IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ダンフォス・スコットランド・リミテッドの特許一覧

<>
  • 特開-油圧システム 図1
  • 特開-油圧システム 図2
  • 特開-油圧システム 図3
  • 特開-油圧システム 図4
  • 特開-油圧システム 図5
  • 特開-油圧システム 図6
  • 特開-油圧システム 図7
  • 特開-油圧システム 図8
  • 特開-油圧システム 図9
  • 特開-油圧システム 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023092499
(43)【公開日】2023-07-03
(54)【発明の名称】油圧システム
(51)【国際特許分類】
   F15B 11/02 20060101AFI20230626BHJP
   F15B 11/00 20060101ALI20230626BHJP
【FI】
F15B11/02 M
F15B11/00 D
【審査請求】未請求
【請求項の数】15
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022200449
(22)【出願日】2022-12-15
(31)【優先権主張番号】21216633.4
(32)【優先日】2021-12-21
(33)【優先権主張国・地域又は機関】EP
(71)【出願人】
【識別番号】520196553
【氏名又は名称】ダンフォス・スコットランド・リミテッド
【氏名又は名称原語表記】DANFOSS SCOTLAND LIMITED
(74)【代理人】
【識別番号】110002745
【氏名又は名称】弁理士法人河崎特許事務所
(72)【発明者】
【氏名】ドール, アレクシス
(72)【発明者】
【氏名】シュタイン, ウーヴェ ベルンハルト パスカル
【テーマコード(参考)】
3H089
【Fターム(参考)】
3H089AA72
3H089BB01
3H089BB27
3H089DA03
3H089DA07
3H089DA13
3H089DA14
3H089DB33
3H089DB47
3H089DB50
3H089DB75
3H089GG02
3H089HH05
(57)【要約】      (修正有)
【課題】システムのリソースを、個別の弁の数を最小限に抑えつつ、変化する要求に応じて動的に割り当てることを可能とする。
【解決手段】油圧システム10は、複数のポンプモジュール12と、複数の油圧消費部22と、1つ以上の配分弁32を有する弁装置28と、を備える。配分弁32は、一対のポンプモジュール12および2つの油圧消費部22にそれぞれ流体的に接続された4つのポート34,36を有する。配分弁32は、接続されたポンプモジュール12の各々を、接続された油圧消費部22に片方ずつ接続するか、接続されたポンプモジュール12の両方を、接続された油圧消費部22の一方に接続するように動作可能である。
【選択図】図1
【特許請求の範囲】
【請求項1】
複数のポンプモジュール(12)と、
複数の油圧消費部(22)と、
1つ以上の配分弁(32)を有する弁装置(28,128,228)と、
を備え、
前記配分弁(32)は、一対の前記ポンプモジュール(12)および2つの前記油圧消費部(22)に流体的に接続された4つのポート(34,36)を有し、
前記配分弁(32)は、接続された前記ポンプモジュール(12)の各々を、接続された前記油圧消費部(22)に片方ずつ接続するか、接続された前記ポンプモジュール(12)の両方を、接続された前記油圧消費部(22)の一方に接続するように動作可能である、油圧システム(10)。
【請求項2】
前記配分弁(32)は、スプール弁として構成され、
前記スプール弁は、
前記一対のポンプモジュール(12)の第1ポンプモジュール(12)に流体的に接続された第1ポンプポート(34a)と、
前記一対のポンプモジュール(12)の第2ポンプモジュール(12)に流体的に接続された第2ポンプポート(34b)と、
前記システム(10)の一の油圧消費部(22)に流体的に接続された第1消費ポート(36a)と、
前記システム(10)の別の油圧消費部(22)に流体的に接続された第2消費ポート(36b)と、
弁チャンバ(42)と、
前記弁チャンバ(42)内で弁軸(44)に沿って複数の動作位置間を移動し、前記弁チャンバ(42)を介した前記ポート(34,36)間の流体流れを制御するように構成されたスプール(46)と、
を備え、
前記複数の動作位置は、
前記第1ポンプポート(34a)、前記第2ポンプポート(34b)、および前記第1消費ポート(36a)が、互いに流体的に接続されかつ前記第2消費ポート(36b)から流体的に分離される第1動作位置と、
前記第1ポンプポート(34a)、前記第2ポンプポート(34b)、および前記第2消費ポート(36b)が、互いに流体的に接続されかつ前記第1消費ポート(36a)から流体的に分離される第2動作位置と、
前記第1ポンプポート(34a)が前記第1消費ポート(36a)に流体的に接続され、前記第2ポンプポート(34b)が前記第2消費ポート(36b)に流体的に接続され、かつ前記第1ポンプポート(34a)が前記第2ポンプポート(36b)から流体的に分離される第3動作位置と、
を含む、請求項1に記載のシステム(10)。
【請求項3】
前記弁装置(28,128,228)は、前記システム(10)の一対の前記ポンプモジュール(12)と、前記システム(10)の2つの前記油圧消費部(22)とにそれぞれ接続された複数の前記配分弁(32)を有する、請求項1または2に記載のシステム(10)。
【請求項4】
2つの前記配分弁(32)が、同じ2つの前記油圧消費部(22)に接続される、請求項3に記載のシステム(10)。
【請求項5】
一の前記配分弁(32)は、別の前記配分弁(32)が接続されない油圧消費部(22)に接続される、請求項3または4に記載のシステム(10)。
【請求項6】
少なくとも1つのマニホールド(26a,26b)であって、前記マニホールド(26a,26b)を介して複数の前記配分弁(32)が油圧消費部(22)に接続する少なくとも1つのマニホールド(26a,26b)をさらに備え、
必要に応じて、前記弁装置(28,128,228)は、前記マニホールド(26a,26b)に接続された出力部(30a,30b)を有する、請求項3~5のいずれか1項に記載のシステム(10)。
【請求項7】
前記複数の配分弁(32)のうち2つが、共通の信号に応じて同調して動作するように構成される、請求項3~6のいずれか1項に記載のシステム(10)。
【請求項8】
前記弁装置(28,128,228)は、弁ブロックとして構成される、請求項1~7のいずれか1項に記載のシステム(10)。
【請求項9】
前記弁装置(28,128,228)は、2つ以上の前記配分弁(32)を有し、
前記弁ブロックは、使用時、複数の前記配分弁(32)のポート(36)が流体的に連通するための少なくとも2つの共有通路を有する、請求項8に記載のシステム(10)。
【請求項10】
少なくとも1つの前記油圧消費部(22)から少なくとも1つの前記ポンプモジュール(12)へ、前記弁装置(28,128,228)を介して流体が流れるモータリングモードで動作するように構成される、請求項1~9のいずれか1項に記載のシステム(10)。
【請求項11】
前記弁装置(28,128,228)は、前記1つ以上の配分弁(32)のうち少なくとも1つと、接続された前記油圧消費部(22)との間のラインに配置された逆止弁(38)を有する、請求項1~10のいずれか1項に記載のシステム(10)。
【請求項12】
請求項1~11のいずれか1項に記載の油圧システム(10)を操作するように構成される、制御システム(14)。
【請求項13】
各前記ポンプモジュール(12)のポンピングを、前記ポンプモジュール(12)が接続された前記配分弁(32)のスプール(46)が移動する間は低減し、必要に応じて停止するように構成される、請求項12に記載の制御システム(14)。
【請求項14】
前記スプール(46)の位置を検出するように構成される、請求項13に記載の制御システム(14)。
【請求項15】
請求項12~14のいずれか1項に記載の制御システム(14)を備える、請求項1~11のいずれか1項に記載の油圧システム(10)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、油圧システム、ならびに当該システムのための弁アセンブリを含む弁装置に関する。本発明は、特に、電子整流油圧装置を内蔵する油圧システム、ならびに電子整流油圧装置と共に使用されるように構成された弁装置および弁アセンブリに関する。
【背景技術】
【0002】
油圧システムは、複数の油圧ポンプを用いることが多く、その各々は、アクチュエータや油圧アキュムレータなどの一群の油圧消費部を含む油圧消費回路を駆動する。例えば、掘削機において、1つの原動機で一対の油圧ポンプを並行駆動し、その各々がそれぞれ油圧回路を駆動することが知られている。各回路は、掘削機が行う必要のある様々な動作に影響を与え得るアクチュエータを含み、各ポンプが出力する油圧流体は、掘削機の現在の動作に応じて、一連の弁によって様々なタイミングで様々なアクチュエータに導かれる。
【0003】
掘削機やそれに似た機械において、複数のアクチュエータが同時に最大の圧力または流れを必要とすることはほとんどないことから、そのようなシステムは、一時的に両ポンプから1つのアクチュエータに油圧流体を供給しつつ、その他のアクチュエータを休止または低レベル動作の状態にするように構成されることがある。ポンプ出力をこのように組み合わせることにより、システムは、各ポンプが単独で作り出せるよりも大きな流量を1つのアクチュエータに供給することができ、別のポンプと組み合わせられない場合に比べて、各ポンプに要求される最大容量が低減される。
【0004】
瞬間的な要求に応じて各ポンプからの出力を配分したり必要に応じて組み合わせたりする機能は、各ポンプが様々なタイミングで様々な負荷を処理できるようにするため、システムの柔軟性を高めると共にハードウェアの要求事項を低減する。しかしながら、ある1つのアクチュエータのピーク圧力要求を満たすためにポンプ出力を組み合わせる場合、その組合せ出力による圧力が、同時に動作する必要のある他のアクチュエータに対して高すぎるかも知れない。これらの低圧アクチュエータに流れる流体は、したがって絞る必要があり、これがエネルギーの浪費につながる。
【0005】
ある改良アプローチが、出願人の先行出願である国際公開第2021/044148号に開示されており、これには電子整流油圧装置(ECM)が記載されている。電子整流油圧装置は、「デジタル容積式ポンプ」とも呼ばれる電子整流ポンプであってもよい。電子整流油圧装置は、それぞれ独立して容積可変の複数の独立制御可能なポンプモジュールを提供し、それは複数の個別のポンプに似ている。ここで、ECMは、複数のピストンシリンダユニット(PCU)を備え、各PCUは、作動室と、作動室内で往復動して流体を加圧するように構成されたピストンとを有する。PCUのピストンは、共通のシャフトで駆動され、PCUによって排出された流体は、相互接続した流体通路と端板を介してグループ化あるいは「組編成」され、ECMの一連の高圧ポートが形成される。このように組編成されたPCUの各グループは、各ポンプモジュールを規定し、端板の各ポートは、各ポンプモジュールのポートを規定し、当該流体ポートは、ECMの「供給部」とも呼ばれる。各供給部は、そのPCUのグループの組合せ容積に対応し、したがって対応するポンプモジュールに関連するPCUの組合せ容量に相当する容量を有する。各ポンプモジュールに流体的に接続されるPCUの数は可変である。
【0006】
ECMの供給部は、分配ブロックによって選択的に組編成される。分配ブロックは、主制御弁の各「弁ブロック」あるいは「ブロック部」を提供する2つのマニホールドラインの一方に各供給部を接続するように動作可能な一連の弁を備え、各弁ブロックは、掘削機のアクチュエータの一部に流体を供給する各油圧回路に対応している。したがって、分配ブロックは、各供給部をいずれかの弁ブロックおよび対応する油圧回路に割り当てる機能を有し、それにより、原則的に、全ての供給部が、システムが実装された掘削機その他の機械の現在の要求に応じて、同じ弁ブロックに割り当てられるか、任意の組合せで複数の弁ブロックに分配されることが考えられる。
【0007】
したがって、国際公開第2021/044148号に開示される装置は、供給部の適切な割当てを通じて、1つの回路におけるピーク圧力の要求を満たしつつ別の回路に低圧を供給する一方、流れの絞りを回避することができる。そのため、ECMが提供する多数の供給部の組合せと、これらの供給部を割り当てる弁装置の柔軟性とによって、当該システムは、個別のポンプが提供し得るよりも高い要求を満たすために(典型的には)2つの主ポンプの全ポンピング出力を組み合わせるだけの公知の掘削機システムよりも効率的に動作し得る。
【0008】
しかしながら、国際公開第2021/044148号のシステムで使用される分配ブロックは、各供給部に対応する切替弁および2つの逆止弁と、複数のリリーフ弁とを備える。油圧システムにおける各弁は、コストや複雑性を増大させるため、所与のシステムにおける個別の弁や対応する弁キャビティの数をできるだけ減らしたいという一般的な要求が存在する。油圧弁装置において常に考慮する必要のある別の因子は、システム効率を維持するために、漏れや圧力降下による損失をできるだけ最小化しなければならないことである。
【0009】
これらを背景として、本発明がなされたのである。
【発明の概要】
【0010】
本発明の一局面は、油圧システムを提供する。当該システムは、複数のポンプモジュールと、複数の油圧消費部と、1つ以上の配分弁を有する弁装置と、を備える。配分弁は、一対のポンプモジュールおよび2つの油圧消費部に流体的に接続された4つのポートを有する。配分弁は、接続されたポンプモジュールの各々を、接続された油圧消費部に片方ずつ接続するか、接続されたポンプモジュールの両方を、接続された油圧消費部の一方に接続するように動作可能である。
【0011】
複数の油圧消費部は、同じ油圧回路に配置されないという点で、互いに分離されている。各消費部は、各回路の一部を構成してもよい。したがって、弁装置は、ポンプモジュールの出力部に対して流出入する流体を、複数の消費部の間で動的に割り当てることができ、特に配分弁は、必要に応じて、2つのポンプモジュールを同じ消費部に同時に接続することで当該2つのポンプモジュールを組編成するように構成される。これにより、システムのリソースを、個別の弁の数を最小限に抑えつつ、変化する要求に応じて動的に割り当てることが可能となる。
【0012】
配分弁は、スプール弁として構成されてもよく、当該スプール弁は、一対のポンプモジュールの第1ポンプモジュールに流体的に接続された第1ポンプポートと、一対のポンプモジュールの第2ポンプモジュールに流体的に接続された第2ポンプポートと、システムの一の油圧消費部に流体的に接続された第1消費ポートと、システムの別の油圧消費部に流体的に接続された第2消費ポートと、弁チャンバと、弁チャンバ内で弁軸に沿って複数の動作位置間を移動し、弁チャンバを介したポート間の流体流れを制御するように構成されたスプールと、を備えてもよい。
【0013】
スプールがその間を移動する複数の動作位置は、第1ポンプポート、第2ポンプポート、および第1消費ポートが、互いに流体的に接続されかつ第2消費ポートから流体的に分離される第1動作位置と、第1ポンプポート、第2ポンプポート、および第2消費ポートが、互いに流体的に接続されかつ第1消費ポートから流体的に分離される第2動作位置と、第1ポンプポートが第1消費ポートに流体的に接続され、第2ポンプポートが第2消費ポートに流体的に接続され、かつ第1ポンプポートが第2ポンプポートから流体的に分離される第3動作位置と、を含んでもよい。したがって、第1および第2消費ポートは、スプールが第3動作位置にある場合も互いに分離される。
【0014】
弁装置は、システムの一対のポンプモジュールと、システムの2つの油圧消費部とにそれぞれ接続された複数の配分弁を有してもよい。システムが2つのみの油圧消費部を有する場合、全ての配分弁が同じ2つの消費部に接続される。システムが2つよりも多くの消費部を有する場合、各配分弁は、当該消費部のうち2つに接続されるが、別の配分弁のものと同じ2つの消費部でなくてもよい。したがって、2つ以上の配分弁が同じ2つの油圧消費部に接続されてもよく、少なくとも1つの配分弁は、別の配分弁が接続されていない油圧消費部に接続されてもよい。そのような構成により、弁装置は、3つ以上の消費部の間でポンプモジュールを柔軟に割り当てることができる。
【0015】
システムは、少なくとも1つのマニホールドであって、当該マニホールドを介して複数の配分弁が油圧消費部に接続する少なくとも1つのマニホールドをさらに備えてもよく、その場合、弁装置は、マニホールドに接続された出力部を有してもよい。複数の配分弁のうち2つが、共通の信号に応じて同調して動作するように構成されてもよい。
【0016】
弁装置は、弁ブロックとして構成されてもよい。例えば、弁ブロックは、弁装置の複数の配分弁ならびに任意の付随的な逆止弁やリリーフ弁を含んでもよい。弁装置が2つ以上の配分弁を備える場合、弁ブロックは、使用時、複数の配分弁のポートが流体的に連通するための少なくとも2つの共有通路を有してもよい。したがって、そのような通路は、複数の配分弁の出力部に出入りする流体流れを結合する程度にマニホールドとして作用し得る。
【0017】
システムは、少なくとも1つの油圧消費部から少なくとも1つのポンプモジュールへ、弁装置を介して流体が流れるモータリングモードで動作するように構成されてもよい。モータリングモードは、回生動作において有用であり得、回生動作では、例えば、1つ以上の消費部から流れて出口へ入る加圧流体によって1つ以上のポンプモジュールが駆動され、エネルギーが回収される。モータリングモードでの動作は、「出力部」へ油圧流体が流入することを意味する。
【0018】
弁装置は、1つ以上の配分弁のうち少なくとも1つと、接続された油圧消費部との間のラインに配置された逆止弁を有してもよい。逆止弁は、例えば、配分弁が、スプールが動作位置間を動く際の開放移行に対応して構成される場合に必要となり得る。1つ以上の配分弁のうち少なくとも1つは、少なくとも1つの一体型逆止弁を備えてもよい。
【0019】
上述のように、1つ以上の配分弁のうち少なくとも1つは、スプールが動作位置間を動くときに開放移行を有するように構成されてもよい。その逆に、1つ以上の配分弁のうち少なくとも1つは、スプールが動作位置間を動くときに閉塞移行を有するように構成されてもよく、この場合、当該配分弁とこれに接続されたポンプモジュールとの間にリリーフ弁が設けられてもよい。
【0020】
各ポンプモジュールは、1つ以上の電子整流ポンプのピストンシリンダユニットのグループによって規定されてもよく、各グループにおいて、当該グループのピストンシリンダユニットの出力は、各ポンプモジュールの出力を構成するように組み合わされる。各ポンプモジュールは、異なる数のピストンシリンダユニットを備えてもよく、ピストンシリンダユニットの数は、一のグループから次のグループへと一定数だけ増大してもよい。
【0021】
少なくとも2つのポンプモジュールは、互いに異なるポンピング容量を有してもよい。
【0022】
システムは、それぞれが1つ以上の油圧消費部を有する1つ以上の油圧回路を備えてもよい。したがって、各配分弁は、1つまたは2つの油圧回路に接続されてもよい。
【0023】
システムは、1つ以上の配分弁のうち少なくとも1つのスプールを駆動するように動作可能なパイロット弁を備えてもよい。システムは、パイロット弁に流体を供給する電子整流ポンプまたはパイロットチャージポンプを備えてもよい。
【0024】
1つ以上の配分弁のうち少なくとも1つは、例えばソレノイドを利用した、電気機械駆動に対応して構成されてもよい。
【0025】
本発明の別の局面は、上述の局面の油圧システムを操作するように構成された制御システムを提供する。制御システムは、油圧システムにおける圧力要求および/または流量要求を示す信号に応じて、各配分弁を動的に操作するように構成されてもよい。
【0026】
制御システムは、各ポンプモジュールの流体供給を、ポンプモジュールが接続された配分弁のスプールが移動する間は低減し、または完全に停止するように構成されてもよい。ポンプモジュール動作におけるこの変更は、スプールの移動の全部に対して、または一部に対して、例えば当該移動の一部のみに対して行われてもよい。例えば、閉塞移行の配分弁では、当該移動の一部は、入口ポートまたはポンプポートを介した流れが、流路を塞ぐように作用するスプールによって制限またはブロックされ始めるか完全に制限またはブロックされたときから、入口ポートまたはポンプポートを介した流れが、流路を開くように作用するスプールによって開放または制限解除され始めるか完全に開放または制限解除されるときまで及んでもよい。
【0027】
制御システムは、スプールの移動や当該移動の向きが検出され得るように、スプールの位置および/または移動を検出するように構成されてもよく、ポンプモジュールはそれにしたがって操作されてもよい。スプールの位置および/または移動の検出は、例えば、光学式、接触式、または誘導式のセンサを含む位置センサや圧力センサの使用を包含する、様々な方法によって実現可能である。スプールの移動からの逆起電力フィードバックや、スプールを駆動するソレノイドの誘導特性も、スプール位置を示すものとして測定され得る。ポンプモジュール内の圧力を監視することで弁移行を検出することも可能であるが、弁移行によって生じる背圧の影響を受けることに留意すべきである。スプールの移動は、例えば配分弁の移行を開始する制御命令を参照することで、間接的に検出されてもよい。そのような命令に応じてスプールが移動し始めるのに要する時間は、例えば参照用テーブルを用いて考慮されてもよい。
【0028】
本発明は、上述の局面に係る油圧システムと制御システムの組合せも包含する。
【0029】
本発明の別の局面は、油圧システム、例えば上述の局面の油圧システムを制御する方法を提供する。システムは、複数のポンプモジュールと、複数の油圧消費部と、1つ以上の配分弁を有する弁装置と、を備える。配分弁は、一対のポンプモジュールおよび2つの油圧消費部に流体的に接続された4つのポートを有する。
【0030】
一の方法は、配分弁に接続されたポンプモジュールの各々を、配分弁に接続された油圧消費部に片方ずつ接続するか、配分弁に接続されたポンプモジュールの両方を、配分弁に接続された油圧消費部の一方に接続するように、配分弁を動作させることを備える。
【0031】
別の方法は、必要に応じて上述の方法と組み合わせ可能であり、各ポンプモジュールを、ポンプモジュールが接続された配分弁のスプールが移動する間はそのポンピングを低減させ、必要に応じて停止させるように操作することを備える。当該方法は、スプールの位置および/または移動を検出することと、検出したスプールの位置および/または移動に応じてポンプモジュールを操作することと、をさらに備えてもよい。
【0032】
本発明の別の局面は、油圧システム用の配分弁を提供する。配分弁は、一対のポンプモジュールおよび2つの油圧消費部に流体的に接続可能な4つのポートを有する。そのように接続された場合、配分弁は、接続されたポンプモジュールの各々を、接続された油圧消費部に片方ずつ接続するか、接続されたポンプモジュールの両方を、接続された油圧消費部の一方に接続するように動作可能である。
【0033】
配分弁は、弁チャンバを囲むハウジングと、弁チャンバ内に配置されたスプールとを備えるスプール弁として構成されてもよい。ハウジングは、第1ポンプモジュールに接続するための第1ポンプポートと、第2ポンプモジュールに接続するための第2ポンプポートと、第1消費部に接続するための第1消費ポートと、第2消費部に接続するための第2消費ポートとを有する。スプールは、複数の動作位置間を弁軸に沿って並進移動し、弁チャンバを介した当該ポート間の流体流れを制御するように構成される。
【0034】
スプールは、第1動作位置に移動可能であってもよい。第1動作位置では、第1ポンプポート、第2ポンプポート、および第1消費ポートが、互いに流体的に接続されかつ第2消費ポートから流体的に分離される。スプールは、第2動作位置に移動可能であってもよい。第2動作位置では、第1ポンプポート、第2ポンプポート、および第2消費ポートが、互いに流体的に接続されかつ第1消費ポートから流体的に分離される。スプールは、第3動作位置に移動可能であってもよい。第3動作位置では、第1ポンプポートが第1消費ポートに流体的に接続され、第2ポンプポートが第2消費ポートに流体的に接続され、かつ第1ポンプポートが第2消費ポートから流体的に分離される。
【0035】
第1および第2ポンプポートは、第1および第2消費ポートの間に配置されてもよい。
【0036】
第1消費ポートは、第1組の1つ以上の出力通路を介して弁チャンバに接続されてもよい。第2消費ポートは、第2組の1つ以上の出力通路を介して弁チャンバに接続されてもよい。第1ポンプポートは、第1組の1つ以上の入力通路を介して弁チャンバに接続されてもよい。第2ポンプポートは、第2組の1つ以上の入力通路を介して弁チャンバに接続されてもよい。
【0037】
スプールは、スプールが第3動作位置にあるときに、第1および第2組の入力通路の間に嵌まるように寸法設定されたランドを有してもよい。ランドは、スプールが第1動作位置にあるときに、第2組の入力通路と第2組の出力通路との間に位置してもよい。ランドは、スプールが第2動作位置にあるときに、第1組の入力通路と第1組の出力通路との間に位置してもよい。ランドの幅は、第1および第2組の入力通路の通路幅よりも小さくてもよい。第1組の出力通路および/または第2組の出力通路は、弁軸に対し鋭角をなして傾いていてもよい。第1組の入力通路は、弁チャンバの壁部内に径方向に延びる第1環状凹部に集まってもよく、第2組の入力通路は、弁チャンバの壁部内に径方向に延びる第2環状凹部に集まってもよい。
【0038】
配分弁は、スプールが動作位置間を動くときに開放移行に対応して構成されてもよい。配分弁は、第1出力ポートを開閉するように構成された一体型逆止弁を備えてもよい。逆止弁は、第1出力ポートにおいてハウジング外部に設けられ、かつ弁軸に対して傾斜した弁座と、弁軸と平行に動くことで弁座に係合および係合解除して第1出力ポートを開閉するように構成された逆止弁部材とを有する。逆止弁部材は、弁座に係合するように付勢される。逆止弁部材は、ハウジング周りを延びていてもよい。配分弁は、第2出力ポートを開閉するように構成された同様の一体型逆止弁を備えてもよい。
【0039】
弁軸は、弁チャンバの中心軸と一致してもよい。
【0040】
配分弁は、スプールを駆動するための、ソレノイドなどの電気アクチュエータを備えてもよい。
【0041】
配分弁は、弁チャンバの第1端部において第1パイロットラインに接続可能な第1パイロットチャンバを備えてもよく、この場合、スプールの動きは、第1パイロットチャンバ内の流体圧によって制御される。配分弁は、弁チャンバの第2端部において第2パイロットラインに接続可能な第2パイロットチャンバを備えてもよく、この場合、スプールの動きは、第2パイロットチャンバ内の流体圧によって制御される。
【0042】
第1入力ポート、第2入力ポート、第1出力ポート、および/または第2出力ポートは、ハウジング内の一群の開口によって規定されてもよい。
【0043】
本発明の各局面の好ましいおよび/または任意の特徴は、本発明の別の局面において単独でまたは適当な組合せにおいて組み込まれ得ることが認識されるだろう。
【図面の簡単な説明】
【0044】
図1図1は、本発明の一実施形態に係る油圧システムの概略図である。
図2図2は、本発明の一実施形態に係る配分弁を軸方向断面で示す斜視図である。
図3図3は、配分弁の変形例を示す図2相当図である。
図4図4は、図2の配分弁の逆止弁部材の詳細図である。
図5図5は、本発明の別の実施形態に係る配分弁の側面図である。
図6図6は、図5の配分弁のための逆止弁部材を示す図である。
図7図7は、図1のシステムで使用するための代替的な弁装置を示し、一対の配分弁が油圧動作のために構成されている。
図8図8は、油圧動作のために構成された図1のシステムのための別の弁装置を示す図である。
図9図9は、本発明の別の実施形態に係る油圧システムのための弁装置の概略図である。
図10図10は、本発明の一実施形態の油圧システムで使用するためのECMのポンプモジュールの構成を概略的に示す図である。
【発明を実施するための形態】
【0045】
以下、本発明をより容易に理解できるよう、その好ましい非限定的な実施形態について、添付の図面を参照しながら、ほんの一例として説明する。その中で、同様の特徴には同様の参照番号を付す。
【0046】
概して、本発明の実施形態は、油圧システムの2つ以上の油圧消費回路の間で一群の油圧ポンプモジュールを動的に割り当てるように構成された弁装置と、そのような弁装置を備えたシステムとを提供する。既存のシステムに対して、当該弁装置は、アクチュエータその他の油圧消費部に対して流れを導きまたは分配して、時間と共に流れの配分が変化するシステム要求を満たすために必要とされる個別の弁の数、あるいは弁ブロック内の弁キャビティの数を低減する。
【0047】
そのようなポンプモジュールは、ECMのポンプモジュールによって規定されてもよく、例えば、各ポンプモジュールは、上述したように、「供給部」を規定するECMのポートを構成するように組み合わされる複数のポートを有する一群のPCUを備える。ECMおよびそのポンプモジュールと対応する供給部は、例えば、国際公開第2021/044148号に開示されたものと同様であってよく、その場合、弁装置は、国際公開第2021/044148号に記載された分配ブロックの機能と似た機能を提供してもよい。あるいは、別のタイプのポンプモジュールが、本発明の実施形態において使用されてもよい。
【0048】
図1は、本発明の一実施形態に係る油圧システム10の一部を示す。図1に示すシステム10は、掘削機で使用されるように構成されるが、本発明に係る油圧システムは、様々な機械や乗り物で使用されるように構成されてもよい。
【0049】
図1に示すシステム10は、4つのポンプモジュール12を備え、本実施形態において、その各々は、1つ以上のECM(図示せず)の各供給部に対応する出力を提供する。当該ECMは、例えば、国際公開第2021/044148号に記載されたものと同様であってもよい。当該ECMは、その内部を延びる一般的な駆動シャフトを介して、原動機によって駆動される。一般的な駆動シャフトは、互いに駆動連結された複数の駆動シャフトであってもよい。原動機は、例えば、内燃エンジンまたは電気モータであってもよい。
【0050】
ECMは、駆動シャフトに沿ってその周りに配置された一連のPCUを備える。PCUは、ピストンとシリンダを備え、それらの間に作動室が規定されている。シリンダに対するピストンの往復動は、ポンピング中の駆動シャフトの回転によって生じ、それにより作動室で油圧流体が加圧される。
【0051】
複数のPCUは、グループ(あるいは、群)に分けられ、各グループは、1つのポンプモジュール12を規定する。ポンプモジュール12を規定する一群のPCUのポートは、ECMの端板で結合されて当該ECMのポートを形成し、ECMポート出力によって「供給部」が規定される。したがって、ポンプモジュール12のポンプ容量は、対応するPCUの結合容量に相当する。ポンプモジュール12は、全てが同じ数の対応PCUを有してなくてもよく、全てが同じポンプ容量を有してもよく、あるいは異なる容量に構成されてもよい。所与のECMの複数のPCUは、典型的には、全てが同じポンプ容量を有するが、原則的には、複数のPCUは、異なるポンプ容量を有してもよい。
【0052】
典型的には、所与のポンプモジュール12の複数のPCUは、各位相が駆動シャフトの360°範囲にわたって均一に広がるよう、互いに位相をずらして動作するように構成され、それにより動作中のポンプモジュール12から実質的に安定して偏りのない出力が得られる。
【0053】
各PCUは、各低圧弁を介して作動室に流体を引き込んだ後、昇圧した流体を、各高圧弁を介して作動室から放出する。したがって、各PCUの出力は、各高圧弁および低圧弁の適当な制御を通じて個別に変更可能である。特に、低圧弁は、各サイクルにおいて作動室に流入する流体の量を調整するよう制御可能であり、それによりピストンが圧縮行程を完了したときに生じる加圧の程度が規定される。また、低圧弁は、吸気行程と排気行程の両方における低圧接続に対して開いたままになるよう、閉じるためのエネルギー供給をされなくてもよく、それにより対応するPCUの非活動サイクルが生じ、PCUが効率的に休止する。このことは、例えば、ポンプモジュール12のポンピングを短時間にわたって停止すべき場合に必要となり得る。
【0054】
したがって、各ポンプモジュール12やそれを構成するPCUの各々は、独立制御可能であり、別のポンプモジュール12による流体出力の対応パラメータから独立して可変な圧力および流量で油圧流体を出力できる。そのため、ポンプモジュール12は、個別に動作可能である。
【0055】
ポンプモジュール12は、タンク(図示せず)に接続された供給ラインから油圧流体を調達する。したがって、当該タンクは、低圧流体の供給源として機能する。ポンプモジュール12は、そして、昇圧した油圧流体を放出してシステム10のアクチュエータを駆動する。
【0056】
ここで、簡略化のため図1で省略しているが、主制御弁は、ポンプモジュール12から放出される加圧された油圧流体を受けてもよく、1つ以上の動作を行うために必要に応じて、当該流体を掘削機の各アクチュエータに導いてもよい。
【0057】
主制御弁の動作は、制御システム14によって制御される。制御システム14は、図1に簡略的に示すように、I/O(入力/出力)インタフェース16および処理モジュール18を備える。I/Oインタフェース16は、掘削機の操作者または制御主体による入力として、ユーザ要求を示す信号を受ける。I/Oインタフェース16は、さらに、一連のセンサ(図示せず)が示す油圧システム10の各構成要素の状態を含む、掘削機の状態を示す信号を受ける。受けられた信号は、処理モジュール18によって処理され、従来からあるように、掘削機の状態を考慮に入れた上で、掘削機の任意の要求動作を行うように構成された制御命令が生成される。そして、制御命令は、制御システム14によって、I/Oインタフェース16から、図1に破線で示す通信ラインに沿って送り出され、ポンプモジュール12の動作が必要に応じて制御される。
【0058】
ある例では、主制御弁は、第1油圧消費回路20aに対応する第1ブロック部と、第2油圧消費回路20bに対応する第2ブロック部とに分けられる。第1および第2油圧回路20a,20bは、図1に図示されており、第1および第2油圧回路20a,20bの各々は、アクチュエータや油圧アキュムレータなどの油圧消費部22を有する。各油圧回路20a,20bは、適当な配管を介して、その消費部22に油圧流体を送る。当業者であれば、実際に備えられる特定のアクチュエータその他の消費部は、システム10の要求に応じて変わり得ることを認識されるだろう。なお、本発明の実施形態では、他の消費部を含む回路の一部をなさない個別の油圧消費部への直接的な接続がなされてもよい。この場合、当該消費部とこれに対する流体接続は、それでもなお油圧回路を規定するものと見なされてもよい。
【0059】
第1および第2油圧消費回路20a,20bは、1つ以上のドレンライン(図示せず)を介してタンクに接続される。回路20a,20bからの低圧戻り流体は、典型的には1つ以上のアクチュエータ22の駆動操作によって放出されるのであるが、ドレンラインを介してタンクに戻され、システム10内を再循環する。
【0060】
主制御弁の各ブロック部は、各高圧マニホールドを介して、加圧された油圧流体を受ける。したがって、第1高圧マニホールド26aは、第1ブロック部に接続し、第2高圧マニホールド26bは、第2ブロック部に接続する。そして、第1高圧マニホールド26aは、第1ブロック部を介して第1油圧消費回路20aに接続され、第2高圧マニホールド26bは、第2ブロック部を介して第2油圧消費回路20bに接続される。
【0061】
当業者であれば、弁ブロックやその他の筐体における穴あけやキャビティとして、あるいは別個の専用の油圧ラインまたは配管としてなど、様々な態様で高圧マニホールドが実現され得ることを認識されるだろう。
【0062】
ここまでに説明したシステム10の要素は、国際公開第2021/044148号に記載されたシステムの要素とおおよそ似ている。しかしながら、本実施形態では、国際公開第2021/044148号に開示されている分配ブロックが、同様の機能を提供する一方、有利なことにより少ない弁を備えた弁装置28に置き換えられている。
【0063】
ここで、弁装置28は、ポンプモジュール12と高圧マニホールド26a,26bとの間に配置されていて、高圧マニホールド26a,26bの一方に対して、したがって関連する油圧回路20a,20bに対して、操作者が要求する瞬間的な流れ要求に応じて動的に各供給部を向けるように動作可能である。ここで、そのような要求の満足は、制御システム14によって管理および実行され、当該システム14は、弁装置28やポンプモジュール12の動作を制御する。
【0064】
したがって、弁装置28は、第1高圧マニホールド26aへ流体を放出する第1出力部30aと、第2高圧マニホールド26bへ流体を放出する第2出力部30bとを規定する。弁装置28は、例えば、油圧弁ブロックまたはマニホールドブロックとして実現されてもよく、その場合、第1および第2出力部30a,30bは、例えば当該ブロックの外面に設けられる当該ブロックの物理的ポートによって規定される。別の実施形態では、弁装置28は、場合によっては同じブロックに存在しない個別の弁を用いて、より分散した態様で構成されてもよく、その場合、出力部はより観念的に規定され得る。
【0065】
本実施形態では、弁装置28は、一対の四方向三位置配分弁32、すなわち第1配分弁32aおよび第2配分弁32bを備え、その各々は、スプール弁の一般的形態を有する。第1および第2配分弁32a,32bは、第1および第2高圧マニホールド26a,26bの間でポンプモジュール12を動的に配分するように並行動作する。なお、別の実施形態では、1つのみの配分弁32が必要とされ、また逆に、さらに別の実施形態では、2つよりも多くの配分弁32が使用される。
【0066】
必要に応じて、図1に示す装置の変形例では、配分弁32を迂回しかつ第1および第2出力部30a,30bの一方に直接的に接続する、さらなるポンプモジュール12が追加されてもよい。そのような常時接続を伴うように弁装置28を構成することで、配分の必要な供給部の数を減らして弁装置28の操作を簡略化しつつ、残りの4つのポンプモジュール12を配分する機能を維持することができる。これにより、一方の出力部に、したがって接続された高圧マニホールド26a,26bの一方に、ポンプモジュール12の最大総出力の大部分を配分することもできる点で、動作の柔軟性とシステム複雑性との均衡を図ることができる。
【0067】
図1で左側に示す第1配分弁32aは、それぞれがポンプモジュール12に接続された2つの入力ポート34を有する。同様に、図1で右側に示す第2配分弁32bは、それぞれがポンプモジュール12に接続された2つの入力ポート34を有する。第1および第2配分弁32a,32bの各々は、2つの出力ポート36を有する。各配分弁32において、一方の出力ポート36は弁装置28の第1出力部30aに接続され、他方の出力ポート36は弁装置28の第2出力部30bに接続される。
【0068】
したがって、各配分弁32は、2つの供給部を組編成するように機能するギャング弁として構成される。そのため、各配分弁32は、従来の四方向スプール弁における1つの高圧入力ポートとタンク接続の代わりに、2つの高圧入力ポート34を備える。要するに、配分弁32は、PT-ABスプール弁としてではなく、PP-ABスプール弁、より具体的にはP12-ABスプール弁(P1は第1供給接続を特定し、P2は第2供給接続を特定する。)として構成される。これは、配分弁32が、ECMの供給部を組編成するように構成され、したがってタンク接続を必要としないことを意味する。これに対し、従来の切替弁は、2つのポートを有する二方向アクチュエータの本来の動作を補完するように構成され、当該2つのポートは、圧力接続およびタンク接続を必要とし、したがって従来の四方向スプール弁は、2つの高圧ポンプ接続を提供するように構成される。
【0069】
各配分弁32は、3つの動作位置、すなわち第1~第3動作位置を有する。第1動作位置では、2つの入力ポート34とそれに対応する供給部が、第1高圧マニホールド26aに接続する出力ポート36に接続される一方、他方の出力ポート36から分離される。第2動作位置では、2つの入力ポート34が、第2高圧マニホールド26bに接続する出力ポート36に接続される一方、他方の出力ポートから分離される。第3動作位置では、入力ポート34が互いに分離され、各入力ポート34が、それぞれの出力ポート36に接続される。したがって、出力ポート36は、各動作位置において互いに分離される。
【0070】
したがって、第1配分弁32aを例にすると、左側に接続される供給部を、第1高圧マニホールド26aを介して第1油圧消費回路20aに接続すると共に、右側に接続される供給部を、第2高圧マニホールド26bを介して第2油圧消費回路20bに接続するために、第1配分弁32aはその第3位置に動かされ、その状態が図1に示されている。これに対し、両方の供給部を第1油圧消費回路20aに接続するために、第1配分弁32aは第1動作位置に動かされる一方、第1配分弁32aを第2動作位置に動かすことで、2つの供給部が第2油圧消費回路20bに接続される。第2配分弁32bに対して同様の動作を行うことで、様々な供給部の割当てが実現され得る。
【0071】
全ての供給部を完全に独立して割り当てることはできない。例えば、第1配分弁32aは、右側に接続される供給部を第1油圧消費回路20aに割り当てると同時に、左側に接続される供給部を第2油圧消費回路20bに割り当てることはできない。しかしながら、ポンプモジュール12のポンプ容量は、第1および第2配分弁32a,32bを上述のように構成することで、ECMの任意の所望の数のPCUが、任意のタイミングで各油圧消費回路20a,20bに割り当てられ得るように構成可能である。
【0072】
強調すべきこととして、ECM内のPCUのグループ化に関して、弁装置28は、特定用途の要求に応じて、様々なECMから様々なサイズのポンプモジュールに様々な数のPCUが接続されるように、図1に示す例と異なって構成されてもよい。
【0073】
図1に示すように、弁装置28は、4つの逆止弁38を備え、その各々は、配分弁32の各出力ポート36の下流に配置される。詳しくは後述するように、各配分弁32は、スプールが動作位置間で動くときに開放移行(open transitions)を有し、当該移行時に油圧がヘッドを失うのを防止する。これにより、有利には、そのようにヘッドが失われるのを緩和するためにリリーフ弁を設ける必要がなくなる。逆止弁38は、高圧マニホールド26a,26bから配分弁32への逆流を阻止することで、開放移行時における第1および第2高圧マニホールド26a,26b間の流体的分離を維持する。また、逆止弁38は、出力ポート36からタンクまたはポンプモジュール12への漏れを阻止する。
【0074】
本実施形態では、逆止弁38は、配分弁32に一体形成されており、各配分弁32は、各出力ポート36に1つずつ設けられる一対の一体型逆止弁38を備える。したがって、各配分弁32は、スプール弁と一対の逆止弁を含む一体型の弁アセンブリと考えることもでき、よってスプール弁アセンブリとして記述されてもよい。このことは図2でより明らかにされ、同図は、第1配分弁32aを軸方向断面で示す。なお、本実施形態では、第2配分弁32bは、第1配分弁32aと実質的に同じである。
【0075】
別個の逆止弁を備える装置に対して、本実施形態のように逆止弁38をスプール弁と組み合わせて一体型配分弁32を作り出すことで、単一のカートリッジまたは弁アセンブリに様々な弁が組み入れられるため、実装および設置を改善することができ、配分ブロックおよび弁の潜在的なコスト削減にもつながる。
【0076】
図2を参照すると、第1配分弁32aは、弁キャビティ42を囲む細長い弁ハウジング40を備え、弁キャビティ42は、弁軸44を規定する中心軸を有する弁チャンバを規定する。弁部材、具体的にスプール部材または「スプール」46は、従来的な態様で、弁キャビティ42内の分離した複数位置の間を弁軸44に沿って前後に並進移動し、入力および出力ポート34,36の間の流れ経路を開閉するように構成される。弁ハウジング40およびスプール46は、例えば鋼などの任意の適当な材料で構成されてもよい。
【0077】
弁ハウジング40の外側部は、ポート領域50を規定する拡径した中央領域によって分離された概ね円筒状の端部領域48を有する。ポート領域50の各軸方向端部は、径方向外側に延びる端部構造52を有する。中央構造54は、ポート領域50の軸方向中央部から径方向外側に延びている。ポート領域50は、中央構造54を横切る径方向平面に関して概ね対称である。
【0078】
配分弁32の2つの入力ポート34は、中央構造54の両側に1つずつ配置されており、図2に示すように、第1入力ポート34aは、中央構造54の左に配置され、他方の入力ポートは第2入力ポート34bを規定する。各入力ポート34は、弁軸44を中心として周方向に配設された複数の開口によって規定され、当該開口は、中央構造54に隣接配置された通路(場合によっては、穿孔)56で構成される。
【0079】
各通路56は、弁キャビティ42に向かって概ね径方向に延びているが、入力ポート34が有する周方向に並んだ複数の通路56が、径方向内側に向かうにつれて徐々に互いに集まるように緩やかに傾斜しており、ハウジング40を貫通する入力通路56を規定している。弁キャビティ42の筒状壁58は、弁キャビティ壁58内を径方向にかつ当該壁58周りを周方向に延びる、軸方向に離間した一対の環状溝60を有する。各組の入力通路56は、これらの溝60の1つずつに開口しており、各溝は、各入力ポート34と連通する入口溝60を規定する。したがって、各入力ポート34は、それぞれの入力通路56および入口溝60を介して弁キャビティ42に流体的に接続される。
【0080】
図3に示すように、代替的な実施形態の配分弁132では、弁キャビティ壁58の溝60が省略され、入力通路56がシンプルな貫通孔になっている。図3に示す実施形態は、それ以外は、図2に示す実施形態と同じである。
【0081】
各端部構造52は、弁軸44に直交しかつ反対側の端部構造52の対応する面62と対向する実質的に平坦な内側面62と、端部構造52の逆側において外側を向いた円錐台形面64とを備える。円錐台形面64は、弁軸44に対して垂直に延びる平面に対してわずかに傾いているため、端部構造52の各円錐台形面64は、径方向外側に向かうにつれて徐々に集まる。
【0082】
各円錐台形面64は、配分弁32の出力ポート36のうち1つを規定する円形配列の複数の開口を備えており、第1出力ポート36aは、図2において弁の左側の端部構造52に配置され、第2出力ポート36bは、右側の端部構造52に設けられる。各配列の開口は、弁軸44から同じ径方向距離で、円錐台形面64周りにおいて周方向に等間隔に離間している。各開口は、弁軸44に対して約60°の角度をなしてハウジング40を貫通する通路からの出口を規定していて、弁キャビティ壁58において対応する開口を作り出す出力通路66を形成し、弁キャビティ壁58は、各出力ポート36に対応して円形配列の開口を備える。したがって、各出力ポート36は、その各出力通路66を介して弁キャビティ42に流体的に接続される。なお、出力通路66の角度は、別の実施形態において変更されてもよく、各用途の要求に応じて最適化されてもよい。
【0083】
また、各円錐台形面64は、配分弁の一体型逆止弁38の一部を構成する。ここで、出力ポート開口の径方向内外に位置する円錐台形面64の環状部分は、弁軸44に対して傾斜した弁座68を共に規定する。弁座68は、各逆止弁部材70と共に逆止弁38を構成し、逆止弁部材70は、軸方向に動いて対応する出力ポート36を開閉するように構成され、それにより逆止弁38が概ねポペット弁として機能する。したがって、第1逆止弁38aは、第1出力ポート36aに組み込まれ、第2逆止弁38bは、第2出力ポート36bに組み込まれる。各逆止弁38は、閉位置において、各出力ポート36を閉じ、対応する出力ポート36に対してこれに接続された高圧マニホールド26a,26bから逆流が生じるのを阻止する。
【0084】
以下、第1逆止弁38aについて記述するが、本実施形態では、第1および第2逆止弁38a,38bが実質的に同じであることに留意されたい。
【0085】
第1逆止弁38aの逆止弁部材70は、鋼またはその他の適当な材料で構成された環状部材によって規定される。逆止弁部材70は、弁ハウジング40の左端部領域48の外面にゆるく滑り嵌めされるように寸法設定された筒状の内壁72を有し、弁ハウジング40は、逆止弁部材70を径方向に位置決めするように作用する。逆止弁部材70は、弁ハウジング40の当該端部領域48に受けられ、弁ハウジング40およびスプール46を内部に囲む。
【0086】
図4も参照すると、逆止弁部材70がより詳細に示されており、図4で左側に示す逆止弁部材70の背面は、平坦な内側部と、その上に設けられかつ内側部から軸方向内側に凹んだ平坦な外側部とを有する。凹んだ外側部は、逆止弁部材70を弁座68と係合するように付勢するために使用されるばね(図示せず)のためのばね座を構成し、それにより一方向のみの流れが許容される。
【0087】
上記ばねは、弁ハウジング40の端部領域48にわたって受けられるコイルばねであり、弁軸44と同軸状に配置され、したがって弁ハウジング40の端部領域48に対して同軸である。ばねは、例えば、逆止弁部材70のばね座74と、配分弁32が収容された弁ブロックの壁部との間で作用してもよく、あるいは当該ばねの遠位端は、例えば、弁ハウジング40に形成された環状溝に係合する止め輪によって、弁ハウジング40に固定されてもよい。
【0088】
図4で右側に示す逆止弁部材70の反対側の面は、弁座68の形状に対応する円錐台形形状を有する係合面76を規定する。係合面76の中央領域は、逆止弁部材70が着座したときに出力ポート36の開口と径方向に並ぶ環状溝78を形成するように軸方向に凹んでいる。環状溝78の上下には、逆止弁部材70の内側および外側シール面80を規定する比較的薄い円錐台形リング状面が存在する。図4で上側に示す外側シール面80a、あるいは外側シールラインは、逆止弁部材70が着座したときに出力ポート36の開口を囲み、出力ポート36の開口から径方向外側に向かって流体が流れるのを阻止する連続した環状シールを出力ポート36の周囲に作り出す。同様に、内側シール面80bは、出力ポート36の開口から径方向内側に延びる第2の連続環状シールを作り出す。したがって、内側および外側シール面80は、相まって、逆止弁38が閉じたときに出力ポート36からいずれかの方向に流体が流出入するのを阻止する。
【0089】
したがって、逆止弁38は、高圧出口の両側において流体シールを提供する2つのシール境界面を有する面シール弁として構成される。第1および第2シール面80a,80bの間に環状溝78を設けることで、シール面80が弁座68に精度良く係合することが促され、効果的なシール作用が促進される。
【0090】
各逆止弁部材70は、弁ハウジング40に沿って、よって弁軸44と平行に、対応する弁座68と係合および係合解除するように軸方向に前後移動して、各出力ポート36を開閉するように構成される。見事なことに、逆止弁部材70のこの動きは、弁ハウジング40それ自体によって案内および規制される。
【0091】
上記より、第1および第2逆止弁38a,38bの各逆止弁部材70は、互いに逆方向に移動して各出力ポート36を開閉する。
【0092】
各逆止弁部材70を弁座68に係合するように付勢することで、対応する出力ポート36の出力通路66内の流体圧力が、ばねによる力に打ち勝つのに十分な差圧を作り出すまで、当該出力ポート36が閉じたままになる。したがって、ばね力は、逆止弁38が開いて出力ポート36からの流体放出が許容される閾値圧力を規定する。そして、逆止弁38は、出力ポート36に対するこれに接続された高圧マニホールド26からの流体の逆流を、当該マニホールド26内の圧力が当該出力ポート36の出力通路66内の圧力を超えた場合に阻止するように作用する。これにより、高圧マニホールド26a,26b間の分離が維持され、スプール46が動く間に油圧がヘッドを失うことが阻止される。
【0093】
図5および図6は、別の実施形態に係る配分弁232を示す。配分弁232は、図2に示すものと実質的に同じであるが、異なる逆止弁部材170を有しており、その1つが図6に詳しく示されている。この代替的な逆止弁部材170は、図4の逆止弁部材70と同様の外側シール面80aを有し、逆止弁部材170が着座したときに出力通路66の開口を囲む連続環状シールが形成される。一方、図5および図6の変形例では、逆止弁部材170の円錐台形面における環状凹部は、内側シール面が存在しないように下方に延びている。代わりに、逆止弁部材170の筒状内壁172に、逆止弁部材170の内部に向かって径方向に延びる環状凹部82が設けられており、当該凹部82は、弁ハウジング40の端部領域48の筒状外面に対して摺動シールを形成するOリングなどのシールを収容するように構成される。
【0094】
したがって、図5および図6に示す逆止弁部材170は、面シールおよび摺動シールの両方に対応して構成される。図5および図6の逆止弁部材170は面シールラインを1つしか有さないため、先述の実施形態の2つの面シールラインを有するものと比べて、製造公差がそれほど制約されない。そのため、図5および図6の実施形態では、先述の実施形態に比べて、漏れのリスクが低減され得る。
【0095】
図5および図6の実施形態では、弁座68にシールラインが1つしかないため、逆止弁部材170は、出力通路66のためにより大きなスペースを許容し、そのため、出力通路66の直径が、図2に示す実施形態のそれよりも大きくなり得る。それに代えてまたは加えて、図5の実施形態の弁座68は、径方向により狭い一方で同等サイズの出力通路66を収容してもよい。
【0096】
一方、高圧マニホールド26内の圧力が大きくなると両シールラインのシール力が増大し得る先述の実施形態と違って、図5および図6の実施形態の摺動シールの結合度は、Oリングの圧縮度のみに依存し、それは実質的に一定である。
【0097】
図2および図5は、同じ弁ハウジング40を示しているため、ここではまとめて言及する。ポート領域50の中央構造54と各端部構造52は、それぞれの径方向外側の筒状面に環状溝84を有し、当該溝84の各々は、Oリングなどのシールを収容するように構成され、入力および出力ポート34,36の2つの高圧領域と2つの低圧領域が互いに外部で分離されるようにしている。ここで、弁ハウジング40は、弁ブロックの穴(図示せず)に収容されるように構成され、当該穴の内部がOリングによってシールされる。
【0098】
中央構造54と各端部構造52との間には、弁ハウジング40が弁ブロックの穴に収容されたときに弁ハウジング40を囲む環状空隙を作る環状凹部86が設けられ、当該空隙によって流入路が規定される。弁ブロック内に形成された通路は、使用時、油圧流体を運んで流入路を満たし、当該流体が流入路から対応する各入力通路56を介して弁キャビティ42に流入することが許容され、それにより弁32,232の周囲の流れが分散および均一化される。
【0099】
同様に、弁ハウジング40のより小径の端部領域48は、端部構造52の片側に似たような空隙を作り出し、出力ポート36の出力通路66を介して放出された流体を集める流出路が規定される。
【0100】
ある実施態様では、複数の配分弁32が、弁ブロックにおいて一列に並んで設けられてもよく、当該ブロック内の複数の平行な穴に収容され得る。これは、弁装置28の第1出力部30aに接続する配分弁32の各出力ポート36が配分弁32の一端部に並ぶことと、同様に、弁装置28の第2出力部30bに接続する配分弁32の各出力ポート36が配分弁32の他端部に並ぶこととを意味する。したがって、第1出力部30aに接続する複数の出力ポート36は、両方の配分弁32の各出力ポート36を囲む第1流出路を共有してもよい。同様に、弁装置28の第2出力部30bに接続する複数の出力ポート36は、第2流出路を共有してもよい。共有される流出路を拡張することで、類似の態様で、さらなる配分弁が収容可能であることを理解されたい。これにより、2つのみの流出路によって、任意の数の配分弁の出力を、弁装置28の第1および第2出力部30a,30bに接続することができる。このことは、弁ブロックの小型実装構成や複雑性の低減につながる。
【0101】
ここで、ポート領域50の反対側の端部に出力ポート36を配置することで、有利には、得られる流出路を互いに離間させられる。これにより、弁ブロックを通って各流出路から弁装置28の第1および第2出力部30a,30bまで延びるドリルウェイを互いに離間させることができ、ひいては弁装置28の第1および第2出力部30a,30bをそれに応じて互いに離間させられる。このように第1および第2出力部30a,30bを離間させることで、特に弁ブロックの表面に接続部を作るためのより大きな空間を作り出すことにより、弁ブロックの製造を容易化することができる。弁ブロックの出力にホースや装備品を取り付ける手段は、いずれもスペースを必要とする。したがって、配分弁32は、複数の出力ポート36を離間させることでこれを提供し、それにより第1および第2出力部30a,30bの間に必要なスペースを作り出す。
【0102】
スプール46およびその動作について述べると、従来のように、スプール46は、概ね円柱状であり、第1および第2の同じ軸方向に離間した環状凹部88a,88bにおいてスプール46の残部とは異なる直径の円柱部を有し、第1環状凹部88aは、図2図3、および図5において左側に示されている。ここで、スプール46は、図2図3、および図5において同じであるため、これらの図について、以下まとめて記述する。環状凹部88a,88bは、中央ランド90を規定する径方向突出部によって隔てられる。環状凹部88a,88bの外側のスプール46の各端部において、スプール46の全径部は、端部ランド92を規定する。各ランド90,92は、弁キャビティ壁58と摺動シールをなすように寸法設定される。
【0103】
各端部ランド92と中央ランド90との間の間隔は、各環状凹部88の軸方向サイズによって決まるのであるが、一列の出力通路開口とこれに最も近い一列の入力通路開口との間の距離よりも大きい。
【0104】
同様に、中央ランド90は、弁キャビティ壁58において二列の入力通路開口の間に収まるように寸法設定された軸方向幅を有する。また、中央ランド90の軸方向幅は、入口溝60の軸方向幅よりもわずかに狭く寸法設定され、例えば、各入口溝60の幅の約90%であり、後述のように開放移行が可能となっている。
【0105】
図2図3、および図5に示すように、中央ランド90が各列の入力通路開口の間にくるようにスプール46が中間点に位置する場合、各列の入力通路開口、したがって入力ポート34は、中央ランド90によって互いに分離される。同様に、各列の出力通路開口、したがって出力ポート36も、中央ランド90によって互いに分離される。一方、端部ランド92は、入力通路56を介して弁キャビティ42に入る流体が、スプール46の環状凹部88によって規定される環状空間から、出力通路66以外の経路を通って逃げないようにする。
【0106】
スプール46が図2図3、および図5に示す中間位置にある場合、例えば、第1入力ポート34aの入力通路56を介して弁キャビティ42に入る流体は、スプール46の第1環状凹部88aによって規定される環状空間を介して第1出力ポート36aの出力通路66へ流れ得る。このように、第1入力ポート34aは、第1出力ポート36aと流体的に連通する。同様に、スプール46の第2環状凹部88bは、第2入力ポート34bと第2出力ポート36bとの間の流体連通を作り出す。したがって、図2図3、および図5に示す中間位置は、上述した配分弁32の第3動作位置に対応する。
【0107】
図2図3、および図5に示す向きにおいて、スプール46を右に動かして中央ランド90を第2入力ポート34bの開口と第2出力ポート36bの開口との間に配置することで、第1入力ポート34a、第2入力ポート34b、および第1出力ポート36aが、第1環状凹部88a内の空間を介してつながる一方、第2出力ポート36bが他のポートから分離される。これは、上述した配分弁32の第1動作位置に対応し、両入力ポート34が第1出力ポート36aに割り当てられる。
【0108】
これに対し、スプール46を左に動かして中央ランド90を第1入力ポート34aの開口と第1出力ポート36aの開口との間に配置することで、第1入力ポート34a、第2入力ポート34b、および第2出力ポート36bが、第2環状凹部88bを介してつながる。これは、上述した配分弁32の第2動作位置に対応し、両入力が第2出力ポート36bに割り当てられる。
【0109】
上述したように、配分弁32は、開放移行に対応して構成される。ここで、中央ランド90の幅は弁キャビティ42の入口溝60の幅よりも小さいため、中央ランド90は、入口溝60、したがって対応する入力ポート34を完全に塞ぐことがなく、その状態でスプール46は動作位置間を移動する。これにより、入力ポート34が完全に閉じた場合に生じ得る、対応するポンプモジュール12でヘッドが失われる事態が回避される。したがって、配分弁32を開放移行に対応して構成することで、そうでない場合にヘッドが失われるのを阻止するために必要とされるリリーフ弁が不要となり、それによりシステム10において必要とされる弁の数を減らすことができる。
【0110】
しかしながら、中央ランド90が入口溝60の上を通過する間は、当該溝60が90%まで塞がれ得、入口溝60から弁キャビティ42へ流体が流れ続け得る小さなオリフィスが形成される。これにより、弁キャビティ42に流入する流体の圧力降下を伴う流れ絞りが生じる。そのため、例えば、スプール46が図2に示す中間位置から左へ動く場合、第1環状溝88a周りの弁キャビティ42の領域における、したがって第1出力ポート36aの出力通路66における圧力が大きく降下する。これにより、出力通路66内の圧力が、第1出力ポート36aが接続された高圧マニホールド26a,26b内の圧力を下回り得る。それにより生じる差圧によって、第1逆止弁38aが閉じられる。逆止弁38aがなければ、高圧マニホールド26a,26bから出力通路66へ流体が流れ込むだろう。
【0111】
さらに、移行中には中央ランド90の片側に小さなオリフィスが形成される瞬間が生じ、それにより第1入力ポート34aの入口溝60を介して第1および第2出力ポート36a,36b間に流れ経路が形成され、一方のマニホールド26a,26bから他方へ流体が流れる可能性がある。したがって、逆止弁38は、第1および第2高圧マニホールド26a,26b間の分離も維持する。
【0112】
上記より明らかなこととして、2つの入力ポート34を出力ポート36の間に配置することで、配分弁32が、上述の各動作位置や対応する供給部の割り当て機能を提供するように構成され得る。具体的に、配分弁32は、入力ポート34に接続された複数の供給部を組編成してそれを各出力ポート36に流体的に接続する、よって割り当てることができる一方、複数の入力ポート34を互いに分離してそれらを各々の出力ポート36に割り当てることもできる。このように、配分弁32は、従来は複数の個別の弁を必要としていた機能を提供する。弁の数、あるいは弁ブロックの弁穴の数を減らすことは、油圧システムのコスト、信頼性、および複雑性に大きなインパクトがある。
【0113】
一方、開放移行に対応して構成されたスプール46と出力ポート36の逆止弁38との組合せは、漏れが少なくてシステム効率を維持する弁アセンブリを提供する。また、本実施形態の配分弁32は、逆止弁38を内蔵するにも関わらず、従来のスプール弁に比べてさほど大きくない。したがって、配分弁32は、有益なことに、逆止弁38を収容するために従来は必要であったスペースを削減することにより、および/または逆止弁38のために必要な別個の弁ブロックキャビティを省くことにより、スペースの必要性を最小化する。
【0114】
配分弁32のスプール46の移行を管理して油圧がヘッドを失うのを回避するための追加的な方法として、制御システム14は、そのスプール46が動作位置間を動いている配分弁32に接続されたポンプモジュール12のポンピングを低減し、必要に応じて停止するように構成されてもよい。例えば、関連するPCUの低圧弁が、閉状態になるようにエネルギー供給されず、吸気行程と排気行程の両方で低圧接続に対して開いたままになってもよく、それによりPCUが停止サイクルを実行してポンピングが停止される。
【0115】
ポンピングを低減または停止するための弁移行が進行中であるか判定することは、様々な方法で実現され得る。例えば、制御システム14は、動作状態間の配分弁32の移行を開始する制御命令に応じて、関連するポンプモジュール12のポンピングを低減または停止し得る。そのような命令に応じてスプール46が動き始めるのに要する時間が、例えば参照用テーブルを用いて考慮されてもよい。
【0116】
あるいは、制御システム14は、例えば、光学式、接触式、または誘導式のセンサを含む専用の位置センサまたは圧力センサを使用するなどして、より積極的にスプール46の位置を検出してもよい。また、弁位置は、例えば、スプール46の移動による逆起電力フィードバックや、スプール46を動かすソレノイドの誘導特性など、関連する特性の測定に基づいて求められてもよい。
【0117】
ポンプモジュール12内の圧力を監視することで弁移行を検出することも可能であるが、これは弁移行によって生じる背圧の影響を受けることに留意が必要である。
【0118】
スプール46の移動は、任意の適当な方法でなされてもよい。図2および図3は、スプール46を動作位置間で軸方向に沿って前後に移動させ得る電気アクチュエータ94、具体的にはソレノイドアクチュエータに取り付けられた配分弁32を示す。このことは図1にも概略的に示されており、同図は、そのような電気駆動に対応して構成された両配分弁32を備える弁装置28の全体を示す。また、図1は、各配分弁32における各動作位置間の移行状態を示しており、移行中に中央ランド90周りに形成されるオリフィスが、固定したオリフィス記号で表されている。
【0119】
この例では、スプール弁の分野で公知のように、各配分弁32は、各端部にソレノイドアクチュエータ94を備え、それにより二重駆動される。この二重駆動によると、3つの動作位置間の各方向において、スプール46の精確な動きが促進される。別の実施形態に係る単一駆動される弁では、アクチュエータに対してスプール46の反対側に戻しばねまたはその他の付勢手段が設けられる。
【0120】
弁装置28には、追加的な供給部または別のポンプモジュール12を、弁装置28の第1および第2出力部30a,30bに、ひいては高圧マニホールド26a,26bに接続する共有ラインに割り当てるためのさらなる配分弁32が追加されてもよい。これは当該装置の拡張性を示しており、さらなる配分弁32が追加されて共通ラインに接続されてもよい。
【0121】
また、図1は、配分弁32の各端部から延びるドレンライン96を示しており、それによりソレノイド94を収容する配分弁32のチャンバに排出口が提供される。これは、ソレノイド94の寿命を延ばし得る。図1に図示するように、各ドレンライン96は、低圧槽または領域に接続しており、これは、例えば、タンク、場合によってはシステム10の主タンクまたは別個の副タンクであってもよい。
【0122】
図7は、図1に示すシステム10の弁装置と置き換えてポンプモジュール(図7では不図示)に接続可能で、同様の態様で第1および第2高圧マニホールド26a,26bに供給部を割り当て得る代替的な弁装置128を示す。
【0123】
図7では、配分弁32は、当該分野で公知の油圧駆動に対応して構成される。ここで、各配分弁32は、スプール46の両側にパイロットチャンバが設けられる。パイロットチャンバは、パイロットライン98を介してパイロット弁100の出力に接続されており、各パイロット弁は、各配分弁32に対して設けられる。パイロット弁100は、一方のパイロットチャンバに加圧された油圧流体を導くように作用する。これにより、スプール46の端部間に差圧が生じ、その差の方向にしたがってスプール46が複数位置の間を動く。パイロット弁100は、スプール弁であってもよく、それ自体は電気式または油圧式で駆動されてもよい。
【0124】
パイロット弁100は、配分弁32に組み込まれてもよく、あるいは弁装置128内で配分弁32と別体に設けられてもよい。
【0125】
図7に示す装置は、その他の点では図1の装置と同じである。
【0126】
図8は、図7の装置の変形例を示しており、弁装置228は、追加的なポンプモジュール12(簡略化のため図示省略)を支えるために追加された2つのさらなる配分弁32を備える。第1の対の配分弁32は、図8で左側に示されていて、図7に示す一対の弁32に対応する。第2の対の弁32は、図8で右側に示されていて、共通のパイロット弁によって同調して駆動される。したがって、第1の対の配分弁32が互いに独立して制御され得る一方、第2の対の弁32は、常に同じ動作位置に存在することになり、よって第2の対の弁32は、ユニットとして一体的に同調制御される。そのため、この装置は、複数の供給部または別のポンプモジュール12のグループ割当てが許容可能である場合に有用であり、パイロット弁100の数の低減や、それに関連する制御の複雑性の抑制といった利点が提供される。
【0127】
図9は、図1のシステム10のための別の代替的な弁装置328を示しており、「HC1」および「HC2」で示される2つの油圧回路の間で、「S1」および「S2」で示される2つの供給部を割り当てるために、2つの三方向二位置配分弁332が使用されている。図10は、ECMの各PCUの割当ての柔軟性を最適化するために、そのような構成を拡張および使用する方法を示しており、それについては後述する。したがって、当業者であれば、図9および図10に示される原理が、四方向配分弁を用いた実装に適用可能であることを認識されるだろう。
【0128】
図9の配分弁332の各々は、1つの入力ポート34と2つの出力ポート36を有するが、それ以外は上述した四方向配分弁32と同様であり、特に、開放移行に対応して構成されると共に、各出力ポート36に対応する一体型逆止弁38を備える。
【0129】
各配分弁332は、2つの動作位置を選択可能なスプール弁として構成される。第1動作位置では、入力ポート34が一方の出力ポート36に接続され、第2動作位置では、入力ポート34が他方の出力ポート36に接続される。これにより、配分弁332は、その接続された供給部を、第1高圧マニホールド26aまたは第2高圧マニホールド26bに導くことができる。したがって、対応する配分弁332を備える各供給部は、システム10の要求に応じて、いずれかの油圧消費回路20a,20bに独立的に割り当てられ得る。
【0130】
一体型逆止弁38は別として、そのようなスプール弁は当該分野で公知であるため、ここで詳しくは説明しない。
【0131】
最後に、図10は、それぞれ12個のPCUを有する2つのECMのPCUを、必要とされる三方向配分弁332の数を最小化しつつ、一対の油圧消費回路のいずれかに3つのPCUを任意の組だけ割り当てる機能を提供するように、複数のポンプモジュール12にグループ化し得る方法を示す。
【0132】
具体的に、図10は、同図における左から右に向かって、一のポンプモジュール12から次のポンプモジュール12へと、これらに含まれるPCUの数が段階的に増えるように構成された4つのポンプモジュール12を示す。第1ECMのPCUは、3つのポンプモジュール12、すなわち3つのPCUを有する第1ポンプモジュール12aと、6つのPCUを有する第2ポンプモジュール12bと、9つのPCUを有する第3ポンプモジュール12cとに分けられる。一方、最も右側に示される第4ポンプモジュール12bは、12個のPCUを有し、よって第2ECMの全てのPCUを有する。
【0133】
各ポンプモジュール12は、配分弁332を備えるため、第1油圧消費回路20a(HC1)または第2油圧消費回路20b(HC2)に割り当てられ得る。
【0134】
例えば、第1油圧消費回路20aに15個のPCUを割り当てる要求が存在する場合、第1および第4ポンプモジュールの配分弁332の各々が、対応する供給部を第1油圧消費回路20aに割り当てる一方、第2および第3ポンプモジュールの配分弁332の各々は、対応する供給部を第2油圧消費回路20bに割り当てる。
【0135】
当業者であれば、この原理を利用して、3つのPCUを任意の数の組合せで割り当てられることが認識されるだろう。これに対し、例えば、全てのポンプモジュール12が同じ数のPCUを有する場合、三方弁を用いて同じ機能を実現するためには、8つのポンプモジュール12と8つの配分弁332が必要となるだろう。
【0136】
上述の実施形態は、消費回路20a,20bに流体を圧送するようにポンプモジュール12が作用するシステム10の動作モードに主眼をおいているが、実施形態によっては、システム10は、特定のタイミングにおいてモータリングモードで動作するように構成されてもよい。モータリングモードでは、流体が、油圧消費回路20a,20bから弁装置28,128,228,328を介してポンプモジュール12へ流れてPCUを駆動するように、流体流れの方向が逆転する。そのような実施形態は、配分弁において制御可能な逆止弁を使用し、モータリングが必要なときに配分弁の出力ポート36への流入を許容することを要する。そのような逆止弁は、配分弁に組み込まれてもよいが、そのような実施形態では、あるいは別体の逆止弁が好ましいかも知れない。この目的に適した制御可能な逆止弁は、ソレノイド駆動式の単一ブロック弁、すなわち一方の位置にストレートスルー接続を有しかつ他方の位置に逆止弁を有し、通常位置が逆止位置である二方向二位置ソレノイド駆動弁を含む。
【0137】
あるいは、閉塞移行(closed transitions)に対応して構成された別の配分弁を使用してもよく、移行時におけるポート間の漏れリスクが存在しないため、逆止弁を省略することができる。この場合、弁移行中にヘッドが失われるのを阻止するために、典型的には、配分弁の入力ポート34とポンプモジュール12との間のラインにリリーフ弁が必要となる。
【0138】
なお、システム10は、システム10の一部のみがモータリングモードで動作し得るように構成されてもよい。例えば、2つの配分弁32と4つのポンプモジュール12を有する装置において、一方の配分弁32とこれに接続されたポンプモジュール12がモータリングを許容するように構成される一方、他方の配分弁32がそうでないことが考えられる。
【0139】
当業者であれば、特に「エネルギー回収」または「回生」動作として一般に言及され得る動作を含むモータリングモードが有効な様々な状況が存在することを認識されるだろう。そのような動作は直動アクチュエータに適用可能であり、例えば装填されたプランジャーの落下を許容する場合に、低減する重力ポテンシャルエネルギーを高圧流体の生成に利用できる。回収または回生動作は、例えば油圧モータをポンプとして動作させる回転アクチュエータにも関係し得る。例えば、乗り物の駆動輪に接続された油圧モータを制動する際、移動する乗り物の低減する運動エネルギーを利用して油圧モータから高圧流体を生成することができる。同様に、掘削機の首振りに接続された油圧モータを制動する際、旋回する運転台の運動エネルギーを利用して高圧流体を生成することができる。
【0140】
当業者であれば、本発明が、添付のクレームの範囲を逸脱することなく、本明細書に記載した形態に代わる多くの形態を取るように変更され得ることを認識されるだろう。
【0141】
例えば、逆止弁の弁座は、上述した実施形態と異なる角度で弁軸に対して傾斜していてもよいし、弁座が概ね平面状になるように弁軸に対して垂直に延びていてもよい。
【0142】
例えば、原則として、弁装置において同様の動的な再配分機能を保持する限り、逆止弁は、配分弁と一体化されず従来のように別体に設けられてもよい。また、配分弁またはスプール弁アセンブリのある出力ポートに一体型逆止弁を設ける一方、同じスプール弁アセンブリの別の出力ポートが一体型逆止弁を有しないことも考えられる。
【0143】
実施形態によっては、油圧システムは、複数の配分弁および3つ以上の油圧消費回路を備えてもよく、この場合、各配分弁の2つの出力ポートは、一対の油圧回路に接続され、よって各油圧回路は、少なくとも1つの配分弁に接続される。例えば、3つの油圧消費回路と3つの配分弁を備えるシステムでは、第1配分弁は、第1消費回路および第2消費回路に接続されてもよく、第2配分弁は、第1消費回路および第3消費回路に接続されてもよく、第3配分弁は、第2および第3消費回路に接続されてもよい。このことは、配分弁の柔軟性によって実現可能なシステム配列の範囲を示す。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【外国語明細書】