明DB234に、複数の気象要素の組み合わせに対応付けて説明が登録されていている場合、ここで述べた処理のように気象要素を1つずつ検索するのではなく、複数の気象要素の組み合わせに対応する説明を説明DB234から検索すればよい。例えば、説明取得部216は、気象要素の全ての組合せに対して説明を検索してもよいし、あるいは、説明DB234の全レコードについて、気象要素を満たすかどうかを判定して、満たすレコードに対応する説明を選択するようにしてもよい。
また、説明取得部216は、なるべく多くの気象要素に対応する説明を選択するようにしてもよい。例えば、説明取得部216は、乖離度の小さい順に所定数(例えば3個、5個等任意の値とすることができる。)の気象要素を選択するようにし、選択した気象要素の中から所定数以下のn個の組み合わせに対する説明が説明DB234に登録されており、かつ、当該組み合わせの気象要素が、説明DB234の範囲が示す条件を満たすかどうかを判定し、条件を満たす最も多数の気象要素の組み合わせに対応する説明を選択するようにすることができる。
【0057】
再び情報配信処理に戻ると、事例抽出部215は、選択した種類の労働災害の事例を読み出す(
図9のステップS26)。本実施形態では、読み出す事例を1つとしているが、ユーザの注意力を散漫にさせない限り、事例抽出部215は、複数の事例を読み出してもよい。
【0058】
そして、KY支援情報送信部217は、上述した気象要素の予測値、選択した労働災害の事例、及び選択した気象要素の説明を合わせたKY支援情報をユーザ端末10に送信し(ステップS27)、一連の情報配信処理を終了する。KY支援情報送信部217は、例えば、電子メール、ショートメール、SNSを利用したメッセージ、スマートフォンに対するプッシュ通知などにより、KY支援情報をユーザ端末10に送信することができる。
【0059】
その結果、ユーザ端末10の画面には、例えば次のようなKY支援情報が表示される。
「今日の現場付近の天気:
気圧の谷や湿った空気の影響で、多少雲が広がるものの、晴れ間があるでしょう。
危険度の高い労働災害:
今日は、最高気温が15度前後の予想です。ここ数日より気温が高まるため、気温変化に体がついていけず、自律神経のバランスが乱れそうです。注意力が散漫になり、物損事故を起こしやすくなるかもしれません。
過去の類似天候時の労働災害事例:
トラックを後進しながら駐車する際に、後方フェンスにぶつかった。」
【0060】
上述したとおり、本実施形態では、気象要素の予測値に基づいて労働災害の事例を提示する。同様な気象要素における過去の労働災害の事例を出力することで、現場において、莫大な過去の災害事例の中から特に参照すべき事例を参照することができる。したがって、現場において危険の実感を持つことが可能となり、危険予知活動をより効果的に進めることができる。
【0061】
また、本実施形態では、提示された事例に対応する気象要素に関する説明(例えば生気象学の観点からのコメント)をも提示する。なぜ気象要素が労働災害に結びつくかを例えば生気象の観点から説明することにより、気象要素と労働災害との結びつきに納得感が得られる。
【0062】
また、本実施形態では、考慮すべき気象要素に気象要素の時間変化を含めている。例えば、同じ気温や気圧であっても、その変化の大きさに応じて、作業者の身体の馴化や、身体・精神ひいては行動への影響力の大きさは変わる。したがって、気象要素の時間差を考慮することで労働災害の危険度を適切に評価することができる。
【0063】
また、本実施形態では、労働災害の危険度の評価に当たっては、労働災害の種類と気象要素との間の相関分析などの統計解析を行い、解析結果として得られる評価モデル(例えば分布)及び気象要素の予測値に基づき、労働災害の危険度を評価している。労働災害の要因となり得る気象要素は多岐にわたるところ、特定の種類の労働災害に対する気象要素ごとの分布と予測値とを比較することで、労働災害の危険度を適切に評価することができる。
【0064】
以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。
例えば、本実施形態では、工事現場における危険予知活動を支援することを想定していたが、これに限らず、工場などの生産現場における危険予知活動を支援する場合に適用することも可能である。また、学校において登下校時における危険を予め知らせる活動として生徒に危険を通知するようにすることもできる。さらに、ショッピングセンターなどのサービス施設において、従業員向けに危険予知活動を行うことの支援を行うことも可能であり、来訪された顧客に対して危険を予め通知する活動として利用することもできる。
また、本実施形態では、KY支援情報には、気象要素の予測値、選択した労働災害の事例、及び選択した気象要素の説明が含まれるものとしたが、選択した労働災害の事例のみが含まれるようにしてもよいし、事例と気象要素の予測値との2つが含まれるようにしてもよいし、事例と説明との2つが含まれるようにしてもよい。
また、本実施形態では、危険予知の支援は、KY支援情報をユーザ端末10に一度送信するまでの処理としたが、例えば、ユーザ端末10からユーザがKY支援情報を確認したことの返信を受信するようにし、KY支援情報送信部217は、所定時間内にユーザ端末10から返信を受信しない場合には、同一の方法または異なる方法で、KY支援情報を再送するようにしてもよい。
また、本実施形態では、KY支援情報は文字列により表現される文章であるものとしたが、これに限らず、グラフや図表を用いたグラフィック情報であってよい。例えば、天気を表すマークを表示すること、危険度の高い労働災害を表すピクトグラムを表示すること、1つまたは複数の労働災害の危険度を示すグラフを表示すること、特徴的な気象条件を表すイラストやグラフ、天気図などを表示すること、労働災害の状況を示すイラストを表示することの少なくともいずれかをKY支援情報に含めることができる。
また、本実施形態では、選択要素に対応する説明が説明DB234に登録されていない場合には、選択要素を変えて説明を検索するものとしたが(
図12参照)、選択要素に対応する説明が説明DB234に登録されていない場合に、その旨を報知して、オペレータから説明の入力を受け付け、受け付けた説明を説明DB234に登録するようにしてもよい。
また、KY支援情報に含まれる労働災害の種類に関して、ユーザによる危険予知活動として決定した危険を回避するための行動(対策)の入力をユーザ端末10にするようにし、ユーザ端末10から当該対策を危険予知活動支援システム20に送信し、危険予知活動支援システム20が当該対策を蓄積する対策蓄積部を備えるようにしてもよい。
また、危険予知活動支援システム20は、KY支援情報を送信する前に、ユーザによる危険予知活動として決定した危険を回避するための行動(対策)をユーザ端末10から受信するようにし、当該対策には、回避しようとする労働災害の種類を付帯させるようにし、危険予知活動支援システム20は、
図9のステップS23で計算した危険度の高い順に所定数の労働災害の種類を選択し、選択した種類に対する対策をユーザ端末10から受信したか否かにより、現場において危険性の高い労働災害に対する対策が検討されたか否かを判定する判定部を備えるようにすることができる。この場合、判定部が、当該現場において危険性の高い労働災害に対する対策が検討されていないと判定した場合に、KY支援情報送信部217は、その旨をユーザ端末10に通知して、危険予知活動に対する注意喚起を行うようにしてもよい。
【符号の説明】
【0065】
10 ユーザ端末
20 危険予知活動(KY)支援システム
30 気象システム
40 安全システム
212 予測モデル作成部
214 評価値算出部
215 事例抽出部
216 説明取得部
231 事例データベース(DB)
232 気象実績データベース(DB)
233 評価モデル記憶部
234 説明データベース(DB)
【手続補正書】
【提出日】2023-05-19
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
気温、気圧、風速、湿度、日照時間、体感気温、不快指数のうち少なくとも1つ以上の気象要素に関する所定の場所における予測情報を、各気象要素と各種類の労働災害の発生との関係を示す統計モデルによって示される、特定種類の労働災害の発生時の前記気象要素の分布と比較して、予測される気象要素の下で当該種類の労働災害が生じる蓋然性を示す指標である危険度を評価する評価部と、
前記危険度の大きい順に前記気象要素を少なくとも1つ抽出し、前記気象要素及び前記気象要素の生体に対する影響を説明した説明情報を対応付けて記憶した説明データベースから、抽出された前記気象要素に対応付けられた前記説明情報を読み出す説明取得部と、
読みだされた前記説明情報及び前記予測情報を出力する出力部と、
を具備する危険予知活動支援システム。
【請求項2】
前記統計モデルが、気象要素と労働災害との関係をニューラルネットワークに学習させることで得られた評価モデルを用いて、各気象要素の下で特定種類の労働災害が発生する可能性を予測する、
請求項1に記載の危険予知活動支援システム。
【請求項3】
ユーザによる危険予知活動として決定した危険を回避するための対策の入力をユーザ端末に促し、前記ユーザ端末から当該対策を受信すると当該対策を蓄積する対策蓄積部を更に備える、
請求項1に記載の危険予知活動支援システム。
【請求項4】
コンピュータが、
気温、気圧、風速、湿度、日照時間、体感気温、不快指数のうち少なくとも1つ以上の気象要素に関する所定の場所における予測情報を、各気象要素と各種類の労働災害の発生との関係を示す統計モデルによって示される、特定種類の労働災害の発生時の前記気象要素の分布と比較して、予測される気象要素の下で当該種類の労働災害が生じる蓋然性を示す指標である危険度を評価するステップと、
前記危険度の大きい順に前記気象要素を少なくとも1つ抽出し、前記気象要素及び前記気象要素の生体に対する影響を説明した説明情報を対応付けて記憶した説明データベースから、抽出された前記気象要素に対応付けられた前記説明情報を読み出すステップと、
読みだされた前記説明情報及び前記予測情報を出力するステップと、
を実行する危険予知活動支援方法。
【請求項5】
コンピュータに対して、
気温、気圧、風速、湿度、日照時間、体感気温、不快指数のうち少なくとも1つ以上の気象要素に関する所定の場所における予測情報を、各気象要素と各種類の労働災害の発生との関係を示す統計モデルによって示される、特定種類の労働災害の発生時の前記気象要素の分布と比較して、予測される気象要素の下で当該種類の労働災害が生じる蓋然性を示す指標である危険度を評価するステップと、
前記危険度の大きい順に前記気象要素を少なくとも1つ抽出し、前記気象要素及び前記気象要素の生体に対する影響を説明した説明情報を対応付けて記憶した説明データベースから、抽出された前記気象要素に対応付けられた前記説明情報を読み出すステップと、
読みだされた前記説明情報及び前記予測情報を出力するステップと、
を実行させるためのプログラム。