IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧

特開2023-87587加速器、粒子線治療システム及び制御方法
<>
  • 特開-加速器、粒子線治療システム及び制御方法 図1
  • 特開-加速器、粒子線治療システム及び制御方法 図2
  • 特開-加速器、粒子線治療システム及び制御方法 図3
  • 特開-加速器、粒子線治療システム及び制御方法 図4
  • 特開-加速器、粒子線治療システム及び制御方法 図5
  • 特開-加速器、粒子線治療システム及び制御方法 図6
  • 特開-加速器、粒子線治療システム及び制御方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023087587
(43)【公開日】2023-06-23
(54)【発明の名称】加速器、粒子線治療システム及び制御方法
(51)【国際特許分類】
   H05H 13/02 20060101AFI20230616BHJP
   A61N 5/10 20060101ALI20230616BHJP
【FI】
H05H13/02
A61N5/10 H
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021202064
(22)【出願日】2021-12-13
(71)【出願人】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000279
【氏名又は名称】弁理士法人ウィルフォート国際特許事務所
(72)【発明者】
【氏名】羽江 隆光
【テーマコード(参考)】
2G085
4C082
【Fターム(参考)】
2G085AA11
2G085BA02
2G085BA05
2G085BA13
2G085BA19
2G085CA05
2G085CA06
2G085CA13
2G085CA15
2G085CA17
2G085CA18
2G085CA24
2G085CA26
2G085EA07
4C082AC04
4C082AE01
(57)【要約】
【課題】所望のエネルギーを有する荷電粒子ビームを精度よく取り出すことが可能な加速器を提供する。
【解決手段】加速電圧計測回路10は、加速空胴9にて励起される加速用高周波電圧を計測した計測信号として加速電圧信号Vaccを出力する。低電力高周波制御系25は、高周波電力として、加速空胴9の共振周波数の範囲に含まれる一定周波数の制御用高周波電力を加速空胴9に入力する。低電力高周波制御系25は、加速電圧信号Vaccと制御用高周波電力との位相差が所定値以内となった場合、フィードバック制御により高周波電力として、加速電圧信号Vaccの周波数である加速周波数に同期した加速用高周波電力を加速空胴9に入力し、その後、加速周波数が出力周波数Fextに到達した場合、加速用高周波電力の加速空胴9への入力を停止する。
【選択図】図5
【特許請求の範囲】
【請求項1】
荷電粒子ビームを時間的に一定の主磁場及び加速用高周波電圧によって周回させながら加速する加速器であって、
入力された高周波電力を用いて、時間的に変化する共振周波数に応じた前記加速用高周波電圧を励起する加速空胴と、
前記加速用高周波電圧を計測した計測信号を出力する計測部と、
前記高周波電力として、前記共振周波数の範囲に含まれる一定の周波数を有する制御用高周波電力を前記加速空胴に入力し、前記計測信号と前記制御用高周波電力との位相差が所定値以内となった場合、前記高周波電力として、フィードバック制御により前記計測信号の周波数である加速周波数に同期した加速用高周波電力を前記加速空胴に入力し、前記加速周波数が要求値に到達した場合、前記加速用高周波電力の前記加速空胴への入力を停止する制御部と、を有する加速器。
【請求項2】
前記荷電粒子ビームが周回する軌道の中心は、前記主磁場が励起されている加速領域の中心からずれている、請求項1に記載の加速器。
【請求項3】
前記位相差が所定値以内になってから一定時間後に前記荷電粒子ビームは前記主磁場が励起されている加速領域に入射される、請求項1に記載の加速器。
【請求項4】
前記位相差が前記所定値以内になった後で前記周波数が所定周波数になると、前記荷電粒子ビームあ前記主磁場が励起されている加速領域に入射される、請求項1に記載の加速器。
【請求項5】
前記制御部は、位相同期回路を用いて前記高周波電力を計測した入力計測信号を前記計測信号と位相同期することで、前記加速用高周波電力を生成する、請求項1の記載の加速器。
【請求項6】
前記位相同期回路は、IQ変調を用いる、請求項5に記載の加速器。
【請求項7】
前記位相同期回路は、全ての回路がデジタル回路で構成される、請求項6に記載の加速器。
【請求項8】
前記高周波電力を増幅する半導体増幅器をさらに有する、請求項1に記載の加速器。
【請求項9】
請求項1に記載の加速器と、
前記加速器から取り出した荷電粒子ビームを照射対象者に照射する照射装置と、を有する粒子線治療システム。
【請求項10】
入力された高周波電力を用いて時間的に変化する共振周波数に応じた加速用高周波電圧を励起する加速空胴を有し、時間的に一定の主磁場及び前記加速用高周波電圧によって荷電粒子ビームを周回させながら加速する加速器の制御方法であって、
前記加速用高周波電圧を計測した計測信号を出力し、
前記高周波電力として、前記共振周波数の範囲に含まれる一定周波数の制御用高周波電力を前記加速空胴に入力し、
前記計測信号と前記制御用高周波電力との位相差が所定値以内となった場合、前記高周波電力として、フィードバック制御により前記計測信号の周波数である加速周波数に同期した加速用高周波電力を前記加速空胴に入力し、
前記加速周波数が要求値に到達した場合、前記加速用高周波電力の前記加速空胴への入力を停止する、制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、加速器、粒子線治療システム及び制御方法に関する。
【背景技術】
【0002】
荷電粒子ビームを加速して出射する加速器として、強度が時間的に一定の主磁場の中で、周波数を時間的に変調させた加速電場を印加することで荷電粒子ビームを加速する円形加速器が注目されている。この種の円形加速器は、超電導コイルを用いて主磁場を生成することができるため、小型化及び低コスト化に有利であり、特に粒子線治療システムなどに適用されている。
【0003】
円形加速器では、荷電粒子ビームを加速するため加速用高周波電場を励起する加速空胴として同調空胴を用いることがある。この場合、加速空胴のキャパシタンス又はインダクタンスを時間的に変えることで、加速空胴の共振周波数の時間的に変調する。このとき、加速空胴に入力される高周波電力は、加速空胴と同調する(加速空胴の共振周波数と略同一の周波数を有する)必要がある。加速空胴の共振周波数を変調する技術としては、加速空胴を変調する変調器として、対向するロータ・ステータ電極対を有する回転コンデンサを加速空胴に設置する技術がある(特許文献1参照)。
【0004】
また、円形加速器としては、シンクロサイクロトロン及び特許文献1に記載の偏芯軌道型加速器が挙げられる。シンクロサイクロトロンでは、出射する荷電粒子ビームのエネルギーである出射エネルギーが固定されているため、ビームが入射されてから一定時間後に加速空胴に入力する高周波電力が遮断される。一方、特許文献2に記載の芯軌道型加速器では、出射エネルギーが可変であるため、加速空胴に入力する高周波電力を出射エネルギーに応じた適切なタイミングで遮断する必要がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許出願公開第2010/0045213号明細書
【特許文献2】特開2019-133745号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
同調空胴を加速空胴として用いる加速器では、加速空胴に入力する高周波電力を加速空胴と同調させる必要があるが、加速空胴の変調パターンには、変調器の製作公差及び制御ばらつき、並びに加速空胴の温度などに応じて誤差が生じる。
【0007】
特許文献2に記載の技術では、加速用高周波電力として、プログラミングされた周波数パターン信号が高周波電力増幅器を介して加速空胴に入力されるため、変調パターンの誤差の影響を強く受けてしまい、荷電粒子ビームのエネルギーに誤差が生じしてしまう。また、特許文献1に記載の方法は、シンクロサイクロトロン向けであるため、特に偏芯軌道型加速器に適用しようとした場合、所望の出射エネルギーに応じた適切なタイミングで加速用高周波電力を遮断することができない。
【0008】
本発明の目的は、所望のエネルギーを有する荷電粒子ビームを精度良く取り出すことが可能な加速器、粒子線治療システム及び制御方法を提供することである。
【課題を解決するための手段】
【0009】
本開示の一態様に従う加速器は、荷電粒子ビームを時間的に一定の主磁場及び加速用高周波電圧によって周回させながら加速する加速器であって、入力された高周波電力を用いて、時間的に変化する共振周波数に応じた前記加速用高周波電圧を励起する加速空胴と、前記加速用高周波電圧を計測した計測信号を出力する計測部と、前記高周波電力として、前記共振周波数の範囲に含まれる一定の周波数を有する制御用高周波電力を前記加速空胴に入力し、前記計測信号と前記制御用高周波電力との位相差が所定値以内となった場合、前記高周波電力として、フィードバック制御により前記計測信号の周波数である加速周波数に同期した加速用高周波電力を前記加速空胴に入力し、前記加速周波数が要求値に到達した場合、前記加速用高周波電力の前記加速空胴への入力を停止する制御部と、を有する。
【発明の効果】
【0010】
本発明によれば、所望のエネルギーを有する荷電粒子ビームを精度良く取り出すことが可能になる。
【図面の簡単な説明】
【0011】
図1】本開示の実施例に係る円形加速器の外観例を示す斜視図である。
図2】本開示の実施例に係る円形加速器の横断面の構成例を示す横断面図である。
図3】本開示の実施例に係る円形加速器の縦断面の構成例を示す縦断面図である。
図4】荷電粒子ビームのエネルギー別の周回軌道の一例を示す図である。
図5】低電力高周波制御系の構成例を示す図である。
図6】低電力高周波制御系の制御シーケンスの一例を説明するためのタイミングチャートである。
図7】本開示の実施例に係る粒子線治療システムの構成例を示す図である。
【発明を実施するための形態】
【0012】
以下、本開示の実施形態について図面を参照して説明する。
【実施例0013】
図1図3は、本開示の実施例に係る円形加速器の一例を示す図である。図1図3に示す加速器100は、強度が時間的に一定の主磁場中で、周波数変調を行った加速用高周波電圧を印加することで、荷電粒子ビーム(以下、単にビームと呼ぶこともある)を周回させながら加速する円形加速器である。本実施例では、加速器100は、ビームとして、荷電粒子として陽子を用いた陽子ビームを70MeVから235MeVまでの任意のエネルギーまで加速して出射する。ただし、荷電粒子ビームは、ヘリウム及び炭素などを用いた重粒子ビームでもよく、出射するビームのエネルギーである出射エネルギーは70MeVから235Mevまでの範囲に限らない。また、加速器100は、粒子線治療システム(図7参照)に好適であるが、その用途に限定されるものではない。
【0014】
図1は、加速器100の外観を示す斜視図であり、図2は、加速器100を縦方向の中心平面に沿って切断した横断面の構成を示す横断面図であり、図3は、加速器100を図2のb-b’線に沿って切断した縦断面の構成を示す縦断面図である。
【0015】
加速器100は、中心平面Dを挟んで上部と下部に分割可能な主電磁石40を有し、主電磁石40の内部にビームを加速する略円筒形状の空間である加速領域101が形成されている。加速領域101は、中心平面Dを挟んで略上下対称に形成され、真空引きされている。
【0016】
主電磁石40は、ヨーク41、主コイル42及び主磁極43を有する。ヨーク41は、主電磁石40の外殻を形成し、内部に加速領域101を形成する。主コイル42は、円環状の超伝導コイルであり、中心平面Dを挟んで上下方向のそれぞれに設置される。主コイル42のそれぞれは、ヨーク41の内壁に沿って設置される。主コイル42の周囲には、主コイル42を一定温度(主コイル42が完全反磁性を示す温度)以下まで冷却するための冷却機構であるクライオスタット50が設置されている。主磁極43は、主コイル42の内周側に中心平面Dを挟んで上下方向のそれぞれに設置される。
【0017】
主コイル42に電流が供給されると、主磁極43により加速領域101に主磁場と呼ばれる時間的に一定の磁場が励起され、その主磁場の影響によりビームは加速領域101の軌道面上を周回する。このとき、ビームはエネルギーごとに異なる軌道を周回する。以下では、ビームが周回するエネルギー別の各軌道を周回軌道と呼ぶ。本実施例では、主電磁石40は、ビームの周回軌道の中心が偏芯するように(加速領域101の物理的な中心からずれるように)形成される(図4参照)。つまり、本実施例の加速器100は偏芯軌道型加速器である。また、図2では、周回軌道のうち、エネルギーが最大のビームが周回する最大エネルギー軌道61と、エネルギーが70Mevの最低出射エネルギー軌道62とが示されている。
【0018】
また、主電磁石40の上部には、主電磁石40の内部にある加速領域101に入射するビームを生成するイオン源51が設置されている。イオン源51は、例えば、ECR(Electron Cyclotron Resonance:電子サイクロトロン共鳴)イオン源などである。イオン源51は、低エネルギービーム輸送系52を介して、加速領域101内のイオン入射部53と接続されている。これにより、イオン源51にて生成されたビームが低エネルギービーム輸送系52を介してイオン入射部53から加速領域101に入射される。本実施例では、イオン入射部53は、加速器100の中心を通る中心線A上における、加速領域101の物理的な中心Oよりも、ビームを外部に取り出すための磁気チャネル81の入射口であるビーム出射経路入口82側に配置される。なお、イオン源51は、加速領域101の内部に配置されてもよい。この場合、イオン源51としては、PIG(Penning Ionization Gauge)型イオン源などが好適である。
【0019】
また、ヨーク41には、図1及び図2に示すように複数の貫通口が設けられている。例えば、ヨーク41には、貫通口として、ビーム用貫通口71、コイル用貫通口72、真空引き用貫通口73及び高周波系用貫通口74が主電磁石40の中心平面D上に設けられている
【0020】
ビーム用貫通口71は、ビームを出射するための貫通口であり、ビームをヨーク41の内部から外部に取り出して出射するための高エネルギービーム輸送系80が設けられている。高エネルギービーム輸送系80は磁気チャネル81と接続されている。コイル用貫通口72は、ヨーク41の内部に設けられた種々のコイル(主コイル42など)を外部に引き出すための貫通口である。真空引き用貫通口73は、加速領域101を真空引きするための貫通口である。高周波系用貫通口74は、加速空胴9を挿入するための貫通口である。
【0021】
加速空胴9は、イオン入射部53から加速領域101に入射されたビームを加速するための加速用高周波電圧を励起する部材である。加速空胴9は、本実施例では、λ/2共振型空胴であり、ディー電極12、ダミーディー電極13、内導体14、外導体15及び回転コンデンサ30を有する。
【0022】
ディー電極12は、内部をビームが通過する中空電極であり、イオン入射部53の近傍の点を頂点とし、所定の広がり角を有する略扇型形状を有する。内導体14は、ディー電極12と接続され、ディー電極12から主電磁石40の外部まで延びる導体である。外導体15は、ディー電極12及び内導体14を外包する導体である。ダミーディー電極13は、アース電位の電極であり、外導体15と接続されている。ダミーディー電極13はディー電極12に対して対向するように設けられ、ディー電極12とダミーディー電極13との間に、加速用高周波電圧が励起される加速間隙11が形成される。
【0023】
回転コンデンサ30は、加速空胴9の共振周波数を変調するための変調器である。具体的には、回転コンデンサ30は、モータ31によって回転される回転電極(不図示)の回転角度に応じて静電容量に変化させることで、加速空胴9の共振周波数を時間的に変化させる。加速空胴9は、この時間的に変化する共振周波数に応じた加速用高周波電圧を加速間隙11に励起する。回転コンデンサ30又はモータ31には、回転電極の回転角度を検出して角度信号として出力する検出部(図示せず)が設けられている。なお、加速間隙11は、ビームの軌道形状に応じて形成される。なお、本実施例では、ハーモニクス数が1、つまり、ビームが周回する周回周波数と加速用高周波電圧の周波数(より具体的には、加速用高周波電圧による加速電場の周波数)である加速周波数とが略同一である。
【0024】
また、加速空胴9は、入力カプラ20を介して低電力高周波制御系25と接続され、入力カプラ20と低電力高周波制御系25との間には、高周波電力増幅器7及び入力高周波計測回路8が設けられている。
【0025】
低電力高周波制御系25は、低電力の高周波電力を出力する。高周波電力増幅器7は、低電力高周波制御系25から出力された高周波電力を増幅して入力カプラ20を介して加速空胴9に入力する。入力カプラ20は、高周波電力を加速空胴入力するための機器であり、静電結合式又は磁気結合式にて加速空胴9の内導体14と接続される。加速空胴9は、入力カプラ20を介して入力される高周波電力により、加速間隙11に加速用高周波電圧を励起し、その加速用高周波電圧によりビームを加速させる加速電場を発生させる。入力高周波計測回路8は、後述するように、加速空胴9に入力される高周波電力を計測する。
【0026】
以上説明した加速器100では、イオン源51で生成された荷電粒子のビームは、低エネルギービーム輸送系52を介してイオン入射部53から主電磁石40の内部に形成された加速領域101に入射される。入射されたビームは、加速空胴9にて励起された加速電場によって加速され、エネルギーを増しながら主磁場中を周回する。ビームのエネルギーの増加に伴って、ビームの軌道の曲率半径が増加するため、ビームは螺旋状の軌道を描く。
【0027】
また、本実施例では、エネルギーごとのビームの軌道である周回軌道が偏芯した偏芯軌道となる。以下では、偏芯軌道を実現する主磁場について説明する。
【0028】
主磁場は、周回軌道の周方向に対して強度が一定の磁場でもよいし、周方向に強度が変化するAVF(Azimuthal Varying Field)型の磁場でもよい。いずれの場合でも、主磁場は、非等時性磁場であり、ビーム安定条件を満たすように生成される。ビーム安定条件は、下記の式(1)で表されるn値が0より大きくかつ1未満となることである。
【数1】
ここで、ρは周回軌道の偏向半径、Bは主磁場の強度、∂B/∂rは半径方向の磁場勾配である。なお、r軸は、軌道面を加速領域101の中心を原点とする2次元極座標系で表したときの、半径方向の外側を向く軸である。
【0029】
ビーム安定化条件を満たす場合、周回軌道から径方向に微小にずれたビームは、そのビームを周回軌道に戻す方向に主磁場から復元力を受け、軌道面に対して鉛直な方向にずれたビームは、軌道面に戻す方向に主磁場から復元力を受ける。つまり、ビームは、周回軌道の近傍をベータトロン振動しながら、安定的に周回及び加速する。また、全てのエネルギーのビームにおいて、軌道面に平行かつ周回軌道と直交する方向のベータトロン振動数(水平方向チューン)νが1に近い値となる。なお、主磁場は、主磁極43と主磁極43の表面に設置するトリムコイル及び磁極片(ともに図示せず)とによって形成され、これらの構成要素は、軌道面に対して上下対称に配置される。このため、主磁場は軌道面上においては、軌道平面と垂直な方向の成分のみを有する。
【0030】
図4は、主磁場中を周回するビームのエネルギー別の周回軌道を示す図である。図4では、縦軸をビーム出射経路入口82から加速空胴9の内導体14を向く軸とし、原点0をイオン入射部53の位置としている。また、図4では、周回軌道200として、最も外側に位置する最大エネルギー235MeVを有するビームの周回軌道と、その周回軌道からビームの磁気剛性率が0.04Tmずつ異なる50種類の周回軌道とが示されている。
【0031】
図4に示したように、偏芯軌道型の加速器100では、ビームのエネルギーが低い場合、周回軌道200は、サイクロトロン型の加速器などと同様にイオン入射部53付近を中心とする同心軌道と近似する。しかしながら、ビームのエネルギーが大きい場合には、各周回軌道200は、同心軌道とはならず、ビーム出射経路入口82の側で集約して、内導体14の側で離散した軌道となる。以下、周回軌道200が集約している領域を集約領域、周回軌道200が離散している領域を離散領域と呼ぶこともある。
【0032】
また、図4では、各周回軌道200の同一の周回位相を結んだ等周回位相線201が集約領域203から周回位相π/20ごとに示されている。ディー電極12とダミーディー電極13との間に形成される加速間隙11は、等周回位相線201のいずれか(例えば、周回軌道200同士が最も近接している集約点から見て±90度周回した等周回位相線201)に沿って設置される。より具体的には、ディー電極12は、周回軌道200の中心付近を先端とし、半径が等周回位相線201に沿う、扇形のような中空の形状をしている。
【0033】
図1図3の説明に戻る。主電磁石40の内部には、周回中のビームを外部に取り出すために、高周波キッカ90と、2極磁場又は多重極磁場からなる擾乱磁場であるピーラ磁場領域91及びリジェネレータ磁場領域92が形成される。高周波キッカ90は、ビームの集約領域に設置され、ピーラ磁場領域91及びリジェネレータ磁場領域92は、最大エネルギー軌道61よりも外周側に設置される。
【0034】
高周波キッカ90は、ビームを外部に取り出すための取出し用高周波電圧をビームに印加する。取出し用高周波電圧の周波数は、所望の出射エネルギーを有するビームの水平方向チューンνの小数部と所望の出射エネルギーを有するビームの周回周波数との積と略同一となるように設定される。また、取出し用高周波電圧は、この積と略同一の周波数成分を含む有限の周波数バンド幅の高周波電圧でもよい。
【0035】
高周波キッカ90からの取出し用高周波電圧により、ビームの水平方向のベータトロン振動の振幅は共鳴的に増大し続け、ビームは、ピーラ磁場領域91及びリジェネレータ磁場領域92に到達する。ビームは、ピーラ磁場領域91及びリジェネレータ磁場領域92で2次の共鳴が起こることで、最大エネルギー軌道61の外側にキックされてビーム出射経路入口82に到達する。その後、ビームは、磁気チャネル81内部へと導かれ、十分な偏向を受けて高エネルギービーム輸送系80を通って加速器100の外部に出射される。
【0036】
このように本実施例では、ビームを集約領域付近から取り出しているため、ビームの取り出しに必要なキック量を小さくすることが可能となり、所望の出射エネルギーを有するビームを容易に取り出すことが可能となる。
【0037】
図5は、低電力高周波制御系25の構成例を示す図である。図5に示す低電力高周波制御系25は、加速空胴9を制御するための制御部であり、発振器1、切替スイッチ2、TDC(Time to Digital Converter)3、デジタルループフィルタ4,DCO(Digital Controlled Oscillator)5、RF(Radio Frequency)スイッチ6、電圧振幅比較器16、周波数比較器17及びコントローラ18を有する。また、低電力高周波制御系25は、高周波電力増幅器7及び入力高周波計測回路8を介して加速空胴9と接続され、さらに加速電圧計測回路10及び上位制御系19と接続される。なお、下記で説明する上位制御系19の機能の少なくとも一部が低電力高周波制御系25(特にコントローラ18)に備わっていてもよい。
【0038】
発振器1は、加速空胴9に対する加速用高周波電力の入力(立ち上げ)を開始する開始タイミングを制御するための周波数信号を生成する。周波数信号の周波数fpreは、加速空胴9の共振周波数の範囲である周波数変調範囲に含まれる。本実施例では、周波数信号の周波数fpreは、周波数変調範囲の上限周波数fmaxより低く、かつ加速領域101に入射されるビームのエネルギーである入射エネルギーに対応する周回周波数である所定周波数finjよりも大きい値に設定する。発振器1は、周波数が時間的に精度良く一定となる周波数信号を生成可能なものが好ましく、例えば、水晶発振器などである。
【0039】
切替スイッチ2は、後述するPLL(phase locked loop:位相同期)回路によるフィードバック制御のON/OFFを切り替える切替部である。
【0040】
TDC3、デジタルループフィルタ4及びDCO5は、発振器1の出力信号、又は、発振器1の出力信号と加速電圧信号Vaccとを加算した信号を参照信号とし、入力高周波計測回路8の出力信号である入力電流信号Ioutを入力信号とするPLL回路を構成する。PLL回路は、切替スイッチ2がオン状態になったのちに、入力信号と参照信号との位相差がゼロとなるように入力信号の位相を調整することで、入力信号の周波数を参照信号の周波数に合致させて出力する。PLL回路は、図5の例では、全ての回路(TDC3、デジタルループフィルタ4及びDCO5)がデジタル回路で構成されるオールデジタルPLL回路である。ただし、PLL回路は、一部の回路にアナログ回路が使用されたPLL回路でもよいし、全ての回路がアナログ回路で構成されたPLL回路でもよい。また、PLL回路は、入力信号及び参照信号のそれぞれをIQ信号に変換したうえで、両信号の位相差を検出し、比例・積分制御により位相差がゼロとなるようにIQ変調器(図示せず)で出力を制御する方式を用いたものでもよい。
【0041】
RFスイッチ6は、PLL回路の出力信号である高周波電力の加速空洞9への入力と停止とを切り替える。
【0042】
高周波電力増幅器7は、低電力高周波制御系25から出力された高周波電力を増幅して入力高周波電力として加速空胴9に入力する。高周波電力増幅器7は、例えば、半導体増幅器である。
【0043】
高周波電力増幅器7及び加速空胴9の間にある入力高周波計測回路8は、方向性結合器を用いて、加速空胴9へ向かう進行波成分である入力高周波電力を計測し、入力電流信号Ioutとして出力する入力計測部である。なお、入力高周波計測回路8が出力する信号は、入力電流信号ではなく、入力電圧信号であっても良い。また、図5では、図1及び図2に示した入力カプラ20を省略している。
【0044】
加速電圧計測回路10は、加速間隙11に印加される加速用高周波電圧を計測し、その計測値を示す計測信号を加速電圧信号Vaccとして出力する計測部である。例えば、加速電圧計測回路10は、加速間隙11付近のピックアップ部21より得られる信号を処理して、加速電圧信号Vaccとして出力する。
【0045】
電圧振幅比較器16は、加速電圧信号Vaccの振幅である加速電圧値と閾値Vthrdとを比較して、その加速電圧値が閾値Vthrdに到達すると、加速用高周波電力の入力を指示するRFON指令信号をコントローラ18に出力する。なお、前述したIQ変調器を用いる場合は、電圧振幅比較器16は省略することもできる。
【0046】
周波数比較器17は、加速電圧信号Vaccの周波数である加速周波数と要求値である出力周波数Fextとを比較して、その加速周波数が出力周波数Fextに到達すると、加速用高周波電力の停止を指示するRFOFF指令信号をコントローラ18に出力する。出力周波数Fextは、所望の出射エネルギーを有するビームが周回軌道を周回する周回周波数に対応する加速周波数の値である。
【0047】
コントローラ18は、切替スイッチ2及びRFスイッチ6を制御することにより、加速空胴9への加速用高周波電力の入力の開始及び停止を制御する。
【0048】
コントローラ18は、上記の制御を実現するために、ビームのエネルギーと周回周波数との対応関係を示すルックアップテーブルを保持する。コントローラ18は、ビームの出射準備を要求するビームリクエスト信号を上位制御系19から受け付けると、そのビームリクエスト信号に応じて、所望の出射エネルギーに応じた出力周波数Fextを周波数比較器17にセットする。なお、ビームリクエスト信号は、所望の出射エネルギーを示す情報を含む。
【0049】
そして、コントローラ18は、切替スイッチ2をオフ状態にし、RFスイッチ6をオン状態にして、発振器1の出力信号と位相同期した信号を制御用高周波電力として加速空胴9に入力する。その後、RFON信号がHighの状態となると、コントローラ18は、切替スイッチ2をオン状態にして、入力高周波計測回路8からの入力電流信号Ioutを、PLL回路を用いて加速電圧計測回路10からの加速電圧信号Vaccと位相同期させた信号を加速用高周波電力として加速空胴9に入力する。これにより、加速空胴9の共振周波数と略同一の周波数を有する加速用高周波電力が加速空胴9に入力される状態が維持されることとなり、ビームを加速し続けることが可能となる。
【0050】
なお、図5に示した低電力高周波制御系25は、単なる一例であって、図示した構成に限定されるものではない。例えば、入力高周波計測回路8による入力計測信号は電流信号に限らず電圧信号でもよい。また、加速電圧計測回路10による計測信号は電圧信号に限らず電流信号でもよい。また、切替スイッチ2とPLL回路のTDC3との間には、切替スイッチ2の節点の切り替えによる切替スイッチ2の出力信号の位相ズレを抑制するための回路が設けられてもよい。
【0051】
図6は、低電力高周波制御系25の制御シーケンスを説明するためのタイミングチャートである。図6(a)は、加速空胴9の共振周波数fcav(実線)と高周波電力増幅器7の出力信号である入力高周波電力の周波数fout(破線)の時間変化を示す。図6(b)は、低電力高周波制御系25で使用される各制御信号を示す。図6(c)は、加速電圧計測回路10による加速電圧信号Vaccと高周波キッカ90に印加する取出し用高周波電圧Vextとの時間変化を示す。図6(d)は、入射するビームの電流と出射するビームの電流の時間変化を示す。
【0052】
なお、加速空胴9の共振周波数fcavは、回転コンデンサ30の回転に伴い、図6に示した1加速周期ごとに、同じ周波数変調パターンで変化する。また、図6(b)に示す各制御信号は、本実施例では、Highレベルで活性化され、その後、一定時間後にLowレベルにリセットされる。
【0053】
先ず、コントローラ18は、上位制御系19からビームリクエスト信号を受け付けると(時刻T0)、以下の処理を開始する。このとき、RFスイッチ6及び切替スイッチ2は、ともにオフ状態である。
【0054】
コントローラ18は、回転コンデンサ30の角度信号を監視して、回転コンデンサ30の回転角度が所定角度になったのち(時刻T1)、一定時間が経過して共振周波数fcavが時間軸に対して単調減少に転じる時点の近傍で、ON信号をRFスイッチ6に送信して、RFスイッチ6をオン状態に切り替える(時刻T2)。所定角度は、1加速周期中に1つだけ設定される角度であり、例えば、共振周波数fcavが増加しているタイミングの角度に予め設定される。
【0055】
RFスイッチ6がオン状態になった直後では、共振周波数fcavはPLL回路の出力信号(DCO5の出力信号)の周波数fout(=fpre)よりも高く、それらは同調状態ではない。その後、共振周波数fcavは、回転コンデンサ30の回転に伴い低下して、PLL回路の出力信号の周波数fout(=fpre)と等しくなり、TDC3の入力信号と参照信号との位相差がゼロに近づく。そして、PLL回路の出力信号(DCO5の出力信号)の周波数foutが発振器1の出力信号の周波数fpreにロックされ、周波数fpreと略同じ周波数foutを有する制御用高周波電力が入力高周波電力として高周波電力増幅器7を介して加速空胴9に出力される。
【0056】
また、加速空胴9の共振周波数fcavと入力高周波電力の周波数foutとの差が大きい間(時刻T2とT3の間)、入力高周波電力は、加速空胴9にて反射される成分が大きく、加速空胴9に入力される成分が小さい。その後、加速空胴9の共振周波数fcavと入力高周波電力の周波数foutとの差が小さくなると(時刻T3に近づくと)、入力高周波電力の反射成分が急激に減り、入力高周波電力が加速空胴9に入力される。これにより、加速間隙11に加速用高周波電圧が印加され、加速電圧信号Vaccの電圧振幅が大きくなる。
【0057】
その後、時刻T3で加速電圧信号Vaccの振幅が閾値Vthrdに到達すると、電圧振幅比較器16からRFON指令信号がコントローラ18に出力される。コントローラ18は、RFON指令信号を受け付けると、切替信号を切替スイッチ2に送信して、切替スイッチ2をON状態とし、PLL回路の参照信号(TDC3の参照信号)に加速電圧信号Vaccを加算する(時刻T3)。なお、本実施例では、加速電圧信号Vaccの振幅が閾値Vthrdに到達したことが、加速電圧信号Vaccと制御用高周波電力との位相差が所定値以内になったことと対応している。また、PLL回路でIQ変調器を用いる場合、PLL回路にて加速電圧信号Vaccと制御用高周波電力との位相差が所定値以内になったことを検出できるため、上述したように電圧振幅比較器16を省略することもできる。
【0058】
これにより、PLL回路の出力信号の周波数foutは、加速空胴9の共振周波数fcavと略同じ加速電圧信号Vaccの加速周波数にロックされ、時間変化する共振周波数fcavに追随して変化する加速用高周波電力が入力高周波電力として高周波電力増幅器7を介して加速空胴9に入力される。
【0059】
その後、コントローラ18は、ビームをイオン源51から主電磁石40内の加速領域101に入射する(時刻T4)。なお、コントローラ18は、例えば、上位制御系19を介してイオン源51を制御してビームを入射する。
【0060】
時刻T4は、時刻T3から一定時間が経過した時刻である。また、時刻T4は、加速電圧信号Vaccの周波数が所定周波数finjと一致した時刻でもよい。所定周波数finjは、加速領域101に入射されるビームのエネルギーである入射エネルギーに対応する周回周波数である。この場合、例えば、周波数比較器(図示せず)を用い、加速電圧信号Vaccの周波数が所定周波数finjと一致した際にこの周波数比較器から信号が出力されるように設定し、その信号をコントローラ18が受け付けると、ビームを加速領域101に入射する。なお、図6(c)に示したように加速電圧信号Vaccの振幅が時刻T4より前に設定値となるように、高周波電力の振幅を制御するAGC(Automatic gain controller、図示せず)をDCO5の後段に設けてもよい。
【0061】
そして、加速電圧信号Vaccの周波数が出力周波数fextに到達すると、周波数比較器17からRFOFF指令信号がコントローラ18に出力される。コントローラ18は、RFOFF指令信号を受け付けると、OFF信号をRFスイッチ6に送信して、RFスイッチ6をオフ状態に切り替えて、加速用高周波電力の加速空胴9への入力を停止する(時刻T5)。これにより、ビームの加速が停止され、ビームはエネルギーに応じた周回軌道を周回し続ける。
【0062】
さらに、上位制御系19は、高周波キッカ90を駆動させ、取出し用高周波電圧Vextをビームに印加させる。これにより、ビームは、ピーラ磁場領域91及びリジェネレータ磁場領域92に到達し、さらにピーラ磁場領域91及びリジェネレータ磁場領域92により、最大エネルギー軌道61の外側にキックされてビーム出射経路入口82に到達する。その後、ビームは、磁気チャネル81及び高エネルギービーム輸送系80を通って加速器100の外部に出射される(時刻T6)。なお、コントローラ18が上位制御系19に加速終了信号を送ったのち、上位制御系19は、種々の条件判定をしたうえで高周波キッカ90を駆動、停止する。
【0063】
その後、取出し用高周波電圧Vextが停止されると、ビームの出射が停止される(時刻T7)。なお、加速領域101内でビームとして周回する荷電粒子である周回電荷が残存している間、ビームは出射され続ける。また、ビームは、上位制御系19が取出し用高周波電圧Vextの印加時間を調整することで連続的又は間欠的に出射される。取出し用高周波電圧Vextを印加し続けていても加速器外に配置されたビーム線量モニタ(図示せず)にてビームが検出できなくなった場合、上位制御系19は周回電荷がなくなったと判断してもよい。
【0064】
そして、再びビームを出射する場合、上位制御系19は、ビームリクエスト信号を再びコントローラ18に送信する(時刻T0’)。
【0065】
図7は、図1~図6で説明した加速器100を備えた粒子線治療システムの構成例を示す図である。図7において、粒子線治療システム500は、加速器100、治療台501と、ビーム輸送装置502、照射装置503と、上位制御系19とを有する。
【0066】
治療台501は、ビームを照射する照射対象者である患者600を載せる台である。ビーム輸送装置502は、加速器100の高エネルギービーム輸送系80と接続され、加速器100から出射されたビームを照射装置503まで輸送する。
【0067】
照射装置503は、ビーム輸送装置502から輸送されたビームを治療台501上の患者600の患部を標的として照射する。このとき、照射装置503は、ビームを、患者600の患部を分割した複数の照射スポットのそれぞれに照射し、照射スポットごとに照射線量を測定して上位制御系19に通知する。上位制御系19は、照射スポットごとに要求線量を計算し、ビームリクエスト信号をコントローラ18に送信するとともに、取出し用高周波電圧Vextを制御して、必要な線量のビームが患部に照射されるようにする。
【0068】
以上説明したように本実施例によれば、加速電圧計測回路10は、加速空胴9にて励起される加速用高周波電圧を計測した計測信号として加速電圧信号Vaccを出力する。低電力高周波制御系25は、高周波電力として、加速空胴9の共振周波数の範囲に含まれる一定周波数の制御用高周波電力を加速空胴9に入力する。低電力高周波制御系25は、加速電圧信号Vaccと制御用高周波電力との位相差が所定値以内となった場合、高周波電力として、フィードバック制御により加速電圧信号Vaccの周波数である加速周波数に同期した加速用高周波電力を加速空胴9に入力し、その後、加速周波数が出力周波数Fextに到達した場合、加速用高周波電力の加速空胴9への入力を停止する。したがって、加速空胴9の実際の共振パターンに応じて加速用高周波電力の入力及び停止を適切に行うことが可能となるため、ビームを所望のエネルギーまで適切に加速することが可能となる。このため、所望のエネルギーを有するビームを精度良く取り出すことが可能になる。
【0069】
また、本実施例では、ビームが周回する軌道の中心が加速領域101の中心からずれている。このため、ビームの取り出しに必要なキック量を小さくすることが可能となり、所望のエネルギーを有するビームを容易に取り出すことが可能となる。
【0070】
また、本実施例では、加速電圧値が閾値Vthrdに到達してから一定時間後にビームが加速領域101に入射される。又は、加速電圧値が閾値Vthrdに到達した後で周波数が所定周波数になると、ビームが加速領域101に入射される。このため、ビームを適切なタイミングで入射することが可能となり、所望のエネルギーを有するビームを精度良く取り出すことが可能になる。
【0071】
また、本実施例では、低電力高周波制御系25は、PLL回路を用いて、加速空胴9に入力される高周波電力を計測した入力計測信号を加速電圧信号Vaccと位相同期することで、加速用高周波電力を生成する。特に、PLL回路は全ての回路がデジタル回路で構成され、IQ変調を用いる。このため、加速用高周波電力の入力及び停止を容易に行うことが可能となる。
【0072】
また、本実施例では、加速空胴9の実際の共振パターンに応じて加速用高周波電力の入力及び停止が制御されるため、立ち上げにある程度の時間がかかる半導体増幅器を用いて加速用高周波電力を増幅しても、ビームを所望のエネルギーまで適切に加速することが可能となる。
【0073】
上述した本開示の実施形態は、本開示の説明のための例示であり、本開示の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本開示の範囲を逸脱することなしに、他の様々な態様で本開示を実施することができる。
【符号の説明】
【0074】
1:発振器 2:切替スイッチ 3:TDC 4:デジタルループフィルタ 5:DCO 6:RFスイッチ 7:高周波電力増幅器 8:入力高周波計測回路 9:加速空胴 10:加速電圧計測回路 11:加速間隙 12:ディー電極 13:ダミーディー電極 14:内導体 15:外導体 16:電圧振幅比較器 17:周波数比較器 18:コントローラ 19:上位制御系 20:入力カプラ 21:ピックアップ部 25:低電力高周波制御系 30:回転コンデンサ 31:モータ 40:主電磁石 41:ヨーク 42:主コイル 43:主磁極 50:クライオスタット 51:イオン源 52:低エネルギービーム輸送系 53:イオン入射部 80:高エネルギービーム輸送系 81:磁気チャネル 82:ビーム出射経路入口 90:高周波キッカ 91:ピーラ磁場領域 92:リジェネレータ磁場領域 100:加速器 101:加速領域 500:粒子線治療システム 501:治療台 502:ビーム輸送装置 503:照射装置
図1
図2
図3
図4
図5
図6
図7