(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023091569
(43)【公開日】2023-06-30
(54)【発明の名称】欠陥検出装置及び欠陥検出方法
(51)【国際特許分類】
G01N 21/892 20060101AFI20230623BHJP
G01B 11/30 20060101ALI20230623BHJP
【FI】
G01N21/892 C
G01B11/30 A
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021206373
(22)【出願日】2021-12-20
(71)【出願人】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】100101557
【弁理士】
【氏名又は名称】萩原 康司
(74)【代理人】
【識別番号】100096389
【弁理士】
【氏名又は名称】金本 哲男
(74)【代理人】
【識別番号】100167634
【弁理士】
【氏名又は名称】扇田 尚紀
(74)【代理人】
【識別番号】100187849
【弁理士】
【氏名又は名称】齊藤 隆史
(74)【代理人】
【識別番号】100212059
【弁理士】
【氏名又は名称】三根 卓也
(72)【発明者】
【氏名】今野 雄介
(72)【発明者】
【氏名】松原 弘樹
(72)【発明者】
【氏名】池田 曉
【テーマコード(参考)】
2F065
2G051
【Fターム(参考)】
2F065AA06
2F065AA49
2F065BB06
2F065DD06
2F065FF51
2F065GG21
2F065LL12
2F065MM03
2F065MM04
2F065QQ16
2F065QQ25
2F065QQ29
2G051AA37
2G051AB07
2G051BA08
2G051BB03
2G051BB11
2G051CB01
2G051CC15
2G051DA08
2G051EC04
(57)【要約】
【課題】表面に液体が付着した対象物であっても、その表面に存在する欠陥を精度よく検出すること。
【解決手段】本発明は、表面に液体が付着した対象物の表面の欠陥を検出する欠陥検出装置に関する。かかる欠陥検出装置は、液体の表面までの距離と、対象物の表面までの見かけの距離とを算出する光干渉断層計と、光干渉断層計を用いて得られた対象物の表面までの見かけの距離から、光干渉断層計を用いて得られた液体の表面までの距離を減じることで得られる長さに、液体の屈折率の逆数を乗じることで得られる長さを、液体の厚みとし、液体の厚みを、液体の表面までの距離に加算することで得られる距離を、対象物の表面までの真の距離とすることで、対象物の表面の形状を判定し、対象物の表面の欠陥を検出する欠陥検出部と、を有する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
表面に液体が付着した対象物の表面の欠陥を検出する欠陥検出装置であって、
前記対象物に向けて照明光を照射する照明部と、
光を反射する反射光学素子と、
前記照明光を、前記対象物に向かう計測光と、前記対象物には向かわない参照光とに分岐し、前記対象物で反射した前記計測光と前記反射光学素子で反射した前記参照光とからなる干渉光を所定の方向へと進める分岐光学素子と、
前記分岐光学素子を経た前記干渉光を検出する光検出部と、
前記光検出部で検出した前記干渉光に基づいて、前記液体の表面までの距離と前記対象物の表面までの見かけの距離とを算出する距離算出部と、
を有する光干渉断層計と、
前記対象物の表面までの見かけの距離から前記液体の表面までの距離を減じることで得られる長さに、前記液体の屈折率の逆数を乗じることで得られる長さを前記液体の厚みとし、
前記液体の厚みを前記液体の表面までの距離に加算することで得られる距離を、前記対象物の表面までの真の距離とすることで、前記対象物の表面の形状を判定し、前記対象物の表面の欠陥を検出する欠陥検出部と、
を有する、欠陥検出装置。
【請求項2】
前記対象物は、圧延ロールであり、
前記圧延ロールを、前記圧延ロールの円柱中心軸を回転軸として回転させる回転機構と、
前記圧延ロールを、前記圧延ロールの円柱中心軸の方向に沿って相対的に移動させる移動機構と、
を有しており、
前記回転機構を用いて前記圧延ロールを回転させ、前記移動機構を用いて前記圧延ロールの円柱中心軸の方向に沿って相対的に移動させながら、前記圧延ロールの表面の欠陥を検出する、請求項1に記載の欠陥検出装置。
【請求項3】
前記照明光は低コヒーレンス光であり、
前記反射光学素子は、前記分岐光学素子との間の距離を変えることができる可動ミラーであり、
前記距離算出部は、前記光検出部で検出した前記干渉光の強度のピーク位置と、前記分岐光学素子から前記可動ミラーまでの距離と、の関係に基づいて、前記対象物の表面までの見かけの距離と前記液体の表面までの距離とを算出する、請求項1又は2に記載の欠陥検出装置。
【請求項4】
前記光干渉断層計は、
前記分岐光学素子を経て前記光検出部に検出される前の前記干渉光を分光する分光光学素子と、
前記分光光学素子で分光され前記光検出部で検出された前記干渉光の強度をフーリエ変換して、前記干渉光の周波数成分を算出するフーリエ変換部と、
を有し、
前記照明光は、低コヒーレンス光であり、
前記反射光学素子は、前記分岐光学素子との間の距離が固定された固定ミラーであり、
前記光検出部は、ラインセンサカメラであり、
前記距離算出部は、前記フーリエ変換部で算出された前記干渉光の周波数成分に基づいて、前記対象物の表面までの見かけの距離と前記液体の表面までの距離とを算出する、請求項1又は2に記載の欠陥検出装置。
【請求項5】
前記光干渉断層計は、
前記光検出部で検出された前記干渉光の強度をフーリエ変換して、前記干渉光の周波数成分を算出するフーリエ変換部を有し、
前記照明部は、前記照明光として、時間とともに成分波長が変化するレーザ光を照射し、
前記反射光学素子は、前記分岐光学素子との間の距離が固定された固定ミラーであり、
前記光検出部は、前記分岐光学素子を経た前記干渉光の強度の時間変化を検出し、
前記距離算出部は、前記フーリエ変換部で算出された前記干渉光の周波数成分に基づいて、前記対象物の表面までの見かけの距離と前記液体の表面までの距離とを算出する、請求項1又は2に記載の欠陥検出装置。
【請求項6】
表面に液体が付着した対象物の表面の欠陥を検出する欠陥検出方法であって、
前記対象物に向けて照明光を照射する照明部と、光を反射する反射光学素子と、前記照明光を、前記対象物に向かう計測光と、前記対象物には向かわない参照光とに分岐し、前記対象物で反射した前記計測光と前記反射光学素子で反射した前記参照光とからなる干渉光を所定の方向へと進める分岐光学素子と、前記分岐光学素子を経た前記干渉光を検出する光検出部と、前記光検出部で検出した前記干渉光に基づいて、前記液体の表面までの距離と前記対象物の表面までの見かけの距離とを算出する距離算出部と、を有する光干渉断層計と、
前記対象物の表面の欠陥を検出する欠陥検査部と、
を有する欠陥検出装置を用い、
前記光干渉断層系を用い、前記液体の表面までの距離と前記対象物の表面までの見かけの距離とを算出する距離算出ステップと、
欠陥検出部を用いて、前記対象物の表面までの見かけの距離から前記液体の表面までの距離を減じることで得られる長さに、前記液体の屈折率の逆数を乗じることで得られる長さを前記液体の厚みとし、前記液体の厚みを前記液体の表面までの距離に加算することで得られる距離を、前記対象物の表面までの真の距離とすることで、前記対象物の表面の形状を判定し、前記対象物の表面の欠陥を検出する欠陥検出ステップと、
を有する、欠陥検出方法。
【請求項7】
前記対象物は、圧延ロールであり、
回転機構を用いて、前記圧延ロールを、前記圧延ロールの円柱中心軸を回転軸として回転させる回転ステップと、
移動機構を用いて、前記圧延ロールを、前記圧延ロールの円柱中心軸の方向に沿って相対的に移動させる移動ステップと、
を更に有しており、
前記回転機構を用いて前記圧延ロールを回転させ、前記移動機構を用いて前記圧延ロールの円柱中心軸の方向に沿って相対的に移動させながら、前記圧延ロールの表面の欠陥を検出する、請求項6に記載の欠陥検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、欠陥検出装置及び欠陥検出方法に関する。
【背景技術】
【0002】
圧延加工に用いられる圧延ロールは、使用により摩耗するとともに、その表面にクラックや疵が発生する。かかるクラックや疵が被圧延体に転写されてしまうと、被圧延体の表面性状が低下し、製品化が困難となるため、クラックや疵の発生した部位を研削することが行われる。
【0003】
従来、このような研削工程において、クラックや疵の発生した部位を検出するために、超音波探傷や渦流探傷などによる非破壊検査が行われてきた(例えば、以下の特許文献1及び特許文献2を参照)。また、超音波探傷や渦流探傷では検出できない、非常に浅い欠陥や研削不良については、光学的な検査方法が提案されている(例えば、以下の特許文献3を参照。)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平8-114581号公報
【特許文献2】特開平9- 80030号公報
【特許文献3】特開2006-208347号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記の研削工程では、圧延ロールを冷却するとともに、表面の潤滑性を担保するために、油と水の混合物である研削液を圧延ロールの表面にかけながら研削が行われる。上記特許文献3のような光学的な検査を用いて、非常に浅い欠陥や研削不良等といった圧延ロールの表面粗度と同程度の凹凸の欠陥を検出しようとすると、圧延ロールの表面に残存する研削液が光学的な外乱となり、欠陥の検出精度が低下してしまうという問題があった。そのために、光学的な検査に先立って研削液を拭きあげる必要が生じ、検査に時間を要していた。
【0006】
そのため、表面に液体が付着した状態の検査対象物を、液体が付着したままの状態で光学的な検査を精度よく実施できるようになれば、検査時間の短縮化を図ることが可能となる。
【0007】
そこで、本発明は、上記のような状況に鑑みてなされたものであり、本発明の目的とするところは、表面に液体が付着した対象物であっても、その表面に存在する欠陥を精度よく検出することが可能な、欠陥検出装置及び欠陥検出方法を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明のある観点によれば、表面に液体が付着した対象物の表面の欠陥を検出する欠陥検出装置であって、前記対象物に向けて照明光を照射する照明部と、光を反射する反射光学素子と、前記照明光を、前記対象物に向かう計測光と、前記対象物には向かわない参照光とに分岐し、前記対象物で反射した前記計測光と前記反射光学素子で反射した前記参照光とからなる干渉光を所定の方向へと進める分岐光学素子と、前記分岐光学素子を経た前記干渉光を検出する光検出部と、前記光検出部で検出した前記干渉光に基づいて、前記液体の表面までの距離と前記対象物の表面までの見かけの距離とを算出する距離算出部と、を有する光干渉断層計と、前記対象物の表面までの見かけの距離から前記液体の表面までの距離を減じることで得られる長さに、前記液体の屈折率の逆数を乗じることで得られる長さを前記液体の厚みとし、前記液体の厚みを前記液体の表面までの距離に加算することで得られる距離を、前記対象物の表面までの真の距離とすることで、前記対象物の表面の形状を判定し、前記対象物の表面の欠陥を検出する欠陥検出部と、を有する、欠陥検出装置が提供される。
【0009】
また、上記課題を解決するために、本発明の別の観点によれば、表面に液体が付着した対象物の表面の欠陥を検出する欠陥検出方法であって、前記対象物に向けて照明光を照射する照明部と、光を反射する反射光学素子と、前記照明光を、前記対象物に向かう計測光と、前記対象物には向かわない参照光とに分岐し、前記対象物で反射した前記計測光と前記反射光学素子で反射した前記参照光とからなる干渉光を所定の方向へと進める分岐光学素子と、前記分岐光学素子を経た前記干渉光を検出する光検出部と、前記光検出部で検出した前記干渉光に基づいて、前記液体の表面までの距離と前記対象物の表面までの見かけの距離とを算出する距離算出部と、を有する光干渉断層計と、前記対象物の表面の欠陥を検出する欠陥検査部と、を有する欠陥検出装置を用い、前記光干渉断層系を用い、前記液体の表面までの距離と前記対象物の表面までの見かけの距離とを算出する距離算出ステップと、欠陥検出部を用いて、前記対象物の表面までの見かけの距離か前記液体の表面までの距離を減じることで得られる長さに、前記液体の屈折率の逆数を乗じることで得られる長さを前記液体の厚みとし、前記液体の厚みを前記液体の表面までの距離に加算することで得られる距離を、前記対象物の表面までの真の距離とすることで、前記対象物の表面の形状を判定し、前記対象物の表面の欠陥を検出する欠陥検出ステップと、を有する、欠陥検出方法が提供される。
【発明の効果】
【0010】
以上説明したように本発明によれば、表面に液体が付着した対象物であっても、その表面に存在する欠陥を精度よく検出することが可能となる。
【図面の簡単な説明】
【0011】
【
図1】本発明の実施形態に係る欠陥検出装置の全体的な構成を模式的に示した説明図である。
【
図2】同実施形態に係る欠陥検出装置が有する光干渉断層計の全体的な構成を模式的に示した説明図である。
【
図3】同実施形態に係る光干渉断層計が有する光学ユニットの構成の一例を模式的に示した説明図である。
【
図4】同実施形態に係る光干渉断層計の光学ユニットで検出される検出信号を説明するための説明図である。
【
図5】同実施形態に係る光干渉断層計が有する演算処理ユニットの構成の一例を示したブロック図である。
【
図6】同実施形態に係る光干渉断層計で算出される2種類の距離について説明するための説明図である。
【
図7】同実施形態に係る光干渉断層計の演算処理ユニットにおける距離の算出方法を説明するための説明図である。
【
図8】同実施形態に係る光干渉断層計の演算処理ユニットにおける距離の算出方法を説明するための説明図である。
【
図9A】同実施形態に係る光干渉断層計が有する光学ユニットの構成の他の一例を模式的に示した説明図である。
【
図9B】同実施形態に係る光干渉断層計が有する光学ユニットの構成の他の一例を模式的に示した説明図である。
【
図10】同実施形態に係る光干渉断層計が有する演算処理ユニットの構成の他の一例を示したブロック図である。
【
図11】同実施形態に係る欠陥検出装置が有する演算処理装置の構成の一例を示したブロック図である。
【
図12】同実施形態に係る欠陥検出装置について説明するための説明図である。
【
図13】同実施形態に係る欠陥検出装置における光干渉断層計が有する演算処理ユニットのハードウェア構成の一例を示したブロック図である。
【発明を実施するための形態】
【0012】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0013】
(欠陥検出装置の全体的な構成について)
まず、
図1を参照しながら、本発明の実施形態に係る欠陥検出装置の全体的な構成について説明する。
図1は、本実施形態に係る欠陥検出装置の全体的な構成を模式的に示した説明図である。
【0014】
本実施形態に係る欠陥検出装置は、表面に液体が付着した対象物の表面の欠陥を検出する装置である。ここで、検出対象となる対象物については、特に限定されるものではなく、対象物の表面で、検査の際に用いられる照明光を反射させる物体であれば、各種の物体を対象物とすることができる。また、対象物の表面に付着している液体についても、特に限定されるものではなく、検査の際に用いられる照明光の波長にとって透明なものであればよい。このような、表面に液体が付着した対象物の一例として、研削液が表面に付着した圧延ロール等を挙げることができる。
【0015】
図1に示したように、本実施形態に係る欠陥検出装置1は、光干渉断層計(Optical Coherence Tomography:OCT)10と、演算処理装置20と、を有している。
【0016】
光干渉断層計10は、演算処理装置20による制御のもとで、着目する対象物に照明光を照射し、光の干渉性を利用して、対象物の表面に付着している液体の表面までの距離と、対象物の表面までの見かけの距離と、を計測する装置である。かかる光干渉断層計10の詳細な構成については、以下で改めて説明する。
【0017】
また、演算処理装置20は、光干渉断層計10による距離の計測処理を制御するとともに、光干渉断層計10により計測された上記2種類の距離を用いて、対象物の表面に存在する欠陥を検出する装置である。かかる演算処理装置20の詳細な構成についても、以下で改めて説明する。
【0018】
(光干渉断層計について)
<全体的な構成について>
次に、
図2を参照しながら、本実施形態に係る欠陥検出装置1が有する光干渉断層計10の全体的な構成について説明する。
図2は、本実施形態に係る欠陥検出装置が有する光干渉断層計の全体的な構成を模式的に示した説明図である。
【0019】
図2に示したように、本実施形態に係る光干渉断層計10は、光学ユニット11と、演算処理ユニット13と、を有している。
【0020】
光学ユニット11は、演算処理ユニット13による制御のもとで、対象物に向かって照明光を照射する。また、光学ユニット11は、液体の表面、又は、対象物の表面で反射した照明光の反射光を2つの光路に分岐して互いに干渉させ、生じた干渉光を検出する。
【0021】
また、演算処理ユニット13は、光学ユニット11の動作を制御するとともに、光学ユニット11が検出した干渉光の検出結果に基づいて、対象物の表面に付着している液体の表面までの距離と、対象物の表面までの見かけの距離と、を算出する。
【0022】
<光学ユニット11の構成について>
図3は、本実施形態に係る光干渉断層計10が有する光学ユニット11の構成の一例を模式的に示した説明図である。
図3に示したように、光学ユニット11は、照明部101と、分岐光学素子の一例としてのビームスプリッタBSと、反射光学素子の一例としての可動ミラーM1と、光検出部103と、を有している。
【0023】
照明部101は、対象物に向けて照明光を照射する光源(図示せず。)を有しており、必要に応じて、光源から照射された照明光を所望の位置まで導光するための、例えば各種レンズやミラー等に代表される光学素子(図示せず。)を更に有していてもよい。
【0024】
ここで、照射される照明光の波長は、着目する対象物の表面に付着した液体に吸収されない波長であることが好ましい。また、本実施形態に係る照明部101は、照明光として、低コヒーレンス光を照射することが好ましい。ここで、低コヒーレンス光とは、発光のスペクトル半値幅が40~60nm程度である広帯域光である。このような低コヒーレンス光として、例えば中心波長が800nm又は1μm程度である広帯域光を挙げることができる。このような広帯域光を照射可能な広帯域光源としては、特に限定されるものではなく、例えば、スーパールミネッセントダイオード(Super Luminescent Diode:SLD)や、スーパーコンティニウム(Super Continuum)光源等の各種の広帯域光源を用いることが可能である。
【0025】
照明部101から照射された照明光は、分岐光学素子の一例としてのビームスプリッタBSまで導光される。ビームスプリッタBSは、照明部101から照射された照明光を、対象物に向かう第1の光路を伝播する照明光である計測光と、対象物には向かわない第2の光路を伝播する照明光である参照光と、に分岐した上で透過させる。
【0026】
ここで、本実施形態では、ビームスプリッタBSを透過して、表面に液体が付着した対象物まで到達し、再びビームスプリッタBSまで戻ってきた後に、後述する光検出部103に至る光路を、上記の第1の光路とする。また、ビームスプリッタBSを透過して、後述する可動ミラーM1に向かい、再びビームスプリッタBSまで戻ってきた後に、後述する光検出部103に至る光路を、上記の第2の光路とする。
【0027】
計測光は、ビームスプリッタBSを透過した後、表面に液体が付着した対象物に照射される。この計測光は、液体の表面(換言すれば、周囲に存在する空気と液体との界面)、又は、対象物の表面(換言すれば、液体と対象物との界面)で反射して、反射光となる。光学ユニット11内に入射した反射光は、ビームスプリッタBSまで到達すると、ビームスプリッタBSの表面で反射して、後述する光検出部103へと到達する。
【0028】
また、参照光は、表面に液体が付着した対象物へは到達せずに、後述する可動ミラーM1に向かい、再びビームスプリッタBSまで戻ってきた後に、後述する光検出部103へと到達する。
【0029】
図3に示したように、反射光学素子の一例である可動ミラーM1は、第2の光路において、ビームスプリッタBSまでの距離(光学的距離)を変えることができるようになっている。可動ミラーM1は、光学ユニット11による干渉光の検出の際に、第2の光路の光軸方向に沿って前後に移動することで、ビームスプリッタBSまでの光学的距離を変化させる。そして、可動ミラーM1で反射して第2の光路を進行する参照光と、対象物又は液体で反射して第1の光路を進行する反射光とは、ビームスプリッタB2を経た後に互いに干渉して、干渉光が生成される。その結果、第1の光路と第2の光路の光路長の差が、照明光の波長の1/2波長の偶数倍となるときに、干渉光の振幅(強度と捉えることもできる。)が増幅されてピークとなる。特に、照明光が低コヒーレント光(即ち、種々の波長の光が含まれた光)である場合には、第1の光路の光路長と第2の光路の光路長とが一致する場合には、波長によらずに、常に振幅が増幅されることから、最大のピークを生じることになる。そのため、振幅の値に所定の閾値を設定することで、第1の光路の光路長と第2の光路の光路長とが一致する際の干渉光を、光検出器103によりピークとして検出することができる。
【0030】
第1の光路及び第2の光路の終端に位置する光検出部103は、上記のようにして生成した干渉光(より詳細には、干渉光の強度)を検出する。かかる光検出部103は、上記のような波長を有する光を検出可能なものであれば、公知の各種の検出素子を用いることが可能である。このような検出素子として、例えば、CCD、CMOS等のイメージセンサや、InSb、PbSe、PbS、InGaAs、HgCdTe(通称、MCT)、QWIP(量子井戸型赤外線検出器、Quantum Well Infrared Photodetectors)等の光検出器等を用いることが可能である。
【0031】
本実施形態で着目する対象物は、その表面に液体が付着しているものであり、計測光が反射しうる表面は、液体の表面と、対象物の表面の2つに限られる。そのため、これら表面で計測光が反射した反射光と参照光とが互いに干渉して干渉光となり、その振幅が増幅される。こうした振幅が増幅される状況としては、第2の光路の光路長が液体の表面で反射した反射光が辿る第1の光路の光路長と等しくなる場合と、第2の光路の光路長が対象物の表面で反射した反射光が辿る第1の光路の光路長と等しくなる場合とが考えられる。このような場合に着目することにより、光検出部103が干渉光を検出することで生成される検出信号には、
図4に模式的に示したように、液体の表面で反射した場合に対応するピークP
Aと、対象物の表面で反射した場合に対応するピークP
Bの2つが存在するようになる。
【0032】
光検出部103は、このようにして検出した干渉光の検出信号を、演算処理ユニット13へと出力する。
【0033】
このように、
図3に示したような光学系を有する光学ユニット11は、反射光と参照光との干渉を、可動ミラーM1を用いて実空間の時間領域で実現するため、いわゆる時間領域OCT(Time-Domain OCT:TD-OCT)を実現するための光学系を有していると捉えることができる。
【0034】
なお、
図3に示したように、光学ユニット11から射出した計測光は、表面に液体が付着した対象物に対して、略垂直に入射することが好ましい。これにより、液体の表面、又は、対象物の表面からの反射光をより確実に検出することが可能となる。また、上記のようにすることで、光学ユニット11の小型化が可能となり、光学ユニット11を配置する際の省スペース化にも寄与することができる。
【0035】
<演算処理ユニット13の構成について>
続いて、
図5及び
図6を参照しながら、本実施形態に係る光干渉断層計10が有する演算処理ユニット13の構成について、詳細に説明する。
図5は、本実施形態に係る光干渉断層計が有する演算処理ユニットの構成の一例を示したブロック図であり、
図6は、本実施形態に係る光干渉断層計で算出される2種類の距離について説明するための説明図である。
【0036】
本実施形態に係る演算処理ユニット13は、上記のような光学ユニット11の動作を統括的に制御するとともに、光学ユニット11から出力された干渉光の検出信号に基づいて、所定の基準位置から液体の表面までの距離と、所定の基準位置から対象物の表面までの見かけの距離と、を算出する。
【0037】
図5に示したように、かかる演算処理ユニット13は、光学ユニット制御部131と、演算処理部133と、結果出力部137と、記憶部139と、を有している。
【0038】
光学ユニット制御部131は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力装置、出力装置、通信装置等により実現される。光学ユニット制御部131は、本実施形態に係る光学ユニット11の機能を統括的に制御する処理部である。
【0039】
より詳細には、光学ユニット制御部131は、対象物についての距離の計測を開始する場合に、光学ユニット11に対して照明部101からの照明光の照射を開始させるための制御信号を送出し、照明部101は、対象物の表面に向けて照明光を照射する。また、光学ユニット制御部131は、光検出部103に対して、干渉光に関する検出信号を出力させるためのトリガ信号を送出し、光検出部103は、干渉光に関する検出信号を、演算処理ユニット13に対して出力する。
【0040】
演算処理部133は、例えば、CPU、ROM、RAM、通信装置等により実現される。演算処理部133は、光学ユニット11から出力される、干渉光に関する検出信号を取得して、かかる検出信号に対して各種の演算処理を施す処理部である。この演算処理部133は、
図5に示したように、距離算出部135を有している。
【0041】
距離算出部135は、例えば、CPU、ROM、RAM等により実現される。距離算出部135は、取得した干渉光の検出信号に基づき、光学ユニット11における所定の基準位置(例えば、ビームスプリッタBS)から液体の表面までの距離と、所定の基準位置(例えば、ビームスプリッタBS)から対象物の表面までの見かけの距離と、の2種類を算出する。なお、所定の基準位置としては、距離を算出する際に都合のよい任意の位置を用いることができ、例えば、ビームスプリッタBSや、照明部101や、照明部101からビームスプリッタBSに至る光路上の任意の位置等を、用いることができる。以下では、ビームスプリッタBSを所定の基準位置とした場合を例として説明を行う。
【0042】
図6は、本実施形態に係る光干渉断層計で算出される2種類の距離について説明するための説明図である。
図6に示し、また、上記で言及しているように、本実施形態に係る距離算出部135は、光学ユニット11におけるビームスプリッタBSから液体の表面までの距離d
1と、ビームスプリッタBSから対象物の表面までの見かけの距離d
2と、を算出する。
【0043】
ここで、距離算出部135が算出する2種類の距離d
1とd
2とは、共に、光学的な測定によって得られる光学的な距離である。
図6に示したように、ビームスプリッタBSから液体の表面までの間は、光は、屈折率n
Aが1である空気中を伝播しているため、ビームスプリッタBSから液体の表面までの間は、(実空間上の長さである)経路長と、光学的な距離とが等しくなる。これにより、距離算出部135で算出される光学的な距離d
1は、ビームスプリッタBSから液体の表面までの距離(空間的な距離)として取り扱うことができる。
【0044】
一方、液体の表面から対象物の表面までの間は、光は、屈折率がnL(>1)である液体中を伝播するため、液体の表面から対象物の表面までの間は、経路長と光学的な距離とが相違する(より詳細には、光学的な距離は、経路長のnL倍となる)。そのため、距離算出部135により算出される距離d2は、ビームスプリッタBSから対象物の表面までの空間的な距離とは異なる、(経路長さと異なる)液体層中の光学的な距離を含んだ対象物の表面までの見かけの距離となる。
【0045】
図7及び
図8は、同実施形態に係る光干渉断層計の演算処理ユニットにおける距離の算出方法を説明するための説明図である。
図3に示したようなTD-OCTに対応する光学系を有する光学ユニット11において、ある計測位置に対する深さ方向走査(すなわち、液体や対象物の厚み方向の走査)の干渉波形は、光学系を設定した時点で定まっている。そのため、例えば
図7(a)に示したような、単一の表面での干渉波形(液体が付着していない状態の表面での干渉波形:基準干渉波形)を予め計測しておき、記憶部139等に格納しておく。
【0046】
その上で、距離算出部135は、例えば
図7(b)に示したような、実際の計測において光検出部103から出力された検出干渉波形と、基準干渉波形との相互相関を算出して、
図7(c)に示したような相互相関波形を得る。距離算出部135は、このようにして得られた相互相関波形から、
図4に模式的に示したような、2つのピーク位置P
A、P
Bを検出する。
【0047】
この際、距離算出部135は、
図8に例示したように、正の極大値の近傍に存在する3~5点の重心位置を算出することで、各ピークのピーク位置とする。これにより、本実施形態に係る距離算出部135では、各ピーク位置をより正確に算出することが可能となる。その後、距離算出部135は、得られた2つのピーク位置を用いて、光学ユニット11におけるビームスプリッタBSから液体の表面までの距離d
1と、ビームスプリッタBSから対象物の表面までの見かけの距離d
2と、を算出する。ここで、算出したピーク位置から2種類の距離を求めるまでの具体的な演算方法については、特に限定されるものではなく、公知の各種の方法を用いることが可能である。
【0048】
距離算出部135は、このようにして得られた2つの距離d1、d2を、結果出力部137へと出力する。
【0049】
なお、対象物の表面に液体が付着していない場合には、検出信号において、2つのピークではなく1つのピークが存在するようになる。このピークは、計測光が対象物の表面で反射した場合の反射光に対応するものである。この場合、屈折率nLの液体が光路上に存在していないわけであるから、距離算出部135により算出される距離は、ビームスプリッタBSから対象物の表面までの真の距離となる。
【0050】
また、光学ユニット11と対象物との間の相対的な位置関係を変化させながら、光学ユニット11により検出信号を検出し、得られた各検出信号から上記のような距離算出処理を行って、得られた結果を記憶部139に随時格納しておく。格納された結果を、格納された順序を保ちながら2次元に配置していくことで、対象物の表面全域にわたっての距離の分布状態をマップ化することができる。また、各距離を表す数値を輝度値に対応付けることで、距離の分布状態を示した2次元マップ画像を生成することも可能である。
【0051】
結果出力部137は、例えば、CPU、ROM、RAM、出力装置、通信装置等により実現される。結果出力部137は、演算処理部133(より詳細には、距離算出部135)から出力された、ビームスプリッタBSから液体の表面までの距離d1と、ビームスプリッタBSから対象物の表面までの見かけの距離d2とを、演算処理装置20に出力する。具体的には、結果出力部137は、上記のような2種類の距離d1、d2に関する算出結果を、当該結果が生成された日時等に関する時刻と対応づけて、演算処理装置20に出力する。また、結果出力部137は、上記のような2種類の距離d1、d2に関する算出結果を、各種の記録媒体に出力してもよい。
【0052】
記憶部139は、演算処理ユニット13が備える記憶装置の一例であり、例えば、ROM、RAM、ストレージ装置等により実現される。この記憶部139には、例えば、基準干渉波形に関するデータ等のような、演算処理ユニット13が演算処理を実施する際に利用される各種のデータが格納される。また、記憶部139には、本実施形態に係る演算処理ユニット13が何らかの処理を行う際に保存する必要が生じた様々なパラメータや処理の途中経過が、適宜記録される。この記憶部139は、光学ユニット制御部131、演算処理部133、距離算出部135、結果出力部137、及び、後述する演算処理装置20等が、自由にデータのリード/ライト処理を行うことが可能である。
【0053】
以上、本実施形態に係る演算処理ユニット13の機能の一例を示した。上記の各構成要素は、汎用的な部材や回路を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。また、各構成要素の機能を、CPU等が全て行ってもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用する構成を変更することが可能である。
【0054】
なお、上述のような本実施形態に係る演算処理ユニットの各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータや上位演算処理装置であるプロセスコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
【0055】
<光干渉断層計10の変形例について>
以上の説明では、
図3に示したような光学系を有する光学ユニット11と、
図7及び
図8に示したような干渉波形を用いた距離算出処理を行う演算処理ユニット13と、を有する光干渉断層計10を例に挙げたが、以下のような光学ユニット11及び演算処理ユニット13を有する光干渉断層計を用いることも可能である。
【0056】
より詳細には、以下で
図9A及び
図9Bを参照しながら説明するような光学ユニット11を用い、得られた検出信号をフーリエ変換することで、
図7及び
図8に示したような干渉波形を用いた距離算出処理を、周波数領域で実施することも可能である。
【0057】
[光学ユニット11の変形例-1:スペクトル領域OCT]
図9Aは、本実施形態に係る光干渉断層計が有する光学ユニットの構成の他の一例を模式的に示した説明図である。
図9Aに示したように、本変形例に係る光学ユニット11は、
図3に示した光学ユニット11における可動ミラーM1に換えて、固定ミラーM2が設けられており、光検出部103に換えて、分光光学素子141及び光検出部143が設けられている。
【0058】
図9Aに示した光学系を有する光学ユニット11では、固定ミラーM2を設けて参照光の光路長を固定しておいた上で(換言すれば、参照光の光路長に対応する深さをある位置に固定しておいた上で)、照明部101から低コヒーレンス光を照射し、ビームスプリッタBSを経て光検出部143に検出される前の干渉光を分光光学素子141で分光した上で、分光された干渉光をそれぞれ光検出部143で検出する。このような光学系を有するOCTは、干渉光を分光して検出することから、スペクトル領域OCT(Spectral Domain OCT:SD-OCT)と呼ばれる。
【0059】
ここで、分光光学素子141としては、特に限定されるものではなく、各種のプリズムや回折格子等といった、公知の分光光学素子を用いることが可能である。また、分光後の干渉光を検出するための光検出部143としては、各種のラインセンサカメラに代表される撮像装置を用いることが可能である。
【0060】
このような光学ユニット11から得られる干渉光の検出信号は、
図7(b)に示したような、横軸に光路長差、縦軸に干渉光の強度を採用したグラフ図ではなく、横軸に波長、縦軸に干渉光の強度を採用したグラフ図で表すことができる。
【0061】
[光学ユニット11の変形例-2:周波数掃引OCT]
図9Aに示した光学系で得られる干渉光の検出信号と等価な意味を有する検出信号は、
図9Bに示したような光学系を有する光学ユニット11でも取得することが可能である。
図9Bは、本実施形態に係る光干渉断層計が有する光学ユニットの構成の他の一例を模式的に示した説明図である。
【0062】
図9Bに示したように、本変形例に係る光学ユニット11は、
図3に示した光学ユニット11における可動ミラーM1に換えて、固定ミラーM2が設けられており、低コヒーレント光を照射する照明部101に換えて、時間とともに成分波長が変化するレーザ光を照射する照明部145が設けられている。
【0063】
図9Aに示した光学系を有する光学ユニット11では、固定ミラーM2を設けて参照光の光路長を固定しておいた上で(換言すれば、参照光の光路長に対応する深さをある位置に固定しておいた上で)、照明部101から時間とともに成分波長が変化するレーザ光を、波長を切り替えながら順次照射し、各波長についてビームスプリッタBSを経た干渉光を、光検出部103で順次検出していく。そのため、光検出部103は、干渉光の強度の時間変化を検出することになる。このような光学系を有するOCTは、照明光の波長を掃引しながら干渉光の強度を検出することから、周波数掃引OCT(Swept Source OCT:SS-OCT)と呼ばれる。
【0064】
ここで、照明部145としては、特に限定されるものではなく、所望の波長帯域の光を照射可能な、各種の波長掃引レーザ光源を用いることが可能である。
【0065】
このような光学ユニット11から得られる干渉光の検出信号は、
図7(b)に示したような、横軸に光路長差、縦軸に干渉光の強度を採用したグラフ図ではなく、横軸に時間、縦軸に干渉光の強度を採用したグラフ図で表すことができる。
【0066】
なお、
図9A及び
図9Bに示した光学ユニット11を比較すると、
図9Aに示した光学ユニット11の方が、より高速な検出処理を実現できることから、
図9Aに示した光学ユニット11は、実際の圧延ロールにおける研削工程をより短縮化するために、より好ましい態様であるといえる。
【0067】
[演算処理ユニット13の変形例:フーリエ変換を用いた信号処理]
以下では、
図10を参照しながら、
図9A又は
図9Bに示したような光学系を有する光学ユニット11から得られた干渉光の検出信号から、2種類の距離d
1、d
2を算出するための演算処理ユニット13の構成について、
図5との相違点に注目しながら説明する。
図10は、本実施形態に係る光干渉断層計が有する演算処理ユニットの構成の他の一例を示したブロック図である。
【0068】
図9A又は
図9Bに示したような光学系を有する光学ユニット11から得られた干渉光の検出信号を処理する場合、得られた検出信号をフーリエ変換して、周波数成分領域で演算処理を行う必要がある。そのため、かかる処理を実現する演算処理部133は、
図5に示した距離算出部135に換えて、
図10に示したように、フーリエ変換部151及び距離算出部153を有する。
【0069】
フーリエ変換部151は、例えば、CPU、ROM、RAM等により実現される。フーリエ変換部151は、分光後の干渉光の強度(
図9Aに示した光学系を有する光学ユニット11の場合)、又は、干渉光の強度(
図9Bに示した光学系を有する光学ユニット11の場合)をフーリエ変換して、干渉光の周波数成分を算出する処理部である。
【0070】
ここで、フーリエ変換部151で実施されるフーリエ変換処理の詳細については、特に限定されるものではなく、高速フーリエ変換(Fast Fourier Transformation:FFT)に代表されるような、各種の離散フーリエ変換(discrete Fourier transform)のアルゴリズムを適宜用いることが可能である。
【0071】
フーリエ変換部151は、このようにして干渉光の強度の周波数成分を算出すると、得られた周波数成分を、距離算出部153へと出力する。
【0072】
距離算出部153は、例えば、CPU、ROM、RAM等により実現される。距離算出部153は、フーリエ変換部151により算出された、干渉光の強度の周波数成分に基づいて、
図6に例示したような、液体の表面までの距離d
1と、対象物の表面までの見かけの距離d
2と、を算出する。
【0073】
ここで、距離算出部153が実施する距離算出処理は、フーリエ変換により得られた周波数成分を用いる以外は、
図7及び
図8を参照しながら説明した処理と同様の処理を実施することが可能である。ここで、フーリエ変換を用いた場合には、
図7に示した検出信号のような、強度における正負の波打ちは存在しないため、各ピークについて、極大値近傍の3~5点の重心位置を算出することで、各ピークのピーク位置とすることができる。
【0074】
(演算処理装置20について)
続いて、
図11を参照しながら、本実施形態に係る欠陥検出装置1が有する演算処理装置20の構成について、詳細に説明する。
図11は、本実施形態に係る欠陥検出装置が有する演算処理装置の構成の一例を示したブロック図である。
【0075】
本実施形態に係る欠陥検出装置1が有する演算処理装置20は、以上説明したような光干渉断層計10の動作を統括的に制御するとともに、光干渉断層計10から得られた2種類の距離に基づき、以下で説明するような演算処理を行うことで、対象物の表面の欠陥を検出する装置である。
【0076】
図11に示したように、本実施形態に係る演算処理装置20は、制御部201と、演算処理部203と、結果出力部207と、表示制御部209と、記憶部211と、を主に有する。
【0077】
制御部201は、例えば、CPU、ROM、RAM、通信装置等により実現される。制御部201は、本実施形態に係る光干渉断層計10による干渉光の検出処理及び距離算出処理を統括して制御する。
【0078】
より詳細には、制御部201は、着目する対象物に関する欠陥検出処理を開始する場合に、光干渉断層計10に対して計測を開始させるための制御信号を送出する。また、制御部201は、光干渉断層計10と対象物との相対的な位置関係を変化させるための駆動機構等から定期的に送出されるPLG信号を取得する毎に、光干渉断層計10に対して、距離算出結果を出力させるためのトリガ信号を送出する。
【0079】
演算処理部203は、例えば、CPU、ROM、RAM、通信装置等により実現される。演算処理部203は、光干渉断層計10から出力される、2種類の距離(液体の表面までの距離、及び、対象物の表面までの見かけの距離)を取得し、かかる2種類の距離に基づいて、各種の演算処理を施す処理部である。この演算処理部203は、
図11に示したように、欠陥検出部205を有している。
【0080】
欠陥検出部205は、例えば、CPU、ROM、RAM等により実現される。欠陥検出部205は、光干渉断層計10を用いて得られた2種類の距離を用いて、対象物の表面までの真の距離を算出する。その後、欠陥検出部205は、得られた真の距離を用いて、着目する対象物の表面の形状を判定して、対象物の表面の欠陥を検出する。
【0081】
先だって言及したように、光干渉断層計10により得られる、対象物の表面までの見かけの距離(
図6における距離d
2)のうち、液体中を伝播する間の光学的な距離は、空間的な距離のn
L倍となっている。そこで、欠陥検出部205は、対象物の表面までの見かけの距離(
図6における距離d
2)から、液体の表面までの距離(
図6における距離d
1)を減じることで得られる長さ(
図6における差分d
2-d
1)に対し、液体の屈折率n
Lの逆数を乗じることで、液体の厚み(光路差d
2-d
1に対応する、空間的な厚み)を算出する。
【0082】
欠陥検出部205は、このようにして得られた液体の厚みに対し、液体の表面までの距離(
図6における距離d
1)を加算することで、対象物の表面までの真の距離を算出する。
【0083】
ここで、光学ユニット11と対象物との間の相対的な位置関係を変化させながら、光干渉断層計10により2種類の距離を随時計測しておき、欠陥検出部205は、得られた対象物の表面までの真の距離の算出結果を、後述する記憶部211に随時格納しておく。欠陥検出部205は、格納された結果を、格納された順序を保ちながら2次元に配置していくことで、対象物の表面全域にわたっての真の距離の分布状態をマップ化することができる。また、真の距離を表す数値を輝度値に対応付けることで、真の距離の分布状態を示した2次元マップ画像を生成することも可能である。これにより、欠陥検出部205は、着目する対象物の表面の形状を特定することができる。
【0084】
その後、欠陥検出部205は、得られた対象物の表面の形状を判定して、対象物の表面の欠陥を検出する。例えば、欠陥検出部205は、ある判定位置について、かかる判定位置の周囲に存在する真の距離の算出結果から平均値を算出し、得られた平均値と、かかる判定位置に対応付けられている真の距離と、の差分を算出する。得られた差分と、所定の判定閾値との間で、大小比較を行うことで、欠陥検出部205は、着目している判定位置について、欠陥検出を行うことができる。
【0085】
また、欠陥検出部205は、上記のような閾値に基づく大小比較だけでなく、各種のルックアップテーブルに代表される判定ロジックや、予め学習された機械学習モデルによる判定器を用いることで、算出した真の距離に基づき、欠陥検出処理を行うことも可能である。
【0086】
欠陥検出部205は、以上のようにして表面の形状の欠陥検出処理を行うと、得られた検出結果を、結果出力部207に出力する。
【0087】
結果出力部207は、例えば、CPU、ROM、RAM、出力装置、通信装置等により実現される。結果出力部207は、演算処理部205(より詳細には、欠陥検出部205)から出力された、対象物の表面の欠陥検出結果に関する情報を、欠陥検出装置1のユーザに出力する。具体的には、結果出力部207は、演算処理部205による対象物の表面の欠陥検出結果に関するデータを、当該データが生成された日時等に関する時刻データと対応づけて、各種サーバや制御装置に出力したり、プリンタ等の出力装置を利用して、紙媒体として出力したりする。また、結果出力部207は、対象物の表面の欠陥検出結果に関するデータを、外部に設けられたコンピュータ等の各種の情報処理装置に出力してもよいし、各種の記録媒体に出力してもよい。
【0088】
また、結果出力部207は、演算処理部205による対象物の表面の欠陥検出結果に関するデータを、欠陥検出装置1に設けられたディスプレイ等の出力装置や、外部に設けられた各種機器の有するディスプレイ等に出力する際には、後述する表示制御部209と連携して演算結果を出力する。
【0089】
表示制御部209は、例えば、CPU、ROM、RAM、出力装置、通信装置等により実現される。表示制御部209は、結果出力部207から伝送された、対象物の表面の欠陥検出結果を、演算処理装置20が備えるディスプレイ等の出力装置や演算処理装置20の外部に設けられた出力装置等に表示する際の表示制御を行う。これにより、欠陥検出装置1のユーザは、対象物の表面の欠陥検出結果を、その場で把握することが可能となる。
【0090】
記憶部211は、演算処理装置20が備える記憶装置の一例であり、例えば、ROM、RAM、ストレージ装置等により実現される。この記憶部211には、本実施形態に係る演算処理装置20が何らかの処理を行う際に保存する必要が生じた様々なパラメータや処理の途中経過(例えば、事前に格納されている各種のデータやデータベース、及び、プログラム等)が、適宜記録される。この記憶部211は、制御部201、演算処理部203、欠陥検出部205、結果出力部207、表示制御部209及び上位計算機等が、自由にデータのリード/ライト処理を行うことが可能である。
【0091】
以上、本実施形態に係る演算処理装置20の機能の一例を示した。上記の各構成要素は、汎用的な部材や回路を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。また、各構成要素の機能を、CPU等が全て行ってもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用する構成を変更することが可能である。
【0092】
なお、上述のような本実施形態に係る演算処理装置の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータや上位演算処理装置であるプロセスコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
【0093】
また、本実施形態では、説明の便宜上、光干渉断層計10における演算処理ユニット13と、演算処理装置20と、を別体として記載しているが、本実施形態に係る演算処理装置20の一機能として、演算処理ユニット13で実現される機能が実現されていてもよい。また、本実施形態に係る演算処理装置20で実現される機能は、例えば各種のプロセスコンピュータに代表される上位演算処理装置の一機能として、実現されていてもよい。
【0094】
(欠陥検出装置1の適用例)
以上説明したような、本実施形態に係る欠陥検出装置1の適用例について、
図12を参照しながら具体的に説明する。
図12は、本実施形態に係る欠陥検出装置について説明するための説明図である。
【0095】
以上説明したような、本実施形態に係る欠陥検出装置1は、圧延加工に用いられる圧延ロールを補修する際に実施される圧延ロール表面の研削工程において、クラックや疵の発生した部位を検出するために用いることが可能である。
【0096】
この場合、
図12に模式的に示したように、対象物である圧延ロールに対して、圧延ロールを、圧延ロールの円柱中心軸を回転軸として回転させる回転機構3と、圧延ロールを圧延ロールの円柱中心軸の方向に沿って相対的に移動させる移動機構5と、設置する。その上で、かかる回転機構3及び移動機構5の動作を、欠陥検出装置1が備える演算処理装置20により制御しながら、光干渉断層計10を用いて検査していく。
【0097】
具体的には、回転機構を用いて圧延ロールを回転させ、移動機構を用いて圧延ロールの円柱中心軸の方向に沿って相対的に移動させながら、圧延ロールの表面の欠陥を検出すればよい。
【0098】
これにより、圧延ロールの表面に存在する欠陥を、圧延ロールの全周全幅に亘って、精度よく検出することが可能となる。
【0099】
なお、
図12に示したような回転機構3や移動機構5の詳細については、特に限定されるものではなく、各種のモータやアクチュエータ等を適宜組み合わせて用いればよい。
【0100】
(演算処理ユニット13及び演算処理装置20のハードウェア構成について)
次に、
図13を参照しながら、本実施形態に係る演算処理ユニット13のハードウェア構成について、詳細に説明する。
図13は、本発明の実施形態に係る演算処理ユニット13のハードウェア構成を説明するためのブロック図である。
【0101】
演算処理ユニット13は、主に、CPU901と、ROM903と、RAM905と、を備える。また、演算処理ユニット13は、更に、バス907と、入力装置909と、出力装置911と、ストレージ装置913と、ドライブ915と、接続ポート917と、通信装置919とを備える。
【0102】
CPU901は、中心的な処理装置及び制御装置として機能し、ROM903、RAM905、ストレージ装置913、又はリムーバブル記録媒体921に記録された各種プログラムに従って、演算処理ユニット13内の動作全般又はその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるバス907により相互に接続されている。
【0103】
バス907は、ブリッジを介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バスに接続されている。
【0104】
入力装置909は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ及びレバーなどユーザが操作する操作手段である。また、入力装置909は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、演算処理ユニット13の操作に対応したPDA等の外部接続機器923であってもよい。更に、入力装置909は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。ユーザは、この入力装置909を操作することにより、演算処理ユニット13に対して各種のデータを入力したり処理動作を指示したりすることができる。
【0105】
出力装置911は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプなどの表示装置や、スピーカ及びヘッドホンなどの音声出力装置や、プリンタ装置、携帯電話、ファクシミリなどがある。出力装置911は、例えば、演算処理ユニット13が行った各種処理により得られた結果を出力する。具体的には、表示装置は、演算処理ユニット13が行った各種処理により得られた結果を、テキスト又はイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。
【0106】
ストレージ装置913は、演算処理ユニット13の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置913は、例えば、HDD(Hard Disk Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイス等により構成される。このストレージ装置913は、CPU901が実行するプログラムや各種データ、及び外部から取得した各種のデータなどを格納する。
【0107】
ドライブ915は、記録媒体用リーダライタであり、演算処理ユニット13に内蔵、あるいは外付けされる。ドライブ915は、装着されている磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体921に記録されている情報を読み出して、RAM905に出力する。また、ドライブ915は、装着されている磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体921に記録を書き込むことも可能である。リムーバブル記録媒体921は、例えば、CDメディア、DVDメディア、Blu-ray(登録商標)メディア等である。また、リムーバブル記録媒体921は、コンパクトフラッシュ(登録商標)(CompactFlash:CF)、フラッシュメモリ、又は、SDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体921は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)又は電子機器等であってもよい。
【0108】
接続ポート917は、機器を演算処理ユニット13に直接接続するためのポートである。接続ポート917の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート、RS-232Cポート、HDMI(登録商標)(High-Definition Multimedia Interface)ポート等がある。この接続ポート917に外部接続機器923を接続することで、演算処理ユニット13は、外部接続機器923から直接各種のデータを取得したり、外部接続機器923に各種のデータを提供したりする。
【0109】
通信装置919は、例えば、通信網925に接続するための通信デバイス等で構成された通信インターフェースである。通信装置919は、例えば、有線もしくは無線LAN(Local Area Network)、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カード等である。また、通信装置919は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は、各種通信用のモデム等であってもよい。この通信装置919は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置919に接続される通信網925は、有線又は無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、社内LAN、赤外線通信、ラジオ波通信又は衛星通信等であってもよい。
【0110】
以上、本発明の実施形態に係る演算処理ユニット13の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。
【0111】
なお、本実施形態に係る演算処理装置20についても、演算処理ユニット13と同様のハードウェア構成を有しているため、以下では詳細な説明は省略する。
【0112】
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
【符号の説明】
【0113】
1 欠陥検出装置
3 回転機構
5 移動機構
10 光干渉断層計
11 光学ユニット
13 演算処理ユニット
20 演算処理装置
101、145 照明部
103、143 光検出部
131 光学ユニット制御部
133、203 演算処理部
135、153 距離算出部
137、207 結果出力部
139、211 記憶部
141 分光光学素子
151 フーリエ変換部
201 制御部
205 欠陥検出部
209 表示制御部
BS ビームスプリッタ
M1 可動ミラー
M2 固定ミラー