(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023085350
(43)【公開日】2023-06-20
(54)【発明の名称】経頭蓋超音波治療及び撮像手順を行うためのシステム及び方法
(51)【国際特許分類】
A61N 7/02 20060101AFI20230613BHJP
A61B 17/00 20060101ALI20230613BHJP
A61B 8/14 20060101ALI20230613BHJP
【FI】
A61N7/02
A61B17/00 700
A61B8/14
【審査請求】有
【請求項の数】2
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023042487
(22)【出願日】2023-03-17
(62)【分割の表示】P 2019533646の分割
【原出願日】2017-12-22
(31)【優先権主張番号】62/438,283
(32)【優先日】2016-12-22
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】514125101
【氏名又は名称】サニーブルック リサーチ インスティテュート
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】ハイナイネン、クレルボ
(72)【発明者】
【氏名】ヒューズ、アレク
(72)【発明者】
【氏名】デン、ルル
(72)【発明者】
【氏名】オライリー、メーガン
(57)【要約】 (修正有)
【課題】経頭蓋超音波トランスデューサアレイを使用して経頭蓋診断処置を実行するためのシステム及び方法を提供する。
【解決手段】アレイ素子は、該素子とそれぞれ関連付けられる遠距離場領域が患者の脳内で空間的に重なり合うように位置されて方向付けられる。アレイ素子は頭蓋骨に対して略垂直に向けられてもよく、それにより、脳内への超音波エネルギーの効率的な結合が可能となる。アレイ素子は超音波パルスを生成するように制御され、パルスのタイミングは、超音波エネルギーがアレイ素子の空間的に重なり合う遠距離場内の標的に集束されるように、アレイ素子と立体画像データとの間の位置合わせに基づいて制御される。経頭蓋超音波トランスデューサアレイ素子は、それらのそれぞれの超音波ビームが頭蓋骨内に集束されて脳により発散するように頭蓋骨に対して位置されて方向付けられてもよい。
【選択図】
図1A
【特許請求の範囲】
【請求項1】
診断用又は治療用の経頭蓋超音波処置を行うためのシステムにおいて、
患者の頭部の周囲に配置されるように構成される支持フレームと、
前記支持フレームによって支持される複数の経頭蓋超音波トランスデューサアレイ素子であって、前記複数の経頭蓋超音波トランスデューサアレイ素子が、患者の頭蓋骨を通じて超音波を伝送するために前記支持フレームに対して予め選択された位置及び向きで支持され、それにより、前記支持フレームが患者の頭部の周囲に配置されるときに、前記複数の経頭蓋超音波トランスデューサアレイ素子とそれぞれ関連付けられる遠距離場領域が患者の脳内に位置される遠距離場オーバーラップ領域内で空間的に重なり合う、複数の経頭蓋超音波トランスデューサアレイ素子と、
前記複数の経頭蓋超音波トランスデューサアレイ素子に動作可能に接続される制御・処理ハードウェアであって、前記制御・処理ハードウェアが、
各経頭蓋超音波トランスデューサアレイ素子から超音波パルスを生成するように前記複数の経頭蓋超音波トランスデューサアレイ素子を制御するとともに、超音波エネルギーが前記遠距離場オーバーラップ領域内の前記予め選択された領域に集束されるように、前記複数の経頭蓋超音波トランスデューサアレイ素子の前記予め選択された位置及び向きを患者に関連する立体画像データと空間的に位置合わせする位置合わせデータに基づいて、前記超音波パルスのタイミングを制御する、
ように構成される、制御・処理ハードウェアと、
を備えるシステム。
【請求項2】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨の表面に対して略垂直になるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項1に記載のシステム。
【請求項3】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの10°以内に向けられるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項1に記載のシステム。
【請求項4】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±15°以内に向けられるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項1に記載のシステム。
【請求項5】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±10°以内に向けられるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項1に記載のシステム。
【請求項6】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±5°以内に向けられるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項1に記載のシステム。
【請求項7】
前記複数の経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上がフェイズドトランスデューササブアレイとして設けられる、請求項1から6のいずれか一項に記載のシステム。
【請求項8】
前記制御・処理ハードウェアは、前記支持フレームが患者の頭部の周囲に配置されるときに前記フェイズドトランスデューササブアレイとそれぞれ関連付けられる焦点が患者の頭蓋骨内に位置するように前記フェイズドトランスデューササブアレイを制御するべく構成される、請求項7に記載のシステム。
【請求項9】
前記制御・処理ハードウェアは、前記支持フレームが患者の頭部の周囲に配置されるときに前記フェイズドトランスデューササブアレイによりそれぞれ生成される波面が患者の頭蓋骨の少なくとも一部を通じて伝搬する際に平面であるように前記フェイズドトランスデューササブアレイを制御するべく構成される、請求項7に記載のシステム。
【請求項10】
前記制御・処理ハードウェアは、前記支持フレームが患者の頭部の周囲に配置されるときに前記フェイズドトランスデューササブアレイによりそれぞれ放射される超音波ビームが患者の頭蓋骨内で前記遠距離場オーバーラップ領域内よりも狭くなるように前記フェイズドトランスデューササブアレイを制御するべく構成される、請求項7に記載のシステム。
【請求項11】
前記複数の経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上が単一素子超音波トランスデューサである、請求項1から6のいずれか一項に記載のシステム。
【請求項12】
前記単一素子超音波トランスデューサは、前記支持フレームが患者の頭部の周囲に位置されるときに前記単一素子超音波トランスデューサとそれぞれ関連付けられる焦点が患者の頭蓋骨内に位置するように、前記予め選択された位置及び向きで支持される、請求項11に記載のシステム。
【請求項13】
前記単一素子超音波トランスデューサは、前記支持フレームが患者の頭部の周囲に配置されるときに前記単一素子超音波トランスデューサによりそれぞれ生成される波面が患者の頭蓋骨の少なくとも一部を通じて伝搬する際に平面であるように前記予め選択された位置及び向きで支持される、請求項11に記載のシステム。
【請求項14】
前記単一素子超音波トランスデューサは、前記支持フレームが患者の頭部の周囲に配置されるときに前記単一素子トランスデューサによりそれぞれ放射される超音波ビームが患者の頭蓋骨内で前記遠距離場オーバーラップ領域内よりも狭くなるように前記予め選択された位置及び向きで支持される、請求項11に記載のシステム。
【請求項15】
前記単一素子超音波トランスデューサのうちの1つ以上が凹形超音波トランスデューサである、請求項11から14のいずれか一項に記載のシステム。
【請求項16】
前記単一素子超音波トランスデューサのうちの1つ以上が音響レンズを備える、請求項11から14のいずれか一項に記載のシステム。
【請求項17】
前記支持フレームは、患者の頭蓋骨の一部の解剖学的曲率に適合するように構成され、前記支持フレームは、患者と関連付けられる立体画像データに基づいて製造されている、請求項1から16のいずれか一項に記載のシステム。
【請求項18】
前記支持フレームは、経頭蓋超音波トランスデューサアレイ素子の位置及び/又は向きが調整可能であるように構成される、請求項1から17のいずれか一項に記載のシステム。
【請求項19】
前記制御・処理ハードウェアは、前記経頭蓋超音波トランスデューサアレイ素子のうちの少なくとも1つによって放射される前記超音波パルスのタイミングを経頭蓋超音波トランスデューサアレイ素子とそれぞれ関連付けられる局所音速にしたがって調整するように更に構成される、請求項1から17のいずれか一項に記載のシステム。
【請求項20】
所定の経頭蓋超音波トランスデューサアレイ素子と関連付けられる前記局所音速は、前記超音波パルスを生成するように前記複数の経頭蓋超音波トランスデューサアレイ素子を制御する前記ステップの前に、
前記所定の経頭蓋超音波トランスデューサアレイ素子を制御して初期超音波パルスを送出するステップと、
頭蓋骨から反射される超音波エネルギーと関連付けられる信号を検出するステップと、
前記信号を処理してその中の共振スペクトル特徴を特定するステップと、
前記立体画像データに基づいて、頭蓋骨の局所厚さを決定するステップと、
前記立体画像データと前記局所厚さとに基づいて前記局所音速を計算するステップと、
にしたがって決定される、請求項19に記載のシステム。
【請求項21】
前記複数の経頭蓋超音波トランスデューサアレイ素子の第1のサブセットが第1の周波数で動作するように構成され、前記複数の経頭蓋超音波トランスデューサアレイ素子の第2のサブセットが第2の周波数で動作するように構成される、請求項1から20のいずれか一項に記載のシステム。
【請求項22】
少なくとも2つの経頭蓋超音波素子が異なる周波数で動作するように構成される、請求項1から19のいずれか一項に記載のシステム。
【請求項23】
前記経頭蓋超音波トランスデューサアレイ素子の全てが異なる周波数で動作するように構成される、請求項22に記載のシステム。
【請求項24】
前記異なる周波数がmc/2dによって与えられ、cは頭蓋骨内の平均音速であり、dは頭蓋骨の局所厚さであり、mはゼロよりも大きい整数である、請求項22又は23に記載のシステム。
【請求項25】
前記パルスが複数のサイクルを備えるバーストである、請求項1から24のいずれか一項に記載のシステム。
【請求項26】
前記バーストのデューティサイクルが50%以下である、請求項25に記載のシステム。
【請求項27】
前記バーストのデューティサイクルが25%以下である、請求項25に記載のシステム。
【請求項28】
前記バーストのデューティサイクルが10%以下である、請求項25に記載のシステム。
【請求項29】
経頭蓋超音波処置を行うための経頭蓋超音波装置を製造する方法であって、
患者の頭部と関連付けられる立体画像データを取得するステップと、
複数の経頭蓋超音波トランスデューサアレイ素子とそれぞれ関連付けられる遠距離場領域が患者の脳内に位置される遠距離場オーバーラップ領域内で空間的に重なり合うように、前記立体画像データに基づいて、患者の頭蓋骨に対する複数の経頭蓋超音波トランスデューサアレイ素子の位置及び向きを計算するステップと、
複数の経頭蓋超音波トランスデューサアレイ素子が前記位置及び向きにしたがって支持されるように、患者の頭部の周囲に配置されるように構成される支持フレーム上に複数の経頭蓋超音波トランスデューサアレイ素子を支持するステップと、
を含む方法。
【請求項30】
複数の経頭蓋超音波トランスデューサアレイ素子の前記位置及び向きは、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨の表面に対して略垂直になるように計算される、請求項29に記載の方法。
【請求項31】
複数の経頭蓋超音波トランスデューサアレイ素子の前記位置及び向きは、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの10°以内に向けられるように計算される、請求項29に記載の方法。
【請求項32】
複数の経頭蓋超音波トランスデューサアレイ素子の前記位置及び向きは、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±15°以内に向けられるように計算される、請求項29に記載の方法。
【請求項33】
複数の経頭蓋超音波トランスデューサアレイ素子の前記位置及び向きは、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±10°以内に向けられるように計算される、請求項29に記載の方法。
【請求項34】
複数の経頭蓋超音波トランスデューサアレイ素子の前記位置及び向きは、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±5°以内に向けられるように計算される、請求項29に記載の方法。
【請求項35】
前記複数の経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上がフェイズドトランスデューササブアレイとして設けられる、請求項29から34のいずれか一項に記載の方法。
【請求項36】
前記複数の経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上が単一素子超音波トランスデューサである、請求項29から34のいずれか一項に記載の方法。
【請求項37】
複数の経頭蓋超音波トランスデューサアレイ素子の前記位置及び向きは、前記支持フレームが患者の頭部の周囲に配置されるときに前記単一素子超音波トランスデューサとそれぞれ関連付けられる焦点が患者の頭蓋骨内に位置するように計算される、請求項36に記載の方法。
【請求項38】
複数の経頭蓋超音波トランスデューサアレイ素子の前記位置及び向きは、前記支持フレームが患者の頭部の周囲に配置されるときに前記単一素子超音波トランスデューサによりそれぞれ生成される波面が患者の頭蓋骨の少なくとも一部を通じて伝搬する際に平面であるように計算される、請求項36に記載の方法。
【請求項39】
複数の経頭蓋超音波トランスデューサアレイ素子の前記位置及び向きは、前記支持フレームが患者の頭部の周囲に配置されるときに前記単一素子トランスデューサによりそれぞれ放射される超音波ビームが患者の頭蓋骨内で前記遠距離場オーバーラップ領域内よりも狭くなるように計算される、請求項36に記載の方法。
【請求項40】
前記単一素子超音波トランスデューサのうちの1つ以上が凹形超音波トランスデューサである、請求項36から39のいずれか一項に記載の方法。
【請求項41】
前記単一素子超音波トランスデューサのうちの1つ以上が音響レンズを備える、請求項36から39のいずれか一項に記載の方法。
【請求項42】
前記支持フレームは、前記支持フレームが患者の頭蓋骨の一部の解剖学的曲率に適合するように、患者と関連付けられる前記立体画像データに基づいて製造される、請求項29から41のいずれか一項に記載の方法。
【請求項43】
前記支持フレームは、前記経頭蓋超音波トランスデューサアレイ素子が前記支持フレームに対して調整可能であるように構成され、前記複数の経頭蓋超音波トランスデューサアレイ素子を前記支持フレーム上に支持する前記ステップは、計算された位置及び/又は向きにしたがって前記経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上を調整することを含む、請求項29から42のいずれか一項に記載の方法。
【請求項44】
経頭蓋超音波処置を行うための方法において、
患者の頭部の周囲に配置されるように構成される支持フレームを用意するステップであって、前記支持フレームがその上に支持される複数の経頭蓋超音波トランスデューサアレイ素子を備え、前記複数の経頭蓋超音波トランスデューサアレイ素子が、患者の頭蓋骨を通じて超音波を伝送するために前記支持フレームに対して予め選択された位置及び向きで支持され、それにより、前記複数の経頭蓋超音波トランスデューサアレイ素子とそれぞれ関連付けられる遠距離場領域が患者の脳内に位置される遠距離場オーバーラップ領域内で空間的に重なり合う、ステップと、
各経頭蓋超音波トランスデューサアレイ素子から超音波パルスを生成するように前記複数の経頭蓋超音波トランスデューサアレイ素子を制御するとともに、超音波エネルギーが前記遠距離場オーバーラップ領域内の予め選択された領域に集束されるように、前記複数の経頭蓋超音波トランスデューサアレイ素子の前記予め選択された位置及び向きを患者に関連する立体画像データと空間的に位置合わせする位置合わせデータに基づいて、前記超音波パルスのタイミングを制御するステップと、
を含む方法。
【請求項45】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨の表面に対して略垂直になるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項44に記載の方法。
【請求項46】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの10°以内に向けられるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項44に記載の方法。
【請求項47】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±15°以内に向けられるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項44に記載の方法。
【請求項48】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±10°以内に向けられるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項44に記載の方法。
【請求項49】
前記複数の経頭蓋超音波トランスデューサアレイ素子は、前記支持フレームが患者の頭部の周囲に配置されるときに各経頭蓋超音波トランスデューサアレイ素子のそれぞれのビーム軸が患者の頭蓋骨に関連するそれぞれの局所表面法線ベクトルの±5°以内に向けられるように、前記支持フレームに対して前記予め選択された位置及び向きで支持される、請求項44に記載の方法。
【請求項50】
前記複数の経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上がフェイズドトランスデューササブアレイとして設けられる、請求項44から49のいずれか一項に記載の方法。
【請求項51】
前記フェイズドトランスデューササブアレイは、前記支持フレームが患者の頭部の周囲に配置されるときに前記フェイズドトランスデューササブアレイとそれぞれ関連付けられる焦点が患者の頭蓋骨内に位置するように制御される、請求項50に記載の方法。
【請求項52】
前記フェイズドトランスデューササブアレイは、前記支持フレームが患者の頭部の周囲に配置されるときに前記フェイズドトランスデューササブアレイによりそれぞれ生成される波面が患者の頭蓋骨の少なくとも一部を通じて伝搬する際に平面であるように制御される、請求項50に記載の方法。
【請求項53】
前記フェイズドトランスデューササブアレイは、前記支持フレームが患者の頭部の周囲に配置されるときに前記フェイズドトランスデューササブアレイによりそれぞれ放射される超音波ビームが患者の頭蓋骨内で前記遠距離場オーバーラップ領域内よりも狭くなるように制御される、請求項50に記載の方法。
【請求項54】
前記複数の経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上が単一素子超音波トランスデューサである、請求項44から49のいずれか一項に記載の方法。
【請求項55】
前記単一素子超音波トランスデューサは、前記支持フレームが患者の頭部の周囲に位置されるときに前記単一素子超音波トランスデューサとそれぞれ関連付けられる焦点が患者の頭蓋骨内に位置するように、前記予め選択された位置及び向きで支持される、請求項54に記載の方法。
【請求項56】
前記単一素子超音波トランスデューサは、前記支持フレームが患者の頭部の周囲に配置されるときに前記単一素子超音波トランスデューサによりそれぞれ生成される波面が患者の頭蓋骨の少なくとも一部を通じて伝搬する際に平面であるように前記予め選択された位置及び向きで支持される、請求項54に記載の方法。
【請求項57】
前記単一素子超音波トランスデューサは、前記支持フレームが患者の頭部の周囲に配置されるときに前記単一素子トランスデューサによりそれぞれ放射される超音波ビームが患者の頭蓋骨内で前記遠距離場オーバーラップ領域内よりも狭くなるように前記予め選択された位置及び向きで支持される、請求項54に記載の方法。
【請求項58】
前記支持フレームが患者の頭蓋骨の一部の解剖学的曲率に適合するように患者と関連付けられる立体画像データに基づいて前記支持フレームを製造するステップを更に含む、請求項44から57のいずれか一項に記載の方法。
【請求項59】
前記経頭蓋超音波トランスデューサアレイ素子のうちの少なくとも1つによって放射される前記超音波パルスのタイミングを経頭蓋超音波トランスデューサアレイ素子とそれぞれ関連付けられる局所音速にしたがって調整するステップを更に含む、請求項44から58のいずれか一項に記載の方法。
【請求項60】
所定の経頭蓋超音波トランスデューサアレイ素子と関連付けられる前記局所音速は、前記超音波パルスを生成するように前記複数の経頭蓋超音波トランスデューサアレイ素子を制御する前記ステップの前に、
前記所定の経頭蓋超音波トランスデューサアレイ素子を制御して初期超音波パルスを送出するステップと、
頭蓋骨から反射される超音波エネルギーと関連付けられる信号を検出するステップと、
前記信号を処理してその中の共振スペクトル特徴を特定するステップと、
前記立体画像データに基づいて、頭蓋骨の局所厚さを決定するステップと、
前記立体画像データと前記局所厚さとに基づいて前記局所音速を計算するステップと、
にしたがって決定される、請求項59に記載の方法。
【請求項61】
前記複数の経頭蓋超音波トランスデューサアレイ素子の第1のサブセットが第1の周波数で動作するように構成され、前記複数の経頭蓋超音波トランスデューサアレイ素子の第2のサブセットが第2の周波数で動作するように構成される、請求項44から60のいずれか一項に記載の方法。
【請求項62】
少なくとも2つの経頭蓋超音波素子が異なる周波数で動作するように構成される、請求項44から60のいずれか一項に記載の方法。
【請求項63】
前記経頭蓋超音波トランスデューサアレイ素子の全てが異なる周波数で動作するように構成される、請求項62に記載の方法。
【請求項64】
前記異なる周波数がmc/2dによって与えられ、cは頭蓋骨内の平均音速であり、dは頭蓋骨の局所厚さであり、mはゼロよりも大きい整数である、請求項61又は62に記載の方法。
【請求項65】
前記パルスが複数のサイクルを備えるバーストである、請求項44から64のいずれか一項に記載の方法。
【請求項66】
前記バーストのデューティサイクルが50%以下である、請求項65に記載の方法。
【請求項67】
前記バーストのデューティサイクルが25%以下である、請求項65に記載の方法。
【請求項68】
前記バーストのデューティサイクルが10%以下である、請求項65に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願との相互参照
本出願は、「経頭蓋超音波治療及び撮像手順を行うためのシステム及び方法」と題されて2016年12月22日に出願された米国仮出願第62/438,283号の優先権を主張し、その全内容は参照により本願に組み入れられる。
【0002】
本開示は超音波に基づく治療及び撮像に関する。より具体的には、本開示は経頭蓋超音波システム及び方法に関する。
【背景技術】
【0003】
無傷の頭蓋骨を通して脳に集束超音波を適用することは、今日の臨床的実施に至るまでの長い歴史を有する。1980年に単一のトランスデューサを使用して経頭蓋的に動物脳組織の切除に最初に成功して以来、一千を超える素子から成る半球フェイズドアレイを使用する本態性振戦の処置のための磁気共鳴(MR)ガイド集束超音波の多施設臨床試験に至る今日まで、頭蓋骨収差補正、定在波減少、頭蓋骨加熱、及び、二周波血液脳関門破綻などのこれまでの課題を克服するべく、新たなフェイズドアレイ設計が概念化されてきた。
【0004】
経頭蓋集束超音波における現在の臨床研究の殆どは、熱切除を引き起こすための連続波超音波を含む。初期の研究は、血液脳関門破綻のためにパルス超音波を使用できることを示した。これは、アルツハイマー病を治療して転移性脳腫瘍へ免疫細胞を送達するための薬物送達と関連して血液脳関門破綻を伴う研究につながってきた。これらの用途では、頭蓋骨加熱は低デューティサイクルに起因して最小限の関心事であり、厳密な集束及びエネルギー供給が最も重要である。最近の研究は、マイクロバブルと併せて使用すると低強度のパルス超音波で機械的な組織破壊が起こり得ることさえ示してきた。
【0005】
しかしながら、これらの成功にもかかわらず、頭蓋超音波の実施は頭蓋骨の音響特性に起因して課題に直面してきた。例えば、治療目的、診断目的、又は、モニタリング目的のために人の頭蓋骨を通じて超音波を伝達するときに直面される1つの問題は、周囲の軟組織と比べて高い頭蓋骨の音響インピーダンスである。頭蓋骨と周囲の軟組織との間のこの音響インピーダンス不整合は、両方の頭蓋骨表面でかなりの量の音響エネルギーを反射させる。
【0006】
頭蓋骨を通じた最大透過率は、超音波ビームが垂直入射で頭蓋骨に入るときに生じ、入射角が増大されるにつれて透過率が急激に減少し、それにより、縦波は約25°~30°の角度を超えると頭蓋骨を通じて透過できない。入射角が大きいと、入射縦波が剪断波に変換され、また、これらの剪断波はより大きな角度で骨を通じて伝搬することができる。しかしながら、剪断波は骨の縦波よりもはるかに速く減衰される。したがって、偏心標的超音波処理のために頭蓋骨の全表面積を利用することは困難である。
【発明の概要】
【0007】
経頭蓋超音波トランスデューサアレイを使用して経頭蓋診断処置を実行するためのシステム及び方法が提供される。アレイ素子は、該素子とそれぞれ関連付けられる遠距離場領域が患者の脳内で空間的に重なり合う(オーバーラップする)ように位置されて方向付けられる。アレイ素子は頭蓋骨に対して略垂直に向けられてもよく、それにより、脳内への超音波エネルギーの効率的な結合が可能となる。アレイ素子は超音波パルスを生成するように制御され、パルスのタイミングは、超音波エネルギーがアレイ素子の空間的に重なり合う(オーバーラップする)遠距離場内の標的に集束されるように、アレイ素子と立体画像データとの間の位置合わせに基づいて制御される。経頭蓋超音波トランスデューサアレイ素子は、それらのそれぞれの超音波ビームが頭蓋骨内に集束されて脳により発散するように頭蓋骨に対して位置されて方向付けられてもよい。
【0008】
したがって、第1の態様では、診断用又は治療用の経頭蓋超音波処置を行うためのシステムが提供され、このシステムは、
患者の頭部の周囲に配置されるように構成される支持フレームと、
前記支持フレームによって支持される複数の経頭蓋超音波トランスデューサアレイ素子であって、前記複数の経頭蓋超音波トランスデューサアレイ素子が、患者の頭蓋骨を通じて超音波を伝送するために前記支持フレームに対して予め選択された位置及び向きで支持され、それにより、前記支持フレームが患者の頭部の周囲に配置されるときに、前記複数の経頭蓋超音波トランスデューサアレイ素子とそれぞれ関連付けられる遠距離場領域が患者の脳内に位置される遠距離場オーバーラップ領域内で空間的に重なり合う、複数の経頭蓋超音波トランスデューサアレイ素子と、
前記複数の経頭蓋超音波トランスデューサアレイ素子に動作可能に接続される制御・処理ハードウェアであって、前記制御・処理ハードウェアが、
各経頭蓋超音波トランスデューサアレイ素子から超音波パルスを生成するように前記複数の経頭蓋超音波トランスデューサアレイ素子を制御するとともに、超音波エネルギーが前記遠距離場オーバーラップ領域内の前記予め選択された領域に集束されるように、前記複数の経頭蓋超音波トランスデューサアレイ素子の前記予め選択された位置及び向きを患者に関連する立体画像データと空間的に位置合わせする位置合わせデータに基づいて、前記超音波パルスのタイミングを制御する、
ように構成される、制御・処理ハードウェアと、
を備える。
【0009】
別の態様では、経頭蓋超音波処置を行うための経頭蓋超音波装置を製造する方法が提供され、該方法は、
患者の頭部と関連付けられる立体画像データを取得するステップと、
前記複数の経頭蓋超音波トランスデューサアレイ素子とそれぞれ関連付けられる遠距離場領域が患者の脳内に位置される遠距離場オーバーラップ領域内で空間的に重なり合うように、立体画像データに基づいて、患者の頭蓋骨に対する複数の経頭蓋超音波トランスデューサアレイ素子の位置及び向きを計算するステップと、
前記複数の経頭蓋超音波トランスデューサアレイ素子が前記位置及び向きにしたがって支持されるように、患者の頭部の周囲に配置されるように構成される支持フレーム上に複数の経頭蓋超音波トランスデューサアレイ素子を支持するステップと、
を含む。
【0010】
別の態様では、経頭蓋超音波処置を行うための方法が提供され、該方法は、
患者の頭部の周囲に配置されるように構成される支持フレームを用意するステップであって、前記支持フレームがその上に支持される複数の経頭蓋超音波トランスデューサアレイ素子を備え、前記複数の経頭蓋超音波トランスデューサアレイ素子が、患者の頭蓋骨を通じて超音波を伝送するために前記支持フレームに対して予め選択された位置及び向きで支持され、それにより、前記複数の経頭蓋超音波トランスデューサアレイ素子とそれぞれ関連付けられる遠距離場領域が患者の脳内に位置される遠距離場オーバーラップ領域内で空間的に重なり合う、ステップと、
各経頭蓋超音波トランスデューサアレイ素子から超音波パルスを生成するように前記複数の経頭蓋超音波トランスデューサアレイ素子を制御するとともに、超音波エネルギーが遠距離場オーバーラップ領域内の予め選択された領域に集束されるように、前記複数の経頭蓋超音波トランスデューサアレイ素子の予め選択された位置及び向きを患者に関連する立体画像データと空間的に位置合わせする位置合わせデータに基づいて、超音波パルスのタイミングを制御するステップと、
を含む。
【0011】
本開示の機能的及び有利な態様の更なる理解は、以下の詳細な説明及び図面を参照することによって得ることができる。
【0012】
ここで、図面を参照して、実施形態を単なる一例として説明する。
【図面の簡単な説明】
【0013】
【
図1A】経頭蓋超音波トランスデューサアレイ素子が支持フレームによって頭蓋骨に対して支持され、経頭蓋超音波トランスデューサアレイ素子からの超音波ビームが遠距離場で重なり合って(オーバーラップして)焦点を形成しつつ遠距離場で個々に焦点がぼかされるように放射される実施形態の一例を示す。
【
図1B】経頭蓋超音波トランスデューサアレイ素子の焦点が頭蓋骨内にあるように、頭蓋骨に対する経頭蓋超音波トランスデューサアレイ素子の位置決め及び集束を示す実施形態の一例を示す。
【
図1C】遠距離場における複数の経頭蓋超音波トランスデューサアレイ素子からの波面の集束を示す。
【
図2A】経頭蓋集束超音波用途のための患者固有のアレイを設計及び構築するプロセスの一例を示す。
【
図2B】患者固有のヘッドセットを製造する方法の一例を示すフローチャートである。
【
図2C】頭蓋骨に関する正規化された透過及び反射スペクトルをプロットし、頭蓋骨内の音速の局所的決定のために使用され得る共振特徴の存在を示す。
【
図3】経頭蓋診断及び/又は治療処置を実施するためのシステムを示す。
【
図4】音場及び熱場のシミュレーションを実行するときに使用されるパラメータを要約する表である。
【
図5A】頭蓋骨を通じて伝搬した後の集束トランスデューサからの超音波場をプロットしている。
【
図5B】頭蓋骨を通じて伝搬した後の小λ/2平面トランスデューサからの超音波場をプロットしている。
【
図5C】11、18、19、20、21及び57μsで頭蓋骨の内側に集束された単一のトランスデューサから放射された5サイクルパルスの時間波伝搬を示す。
【
図6A】非共形半球のアレイ形態に関する64素子アレイの集束能力の比較を示す。
【
図6B】平面アレイ素子の共形配置のアレイ形態に関する64素子アレイの集束能力の比較を示す。
【
図6C】集束トランスデューサ素子の共形配置のアレイ形態に関する64素子アレイの集束能力の比較を示す。
【
図6D】非共形半球(実線)、平面アレイ素子の共形配置(短い破線)、及び、集束トランスデューサ素子の共形配置(長い破線)の異なるアレイ形態に関する前後(AP)方向における焦点を通じた圧力をプロットしている。
【
図6E】非共形半球(実線)、平面アレイ素子の共形配置(短い破線)、及び、集束トランスデューサ素子の共形配置(長い破線)の異なるアレイ形態に関するトランスデューサ素子の数に対する(前後(AP)方向における焦点を通じた)圧力の依存性をプロットしている。
【
図6F】非共形半球(実線)、平面アレイ素子の共形配置(短い破線)、及び、集束トランスデューサ素子の共形配置(長い破線)の異なるアレイ形態に関するトランスデューサ素子の数に対する(前後(AP)方向における焦点を通じた)-3dB体積の依存性をプロットしている。
【
図8A】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図8B】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図8C】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図8D】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図8E】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図8F】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図8G】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図8H】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図8I】0mm、20mm及び40mmの操向位置に関する軸方向面、冠状面、及び、矢状面における音圧マップをプロットする。
【
図9A】幾何学的焦点における軸方向面、冠状面、及び、矢状面に沿う焦点を通る位置に関して、フェイズドアレイをAP方向、LR方向、及び、IS方向に電子的に操向させる影響の実証をプロットしており、幾何学的焦点からLR方向に20mm及び40mm操向する場合を示す。
【
図9B】幾何学的焦点における軸方向面、冠状面、及び、矢状面に沿う焦点を通る位置に関して、フェイズドアレイをAP方向、LR方向、及び、IS方向に電子的に操向させる影響の実証をプロットしており、幾何学的焦点からAP方向に20、40、及び、60mm操向する場合を示す。
【
図9C】幾何学的焦点における軸方向面、冠状面、及び、矢状面に沿う焦点を通る位置に関して、フェイズドアレイをAP方向、LR方向、及び、IS方向に電子的に操向させる影響の実証をプロットしており、幾何学的焦点からIS方向に20mm及び40mm操向する場合を示す。
【
図10A】500kHzにおける頭蓋骨横断集束の質を示す-3dB等値面をプロットしている。
【
図10B】500kHzにおける頭蓋骨横断集束の質を示す-6dB等値面をプロットしている。
【
図11A】シミュレーションで使用されるアレイ形態を説明する表である。
【
図11B】自然焦点の60mm前方の頭蓋内遠距離場集束位置における経頭蓋超音波トランスデューサ素子の様々な集束深さの影響を説明する表である。
【
図12A】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じた-3dBビーム幅をプロットしている。
【
図12B】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じた-3dBビーム幅をプロットしている。
【
図12C】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じた-3dBビーム幅をプロットしている。
【
図12D】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じたピーク圧力をプロットしている。
【
図12E】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じたピーク圧力をプロットしている。
【
図12F】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じたピーク圧力をプロットしている。
【
図12G】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じたピークサイドローブ比をプロットしている。
【
図12H】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じたピークサイドローブ比をプロットしている。
【
図12I】64、128、256、及び、512個の全アレイ素子を有するアレイに関して、アレイ形態に応じたピークサイドローブ比をプロットしている。-3dBのビーム幅は、横方向(ボトムライン)と軸方向(トップライン)のビーム幅に関してプロットされている。
【
図13】アレイの集束の質に対するより長いパルス長の影響をプロットしている。
【
図14】二周波励起からのシミュレーション波形をプロットしている。波形(a)及び(b)は、250kHz及び500kHzのトランスデューサからそれぞれ放射され、波形(c)は焦点において結果として得られる受信パルスを示す。挿入図(d)は焦点における時間平均圧力をプロットし、挿入図(e)は、励起周波数に対応する2つのピークを示すフーリエ変換をプロットしている。
【
図15】可変パルス長に関する、500kHz、100Wで超音波処理したときの頭蓋骨内の最大温度上昇をプロットしている。
【
図16A】多周波超音波照射のシミュレーションの結果をプロットしており、可変周波数(実線)を使用した場合における単一周波数(破線)と比べた超音波透過率の結果として得られる増大(実線)を示す。
【
図16B】多周波超音波照射のシミュレーションの結果をプロットしており、頭部内の異なる操向位置における透過強度の変化率を示す。
【
図17】75、50、25、及び、10%のデューティサイクルに関する集束の質に対するデューティサイクルの影響を示す。図示されているのは、脳の中心の60mm前方を操向しているときの、焦点における受信された時間音響信号と共に、-3dBの等値面(濃い灰色)及び-6dBの等値面(薄い灰色)である。
【発明を実施するための形態】
【0014】
以下に論じられる詳細な記述に関連して本開示の様々な実施形態及び態様について説明する。以下の説明及び図面は、本開示を例示するものであり、本開示を限定するものとして解釈されるべきでない。本開示の様々な実施形態の完全な理解をもたらすために、多数の具体的な詳細が説明される。しかしながら、ある場合には、本開示の実施形態の簡潔な説明を与えるために、周知の又は従来の詳細については説明されない。
【0015】
本明細書中で使用される用語「備える」及び「備えている」は、包括的であり、非制約的であるとともに、排他的でないと解釈されるべきである。具体的には、本明細書及び特許請求の範囲で使用される場合、用語「備える」及び「備えている」及びそれらの変形は、指定された特徴、ステップ、又は、構成要素が含まれることを意味する。これらの用語は、他の特徴、ステップ、又は、構成要素の存在を排除するように解釈されるべきでない。
【0016】
本明細書中で使用される用語「典型的な」は、「例、実例、又は、例証としての役割を果たすこと」を意味し、本明細書中に開示される他の形態よりも好ましい又は有利であると解釈されるべきでない。
【0017】
本明細書中で使用される用語「約」及び「略」は、特性、パラメータ、及び、寸法の変化など、値の範囲の上限及び下限に存在し得る変化を網羅することを意味する。別段に定められなければ、用語「約」及び「略」は、±25パーセント以下を意味する。
【0018】
別段に定められなければ、任意の特定の範囲又はグループが、範囲又はグループのありとあらゆる要素、並びに、その中に包含されるありとあらゆる想定し得る部分範囲又は部分グループ、及び、その中の任意の部分範囲又は部分グループに関しても同様であるが、それらを指す省略法のようなものであることが理解されるべきである。別段に定められなければ、本開示は、ありとあらゆる特定の要素及び部分範囲又は部分グループの組み合わせに関するものであり、それらを明示的に組み入れる。
【0019】
本明細書中で使用される用語「~程度の」は、量又はパラメータと併せて使用される際、述べられた量又はパラメータの約10分の1から10倍に及ぶ範囲を指す。
【0020】
前述したように、経頭蓋超音波アレイは、頭蓋の高い音響インピーダンスに起因して、斜めの角度での縦波の伝送を妨げて脳の中央領域内の標的に治療手技を限定する偏心標的超音波処理(例えば、脳の中心から2~4cmを越えて離れている標的)を達成するという課題に直面してきた。本開示は、頭蓋を通じた高レベルのビーム操向を達成するように経頭蓋超音波トランスデューサアレイが構成されるシステム及び方法を提供することによってこの問題に対処する。これは、各超音波ビームの遠距離場が脳内に位置するように頭蓋骨に対して経頭蓋超音波トランスデューサアレイ素子を位置決めするとともに、パルスが所望の標的で同相に到達するように各トランスデューサアレイ素子により放射される超音波パルスのタイミングを制御することによって達成される。
【0021】
ここで
図1Aを参照すると、経頭蓋超音波トランスデューサアレイの例示的な例が断面図で示される。経頭蓋超音波トランスデューサアレイは、フレーム(図示せず)によって被術者の頭部に対して支持される複数の経頭蓋超音波トランスデューサアレイ素子100を含む。各経頭蓋超音波トランスデューサアレイ素子は、破線で示されるように、それぞれの集束超音波ビームを放射する。
図1Aの図は例示目的で3つのトランスデューサのみを示すが、経頭蓋デバイスは、以下で更に説明されるように、適切な集束を達成するために4つ以上の多くの要素を含むことが好ましい。
【0022】
図1Aに示される実施形態の例に例示されるように、各経頭蓋超音波トランスデューサアレイ素子100は、そのそれぞれの焦点が頭蓋骨内にあるように位置される。これが
図1Bに更に明確に示されており、
図1Bは、頭蓋骨10内の焦点領域120への単一の経頭蓋超音波トランスデューサアレイ素子100(能動型トランスデューサ部102及び随意的な裏当て104を備えるものとして示される)の集束を示す。超音波ビームを頭蓋骨内に集束させることによって、各ビームの近距離場領域130が頭蓋骨内又はその近くで位置特定され、その結果、脳内に延在するビームの部分は遠距離場内にある。これが
図1Aに示されており、この場合、経頭蓋超音波トランスデューサアレイ素子100は、それらのそれぞれの超音波ビームが脳内で発散して(円錐145で示される)遠距離場内を伝搬するように集束される。他の形態の経頭蓋超音波とは対照的に、経頭蓋超音波トランスデューサアレイ素子の個々の焦点は空間的に分離され、経頭蓋超音波トランスデューサアレイ素子の超音波ビームはそれらのそれぞれの遠距離場において重なり合う(オーバーラップする)。
【0023】
図1A及び
図1Bに示されるように、経頭蓋超音波トランスデューサアレイ素子100は、それらのそれぞれの超音波ビームが垂直入射又は略垂直入射(例えば±15°以内)で頭蓋骨に入るように方向付けられてもよい。他の実装例において、超音波ビームは、法線入射の±10°以内、±5°以内、又は、±2°以内で頭蓋骨へと向けられてもよい。このように経頭蓋超音波トランスデューサアレイ素子100を方向付けてそれらの超音波ビームを頭蓋骨内又は頭蓋骨付近に集束させることによって、それぞれの超音波ビームは、頭蓋骨内を平面波として伝搬し、それにより、骨と組織とに起因する、及び骨と水とに起因するインピーダンス不整合による損失を低減して脳に入る。
【0024】
更に、経頭蓋超音波トランスデューサアレイ素子100を垂直入射で又は垂直入射付近で方向付けて超音波ビームを頭蓋骨内又は頭蓋骨付近に集束させることによって、各超音波ビームは、頭蓋骨の小さい領域を探査し、したがって、局所的なインピーダンス不整合に起因する散乱及び音速の局所的な変化に起因する伝搬効果を引き起こし得る頭蓋骨内の不均一性の影響を受け難い。言い換えると、頭蓋骨密度及び他の特性の変動が少ない頭蓋骨の小領域を通じた各超音波ビームの伝搬は、波伝搬に対する骨誘導効果の改善された補正を可能にする。
【0025】
ここで
図1Cを参照すると、各経頭蓋超音波トランスデューサアレイ素子100によって放射されるパルス(及び/又は位相)のタイミングは、脳内に存在する標的領域で又は標的領域内で強め合う干渉を生成するように制御される。言い換えると、頭部の周りで十分な数の経頭蓋超音波トランスデューサアレイ素子100を支持することにより、経頭蓋超音波トランスデューサアレイ素子100からのエネルギーは、経頭蓋超音波トランスデューサアレイ素子100により生成される超音波の位相を調整することによって或いは短いバーストが経頭蓋超音波トランスデューサアレイ素子100により伝達される場合にタイミングを調整することによって脳内の所望の目標位置へと集束され得る。これが、超音波の短いバーストの場合に
図1Cに示され、この場合、放射されるパルスのタイミングは、それらの波面150A、150B、150Cが焦点160で空間的及び時間的に位置合わせされるように制御される。
【0026】
図1Aに示されるように、各経頭蓋超音波トランスデューサアレイ素子100は、それらの遠距離場領域の全てが脳の少なくとも一部(集束範囲又は集束領域50として示される)内で空間的に重なり合うように方向付けられてもよく、それにより、経頭蓋超音波トランスデューサアレイ素子100からの超音波エネルギーの放射のタイミングの制御(例えば、経頭蓋超音波トランスデューサアレイをフェイズドアレイとして動作させる)によってこの領域内で遠距離場集束を行うことができる。実施形態の幾つかの例において、集束領域50は、遠距離場領域が標的領域で重なり合うが脳内の他の場所で重なり合う必要がないように、既知の又は疑わしい腫瘍などの治療標的又は撮像標的を含むことが分かっている脳の部分内に位置してもよい。
【0027】
図1A及び
図1Cに示される経頭蓋超音波トランスデューサアレイ素子100は固定焦点凹形トランスデューサとして示されるが、経頭蓋超音波トランスデューサアレイ素子100のうちの1つ以上(例えば全て)が以下でサブアレイと称されるフェイズドアレイトランスデューサであってもよい。用語「サブアレイ」は、本明細書中では、経頭蓋超音波トランスデューサアレイの経頭蓋超音波トランスデューサアレイ素子として使用されるフェイズドアレイトランスデューサの素子から経頭蓋超音波トランスデューサアレイのアレイ素子を明確に区別するために使用される。経頭蓋超音波トランスデューサアレイ素子のためのフェイズドサブアレイの使用は、それが経頭蓋超音波トランスデューサアレイ素子の機械的な再配置を必要とすることなく経頭蓋超音波トランスデューサアレイ素子の焦点の選択及び/又は調整を可能にするという点において有益となり得る。
【0028】
以下の実施例に記載されるように、経頭蓋超音波トランスデューサアレイ素子の患者固有の空間的配置の使用は、遠距離場において十分に鋭い焦点を達成するのに効果的となり得る。
図2Aは、経頭蓋超音波トランスデューサアレイ素子を支持するための、及び、随意的には、経頭蓋集束超音波処置を実行するための処置計画の作成のための、患者固有の支持体(足場)を生成するプロセスを概略的に示す。
【0029】
200で示されるように、患者の立体撮像は、患者固有の頭蓋骨プロファイルを決定するために最初に使用される。その後、110で示されるように、この患者固有の頭蓋骨プロファイルを用いて、頭部周囲の経頭蓋超音波トランスデューサアレイ素子の配置を決定する。演算された経頭蓋超音波トランスデューサアレイ素子位置は、その後、素子を保持する構造を用いて素子を配置するために使用され、又は、患者の頭部に適合するように構成される患者固有のフレーム(アレイ支持構造;足場)110を製造する。後述するように、この患者固有のフレームはラピッドプロトタイピングを使用して製造することができ、また、支持体は、経頭蓋超音波トランスデューサアレイ素子を受けて支持するための取り付けインタフェースを含んでもよい。最後に、処置日に、標的位置特定のための典型的な撮像シーケンスの前にアレイが患者に固定され、続いて、コンピュータ支援処置計画及び処置がなされる。
【0030】
患者固有のフレーム110は、経頭蓋超音波トランスデューサアレイ素子100を受けて支持するための複数の取り付けインタフェースを含んでもよい。例えば、取り付けインタフェースは、経頭蓋超音波トランスデューサアレイ素子100が配置される開口部(凹部)として設けられてもよい。経頭蓋超音波トランスデューサアレイ素子100は、例えば取り付け機構を用いる(例えば、患者固有のフレーム110内へと、随意的には予備成形された穴内へと延在する締結具によって)など又は糊などの接着剤といった多種多様な異なる手段にしたがって患者固有のフレーム110に取り付けられてもよい。経頭蓋超音波トランスデューサアレイ素子は、配線を介して又はフレキシブルプリント回路基板を介して電子回路と遠隔的にインタフェース接続することができる。経頭蓋超音波トランスデューサアレイ素子100は、患者固有のフレーム110に対して取り外し可能に取り付けられてもよい。
【0031】
また、患者固有のヘッドセットは、患者固有のフレームの内面に隣接して設けられる結合層を含んでもよい。結合層の外面が経頭蓋超音波トランスデューサアレイ素子100の遠位面と接触してもよく、また、結合層の内面が患者の頭部と接触し、それにより、患者固有のフレームにおけるトランスデューサと患者の頭部との間のエネルギーの結合が容易となる。結合層は、音波の伝搬を容易にして界面での反射を減少させる音響結合層であってもよい。1つの実装例において、結合層は、皮膚に対する結合が達成されるように、トランスデューサ表面と弾性膜との間に液体層を保持する弾性膜を含む。
【0032】
経頭蓋超音波トランスデューサアレイ素子及びそれらのそれぞれの取り付けインタフェースは、所定の経頭蓋超音波トランスデューサアレイ素子(例えばそのそれぞれのハウジング)がそのそれぞれの取り付けインタフェースに独自に適合するように、固有の形状を有してもよい(すなわち、それらがそれぞれキー付きであってもよい)。
【0033】
前述したように、患者固有のフレームは、患者の頭部の少なくとも一部の解剖学的輪郭に適合する。このような共形フレームは、患者の頭部の立体画像データに基づいて製造されてもよい。
図2Bは、患者と関連付けられる立体画像データに基づいて患者固有のフレームを製造するための方法の一例を示す。ステップ210,215では、患者の頭部の立体画像データが取得されて処理され、患者の頭部の一部の解剖学的曲率(例えば、皮膚表面又は骨表面)を特徴付ける表面データが与えられる。立体データは、例えば、これらに限定されないが磁気共鳴(MR)イメージング及びコンピュータ断層撮影(CT)イメージングなどの撮像モダリティを使用して撮像を行うことによって得られてもよい。立体画像データは、既に行われた撮像手順に基づいて得られてもよい。
【0034】
立体画像データは、患者の頭蓋骨の一部の表面を特徴付ける表面データを得るために処理されてセグメント化されてもよい。そのような表面セグメント化は、例えば、Mimics(商標)ソフトウェアプラットフォーム(マテリアライズ、ベルギー)などの画像処理ソフトウェアを使用して行われてもよい。そのようなソフトウェアは、患者の頭部の一部の表面の3Dモデル(表面データ)の作成を可能にする。モデルは、閾値処理、領域成長、及び、手動編集のステップを使用するなど、既知の技法を使用して作成されてもよい。頭蓋骨の皮膚表面の最初の近似を達成するために自動閾値化を実行し、続いて精緻化されたモデルを得るために手動編集が行われてもよい。例えば、PHANTOM(商標)デスクトップハプティックデバイスなどのモデリングソフトウェアプラットフォームを使用するハプティックモデリングが、モデルを更に精緻化するために使用されてもよい。画像処理及び立体画像データのセグメント化の方法の更なる例は、米国特許第8,086,336号に開示される。
【0035】
その後、ステップ220に示されるように、表面データを使用してデジタルモデルを生成し、患者の頭部の周囲におけるトランスデューサ素子の配置を決定する。例えば、適切なソフトウェアプラットフォーム(ソフトウェアパッケージSurfacer(商標)など)を使用して、表面データ点の点群に基づいてモデルを生成してもよい。この情報は、その後、例えばトランスデューサを所望の位置に移動させることができるようにするホルダ内にトランスデューサが位置されるときに、トランスデューサを配置するために使用され得る。ステップ230に示されるように、その後、モデルは、患者の頭部に対する予め選択された位置及び向きで複数の経頭蓋超音波トランスデューサアレイ素子を受けて支持するため及びエネルギーが経頭蓋的に結合されるようにトランスデューサを支持するための複数のトランスデューサ取り付けインタフェースを含むように修正又は精緻化(例えば更新)される。
【0036】
トランスデューサ取り付けインタフェースの位置及び向きは以下のように決定されてもよい。コンピュータシミュレーションを使用して、波の伝搬を計算するとともに、トランスデューサの遠距離場がそこから目標位置に到達できる位置を選択することができる。
【0037】
デジタルモデルは、これらに限定されないが、1つ以上の基準マーカを取り付けるための取り付けインタフェース、患者固有のフレームが着用される(或いはその他の方法で患者の頭部上又は頭部の周囲に配置される)ときに患者の頭部の選択された領域への外科的アクセスを可能にする開口部、基準方向を特定するためのマーカ、及び、外部ハンドルなどの1つ以上の位置決め特徴などの1つ以上の更なる特徴を含むように更に精緻化されてもよい。
【0038】
その後、ステップ240に示されるように、トランスデューサ取り付けインタフェースを含むように更新されるデジタルモデルを使用して、患者固有のフレームを製造する。例えば、患者固有のフレームは、3D印刷を使用してモデルから製造されてもよい。別の例では、モデルを使用して患者固有のフレームを形成するのに適した型を形成してもよく、この型は、その後、患者固有のフレームを製造するために使用されてもよい。
【0039】
患者固有のフレームを製造した後、経頭蓋超音波トランスデューサアレイ素子(又はトランスデューサアレイ素子アセンブリもしくはモジュール)は、ステップ250に示されるように、患者固有のフレームのそれぞれのトランスデューサ取り付けインタフェースに固定(取り付け、付着など)される。
【0040】
術前立体画像データに基づいて診断又は治療処置を実行するために患者固有のヘッドセットを使用するべく、経頭蓋超音波トランスデューサアレイ素子の位置及び方向と立体画像データとの間に関係(すなわち、これらの両方を共通の基準フレーム内で表わすことができるような関係)が構築されてもよい。したがって、ステップ260では、経頭蓋超音波トランスデューサアレイ素子の(デジタルモデルで規定されるような)既知の位置及び向きが立体画像データに対して空間的に位置合わせされ、それにより、立体画像データに対するトランスデューサの位置及び向きを特徴付けるトランスデューサ位置合わせデータが生成される。例えば、そのようなトランスデューサ位置合わせデータは、立体データの基準フレーム内に、経頭蓋超音波トランスデューサアレイ素子の空間座標、及び、それらのそれぞれの向きを特定するベクトルを含んでもよい。他の実装例において、トランスデューサ位置合わせデータは、経頭蓋超音波トランスデューサアレイ素子の位置及び向きを第1の基準フレームから立体画像データの基準フレームに変換するための座標変換を含んでもよい。トランスデューサ位置合わせデータは、立体画像データに対する経頭蓋超音波トランスデューサアレイ素子の位置及び向きの決定を可能にし、それにより、例えば、重なり合う遠距離場領域で患者の頭部内の特定の位置又は領域にエネルギービームを合焦させるための経頭蓋超音波トランスデューサアレイ素子の適した時間及び/又は位相遅延の決定を可能にする。その後、265で示されるように、位置合わせデータ、立体画像データ、及び、経頭蓋超音波トランスデューサアレイ素子の既知の位置及び向きを用いて、処置計画を作成してもよい。
【0041】
他の実施形態では、被術者の頭部の周囲に配置されるフレームを用いて撮像(例えば、MRI、CT、トモシンセシス、又は、X線)を行うことによってフレームと頭部及び脳との間の位置合わせを達成することができ、それにより、フレーム内の目に見える基準マーカを撮像することでトランスデューサ位置を決定できる。
【0042】
実施形態の先の例は、患者の頭部の解剖学的曲率に適合する患者固有のフレームの製造及び使用を伴うが、経頭蓋超音波トランスデューサアレイ素子がどのように支持され得るかの例示的な一例を与えるべくこの実施形態が含まれることが理解され得る。
【0043】
他の実装例によれば、経頭蓋超音波トランスデューサアレイ素子は、患者固有の形状を有さないが経頭蓋超音波トランスデューサアレイ素子が調整可能であるように複数の経頭蓋超音波トランスデューサアレイ素子を支持するべく構成される支持フレームによって支持されてもよい。例えば、経頭蓋超音波トランスデューサアレイ素子は、患者に関連付けられる立体画像データに基づいて計算された位置及び向きに適合する又は近づけるように位置及び向きを調整するべく、支持フレームに対して手動又は自動で調整可能であってもよい。例えば、支持フレームは、経頭蓋超音波トランスデューサアレイ素子の位置及び/又は向きを変えるための1つ以上のモータを含んでもよい。幾つかの実装例において、トランスデューサは、剛性又は可撓性のアーム、ホルダ、バンド、又は、他の適切な固定機構を用いて所定位置に保持されてもよい。
【0044】
実施形態の幾つかの例において、経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上は、患者固有のフレームに対する患者の頭蓋骨の局所空間オフセットの検出を容易にするために、患者の頭蓋骨へ向けてエネルギービームを放射して、頭蓋骨から反射されるエネルギーを検出するように構成されてもよい。その後、検出された空間オフセットを用いて、頭蓋骨に対するトランスデューサの空間的位置合わせを補正し、頭蓋骨内又は頭蓋骨付近で予め選択された集束深さを達成してもよい。
【0045】
幾つかの実装例において、アレイの1つ以上の経頭蓋超音波トランスデューサアレイ素子の周波数は、隣接する頭蓋骨の厚さ及び密度に基づいて決定され(例えば最適化され)てもよい。これらの周波数を組み込むことによって、(例えば、
図6A~
図6Fに示されて以下の実施例に記載されるように)焦点での音響パワーを増大することができ、この結果、従来の臨床半球アレイを使用する場合と比べて性能を向上させることができる。
【0046】
実施形態の1つの例において、頭蓋骨内の局所音速は、例えば、立体画像データに基づいて決定される局所的な頭蓋骨の厚さ及び組成に基づいて及び既知の組織特性を使用して推定され得る。
【0047】
別の実装例において、頭蓋骨内の局所音速は、1つ以上の経頭蓋超音波トランスデューサアレイ素子に関して、超音波の広帯域バーストを送出して反射された超音波を捕捉することによって測定され得る。その後、反射された超音波をスペクトル分析して、局所厚さと音速を決定することができる。或いは、広帯域バーストを使用する代わりに、周波数が適切な周波数範囲にわたるように、それぞれが異なる周波数を有する一連の狭帯域超音波を送出することによってスペクトル測定を行うことができる。そのような広帯域又は一連の狭帯域測定は、頭蓋骨の厚さ共振を特定するために処理され得る音響スペクトルをもたらす。頭蓋骨の厚さは、反射波が入射波と同相になる共振をもたらし、それにより、反射が最小になる。また、スペクトルは、波の位相がずれて最小の透過率を示している場合にもピークを示す。そのような共振特徴の例が
図2Cに示される。骨層の共振周波数は
【数1】
であり、ここで、nが整数=1、2、3、…、c
bが骨内の平均音速、dが頭蓋骨の厚さであるため、これらの共振を用いて、術前(例えば、CT又はMRI)の立体画像データから局所的な頭蓋骨厚さを取得して局所音速について解くことによって、局所音速を決定することができる。この局所音速は、遠距離場集束のための様々な経頭蓋超音波トランスデューサアレイ素子の位相遅延又はタイミング遅延を決定(補正、微調整)するために有利に使用することができる。
【0048】
これに加えて又は代えて、局所的な頭蓋骨厚さ及び音速を使用して、それぞれの経頭蓋超音波トランスデューサアレイ素子ごとに適切な動作周波数を選択し、増大された又は最大の局所的な透過率を得てもよい。周波数調整された経頭蓋超音波トランスデューサアレイ素子を使用することにより、バースト送出に関して著しい圧力利得をもたらすことができる。
【0049】
図3は、診断的又は治療的経頭蓋手技を行うためのシステムの実装例を示すブロック図を与える。制御・処理ハードウェア300は、随意的にトランスデューサドライバ電子回路/回路380を介して経頭蓋ヘッドセット100に動作可能に接続される。
【0050】
制御・処理ハードウェア300は、1つ以上のプロセッサ310(例えば、CPU/マイクロプロセッサ)、バス305、ランダムアクセスメモリ(RAM)及び/又はリードオンリーメモリ(ROM)を含んでもよいメモリ315、データ取得インタフェース320、ディスプレイ325、外部記憶装置330、1つ以上の通信インタフェース335、電源340、及び、1つ以上の入力/出力デバイス及び/又はインタフェース345(例えば、スピーカ、ユーザ入力デバイス、例えばキーボード、キーパッド、マウス、位置追跡スタイラス、位置追跡プローブ、フットスイッチ、及び/又は、音声コマンドを捕捉するためのマイクロフォン)を含む。
【0051】
立体画像データ370及びトランスデューサ位置合わせデータ375が、外部データベースに記憶されてもよく、或いは、制御・処理ハードウェア300のメモリ315又は記憶装置330に記憶されてもよい。
【0052】
追跡システム365は、随意的には、経頭蓋ヘッドセット100に取り付けられる1つ以上の基準マーカ160の検出によって、随意的には、基準マーカが取り付けられた1つ以上の医療機器又はデバイスも検出することにより、患者の位置及び向きを追跡するべく使用されてもよい。例えば、基準マーカから発せられる受動的又は能動的な信号は、2つの追跡カメラを使用する立体追跡システムによって検出されてもよい。トランスデューサ駆動電子機器/回路380は、例えば、Tx/Rxスイッチ、送信及び/又は受信ビーム形成器を含んでもよいが、これらに限定されない。
【0053】
制御・処理ハードウェア300は、1つ以上のプロセッサ310によって実行されるときにシステムに本開示に記載される1つ以上の方法を実行させる実行可能命令を含むプログラム、サブルーチン、アプリケーション、又は、モジュール350でプログラムされてもよい。そのような命令は、例えば、メモリ315及び/又は他の記憶装置に記憶されてもよい。
【0054】
図示の実施形態の例において、トランスデューサ制御モジュール355は、トランスデューサ位置合わせデータ375にしたがってトランスデューサ位置及び向きを立体画像データと位置合わせすることに基づき、目標位置又は関心領域にエネルギーを送達するように経頭蓋ヘッドセット100のトランスデューサを制御するための実行可能命令を含む。例えば、経頭蓋ヘッドセット100が複数のフェイズドアレイトランスデューサをサポートしてもよく、また、トランスデューサ制御モジュール355は、立体画像データに対するフェイズドアレイトランスデューサの既知の位置及び向きに基づいて、1つ以上の集束エネルギービームを経頭蓋超音波トランスデューサアレイ素子の遠距離場領域内の関心領域に送達するべく(送信及び/又は受信時に)適用されるビーム形成を制御してもよい。関心領域は、(例えば、制御・処理ハードウェア300により制御されるユーザインタフェースを介して)ユーザによって又は予め確立された外科手術計画にしたがって術中に指定されてもよい。
【0055】
位置合わせモジュール360は、追跡システム365と関連付けられる術中基準フレームに立体画像データ370を位置合わせするために随意的に使用されてもよい。随意的な誘導ユーザインタフェースモジュール362は、画像誘導処置のために空間的に位置合わせされた立体画像を示すユーザインタフェースを表示するための実行可能な命令を含む。また、位置合わせモジュール360は、経頭蓋フレームと患者の頭部との間の検出された空間オフセット(前述のように、距離-感知トランスデューサのサブセットによって与えられてもよい)に基づいて空間補正情報を術中に受け、この空間補正情報を使用して、トランスデューサと立体画像データとの間の位置合わせを動的に調整(例えば修正)してもよい。
【0056】
各構成要素のうちの1つのみが
図3に示されるが、任意の数の各構成要素を制御・処理ハードウェア300に含めることができる。例えば、コンピュータは一般に多くの異なるデータ記憶媒体を含む。更に、バス305は全ての構成要素間の単一の接続部として描かれるが、バス305が2つ以上の構成要素を結びつける1つ以上の回路、デバイス、又は、通信チャネルに相当し得ることが理解され得る。例えば、パーソナルコンピュータでは、バス305がしばしばマザーボードを含む又はマザーボードである。制御・処理ハードウェア300は、図示の構成要素よりも多い又は少ない構成要素を含んでもよい。
【0057】
制御・処理ハードウェア300は、1つ以上の通信チャネル又はインタフェースを介してプロセッサ310に結合される1つ以上の物理デバイスとして実装されてもよい。例えば、制御・処理ハードウェア300は、特定用途向け集積回路(ASIC)を使用して実装され得る。或いは、制御・処理ハードウェア300は、ハードウェアとソフトウェアとの組み合わせとして実装することができ、その場合、ソフトウェアはメモリから又はネットワーク接続を介してプロセッサにロードされる。
【0058】
本開示の幾つかの態様は、少なくとも部分的に、コンピュータシステムで実行されるときにコンピュータシステムを本明細書中に開示される方法を実行できる専用コンピュータシステムに変換するソフトウェアで具現化され得る。すなわち、本技術は、ROM、揮発性RAM、不揮発性メモリ、キャッシュ、磁気ディスク及び光ディスク、又は、リモート記憶デバイスなどのメモリに含まれる命令のシーケンスを実行するマイクロプロセッサなどのそのプロセッサに応答してコンピュータシステム又は他のデータ処理システムで実施され得る。更に、命令は、コンパイルされてリンクされたバージョンの形態でデータネットワークを介してコンピュータデバイスにダウンロードされ得る。或いは、前述のプロセスを実行するためのロジックは、大規模集積回路(LSI)、特定用途向け集積回路(ASIC)、又は、ファームウェア、例えば電気的に消去可能なプログラマブルリードオンリーメモリ(EEPROM)及びフィールドプログラマブルゲートアレイ(FPGA)のような個別ハードウェア構成要素など、付加的なコンピュータ及び/又は機械可読媒体で実装され得る。
【0059】
コンピュータ可読媒体は、データ処理システムによって実行されるときにシステムに様々な方法を実行させるソフトウェア及びデータを記憶するために使用され得る。実行可能ソフトウェア及びデータは、例えばROM、揮発性RAM、不揮発性メモリ及び/又はキャッシュを含む様々な場所に記憶され得る。このソフトウェア及び/又はデータの一部は、これらの記憶デバイスのうちのいずれか1つに記憶され得る。一般に、機械可読媒体は、機械(例えば、コンピュータ、ネットワークデバイス、パーソナルデジタルアシスタント、製造工具、1つ以上のプロセッサのセットを伴う任意のデバイスなど)によってアクセス可能な形態で情報を与える(すなわち、記憶する及び/又は送出する)任意のメカニズムを含む。
【0060】
コンピュータ可読媒体の例としては、数ある中で特に、揮発性及び不揮発性メモリデバイス、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、フラッシュメモリデバイス、フロッピーディスク及び他のリムーバブルディスク、磁気ディスク記憶媒体、光記憶媒体(例えば、コンパクトディスク(CD)、デジタル多用途ディスク(DVD)など)などの記録型及び非記録型媒体が挙げられるが、これらに限定されない。命令は、搬送波、赤外線信号、デジタル信号などの電気的、光学的、音響的、又は、他の形態の伝搬信号のためのデジタル及びアナログ通信リンクで具現化され得る。本明細書中で使用される表現「コンピュータ可読材料」及び「コンピュータ可読記憶媒体」は、一時的伝搬信号自体を除いて、全てのコンピュータ可読媒体を指す。
【0061】
前述した実施形態の例及び以下に記載される実施例は、経頭蓋超音波トランスデューサアレイ素子が頭蓋骨内に集束される経頭蓋超音波トランスデューサアレイ形態を示すが、頭蓋内集束が幾つかの実装において有益となり得る一方で、脳内で延在する超音波ビームが遠距離場領域で重なり合うように、経頭蓋超音波トランスデューサアレイ素子のうちの1つ以上が頭蓋骨の外側及び頭蓋骨付近(例えば、内側頭蓋骨面又は外側頭蓋骨面に隣接する)に位置するそれぞれの焦点を有する集束形態を他の実装が使用してもよいことが理解され得る。
【0062】
本明細書中に記載される実施形態の例の幾つかは焦点距離が等しいアレイ素子を有する経頭蓋超音波トランスデューサアレイを示すが、例えば頭蓋骨の厚さ及び/又は形状の局所的な変化を決定付けるべく、焦点距離が経頭蓋超音波トランスデューサアレイ素子間で異なり得ることが理解され得る。更に、サイズ、頭蓋骨に対する空間的なオフセット、及び/又は、経頭蓋超音波トランスデューサアレイ素子のF数は、素子間で異なり得る。
【0063】
実施形態の幾つかの例において、経頭蓋超音波トランスデューサアレイ素子は、超音波ビームのそれぞれの遠距離場が
図1Aに示される延在領域などの延在された集束領域内の集束標的の選択を可能にする脳内の空間領域内で重なり合うように構成されて空間的に配置される。実施形態の他の例において、経頭蓋超音波トランスデューサアレイ素子は、超音波ビームの遠距離場領域の空間的な重なり合いが予め選択された標的を含む空間領域内で生じるように構成されて空間的に配置される。言い換えると、経頭蓋超音波トランスデューサアレイ素子の空間的形態は、脳内の既知の標的位置に基づいて選択されてもよい。
【0064】
本開示の実施形態の例の多くは、パルス励起の使用及び経頭蓋超音波トランスデューサアレイ素子からのパルスの時間遅延(又は位相)の制御に関する。しかしながら、特に経頭蓋超音波トランスデューサアレイの自然焦点から離れた焦点領域に関しては、パルス励起が鋭い焦点を達成するのに有益となり得るが、遠距離場で焦点領域をもたらすべく、適切な位相制御により、経頭蓋超音波トランスデューサアレイ素子の連続波励起が達成されてもよい。
【0065】
実施形態の幾つかの例では、経頭蓋超音波トランスデューサアレイ素子の異なるサブセットが異なる周波数で動作するように、経頭蓋超音波トランスデューサアレイが2つ以上の周波数で動作されてもよい。例えば、二周波励起は、音響キャビテーションの増強における今日までの前臨床研究において有望であることを示している。以下に提供される実施例において実証されるように、遠距離場集束を使用する本実施形態によれば、密集束及び二周波励起も達成可能である。
【0066】
以下に提供される実施例に示されるように、実施形態のこの例は、従来の経頭蓋超音波アレイデバイスよりも少ない超音波素子を使用して、偏心標的で高い音圧を生成するために使用されてもよい。本明細書中に開示される実施形態の例及びその変形形態又は適合形態は、神経調節、神経刺激、神経画像化、神経モニタリング、集束超音波経頭蓋切除、穏やかな加熱(温熱療法)、診断目的又は治療目的の脳の機械的励起、気泡、液滴、固体粒子、細胞、ナノ粒子、量子ドット又は電子回路もしくはデバイスの操作、制御、励起又は感知、脳インプラント、デバイス、電子回路又はセンサの集束超音波経頭蓋励起又は感知、及び、治療物質又は診断物質、細胞、粒子、液滴、気泡、電子デバイス、送出器、センサ、又は、診断目的又は治療目的のための他の異物の送達のために血液脳関門の破綻及び開放に対する集束超音波の使用を伴う経頭蓋処置を含むがこれらに限定されない多種多様な経頭蓋処置のために使用されてもよい。
【0067】
本開示が患者の頭部の周りに配置されるようになっている経頭蓋超音波トランスデューサアレイに関する多くの実施形態の例を含むが、本明細書中に開示されるシステム、デバイス、及び、方法が身体の他の部分又は一部に対して診断又は治療処置を行うための経頭蓋装置を提供するようになっていてもよいことが理解され得る。遠距離場集束用のトランスデューサを支持するための支持フレームは、他の身体部位又は身体部分の立体画像データにしたがって製造されてもよい。例えば、支持フレームは、該支持フレームにより支持されるトランスデューサを使用して膝に対して診断又は治療処置を行うために、患者の膝の立体画像データに基づき、支持フレームが患者の膝の輪郭に適合するように製造されてもよい。同様に、支持フレームは、該支持フレームにより支持されるトランスデューサを使用して脊椎に対して診断又は治療処置を行うために、患者の脊椎の立体画像データに基づき、支持フレームが患者の脊椎の輪郭に適合するように製造されてもよい。
【実施例0068】
以下の実施例は、当業者が本開示の実施形態を理解して実施できるようにするべく提示される。これらの実施例は、本開示の範囲に対する限定と見なされるべきでなく、単に本開示の例示及び代表として見なされるべきである。
【0069】
実施例1:患者撮像データ
人間の頭部のCTスキャン(LightSpeed VCT、GE Healthcare、Chalfont St Giles、UK)を取得してこれを数値シミュレーションのそれぞれにおいて使用することができる。CTデータセット(サイズが625×625×625mm3の均一ボクセルを伴う512×512×328ボクセル)を使用して密度及び形態の情報を抽出することができる。CTスキャンにおける脳組織及び空気の密度の知識を用いて、ハウンズフィールドユニットとの線形関係を使用して密度が得られる。その後、頭蓋骨CTデータは、数値シミュレーションにおける離散化がλ=10となるようにセグメント化されて補間される。ここで、λは水中の超音波の波長である。多周波数数値シミュレーションの場合、離散化は最高周波数でλ=10と見なされる。
【0070】
実施例2:患者処理モデリング
1)音響シミュレーション
経頭蓋超音波トランスデューサアレイ素子から放射される可変長の超音波バーストの伝搬を伴うシミュレーションを実行するためにハイブリッド数値モデルが使用される。数値解法は有限差分シミュレーションと格子法とを組み合わせたものである。このハイブリッドモデルは、有限差分法を使用して脳内の圧力場と頭蓋骨内の粒子変位場とを計算しつつ、グリッド法を使用して境界でこれらの異なる方程式を結合する。流体中の音響伝搬の支配方程式は、次式で与えられる。
【数2】
ここで、pは音圧を示し、α
Lは縦方向減衰係数であり、cは音速であり、ρは密度である。中実領域では、支配方程式が次のようになる。
【数3】
ここで、uは3つのデカルト方向の粒子変位のベクトル場であり、λ及びμは第1及び第2のLame係数であり、η及びξは第1及び第2の粘度パラメータである。式1及び式2の数値実装の詳細は、Pulkkinenらの付録で与えられる(A.Pulkkinen、B.Werner、E.Martin、及びK.Hynynen、「臨床集束超音波機能性神経外科手術の数値シミュレーション」 医学と生物学の物理学、第59巻、第7号、1679~700頁、2014年)。頭蓋骨内の縦方向の音速c
L及び減衰量α
Lは、スプライン補間を使用して求められた[30]。本発明者らは、密度の関数としての実験的な剪断速度及び減衰データを知らないため、スケーリング係数が使用され、その結果、
【数4】
及び
【数5】
[15]となる。時間ステップ及び空間ボクセルサイズは周波数依存性であり、そのため、空間ボクセルサイズはλ/10のサイズであり、0.1の最大クーラント-フリードリッヒ-ルイ(CFL)値が得られる。CFLは、空間離散化ステップサイズΔh及び時間ステップサイズΔtに関して、CFL=cΔtΔh
-1として計算され、ここで、CFLは、各領域において別々に、骨の縦方向音速及び剪断断音速の両方に関して計算される。
【0071】
以下のように規定されるノイマン境界条件
【数6】
は、トランスデューサ表面と結合液体との間の界面で使用され、ここで、nはトランスデューサ表面の法線であり、pは圧力であり、gはトランスデューサ表面の規定の振動を表わす項である。吸収境界条件は他の境界で使用される。
【0072】
音場のピークサイクルの高速フーリエ変換を行って、処置領域にわたる時間平均圧力場を得る。処置領域の合計サイズは、周波数に応じて、250kHz~1 MHzの範囲で変化する。各シミュレーションは、水中で30cmの超音波の伝搬のシミュレーションを可能にするのに十分な数の時間ステップにわたって実行される。
【0073】
各経頭蓋超音波トランスデューサアレイ素子の位相整合は、最初に頭蓋骨内の標的焦点からパルスを送り、各経頭蓋超音波トランスデューサアレイ素子に対して得られる飛行時間に基づいて送出パルスを遅延させることによって得られる。このようにして、ガウス包絡線正弦波のピークは、全ての経頭蓋超音波トランスデューサアレイ素子間で同期される。その後、各超音波トランスデューサ素子は、逆の問題から得られる時間遅延ガウス包絡線正弦波信号で駆動される。
【0074】
2)熱シミュレーション
骨内の粒子変位場から、以下の関係式を使用して吸収出力密度が計算される。
【数7】
ここで、ωは角周波数であり、σは応力テンソルを示し、εはひずみテンソルを示し、また、
【数8】
は虚数成分を示す。領域全体の吸収出力密度は、Pennesバイオヒート方程式で時間に依存しない熱源として使用され、以下のように定義される。
【数9】
ここで、ρは頭蓋骨密度であり、Cは頭蓋骨の比熱容量であり、κは頭蓋骨の熱伝導率であり、Qは一定の熱源である。方程式(5)は、有限差分時間領域(FDTD)技術を用いて解かれる。
図4は、音響場及び熱場のシミュレーションを実行するときに使用されるパラメータを要約する。
【0075】
8個のIntel Xeonプロセッサから成るコンピュータクラスタを使用して、有限差分格子シミュレーションのシミュレーションを実行し、一方、標準的なデスクトップコンピュータを使用してデータが解析されて処理された。
【0076】
実施例3:集束の解析
図5A~
図5Bは、頭蓋骨の内側に集束する凹形トランスデューサ(
図5A)を平面λ/2半径素子(
図5B)と比較して、頭蓋骨の内側に集束することの有効性を例示する。両方のトランスデューサ出力は同じ値に正規化され、圧力場は集束トランスデューサの場合に最大圧力に正規化される。音圧場をプロットするために対数目盛が使用されることに留意されたい。両方のトランスデューサは頭蓋骨表面に対して垂直に位置される。これらの図は、冠状面を通る幾何学的形態の概略図を示し、この場合、矢印は圧力マップが表示される横断面の位置を示している。この実施例では、湾曲した(集束された)トランスデューサが、頭蓋骨を通して、サイズλ/2の平面トランスデューサよりも分散した音響場を伴って、より高い強度の音響場を伝達することが明らかである。
【0077】
図5Cは、11、18、19、20、21、及び、57μsの時点で頭蓋骨を通じて超音波を集束させる概念を示すモンタージュを与える。トランスデューサ(f値=1)は、頭蓋骨の内側で集束され、頭蓋骨表面から20mm離れて配置される。この図は、頭蓋骨での伝搬損失を最小限に抑えるための、収束球面波の平面波への、発散球面波への変換を実証する。18μsで、球面波は、t=18;19;20及び21μsで示されるように、頭蓋骨を通じて垂直入射で伝搬する平面波に変換される。57μsでは、減衰波が発散球面波として頭部内に示される。
【0078】
図6A~
図6Cは、頭蓋骨表面に共形のパターンの集束超音波トランスデューサの必要性を示す。これらの図は、(A)非共形半球、(B)平面アレイ素子の共形配置、及び、(C)集束トランスデューサ素子の共形配置として構成される64素子アレイの-3dB等値面を示す。これらの3つの実施例では、頭蓋骨の中心から6cm前方のビームの集束が、頭蓋骨の内側に集束されるトランスデューサ素子からなる共形アレイによって可能にされることが明らかである。
【0079】
これが
図6Dに更に示されており、ここでは、異なるアレイ形態、すなわち、非共形半球(実線)、平面アレイ素子の共形配置(短い破線)、及び、集束トランスデューサ素子の共形配置(長い破線)に関して、前後(AP)方向に沿う焦点を通じた圧力が示される。この図から分かるように、共形集束アレイ(長い破線)が最適な焦点をもたらす。
【0080】
ここで
図6E及び
図6Fを参照すると、前後(AP)方向の集束に関し、アレイ内のトランスデューサ素子の数に対するピーク焦点圧力の依存性、及び、アレイ内のトランスデューサ素子の数に対する-3dB体積の依存性がそれぞれ示される。プロットされた曲線は、非共形半球(実線)、平面アレイ素子の共形配置(短い破線)、及び、集束トランスデューサ素子の共形配置(長い破線)の異なるアレイ形態の結果を示す。
図12Bの垂直軸が対数目盛で示されることに留意されたい。焦点でのピーク圧力は素子数に応じて増大するが、予期されるように、集束共形アレイの場合、脳内の-3dB体積は素子数に応じて比較的一定である。これは、-3 dB体積が素子数に応じて減少する従来の半球形アレイ及び平面素子から成るアレイとは対照的である。
【0081】
図6E及び
図6Fの両方に示されるように、アレイ内の素子数が増大するにつれて、異なるアレイ形態間の違いが区別できなくなる。つまり、ピーク圧力の差及び-3dB体積は、3つのアレイ形態の全てに関して非常に類似するようになる。これは、より多くの素子が加えられるにつれてアレイ形態がより類似するようになる結果である。素子数が増大する場合、集束アレイ内の湾曲した素子のf値は当然に減少するため、平面アレイに収束する。これは、頭蓋骨の中央までの最小距離が固定されたままである一方で、各素子の最大直径がより小さくならなければならないからである。フルアレイの場合、頭蓋骨表面に集束されるトランスデューサの共形アレイの場合のように、素子の数が固定されたままで且つトランスデューサアレイ表面積がより小さくなるにつれて、最大許容トランスデューサ直径が減少する。各トランスデューサの指向性は小さいが、素子の数が増えるにつれて、共形アレイ内の各素子は、フルアレイ内の単一素子からの超音波場の前方伝搬に更に近づく。
【0082】
フェイズドアレイの各形態の集束の質を解析するために、音場が脳の空間的範囲にわたる異なる標的へ操向された。
図7A~
図7Bは、矢状面及び冠状面の両方における頭蓋内の標的焦点の位置を示す。-3dBメインローブビーム幅は、前後(AP)方向、左右(LR)方向、及び、上下(IS)方向の焦点に関して解析された。更に、ピークサイドローブ比を使用して焦点の広がりを決定した。最後に、ピーク焦点圧が解析された。
【0083】
図8A~
図8Iは、左右(LR)(a~c)方向、前後(AP)(d~f)方向、及び上下(IS)(g~i)方向に操向するときのシミュレートされた正規化音圧場を示す。この実施例でシミュレートされるトランスデューサアレイの例は、256個の素子から成り、3サイクルのパルス長を伴って、500kHzで超音波処理された。横方向に操向される(f)場合及び頭蓋骨腔の中心より上になる(i)と、焦点の質の穏やかな低下が観察される。
【0084】
図9A~
図9Cは、頭蓋骨腔の中心に関して軸方向面、冠状面、及び、矢状面に沿う焦点を通る位置についてのフェイズドアレイ形態の操向性能を実証する結果、並びに、頭蓋骨腔の中心からLR(a)方向及びIS(c)方向に20及び40mmの操向、及び、頭蓋骨腔の中心からAP(b)方向に20、40及び60mmの操向を与えることによって
図8A~
図8Iに提示される結果を補足する。これらの図は、頭蓋骨腔の中心から離れるように3つの全ての方向に操向するにつれてメインローブに対するサイドローブの相対振幅が増大すること、並びに、ピーク圧力振幅の減少を強調している。
【0085】
図10A~
図10Bは、500kHzで超音波処理する256素子フェイズドアレイを用いて頭蓋骨腔の全体にわたる操向位置でシミュレートされた(a)-3dB等値面及び(b)-6dB等値面を示す。各図に示される薄い灰色の線は頭蓋骨の内面であり、暗い灰色の線は外面である。この図から明らかなように、アレイから遠く離れて超音波処理している間に顕著な-6dBサイドローブがある。
【0086】
実施例4:可変トランスデューサ形態
アレイのトランスデューサ素子の形態は幾つかの要因に依存する。第1に、トランスデューサは患者の頭部に比較的近い(皮膚表面から数ミリメートル程度)ため、素子の総数は、トランスデューサ素子のより伝統的な半球状のアレイと比較して、アレイの限られた表面積によって著しく制限される。第2に、集束深さ及び頭蓋骨表面までの距離は、各固定焦点トランスデューサの曲率半径を決定付ける(ただしフェイズドアレイではない)。最後に、等しい集束深さ及び異なるサイズの2つのトランスデューサが異なる面積を有する最初の2つの効果の組み合わせは、異なるf値を有することになり、したがって、遠距離場の音響場は全く異なることになる。これらの要因のそれぞれは、経頭蓋トランスデューサアレイの操向範囲及び音響出力に影響を及ぼす。
【0087】
シミュレーションのこの例では、アレイ内に定数のトランスデューサを維持することによってトランスデューサアレイの幾何学的形態が生成された。経頭蓋アレイトランスデューサ素子の数が決定された時点で、Vogelの方法を使用して位置が割り当てられ、それにより、Nが与えられると配置が最適にランダムとなって可能な限り離間された。これらの固定距離が与えられると、合理的なギャップが残されるように、要素間の間隔の工学的限界に対して考慮が与えられて、最大トランスデューサ面積が決定された。各アレイ内の全てのトランスデューサは同じサイズを有していた。形態が
図11Aに示される表に要約される。前述したように、経頭蓋アレイのトランスデューサの空間的配置を決定するこの方法は、非限定的な方法例として提供され、また、トランスデューサアレイ形態を決定する他の方法が代わりに使用されてもよい。
【0088】
シミュレーションのこの例では、トランスデューサアレイ素子の初期の空間的配置を決定した後、トランスデューサの中心に最も近いポイントでの頭蓋骨表面への入射角が決定され、また、トランスデューサが頭蓋骨表面への垂直入射を成すように、各トランスデューサが独立に回転された。その後、当面の状況に応じて、頭蓋骨の外側、内側、又は、中点のいずれかから等しい距離を達成するために、各トランスデューサが頭蓋骨表面に向かって又は頭蓋骨表面から離れるようにシフトされた。頭蓋骨からの固定距離は、頭蓋骨に対する経頭蓋超音波トランスデューサアレイ素子の最も近い妥当な位置を決定するための試行錯誤に基づいていた。この最小距離は、アレイ内のトランスデューサの総数及び各トランスデューサの凹部の両方に応じて変わることが分かった。このようにして、全ての経頭蓋超音波トランスデューサアレイ素子が頭蓋骨表面に対して垂直に且つ頭蓋骨焦点に対して等距離に設定された。前述したように、全てのトランスデューサ素子に関して頭蓋内の等価な焦点深度を伴うそのような形態は、1つの非限定的なアレイ形態の例を与え、また、他のアレイ形態は、依然として有効でありながらこの焦点等価形態から逸脱してもよい。
【0089】
シミュレーションの一例では、経頭蓋超音波トランスデューサ素子の集束深さを変えて、ピーク透過率にとって最適な集束深さと、y=60mmの遠距離場頭蓋内集束位置に関する集束の質とを決定した。3つの異なる集束深さ、すなわち、外面、内面、及び、頭蓋骨の中央での集束を検査した。選択された集束深さは、最大許容焦点距離とそれに伴うf値とに影響を与えた。
図11Bは、外側頭蓋骨、内側頭蓋骨、及び、中央頭蓋骨で集束してy=60mmへ操向する結果を示す表を与える。内側頭蓋骨及び中央頭蓋骨で集束することにより、外側頭蓋骨で集束する場合よりも高い音圧が得られる。一方、-6dBの加熱量の増大により実証されるように、内側頭蓋骨及び外側頭蓋骨と比較して内側頭蓋骨で集束する際には集束の質が著しく低下する。したがって、その後の全てのシミュレーションでは、超音波送出と集束の質との間で妥協するために、各トランスデューサが頭蓋骨の中央に集束される。
【0090】
図12A~
図12Iは、500kHzの周波数でx方向、y方向、及び、z方向に操向された位置に関するアレイ素子の数とアレイの集束の質との間の関係を示す。アレイ全体の出力は全てのケースにおいて同じままである。
図12A~
図12Cは、幾つかの異なる標的位置における、波長lに対する-3dBビーム幅の比への素子数の影響を示す。
図12D~
図12Fは、アレイ素子数に対する各標的位置でのピーク音圧の依存性を実証する。
図12G~
図12Iは、アレイ素子数に対する各標的位置でのピークサイドローブ比の依存性を実証する。図から分かるように、頭部内の横方向の位置でさえ、ピーク圧力は素子数が増えるにつれて増大するが、-3dBビーム幅及びピークサイドローブ比には殆ど違いがない。
【0091】
【0092】
図12D~
図12Fは、横方向ポイントにおける相対音響ピーク圧力が64素子アレイに関して最も高いことを示す。素子が少ないアレイに関して全てのポイントにおけるピーク音圧がより低いことは明らかであるが、横方向ポイントにおいては、64、128、又は、256個の素子を使用する際、ピーク音圧に殆ど差がないことも明らかである。より多くの素子を伴うアレイがより良い集束を達成するとともにより高い操向範囲を有することは直感で理解できるが、各ビームの遠距離場が脳内にあるときには、操向性能が、比較的少数のアレイでさえ改善されるように思われる。
【0093】
図13は、500kHzで256素子アレイを用いて超音波処理した際の3、5、及び10サイクルのパルス長並びに連続波励起に関する前後方向の操向性能を示す。頭蓋骨腔の中心の40mm以内で、任意のパルス長を使用して集束できることは明らかであるが、いずれの方向にも6cmでは、他の場所において最小の音響エネルギーの蓄積で短いパルス長しか達成できない。
【0094】
実施例5:二周波励起
256素子アレイ超音波処理を使用して、二周波励起の経頭蓋的実現可能性を検査した。経頭蓋超音波トランスデューサアレイ素子の半分(128)が250kHzで超音波処理するように設定され、また、半分が500kHzで超音波処理するように設定された。各周波数で超音波処理する要素はアレイの周りに均等に分布され、それにより、単一の周波数で超音波処理する素子が集中することはなかった。
【0095】
図14は、二周波シミュレーションの結果を示す。波形(a)及び(b)は、(a)250kHz及び(b)500kHzで超音波処理する2つのトランスデューサから放射される励起パルスをプロットしている。波形(c)は、焦点における応答をプロットし、結果として生じる二周波応答を示している。挿入図(d)は、受信信号のフーリエ変換をプロットしており、250及び500kHzでピークを示し、一方、挿入図(e)は、標的における正規化された時間平均圧力の2Dレンダリングをプロットしている。
【0096】
実施例6:安全性解析
各トランスデューサは頭蓋内で集束されるため、頭蓋骨の完全性に対する高音場の影響は合理的な関心事であり、したがって、安全性解析を実行するために頭蓋骨の完全性に対するトランスデューサの影響がモデル化された。熱影響を評価するために、可変長の音響パルスから生じる温度上昇が音響シミュレーション及び熱シミュレーションを用いてシミュレートされる。方程式1,2によって生成される安定な音場から、中実の骨における吸収出力密度Qが方程式4を使用して生成される。その後、頭蓋骨の内側の温度マップがシミュレートされ、この場合、温度-時間の漸進的変化は方程式5によって決定される。この温度測定データを使用して、安全な処置のための最大パルス持続時間が決定された。更に、脳組織に対する超音波処理の潜在的な安全性を評価するために、焦点から離れた外部からの音響エネルギー蓄積を評価するべく、頭蓋骨の内面上のポイントにおける相対圧力が焦点におけるピーク圧力振幅と比較された。
【0097】
このアレイ形態を用いると比較的短いパルスにわたる頭蓋骨加熱を無視できることが分かった。500kHzの周波数において100Wで超音波処理する256素子アレイを使用すると、持続時間2msの連続波超音波処理に相当する単一の1000サイクルバーストが約0.03℃の温度上昇をもたらした。当然、100%より低いデューティサイクルでは温度上昇が小さくなる。頭蓋骨冷却を可能にするのに十分な間隔を伴って、処置中の今日の頭蓋骨冷却機構と併せると、頭蓋骨加熱がこのデバイスによる潜在的な処置に対する制限であるとは思われない。
【0098】
図15は、500kHzの周波数において100Wで超音波処理する256素子アレイにおけるパルス長と頭蓋骨内最高温度との間のシミュレーション関係のプロットである。ライン上のマーカは、3、10、50、200、及び、1000サイクルのパルスに対応する。関連する音圧での比較的長いパルスにおいてさえ、モデルが頭蓋骨加熱を無視できるはずであると予測することは明らかである。
【0099】
実施例7:多周波超音波照射
頭蓋骨の異なる部分にわたる超音波伝送を改善するために可変周波数を使用する可能性は、既に研究されてきている(White、Clement&Hynynen 2006)。提示されたアレイ形態は頭蓋骨を横切って局部的な平面波を伝送するため、このアレイ形態は可変周波数伝送にとって理想的である。次式によって定義される周波数fで超音波がアレイのトランスデューサから送出されるシミュレーションが行われた。
【数10】
ここで、cは伝送経路を横切る骨内の平均音速であり、dは骨の厚さであり、m>0は整数である。標的での音圧は、次の関係式を使用して、時間tに関して全てのトランスデューサnにわたって合計された。
【数11】
ここで、f
nはトランスデューサnの周波数である。骨を通じた集束超音波伝送についてのこの導出の詳細は、Whiteらの付録において見出すことができる(White P J、Hynynen K、Clement G T及びHynynen K、2006 Ultrasound in Medicine&Biology 32(7)、1085-1096)。頭蓋骨を通じた超音波の伝達をシミュレートするために、既に導入された光線音響モデルが使用された(Jones R M、O’Reilly M A、Hynynen K、O’Reilly M a&Hynynen K、2013 Physics in Medicine and Biology 58(14)、4981-5005)全波モデルを使用して超音波を伝送することは実行不可能であった。これは、グリッドサイズがこの技術によって必要とされる周波数の微妙な変化を正確にモデリングするのに十分に小さくなく、光線音響モデルが異なる周波数のための再離散化を必要としなかったからである。光線音響モデルは、頭蓋骨を通じた縦波及び剪断波の両方の伝搬をシミュレートした。
【0100】
図16A~
図16Bは、これらのシミュレーションからの結果を示しており、多周波超音波照射の可能性を例示している。
図16Aは、時間的な圧力の二乗をプロットしており、この場合、破線は単一周波数の超音波照射を表わし、実線は多周波数の超音波照射を表わす。強め合う干渉がアレイで使用される周波数の最大公約数としてのみ生じるため、音響出力の大部分は単一周波数の場合よりもはるかに低く、一方、ピーク音響出力は短期間の強め合う干渉においては30%高い。したがって、実施形態の幾つかの例では、バーストシーケンスを使用してアレイ内の異なる素子からの放射のタイミングを調整することによって、多周波数との強め合う干渉の妥当なデューティサイクルを得ることができる。
【0101】
図16Bは、
図7A~
図7Bにおいて概説された操向位置における焦点での音響出力の変化率を示す。操向位置x=-20を除く全ての場合において、出力伝送が増大する。頭蓋骨を横切る異なるポイントにおける音響出力の高い変動性は、異なる頭蓋骨厚さ及び異なる位置における頭蓋骨の内面と外面との間の潜在的非平行性を示す。
【0102】
実施例8:可変デューティサイクル
標的に送られるバーストのデューティサイクルを変えることによって、個々のパルスが各バースト内でどれだけ近くなり得るかを決定できる。
図17は、集束の質に対する10、25、50及び75%デューティサイクルの影響を示す。いずれの場合も-6dB等値面が半透明の赤で示され、一方、-3dB等値面が青の実線で示される。デューティサイクルを75%から10%まで減らすと、集束の質が著しく向上する。
【0103】
前述の特定の実施形態は一例として示されたものであり、これらの実施形態が様々な修正及び代替形態を受け入れる余地があり得ることが理解されるべきである。特許請求の範囲が、開示された特定の形態に限定されるように意図されておらず、むしろ、本開示の技術的思想及び範囲内に入る全ての修正、等価物、及び、代替案を網羅しようとするものであることが更に理解されるべきである。