IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ イーグル ハーバー テクノロジーズ,インク.の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023093562
(43)【公開日】2023-07-04
(54)【発明の名称】精密プラズマ制御システム
(51)【国際特許分類】
   H05H 1/46 20060101AFI20230627BHJP
   H01L 21/3065 20060101ALI20230627BHJP
【FI】
H05H1/46 R
H05H1/46 L
H05H1/46 M
H01L21/302 105Z
【審査請求】有
【請求項の数】24
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023063348
(22)【出願日】2023-04-10
(62)【分割の表示】P 2021544637の分割
【原出願日】2020-01-31
(31)【優先権主張番号】62/869,999
(32)【優先日】2019-07-02
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/799,738
(32)【優先日】2019-01-31
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.BLUETOOTH
(71)【出願人】
【識別番号】520064676
【氏名又は名称】イーグル ハーバー テクノロジーズ,インク.
【氏名又は名称原語表記】EAGLE HARBOR TECHNOLOGIES,INC.
(74)【代理人】
【識別番号】100107364
【弁理士】
【氏名又は名称】斉藤 達也
(72)【発明者】
【氏名】ジエンバ,ティモシー
(72)【発明者】
【氏名】ミラー,ケネス
(72)【発明者】
【氏名】プレガー,ジェームス
(72)【発明者】
【氏名】マグリ,ケヴィン
(72)【発明者】
【氏名】ハンソン,エリック
(57)【要約】      (修正有)
【課題】精密プラズマ制御可能なシステムの提供。
【解決手段】プラズマチャンバと、RFプラズマ発生器と、バイアス発生器と、コントローラとを備えるプラズマシステムを含む。RFプラズマ発生器は、プラズマチャンバと電気的に結合されてもよく、複数のRFバーストを生成してもよく、複数のRFバースト各々は、RF波形を含み、複数のRFバースト各々は、RFバーストターンオン時間とRFバーストターンオフ時間を有する。バイアス発生器は、プラズマチャンバと電気的に結合されてもよく、複数のバイアスバーストを生成してもよく、複数のバイアスバースト各々はバイアスパルスを含み、複数のバイアスバースト各々は、バイアスバーストターンオン時間とバイアスバーストターンオフ時間を有する。幾つかの実施形態では、コントローラは、様々なバースト又は波形のタイミングを制御するRFプラズマ発生器及びバイアス発生器と通信している。
【選択図】図1
【特許請求の範囲】
【請求項1】
プラズマシステムであって、
プラズマチャンバと、
前記プラズマチャンバと電気的に結合されたRFプラズマ発生器であって、複数のRFバーストを生成し、前記複数のRFバースト各々はRF波形を含み、前記複数のRFバースト各々は、RFバーストターンオン時間とRFバーストターンオフ時間を有する、RFプラズマ発生器と、
前記プラズマチャンバと電気的に結合されたバイアス発生器であって、複数のバイアスバーストを生成し、前記複数のバイアスバースト各々はバイアスパルスを含み、前記複数のバイアスバースト各々は、バイアスバーストターンオン時間とバイアスバーストターンオフ時間を有する、バイアス発生器と、
前記RFプラズマ発生器及び前記バイアス発生器と通信し、前記RFバーストターンオン時間、前記RFバーストターンオフ時間、前記バイアスターンオン時間、及び前記バイアスターンオフ時間のタイミングを制御するコントローラと、を備えたプラズマシステム。
【請求項2】
前記複数のRFバーストは前記プラズマチャンバ内にプラズマを生成及び/又は駆動し、前記複数のバイアスバーストは前記プラズマ内のイオンを加速する、請求項1に記載のプラズマシステム。
【請求項3】
前記プラズマチャンバ内に配置された電極を更に備え、前記電極は前記RFプラズマ発生器と結合している、請求項1に記載のプラズマシステム。
【請求項4】
前記プラズマチャンバ内に配置された誘導アンテナを更に備え、前記アンテナは前記RFプラズマ発生器と結合している、請求項1に記載のプラズマシステム。
【請求項5】
前記プラズマチャンバ内に配置された電極を更に備え、前記電極は前記バイアス発生器と結合している、請求項1に記載のプラズマシステム。
【請求項6】
前記RFバーストターンオン時間は、前記バイアスバーストターンオン時間よりも約10ms未満先行する、請求項1に記載のプラズマシステム。
【請求項7】
前記バイアスバーストターンオン時間は、前記RFバーストターンオン時間後にRF波形の約10サイクルで発生する、請求項1に記載のプラズマシステム。
【請求項8】
前記バイアスバーストターンオン時間は、前記RFバーストターンオフ時間に約10ms未満先行する、請求項1に記載のプラズマシステム。
【請求項9】
前記RFバーストターンオン時間と前記RFバーストターンオフ時間との間の差は約1ms未満である、請求項1に記載のプラズマシステム。
【請求項10】
前記バイアスバーストターンオン時間と前記バイアスバーストターンオフ時間の差は約10ms未満である、請求項1に記載のプラズマシステム。
【請求項11】
前記バイアスパルスは1kHzより大きいパルス繰り返し周波数を有する、請求項1に記載のプラズマシステム。
【請求項12】
前記バイアスパルスは1キロボルトを超える電圧を有する、請求項1に記載のプラズマシステム。
【請求項13】
前記RF波形は10kHz~100MHzの周波数を有する、請求項1に記載のプラズマシステム。
【請求項14】
前記RF波形は13.56MHzの周波数を有する、請求項1に記載のプラズマシステム。
【請求項15】
前記コントローラは、前記プラズマチャンバからのフィードバックに基づいて、前記RFバーストターンオン時間、前記RFバーストターンオフ時間、前記バイアスターンオン時間、及び前記バイアスターンオフ時間のタイミングを制御する、請求項1に記載のプラズマシステム。
【請求項16】
前記バイアス発生器はバイアス補償回路を含む、請求項1に記載のプラズマシステム。
【請求項17】
前記バイアス発生器はエネルギー回収回路を含む、請求項1に記載のプラズマシステム。
【請求項18】
前記RFプラズマ発生器は、フルブリッジ回路かハーフブリッジ回路と共振回路の何れかを含む、請求項1に記載のプラズマシステム。
【請求項19】
前記バイアス発生器はナノ秒パルサーを含む、請求項1に記載のプラズマシステム。
【請求項20】
前記バイアス発生器はRF発生器を含む、請求項1に記載のプラズマシステム。
【請求項21】
方法であって、
RFプラズマ発生器で、10MHz以上の周波数でプラズマチャンバを駆動するステップと、
第1の期間休止するステップと、
前記プラズマチャンバを、バイアス発生器で、1kHzを超えるパルス周波数で第1の電圧を有するパルスでパルシングするステップと、
第2の期間休止するステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
第3の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む方法。
【請求項22】
更に、第4の期間休止するステップと、
前記RFプラズマ発生器を駆動するステップと、
前記第1の期間休止するステップと、
第2の電圧を有するパルスで前記バイアス発生器をパルシングするステップと、
前記第2の期間休止するステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
前記第3の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む請求項21に記載の方法。
【請求項23】
前記第2の電圧は前記第1の電圧よりも大きい、請求項22に記載の方法。
【請求項24】
更に、
第4の期間休止するステップと、
前記RFプラズマ発生器を駆動するステップと、
前記第1の期間とは異なる第5の期間休止するステップと、
前記バイアス発生器を第2の電圧を有するパルスでパルシングするステップと、
前記第1の期間とは異なる第6の期間休止するステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
前記第1の期間とは異なる第7の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む請求項21に記載の方法。
【請求項25】
前記第1の期間は約10ms未満であり、
前記第2の期間は約10ms未満であり、
前記第3の期間は約10ms未満である、
請求項21に記載の方法。
【請求項26】
前記第1の期間は前記第2の期間よりも短い、請求項21に記載の方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、精密プラズマ制御システムに関する。
【背景技術】
【0002】
薄膜製造技術では、RF励起の気体放電を利用することが標準的になっている。最も一般的に使用される最も単純な形状は、間に電圧が印加される2つの平面電極の形状である。
【0003】
プラズマボリューム内で生成された正イオンは、プラズマシース内で加速され、シース内の時間依存電位差の大きさと波形、ガス圧、反応器の物理的形状及び/又は他の要因によって決定されるイオンエネルギー分布関数(IEDF)で電極又はウェハに到達する。このイオンボンバードメントのエネルギー分布が、薄膜エッチングの異方性の度合いや、表面へのイオン衝撃による損傷の量等を決める可能性がある。
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、上記従来の技術における課題を解決するためになされたものである。
【課題を解決するための手段】
【0005】
幾つかの実施形態は、プラズマチャンバと、プラズマチャンバと電気的に結合されたRFプラズマ発生器と、プラズマチャンバと電気的に結合されたバイアス発生器と、及び/又は、プラズマチャンバと電気的に結合され、RFプラズマ発生器及び/又はバイアス発生器と通信するコントローラと、を備えるプラズマシステムを含む。
【0006】
幾つかの実施形態は、プラズマチャンバと、RFプラズマ発生器と、バイアス発生器と、コントローラとを備えるプラズマシステムを含む。RFプラズマ発生器は、プラズマチャンバと電気的に結合されてもよく、又、複数のRFバーストを生成してもよく、複数のRFバースト各々はRF波形を含み、複数のRFバースト各々は、RFバーストターンオン時間とRFバーストターンオフ時間を有する。バイアス発生器は、プラズマチャンバと電気的に結合されてもよく、複数のバイアスバーストを生成してもよく、複数のバイアスバースト各々はバイアスパルスを含み、複数のバイアスバースト各々はバイアスバーストターンオン時間とバイアスバーストターンオフ時間を有する。幾つかの実施形態では、コントローラは、様々なバースト又は波形のタイミングを制御するRFプラズマ発生器及びバイアス発生器と通信している。
【0007】
幾つかの実施形態では、複数のRFバーストは、プラズマチャンバ内にプラズマを生成及び/又は駆動し、複数のバイアスバーストは、プラズマ内のイオンを加速する。
【0008】
幾つかの実施形態では、プラズマシステムは、プラズマチャンバ内に配置された電極を含み、この電極はバイアス発生器と結合している。幾つかの実施形態では、プラズマシステムは、プラズマチャンバ内に配置された電極を含み、この電極はRF発生器と結合している。幾つかの実施形態では、プラズマシステムは、プラズマチャンバ内に配置された誘導アンテナを含み、このアンテナはRFプラズマ発生器と結合している。
【0009】
幾つかの実施形態では、プラズマシステムは、プラズマチャンバ内に配置されたウェハを含み、このウェハはバイアス発生器と結合している。幾つかの実施形態では、プラズマシステムは、プラズマチャンバ内に配置されたウェハを含み、このウェハはRF発生器と結合している。
【0010】
幾つかの実施形態では、RFバーストターンオン時間はバイアスバーストターンオン時間よりも10ms未満先行する。幾つかの実施形態では、バイアスバーストターンオン時間はRFバーストターンオフ時間よりも10ms未満先行する。幾つかの実施形態では、RFバーストターンオン時間とRFバーストターンオフ時間との間の差は約1ms未満である。幾つかの実施形態では、バイアスバーストターンオン時間とバイアスバーストターンオフ時間の差は約1ms未満である。
【0011】
幾つかの実施形態では、バイアスパルスは、1kHzよりも大きいパルス繰り返し周波数を有する。幾つかの実施形態では、バイアスパルスは、1キロボルトよりも大きい電圧を有する。幾つかの実施形態では、RF波形は10MHzよりも大きい周波数を有する。
【0012】
前記複数のRFバーストは前記プラズマチャンバ内にプラズマを生成及び/又は駆動し、前記複数のバイアスバーストは前記プラズマ内のイオンを加速する、請求項1に記載のプラズマシステム。
【0013】
幾つかの実施形態では、コントローラは、プラズマチャンバからのフィードバックに基づいて、RFバーストターンオン時間、RFバーストターンオフ時間、バイアスターンオン時間、及びバイアスターンオフ時間のタイミングを制御する。
【0014】
幾つかの実施形態では、バイアス発生器はナノ秒パルサーを含む。幾つかの実施形態では、バイアス発生器はバイアス補償回路を含む。幾つかの実施形態では、バイアス発生器はエネルギー回収回路を含む。幾つかの実施形態では、バイアス発生器はRF発生器を含む。
【0015】
幾つかの実施形態では、RFプラズマ発生器は、フルブリッジ回路又はハーフブリッジ回路の何れかと、共振回路とを含む。
【0016】
幾つかの実施形態は、RFプラズマ発生器を駆動するステップと、第1の期間休止するステップと、ナノ秒パルサーで第1の電圧を有するパルスでパルシングするステップと、第2の期間休止するステップと、RFプラズマ発生器の駆動を停止するステップと、第3の期間休止するステップと、ナノ秒パルサーのパルシングを停止するステップを含む方法を含む。
【0017】
幾つかの実施形態では、方法は、第4の期間休止するステップと、RFプラズマ発生器の駆動を停止するステップと、第1の期間休止するステップと、第2の電圧を有するパルスでナノ秒パルサーをパルシングするステップと、第2の期間休止するステップと、RFプラズマ発生器の駆動を停止するステップと、第3の期間休止するステップと、ナノ秒パルサーのパルシングを停止するステップとを更に含み得る。
【0018】
幾つかの実施形態では、第2の電圧は第1の電圧よりも大きい。
【0019】
幾つかの実施形態では、方法は、第4の期間休止するステップと、RFプラズマ発生器の駆動を停止するステップと、第1の期間とは異なる第5の期間休止するステップと、第2の電圧を有するパルスでナノ秒パルサーをパルシングするステップと、第1の期間とは異なる第6の期間休止するステップと、RFプラズマ発生器の駆動を停止するステップと、第1の期間とは異なる第7の期間休止するステップと、ナノ秒パルサーをオフにするステップとを更に含み得る。
【0020】
幾つかの実施形態では、第1の期間は約10ms未満であってもよく、第2の期間は約10ms未満であってもよく、及び/又は、第3の期間は約10ms未満であってもよい。幾つかの実施形態では、第1の期間は第2の期間よりも短い。幾つかの実施形態では、第1の期間は第2の期間よりも短い。
【0021】
これらの例示的な実施形態は、本開示を制限又は定義する為ではなく、本開示の理解を助ける為の例を提供する為に言及されている。追加の実施形態は、「発明を実施するための形態」で述べられており、更なる説明はそこで行われる。様々な実施形態のうち1つ以上の実施形態によって提供される利点は、本明細書を検討することによって、又は提示された1つ以上の実施形態を実践することによって、更に理解され得る。
【図面の簡単な説明】
【0022】
図1】幾つかの実施形態によるプラズマシステムのブロック図である。
図2】幾つかの実施形態によるパルスの2つのバーストを示す例示的な波形の説明図である。
図3】幾つかの実施形態による、例示的なRFバースト及び例示的なバイアスバーストの説明図である。
図4】幾つかの実施形態によるプラズマ制御システムのブロック図である。
図5】幾つかの実施形態によるプラズマシステムの制御プロセスの図である。
図6】幾つかの実施形態によるバイアス発生器の回路図である。
図7図6に示したバイアス発生器からの波形の図である。
図8図7に示した波形の拡大図である。
図9】幾つかの実施形態によるバイアス発生器の回路図である。
図10】幾つかの実施形態によるバイアス発生器の回路図である。
図11】幾つかの実施形態によるバイアス発生器の回路図である。
図12】幾つかの実施形態によるRFプラズマ発生器の回路図である。
図13】幾つかの実施形態によるRFプラズマ発生器の回路図である。
図14A】例示的な共振回路の回路図である。
図14B】例示的な共振回路の回路図である。
図15A】例示的な共振回路の回路図である。
図15B】例示的な共振回路の回路図である。
図16】幾つかの実施形態によるエネルギー回収回路を備えたバイアス発生器の回路図である。
図17】幾つかの実施形態による能動エネルギー回収回路を備えたバイアス発生器の回路図である。
図18】幾つかの実施形態による受動バイアス補償回路とエネルギー回収回路を含むバイアス発生器の回路図である。
図19】幾つかの実施形態による、エネルギー回収回路を備えた能動バイアス補償回路を含むバイアス発生器の回路図である。
図20】幾つかの実施形態による、能動エネルギー回収回路を備えた能動バイアス補償回路を含むバイアス発生器の回路図である。
図21】幾つかの実施形態によるエネルギー回収回路を備えたバイアス発生器の回路図である。
図22】幾つかの実施形態による、容量性負荷を駆動するエネルギー回収回路を備えたバイアス発生器の回路図である。
図23】幾つかの実施形態による、絶縁された電力を有する高電圧スイッチのブロック図である。
図24】幾つかの実施形態による、RF源、能動バイアス補償回路、及びエネルギー回収回路を含むバイアス発生器の回路図である。
図25】幾つかの実施形態による別の例示的なバイアス発生器の図である。
図26】幾つかの実施形態による計算システムのブロック図である。
【発明を実施するための形態】
【0023】
幾つかの実施形態は、プラズマチャンバと、RFプラズマ発生器と、バイアス発生器と、コントローラとを含むプラズマシステムを含む。RFプラズマ発生器は、プラズマチャンバと電気的に結合されてもよく、又、複数のRFバーストを生成してもよく、複数のRFバースト各々はRF波形を含み、複数のRFバースト各々はRFバーストターンオン時間とRFバーストターンオフ時間を有する。バイアス発生器は、プラズマチャンバと電気的に結合されてもよく、複数のバイアスバーストを生成してもよく、複数のバイアスバースト各々はバイアスパルスを含み、複数のバイアスバースト各々は、バイアスバーストターンオン時間とバイアスバーストターンオフ時間を有する。幾つかの実施形態では、コントローラは、様々なバースト又は波形のタイミングを制御するRFプラズマ発生器及びバイアス発生器と通信している。
【0024】
本開示全体で使用する用語「高電圧」は、500V、1kV、10kV、20kV、50kV、100kV等よりも大きい電圧を含んでもよく、用語「高周波数」は、1kHz、10kHz、100kHz、200kHz、500kHz、1MHz等よりも大きい周波数であってもよく、用語「高速立上がり時間」は、約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns等未満の立上がり時間を含んでもよく、用語「高速立下がり時間」は、約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns等未満の立下がり時間を含んでもよく、用語「短いパルス幅」は、約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns未満等のパルス幅を含んでもよい。
【0025】
図1は、幾つかの実施形態によるプラズマシステム100のブロック図である。幾つかの実施形態では、プラズマシステム100は、プラズマチャンバ110、RFプラズマ発生器105、バイアス発生器115、及び/又はコントローラ120を含む。幾つかの実施形態では、RFプラズマ発生器105は、プラズマチャンバ内にプラズマを生成する為に使用されてもよい。幾つかの実施形態では、バイアス発生器115は、プラズマチャンバ110内に発生したプラズマ内のイオンを加速する為に使用され得るパルスを提供してもよい。
【0026】
幾つかの実施形態では、コントローラ120は、例えば、FPGA、マイクロコントローラ等の任意のタイプのコントローラを含んでもよい。幾つかの実施形態では、コントローラ120は、プラズマチャンバ110(又は他の場所)から信号を受信し、RFプラズマ発生器105及び/又はバイアス発生器115の何れかによって提供されるバースト又はパルスのタイミング、持続時間、周波数、振幅等を変更又は適応させてもよい。
【0027】
幾つかの実施形態では、コントローラ120は、例えば、FPGA、ASIC、複合プログラマブルロジックデバイス、マイクロコントローラ、システムオンチップ(SoC)、監視制御、データ収集(SCADA)及びプログラマブルロジックコントローラ(PLC)等の任意のタイプのコントローラ、又はそれらの任意の組み合わせを含んでもよい。幾つかの実施形態では、コントローラ120は、計算システム2600のコンポーネントの何れか又は全てを含んでもよい。幾つかの実施形態では、コントローラ120は、例えば、ブロードコムArmコルテックス(Broadcom Arm Cortex)、インテルARMコルテックス(Intel ARM Cortex)、PIC32等の標準的なマイクロコントローラを含んでもよい。
【0028】
幾つかの実施形態は、RFプラズマ発生器105は、プラズマチャンバ内でマイクロ秒タイムスケール(例えば、1~1000マイクロ秒)でプラズマを生成してもよい。幾つかの実施形態では、RFプラズマ発生器105は、マイクロ秒増分で調節可能な、直流へのマイクロ秒タイムスケールでのプラズマ維持及び/又はプラズマ駆動を可能にしてもよい。幾つかの実施形態では、RFプラズマ発生器105は、非常に高いピーク電力(例えば、1~10000kW)を供給してもよい。幾つかの実施形態では、RFプラズマ発生器105は、可変供給CW電力(例えば、0.1~100kW)を生成してもよい。
【0029】
幾つかの実施形態では、RFプラズマ発生器105は、RFプラズマ発生器1200又はRFプラズマ発生器1300を含んでもよい。任意のRF電源を使用してもよい。
【0030】
幾つかの実施形態では、RFプラズマ発生器105は、例えば、約1μs~約1000μsのタイムスケールのような小さいタイムスケールでプラズマチャンバ110内のプラズマ形成を誘導してもよい。幾つかの実施形態では、RFプラズマ発生器105は、任意及び/又は制御可能なパルス幅、パルス繰り返し周波数、パルス持続時間、最大電圧等を有する波形を生成してもよい。幾つかの実施形態では、RFプラズマ発生器105は、例えば、約1kW~約10,000kWのような高いピーク電力を有する波形を生成してもよい。幾つかの実施形態では、RFプラズマ発生器105は、例えば、約1kW~約100kWのような可変及び/又は連続波(CW)電力を有する波形を生成してもよい。
【0031】
幾つかの実施形態では、バイアス発生器115は、例えば、約1μsから約1000μsのような小さいタイムスケールでウェハバイアス電圧を制御してもよい。幾つかの実施形態では、バイアス発生器115は、任意及び/又は制御可能なパルス幅、パルス繰り返し周波数、パルス持続時間、最大電圧等を有する波形を生成してもよい。幾つかの実施形態では、バイアス発生器115は、例えば、約1kW~約100,000kWのような高いピーク電力を有する波形を生成してもよい。幾つかの実施形態では、バイアス発生器115は、例えば、約1kW~約100kWのような可変の連続電力を有する波形を生成してもよい。
【0032】
幾つかの実施形態では、バイアス発生器115は、バイアス発生器600、バイアス発生器900、バイアス発生器1000、バイアス発生器1100、バイアス発生器1600、バイアス発生器1700、バイアス発生器1800、バイアス発生器1900、バイアス発生器2000、バイアス発生器2100、バイアス発生器2200、バイアス発生器2400、及びバイアス発生器2500を含んでもよい。幾つかの実施形態では、バイアス発生器115は、RFプラズマ発生器1200又はRFプラズマ発生器1300を含んでもよい。
【0033】
幾つかの実施形態では、コントローラ120は、RFプラズマ発生器105及びバイアス発生器115両方からのパルスのタイミング制御を提供してもよい。RF波形305はRFプラズマ発生器105からの出力の一例であり、バイアスバースト310はバイアス発生器115からの出力の一例である。
【0034】
幾つかの実施形態では、コントローラ120からのタイミングは、例えば、プラズマチャンバ110内でのプラズマエッチングの高速化、様々なマスクの侵食を少なく/多くすることを可能にすること、より真っ直ぐな深い穴/トレンチ、エッチング電圧が存在する間の温度や密度等の特定のプラズマ特性の制御、異なる化学/反応の駆動、反応の速度の変化、幾つかのエッチングパラメータの制御、及び/又は幾つかのプラズマ生成の制御等に寄与し得る。
【0035】
図2は、幾つかの実施形態によるパルスの2つのバーストを示す波形の例を示す説明図である。1つのバーストは複数のパルスを含んでいてもよい。バースト持続時間は、バーストがオンの時の時間Tonと、バーストがオフの時の時間T0ffである。パルス幅Pwidthは、パルスがオンである期間である。パルス周期Pperiodは、パルスがオンしてオフになる期間である。デューティサイクルは、オン時間Tonをバースト持続時間で割った値
【数1】
で表すことができる。バースト繰り返し周波数は、バースト周期の逆数
【数2】
で表すことができる。パルス繰り返し周波数は、パルス周期の逆数
【数3】
で表すことができる。
【0036】
幾つかの実施形態では、バースト繰り返し周波数は、約10Hz~約1000Hzであってもよい。幾つかの実施形態では、パルス繰り返し周波数は約10kHzより大きくてもよい。
【0037】
図3は、幾つかの実施形態による、例示的なRFバースト及び例示的なバイアスバーストの説明図である。
【0038】
時間t1は、RF波形305の開始(例えば、RFバーストのターンオン時間)を表す。時間t3は、RF波形305の終了(例えば、RFバーストターンオフ時間)を表す。期間w1は、RF波形305がプラズマを駆動しているときの部分の期間を表し得る。時間t2は、バイアスバースト310の開始(例えば、バイアスバーストターンオン時間)を表す。時間t4は、バイアスバースト310の終了(例えば、バイアスバーストターンオフ時間)を表す。期間w2は、バイアスバースト310の期間を表し得る。
【0039】
RF波形305は、プラズマチャンバ110内にプラズマを生成して駆動してもよい。例えば、期間w3は、初期リングアップの期間を含んでいてもよい。期間w4は、プラズマが形成される期間であってもよい。期間w1は、チャンバ内のRF信号によってプラズマが駆動される期間であってもよい。
【0040】
幾つかの実施形態では、t3は、例えば、w3又はw4の何れか又は両方の終了時等、チャンバ110内にプラズマが形成されたときに開始されてもよい。幾つかの実施形態では、コントローラ120は、例えば、RF波形305の初期リングアップの振幅を感知することによって、又はチャンバ110内に配置されたセンサを介して、又はRF波形305のサイクル数を感知することによって等で、プラズマの形成を感知してもよい。コントローラ120は、例えば、コントローラがプラズマの形成を感知することに基づいて、又はチャンバ110内でのプラズマの形成を予測することに基づいて、バースト310を開始してもよい。
【0041】
幾つかの実施形態では、t1はt2よりも約10ms未満先行してもよい。幾つかの実施形態では、t3はt4よりも約10ms未満先行してもよい。
【0042】
幾つかの実施形態では、t2とt1の間の差は、約10μs~約10msであってもよい。幾つかの実施形態では、t2とt1の間の差は約1μs未満であってもよい。幾つかの実施形態では、t2とt1との間の差は約740ns未満であってもよい。幾つかの実施形態では、t2とt1との間の差は、RF波形305の約10サイクル又は周期を超えるものであってもよい。
【0043】
幾つかの実施形態では、t2とt1は実質的に同時に発生してもよい。幾つかの実施形態では、t2は、プラズマチャンバ110内でプラズマ形成が発生したことをコントローラ120が検出したときに基づいてトリガしてもよい。
【0044】
幾つかの実施形態では、t4とt2の差(又はw2)は約10μs~約10msであってもよい。幾つかの実施形態では、w1は約10μs~約10msであってもよい。幾つかの実施形態では、w2は連続していてもよい。
【0045】
幾つかの実施形態では、RF波形305の周波数は、約10kHz~約10MHzの周波数を有していてもよい。幾つかの実施形態では、RF波形305は、13.56MHz又はその任意の倍数(例えば、27.12MHz、40.68MHz等)の周波数を有してもよい。幾つかの実施形態では、RF波形305の周波数は、10MHzを超える周波数を有していてもよい。
【0046】
幾つかの実施形態では、w1は、例えば、10ms、1ms、1秒、10秒等を超える等、連続的であってもよい。幾つかの実施形態では、バイアスバースト310内のパルスの周波数は、約10Hz~約10kHzであってもよい。幾つかの実施形態では、バイアスバースト310内のパルスの周波数は1kHzより大きくてもよい。幾つかの実施形態では、バイアスバースト310内のパルスの周波数は10kHzより大きくてもよい。幾つかの実施形態では、バイアスバースト310内のパルスの周波数は10kHz~20MHzであってもよい。幾つかの実施形態では、バイアスバースト310内のパルスの周波数は、約400kHzより大きくてもよい。
【0047】
幾つかの実施形態では、w3(例えば、t3-w1-t1-w4)は、約10ms未満であってもよい。
【0048】
幾つかの実施形態では、バイアスバースト310のフラット又はランプ状又は他のセグメントは、持続時間が10μs~10msであってもよい。
【0049】
幾つかの実施形態では、RF波形305のフラット又はランプ状又は他のセグメントは、持続時間が10μs~10msであってもよい。
【0050】
幾つかの実施形態では、t2はt3に約10ms未満先行してもよい。
【0051】
幾つかの実施形態では、t3はt2に約10ms未満先行してもよい。
【0052】
幾つかの実施形態では、t2はw4の間の任意の時間に発生してもよい。幾つかの実施形態では、t2はw1の開始前の任意の時間に発生してもよい。幾つかの実施形態では、t2はプラズマ形成中に発生してもよい。幾つかの実施形態では、t2は、RF波形305の初期リングアップの間、又は初期リングアップの後、又は初期リングアップ中に発生してもよい。
【0053】
幾つかの実施形態では、t2は、約10ms未満でt4に先行してもよい。
【0054】
幾つかの実施形態では、コントローラ120は、RFプラズマ発生器105及び/又はバイアス発生器115を制御して、任意の又は選択可能なパルス幅(例えば、w1+w3+w4又はw2)、デューティサイクル、パルス繰り返し周波数、及び/又はバースト周波数を有する複数のパルスのバーストを生成してもよい。
【0055】
幾つかの実施形態では、コントローラ120は、RFプラズマ発生器105及び/又はバイアス発生器115を、スロースタート及び/又はスロー直流ストップ能力も含めるように制御してもよい。
【0056】
幾つかの実施形態では、コントローラ120は、外部コントローラ(例えば、産業用コントローラ)から外部コマンドを送信及び/又は受信してもよい。これらの外部コマンドは、RFプラズマ発生器105及び/又はバイアス発生器115の何れか又は両方のパルス幅、デューティサイクル、パルス繰り返し周波数、及び/又はバースト周波数を制御してもよい。
【0057】
幾つかの実施形態では、コントローラ120は、高圧直流電源のオン/オフ、電圧及びアンペア数の設定変更、及び/又は緊急時の装置の安全化を含む高圧直流電源の制御を自動化してもよい。
【0058】
幾つかの実施形態では、コントローラ120は、RFプラズマ発生器105の出力からのフィードバック回路を有してもよく、従って、プラズマチャンバに入る波形を分析することができる。これにより、コントローラ120は、異なる負荷及び負荷条件に対して自己調整することができる。
【0059】
幾つかの実施形態では、コントローラ120は、RFプラズマ発生器105に行く設定に基づいて、バイアス発生器115を制御してもよい。
【0060】
幾つかの実施形態では、コントローラ120は、40ns~200nsのパルス幅を有するパルスを生成するようにバイアス発生器115を制御してもよい。
【0061】
幾つかの実施形態では、コントローラ120は、1%~100%のデューティサイクルを有するバーストを生成してもよい。
【0062】
幾つかの実施形態では、コントローラ120は、200~1000Hzのバースト繰り返し周波数を有するパルスを生成するように、バイアス発生器115を制御してもよい。
【0063】
幾つかの実施形態では、コントローラ120は、最小パルス幅(例えば、~40ns)でパルスの生成を開始し、4ns増分で(例えば、40ns、44ns、48ns、52ns等)、より長いパルス幅に増加するようにバイアス発生器115を制御してもよい。
【0064】
幾つかの実施形態では、コントローラ120は、選択可能なステップで直流電圧を最大電圧から0Vまでランプダウンさせるパルスを生成するように、バイアス発生器115を制御してもよい。
【0065】
幾つかの実施形態では、コントローラ120は、例えば、約10ナノ秒未満のジッタ等の低ジッタで任意のパルスを生成するように、バイアス発生器115を制御してもよい。
【0066】
幾つかの実施形態では、コントローラ120は、負荷状態を自己補正してもよい。
【0067】
幾つかの実施形態では、プラズマチャンバ110は、任意のタイプのプラズマチャンバを含んでもよい。
【0068】
幾つかの実施形態では、プラズマチャンバ110は20nF未満の負荷容量を有し得る。幾つかの実施形態では、バイアス発生器115の作用によりイオンを表面に加速する為に、プラズマチャンバ110内に電位を確立することができる。幾つかの実施形態では、プラズマチャンバ110内のプラズマは、概ね容量性であってもよい。幾つかの実施形態では、プラズマチャンバ110内のプラズマは、誘電体バリア放電を含み得る。
【0069】
幾つかの実施形態では、プラズマチャンバ110は、コンデンサ、抵抗器と直列のコンデンサ、インダクタと直列のコンデンサ、誘電体バリア放電、プラズマ負荷、半導体ウェハ処理負荷、及びコンデンサ、インダクタ、抵抗器、及び/又は他の能動及び/又は受動部品の任意の配置等としてモデル化されてもよい。幾つかの実施形態では、チャンバ内の負荷は、電圧が印加され、電荷が供給されたときに、電荷/電圧が所望の時間よりも長く(例えば、設計された又は所望の立下り時間よりも長く)存在し続ける可能性がある任意の負荷を含み得る。例えば、このような現象は、多くの場合、高電圧スイッチングアプリケーションで発生する可能性がある。
【0070】
幾つかの実施形態では、プラズマチャンバ110は、容量性負荷、1つ以上の電極、プラズマ負荷、1つ以上の誘電体バリア、半導体製造用プラズマ、半導体負荷、グリッド、医療用負荷等を含んでもよい。幾つかの実施形態では、プラズマチャンバ110は、プラズマ成膜システム、プラズマエッチングシステム、又はプラズマスパッタリングシステムを含んでもよい。
【0071】
幾つかの実施形態では、RFプラズマ発生器105は、マッチングネットワークなしでプラズマチャンバにスイッチング電力を駆動する為の回路及び/又はプロセスを含んでもよい。幾つかの実施形態では、RFプラズマ発生器105は、共振回路をその共振周波数で、又は共振周波数付近で駆動する為に使用され得るフル(又はハーフ)ブリッジ回路トポロジを含んでいてもよい。共振回路はその共振周波数で駆動されているので、共振回路の出力電圧は入力電圧よりも高くてもよい。幾つかの実施形態では、この共振状態により、数百ボルトの駆動電圧で約4kV以上の電圧を可能にし得る。
【0072】
図4は、幾つかの実施形態による、バイアス発生器及びRFプラズマ発生器を備えたプラズマ制御システム400のブロック図である。幾つかの実施形態では、プラズマ制御システム400は、1つ以上の場所でバイアス発生器115と、及び/又は1つ以上の場所でRFプラズマ発生器105と、電気的に結合されてもよい。例えば、第1のHV信号405A(又は第2のHV信号405B)は、パルサーとトランスステージとバイアス補償回路との間のバイアス発生器115の箇所の電圧信号を含んでもよい。別の例として、第1のHV信号405A(又は第2のHV信号405B)は、負荷ステージとバイアス補償回路との間の箇所の電圧信号を含んでいてもよい。別の例として、第1のHV信号405A(又は第2のHV信号405B)は、抵抗性出力ステージ又はエネルギー回収状態の前の箇所の電圧を含んでもよい。別の例として、第1のHV信号405A(又は第2のHV信号405B)は、ウェハ、チャック、又は電極上の電圧を含んでもよい。2つの信号が示されているが、任意の数の信号が受信されてもよい。別の例として、第1のHV信号405A(又は第2のHV信号405B)は、抵抗性出力ステージ又はエネルギー回収回路の抵抗器に掛かる電圧を含んでもよく、これは、チャンバ内のイオン電流を表し得る。別の例として、第1のHV信号405A(又は第2のHV信号405B)は、例えば、エネルギー回収インダクタに掛かる電圧等、エネルギー回収回路内の電圧を含んでもよく、これは、チャンバ内のイオン電流を表し得る。
【0073】
幾つかの実施形態では、第1のHV信号405A及び第2のHV信号405Bは、バイアス補償回路(例えば、バイアス補償回路104又はバイアス補償回路134のコンデンサC12)のコンデンサの各側の電圧又は電流信号を含んでもよい。任意の数又は種類の他の信号を受信してもよい。
【0074】
幾つかの実施形態では、第1のHV信号405A又は第2のHV信号405Bは、負荷に提供される電圧信号を含んでもよい。幾つかの実施形態では、第1のHV信号405A又は第2のHV信号405Bは、バイアス補償回路に提供される電圧信号を含んでもよい。幾つかの実施形態では、第1のHV信号405A又は第2のHV信号405Bは、パルサーに提供される電圧信号を含んでもよく、トランスステージが測定されてもよい。幾つかの実施形態では、第1のHV信号405A又は第2のHV信号405Bは、抵抗性出力ステージ又はエネルギー回収回路に提供される電圧信号を含んでいてもよい。
【0075】
第1のHV信号405A及び第2のHV信号405Bは、包括的又は個別にHV入力信号405と呼ばれてもよい。HV信号405は、バイアス発生器115及び/又はRFプラズマ発生器105からの波形を提供してもよい。
【0076】
幾つかの実施形態では、HV入力信号405は分圧器410で分圧されてもよい。分圧器410は、例えば、高電圧HV入力信号(例えば、1kVを超える)を低電圧信号(例えば、50V未満)に分圧する為に高値の抵抗器又は低値のコンデンサを含んでもよい。分圧器410は、例えば、500:1の比率、1000:1の比率、10,000:1の比率、100,000:1の比率等で分圧してもよい。分圧器410は、例えば、0~10kVのHV入力信号405の電圧を、0~20Vの電圧に分圧してもよい。分圧器410は、例えば、約5W未満の電力損失等、最小限の電力損失で分圧してもよい。
【0077】
幾つかの実施形態では、分圧器410は、低値のコンデンサ、大値のコンデンサ、低値の抵抗器、及び大値の抵抗器を含んでもよい。低値コンデンサは、例えば、約0.1pF、0.5pF、1.0pF、2.5pF、5.0pF、10.0pF、100pF、1nF、10nF等の容量値を有するコンデンサを含み得る。大値のコンデンサは、例えば、約500pFの容量値を有するコンデンサを含み得る。幾つかの実施形態では、大値コンデンサは、低値コンデンサの容量値よりも約50、100、250、500、1000、2,500、5,000pF等大きい容量値を有していてもよい。
【0078】
低値抵抗器は、1.0kΩ、2.5kΩ、5.0kΩ、10kΩ、25kΩ、50kΩ、100kΩ等の抵抗値を有していてもよい。大値抵抗器は、約0.5MΩ、1.0MΩ、2.5MΩ、5.0MΩ、10MΩ、25MΩ、50MΩ、100MΩ等の抵抗値を有していてもよい。幾つかの実施形態では、大値の抵抗器は、低値の抵抗器の抵抗値よりも約50Ω、100Ω、250Ω、500Ω、1,000Ω、2,500Ω、5,000Ω等の大きい抵抗値を有していてもよい。幾つかの実施形態では、低値のコンデンサと大値のコンデンサの比は、低値の抵抗器と大値の抵抗器の比と実質的に同じであってもよい。
【0079】
幾つかの実施形態では、分圧器410は、HV入力信号を受け取り、分圧信号を出力してもよい。分圧信号は、例えば、HV入力信号の100倍、250倍、500倍、750倍、1000倍等の小ささであってもよい。
【0080】
幾つかの実施形態では、例えば、分圧信号からあらゆるノイズをフィルタリングするフィルタ415を含んでもよい。フィルタは、例えば、任意のタイプのローパスフィルタ、バンドパスフィルタ、バンドストップフィルタ、又はハイパスフィルタを含んでもよい。
【0081】
幾つかの実施形態では、分圧信号は、第1のADC420によってデジタル化されてもよい。第1のADC420は、アナログ/デジタル変換器を含んでもよい。任意のタイプのアナログ/デジタル変換器が使用されてもよい。第1のADC420は、デジタル化された波形信号を生成してもよい。幾つかの実施形態では、第1のADC420は、100、250、500、1,000、2,000、5,000MSPS(毎秒メガサンプル又は毎秒数百万のサンプル)でデータを捕捉してもよい。幾つかの実施形態では、デジタル化された波形信号は、例えば、SPI、UART、RS232、USB、I2C等の任意のタイプの通信プロトコルを使用してコントローラ120に通信されてもよい。
【0082】
幾つかの実施形態では、分圧器410、フィルタ415、又は第1のADC420の何れかは、ガルバニック絶縁を介して、又は光ファイバリンクを介して、バイアス発生器115から絶縁されてもよい。
【0083】
幾つかの実施形態では、コントローラ120は、RFプラズマ発生器105との間で信号又はデータを送信及び/又は受信してもよい。例えば、コントローラ120は、バースト繰り返し周波数、バースト電圧、バースト周波数、バーストデューティサイクル、バースト持続時間等に関してRFプラズマ発生器に指示するタイミング信号をRFプラズマ発生器105に送ってもよい。
【0084】
幾つかの実施形態では、コントローラ120は、出力435を介して、バイアス発生器115との間で信号又はデータを送信及び/又は受信してもよい。例えば、コントローラ120は、バースト繰り返し周波数、バースト電圧、バースト周波数、バーストデューティサイクル、バースト持続時間等に関してバイアス発生器に指示するタイミング信号をバイアス発生器115に送信してもよい。
【0085】
幾つかの実施形態では、コントローラ120は、トリガ430からトリガ信号を受信してもよい。他の実施形態では、第1のADC420は、トリガ430からトリガ信号を受信してもよい。トリガ信号は、第1のADC420におけるデータ取得のタイミングを提供してもよい。トリガ信号は、例えば、5VのTTLトリガであってもよい。トリガ信号は、例えば、50オームの終端を有していてもよい。
【0086】
次に、デジタル化された信号は、例えば、第1の出力435A又は第2の出力435B(個別に又は包括的に出力435)等の1つ以上の出力ポートを介して、コントローラ120から出力されてもよい。これらの出力は、1つ以上のナノ秒パルサー(例えば、バイアス発生器115)と結合されてもよい。出力435の何れか又は両方は、例えば、LVDS、TTL、LVTTLコネクタ等の電気コネクタを含んでもよい。出力435の何れか又は両方は、例えば、SPI、UART、RS-232、USB、I2C、EtherCat、Ethernet、Profibus、PROFINET等の任意のタイプの通信プロトコルを使用して、ナノ秒パルサーコントローラにデータを提供してもよい。
【0087】
幾つかの実施形態では、プラズマ制御システム400は、プラズマ制御システム400上の4mmマルチラムレセプタクルを介してバイアス発生器115と結合してもよい。
【0088】
幾つかの実施形態では、プラズマ制御システム400は、第1のセンサ450A及び第2のセンサ450B(個別に又は包括的にセンサ450)(又は任意の数のセンサ)からの入力を受信する第2のADC445を含んでもよい。第2のADC445はアナログ/デジタル変換器を含んでもよい。幾つかの実施形態では、第2のADC445はセンサ450からのアナログ信号をデジタル化してもよい。センサ450は、例えば、入口水温、誘電体流体温度、誘電体流体圧力、筐体空気温度、電圧、流体流量、流体リークセンサ等を感知するセンサを含んでもよい。幾つかの実施形態では、第2のADC445は、ARM、PIC32、AVR、PSOC、又はPIC32を含んでもよい。
【0089】
幾つかの実施形態では、第2のADC445及び第1のADC420は、単一のADCデバイスを含み得る。幾つかの実施形態では、第2のADC445又は第1のADC420の何れか又は両方がコントローラ120の一部であってもよい。幾つかの実施形態では、第1のADC420は、第2のADCよりも高い取得レートで動作してもよい。
【0090】
幾つかの実施形態では、制御システムは、バイアス発生器115におけるパルスの半値全幅、ピーク電圧、直流バイアス、立上がり時間、立下がり時間等を測定してもよい。
【0091】
幾つかの実施形態では、プラズマ制御システム400は、パルスの電圧、周波数、パルス幅等を監視してもよく、これに応答して、バイアス発生器115及び/又はRFプラズマ発生器105の入力に提供される電圧、パルス繰り返し周波数、パルス幅、バースト繰り返し周波数(1つのバーストが複数のパルスを含む場合)、RFバーストターンオン時間、RFバーストターンオフ時間、バイアスバーストターンオン時間、バイアスバーストターンオフ時間等を調整してもよい。例えば、第1のADC420は、波形の電圧振幅を監視してもよい。この電圧データは、コントローラ120に提供されてもよく、コントローラ120は、ナノ秒パルサー又はRFプラズマ発生器に通信することで信号の振幅又は周波数を調整してもよい。
【0092】
幾つかの実施形態では、プラズマ制御システム400は、出力435を介して任意のパルス信号を1つ以上のバイアス発生器115に出力してもよい。出力435は、例えば、ファイバ接続又は電気接続の何れかを含んでもよい。幾つかの実施形態では、プラズマ制御システム400は、例えば、互いに独立していてもよい複数の出力パルスチャネル(例えば、1、2、5、8、20、50、100等)を含み得る。複数の出力パルスチャンネルは、例えば、サブナノ秒の分解能でパルスを出力してもよい。
【0093】
例えば、パルス電圧が所定の電圧よりも小さい場合、コントローラ120は、より高い電圧のパルスを生成するように、バイアス発生器115又はRFプラズマ発生器105に信号を送ってもよい。又、パルス電圧が所定の電圧よりも大きい場合、第1のADC420は、より低い電圧でパルスを生成するように、バイアス発生器115又はRFプラズマ発生器105に信号を送ってもよい。幾つかの実施形態では、パルス電圧を増加させる為のナノ秒パルサーへの信号は、以前に送られた信号よりも長いパルス幅を有する低電圧パルスを含んでもよく、パルス電圧を減少させる為のナノ秒パルサーへの信号は、以前に送られた信号よりも短いパルス幅を有する低電圧パルスを含み得る。
【0094】
別の例として、パルス繰り返し周波数が所望のパルス繰り返し周波数よりも大きい場合、コントローラ120はバイアス発生器115又はRFプラズマ発生器105に信号を送って、より低い周波数のパルスを発生させてもよい。バースト繰り返し周波数が所望のバースト繰り返し周波数よりも小さい場合、コントローラ120は、より高いバースト繰り返し周波数でバーストを生成するように、バイアス発生器115又はRFプラズマ発生器105に信号を送ってもよい。測定されたパルスの全幅半値が所望のバースト繰り返し周波数と異なる場合、コントローラ120は、調整されたパルス幅又はパルス繰り返し周波数を有するパルスを生成するように、バイアス発生器115又はRFプラズマ発生器105に信号を送ってもよい。
【0095】
別の例として、波形のパルス幅が所望のパルス幅よりも長い場合、第1のADC420は、より短い又は長いパルス幅を有する波形を生成するように、バイアス発生器115又はRFプラズマ発生器105に信号を送ってもよい。波形のデューティサイクルが所望のデューティサイクルよりも短い又は長い場合、第1のADC420は、適切なデューティサイクルを有するパルスを生成するように、バイアス発生器115又はRFプラズマ発生器105に信号を送ってもよい。
【0096】
プラズマ制御システム400は、他の波形特性を監視し、及び/又はこれらの他の特性を調整してもよい。
【0097】
幾つかの実施形態では、プラズマ制御システム400は、出力435を介して任意のパルス信号を1つ以上のバイアス発生器115又はRFプラズマ発生器105に出力してもよい。例えば、制御システムは、任意のRFプラズマ発生器を含み得る。出力435は、例えば、ファイバ接続又は電気接続の何れかを含んでもよい。幾つかの実施形態において、プラズマ制御システム400は、例えば、互いに独立していてもよい複数の出力パルスチャネル(例えば、1、2、5、8、20、50、100等)を含むことができる。複数の出力パルスチャネルは、例えば、サブナノ秒の分解能でパルスを出力してもよい。幾つかの実施形態では、プラズマ制御システム400は、約0.1ns未満の分解能でパルスを出力してもよい。幾つかの実施形態では、プラズマ制御システム400は約100ps未満のジッタでパルスを出力してもよい。
【0098】
幾つかの実施形態では、プラズマ制御システム400の各出力パルスチャネルは、バイアス発生器115をトリガするパルスをバイアス発生器115に出力してもよい。プラズマ制御システム400は、例えば、出力パルスのパラメータをリアルタイム又はパルス間で調整してもよい。これらのパラメータは、パルス幅、パルス繰り返し周波数、デューティサイクル、バースト繰り返し周波数、電圧、バースト内のパルス数、バースト数等を含んでもよい。幾つかの実施形態では、1つ以上のパラメータは、プラズマ制御システム400への入力に基づいて、又はレシピもしくはプログラムに基づいて、調整又は変更されてもよい。
【0099】
例えば、レシピは、バイアス発生器115からの高バーストと低バーストを交互に繰り返すことを含んでもよい。高バーストは、例えば、複数の高電圧パルスを含んでもよい。低バーストは、例えば、複数の低電圧パルスを含んでもよい。高バースト及び低バーストは、例えば、各バースト内に同じ数のパルスを含んでいてもよく、又は、異なる数のパルスを含んでいてもよい。低バーストは、例えば、高バースト電圧の電圧よりも10%、20%、30%、40%、50%等低い電圧を有していてもよい。
【0100】
バイアス発生器115からの交互の高バーストと低バーストは、高バーストに対する低バーストの比率(低高比)が5%、20%、50%、100%、125%、150%等でを含んでもよい。例えば、20%の低高比は、10個のバーストの連なりを含んでいてもよく、各バーストは、約500パルス(又は、1~10,000パルスの任意の数のパルス)を含む。10%の低高比の連続10バーストでは、2バーストが低電圧バーストであり、8バーストが高電圧バーストであってもよい。
【0101】
幾つかの実施形態では、コントローラ120は、あらゆる目的の為に本明細書に組み込まれる「ナノ秒パルサーを使用した任意波形生成(ARBITRARY WAVEFORM GENERATION US1NG NANOSECOND PULSES)」というタイトルの米国特許出願第16/114,195号に記載されているように、ナノ秒パルサーに、より長い低電圧パルスを有するパルスを通信して高バーストを生成し、より短い低電圧パルスを有するパルスを通信して低バーストを生成して、高バーストと低バーストを交互に生成してもよい。
【0102】
幾つかの実施形態では、センサ450のうち1つは、バイアス発生器115内の直流電源と結合され得る直流電圧センサを含んでもよい。例えば、複数の直流電源システムがバイアス発生器115で使用され、動作中に電圧が、設定されたパーセンテージ(例えば、1%、5%、10%、20%等)を超えて変動した場合、又は絶対電圧(例えば、5V、10V、50V、100V等)を超えて変動した場合、コントローラ120はバイアス発生器115をオフにしてもよい。別の例として、電源システムが使用され、動作中に電圧出力が、設定された電圧から或るパーセンテージ(例えば、1%、5%、10%、20%等)を超えて、又は設定された電圧からの絶対電圧(例えば、5V、10V、50V、100V等)を超えて異なる場合、コントローラ120はパルスをオフにしてもよい。
【0103】
幾つかの実施形態では、コントローラ120は、例えば、産業用コントローラ等の外部コントローラ465から通信及び/又はコマンドを送信及び/又は受信してもよい。幾つかの実施形態では、外部コントローラ465は、EtherCatモジュールを介してコントローラ120と通信してもよい。幾つかの実施形態では、EtherCatモジュールは、任意のタイプの通信モジュールを含み得る。幾つかの実施形態では、EtherCatは、計算システム2600の1つ以上のコンポーネントを含んでもよい。
【0104】
幾つかの実施形態では、制御システムは、例えば、パルス幅、デューティサイクル、高電圧設定点、オン/オフ、リターン電流出力電圧、高電圧電流設定点、リターン電流出力電流、高電圧出力の有効化、リターン高電圧の有効化状態、緊急シャットダウン等のパルスシステムの動作を制御してもよい。
【0105】
図5は、幾つかの実施形態による、プラズマシステム100を制御する為のプロセス500である。幾つかの実施形態では、プロセス500は、コントローラ120によって実行されてもよい。
【0106】
プロセス500はブロック505で開始する。ブロック505で、コントローラ120は、第1のRFバーストを発生させる為にRFプラズマ発生器105の駆動を開始してもよい。第1のRFバーストは、例えば、RF波形305と同様の波形を含んでもよい。第1のRFバーストは、例えば、RF周波数及び/又はRF電圧等のRFバーストパラメータを含んでもよい。RFプラズマ発生器105からの第1のバーストは、チャンバ110内にプラズマを生成してもよい。
【0107】
ブロック510で、プロセス500は第1の期間休止してもよい。第1の期間は、例えば、約10μs~約10msであってもよい。幾つかの実施形態では、第1の期間は0秒であってもよい。第1の期間は、RF波形305の開始(例えば、t1又はRFバーストターンオン時間)と、バイアスバースト310の開始(例えば、t2又はバイアスバーストターンオン時間)との間の時間であってもよい。
【0108】
ブロック515で、コントローラ120は、バイアス発生器115をパルシングして、第1のバイアスバーストを生成してもよい。第1のバイアスバーストは、例えば、バイアスバースト310と同様の波形を含んでもよい。第1のバイアスバーストは、例えば、パルス繰り返し周波数及び/又はバイアス電圧等のバイアスバーストパラメータを含んでもよい。
【0109】
ブロック520で、プロセス500は、第2の期間休止してもよい。第2の期間は、例えば、約10μs~約10msであってもよい。第2の期間は、バイアスバースト310の開始(例えば、t2又はバイアスバーストターンオン時間)と、RF波形305の終了(例えば、t3又はRFバーストターンオフ時間)との間の時間であってもよい。
【0110】
ブロック525で、RFプラズマ発生器は、RF波形によるチャンバの駆動を停止してもよい。例えば、コントローラは、バーストを終了するように信号をRFプラズマ発生器105に送ってもよい。
【0111】
ブロック530で、プロセス500は、第3の期間休止してもよい。第3の期間は、例えば、約10μs~約10msであってもよい。第3の期間は、例えば、ゼロ秒であってもよい。第3の期間は、RF波形305の終了(例えば、t3又はRFバーストターンオフ時間)とバイアスバースト310の終了(例えば、t4又はバイアスバーストターンオフ時間)との間の時間であり得る。幾つかの実施形態では、第1の期間、第2の期間、又は第3の期間は、同じであってもよい。幾つかの実施形態では、第1の期間、第2の期間、又は第3の期間は、異なっていてもよい。
【0112】
ブロック535で、バイアス発生器115はパルスを停止してもよい。例えば、コントローラは、バーストを終了してパルシングを中止するように信号をバイアス発生器115に送ってもよい。
【0113】
ブロック540で、プロセス500は、第4の期間休止してもよい。第4の期間は、例えば、バイアスバースト310の終了(例えば、t4又はバイアスバーストターンオフ時間)と、次のRFバーストの開始又は次のRF波形305の開始(例えば、次のRF波形のt1又は次のRF波形のRFバーストターンオン時間)との間の時間であってもよい。幾つかの実施形態では、第4の期間は、第1の期間、第2の期間、及び/又は第4の期間より大きくてもよい。第4の期間は、RF波形のデューティサイクル及び/又はバイアスバーストのデューティサイクルを定義してもよい。
【0114】
ブロック545で、プロセスパラメータを変更してもよい。プロセスパラメータは、RFパラメータ、バイアスパラメータ、第1の期間、第2の期間、第3の期間、第4の期間等を含んでもよい。幾つかの実施形態では、RFパラメータ及び/又はバイアスパラメータは、例えば、RF電圧、バイアス電圧、RF周波数、パルス繰り返し周波数、温度、圧力等のチャンバからのフィードバックに基づいて変更されてもよい。幾つかの実施形態では、RFパラメータ及び/又はバイアスパラメータは、HV信号405又はセンサ450を介したチャンバからのフィードバックに基づいて変更されてもよい。
【0115】
ブロック545の後で、プロセスを繰り返してもよい。
【0116】
図6は、幾つかの実施形態によるバイアス発生器600の回路図である。
【0117】
この例では、バイアス発生器600はRFドライバ605を含んでもよい。RFドライバ605は、例えば、図6に示すように、ハーフブリッジドライバ又はフルブリッジドライバであってもよい。RFドライバ605は、直流電圧源(例えば、容量性源、交流/直流コンバータ等)であり得る入力電圧源V1を含んでもよい。幾つかの実施形態では、RFドライバ605は、4つのスイッチS1、S2、S3、及びS4を含んでもよい。幾つかの実施形態では、RFドライバ605は、直列又は並列に配置された複数のスイッチS1、S2、S3、及びS4を含んでもよい。これらのスイッチS1、S2、S3、及びS4は、例えば、IGBT、MOSFET、S1C-MOSFET、S1C接合トランジスタ、FET、SiCスイッチ、GaNスイッチ、光導電スイッチ等の任意のタイプのソリッドステートスイッチを含んでもよい。これらのスイッチS1、S2、S3、S4は、高い周波数でスイッチングされてもよいし、高い電圧パルスを発生させてもよい。これらの周波数は、例えば、約400kHz、0.5MHz、2.0MHz、4.0MHz、13.56MHz、27.12MHz、40.68MHz、50MHz等の周波数を含んでいてもよい。
【0118】
スイッチS1、S2、S3、及びS4の各スイッチは、夫々のダイオードD1、D2、D3、及びD4と並列に結合されてもよく、インダクタL1、L2、L3、及びL4で表される浮遊インダクタンスを含んでもよい。幾つかの実施形態では、インダクタL1、L2、L3、及びL4のインダクタンスは等しくてもよい。幾つかの実施形態では、インダクタL1、L2、L3、及びL4のインダクタンスは、約50nH、100nH、150nH、500nH、1000nH等よりも小さくてもよい。スイッチ(S1、S2、S3、又はS4)と夫々のダイオード(D1、D2、D3、又はD4)の組み合わせは、夫々のインダクタ(L1、L2、L3、又はL4)と直列に結合されてもよい。インダクタL3及びL4は、グランドと接続されている。インダクタL1は、スイッチS4及び共振回路610と接続されている。そして、インダクタL2はスイッチS3及び共振回路610の反対側と接続されている。
【0119】
幾つかの実施形態では、RFドライバ605は共振回路610と結合してもよい。共振回路610は、トランスT1と結合された共振インダクタL5及び/又は共振コンデンサC2を含んでもよい。共振回路610は、例えば、共振抵抗R5を含んでもよく、これは、RFドライバ605と共振回路610との間の任意のリード線の浮遊抵抗、及び/又は、例えば、トランスT1、コンデンサC2、及び/又はインダクタL5等の共振回路610内の任意のコンポーネントを含んでもよい。幾つかの実施形態では、共振抵抗R5は、ワイヤ、トレース、又は回路要素の浮遊抵抗のみを含む。他の回路要素のインダクタンスや容量が駆動周波数に影響を与える可能性があるが、駆動周波数は、概ね共振インダクタL5及び/又は共振コンデンサC2の選択によって設定され得る。浮遊インダクタンスや浮遊容量を考慮して適切な駆動周波数にする為には、更なる改良及び/又は調整が必要になることがある。更に、L5及び/又はC2を変更することで、トランスT1の立上がり時間を調整することができるが、以下の条件を満たす必要がある。
【数4】
【0120】
幾つかの実施形態では、L5のインダクタンス値を大きくすると、立上がり時間が遅くなったり短くなったりする可能性がある。これらの値は、バーストエンベロープにも影響を与える可能性がある。図7に示すように、各バーストは、過渡パルスと定常パルスを含み得る。各バースト内の過渡パルスは、定常パルスの間に全電圧に達するまで、L5及び/又はシステムのQによって設定され得る。
【0121】
RFドライバ605のスイッチが共振周波数fresonantで切り替えられる場合、トランスT1での出力電圧は増幅される。幾つかの実施形態では、共振周波数は約400kHz、0.5MHz、2.0MHz、4.0MHz、13.56MHz、27.12MHz、40.68MHz、50MHz等であってもよい。
【0122】
幾つかの実施形態では、共振コンデンサC2は、トランスT1の浮遊容量及び/又は物理的なコンデンサを含んでもよい。幾つかの実施形態では、共振コンデンサC2は、約10μF、1μF、100nF、10nF等の容量を有していてもよい。幾つかの実施形態では、共振インダクタL5は、トランスT1の浮遊インダクタンス及び/又は物理的なインダクタを含んでもよい。幾つかの実施形態では、共振インダクタL5は、約50nH、100nH、150nH、500nH、1000nH等のインダクタンスを有していてもよい。幾つかの実施形態では、共振抵抗器R5は、約10オーム、25オーム、50オーム、100オーム、150オーム、500オーム等の抵抗を有していてもよい。
【0123】
幾つかの実施形態では、共振抵抗器R5は、物理的回路内のワイヤ、トレース、及び/又はトランス巻線の浮遊抵抗を表し得る。幾つかの実施形態では、共振抵抗器R5は、約10mオーム、50mオーム、100mオーム、200mオーム、500mオーム等の抵抗を有していてもよい。
【0124】
幾つかの実施形態では、トランスT1は、あらゆる目的の為に本書に組み込まれている「高電圧トランス(High Voltage Transformer)」というタイトルの米国特許出願第15/365,094号に開示されているようなトランスを含んでいていてもよい。幾つかの実施形態では、共振回路610の出力電圧は、スイッチS1、S2、S3、及び/又はS4のデューティサイクル(例えば、スイッチの「オン」時間又はスイッチが導通している時間)を変更することによって変更され得る。例えば、デューティサイクルが長いほど出力電圧は高くなり、デューティサイクルが短いほど出力電圧は低くなる。幾つかの実施形態では、RFドライバ605のスイッチングのデューティサイクルを調整することで、共振回路610の出力電圧を変更又は調整することができる。
【0125】
例えば、信号Sig1のデューティサイクルを変更することでスイッチS1を開閉し、信号Sig2のデューティサイクルを変更することでスイッチS2を開閉し、信号Sig3のデューティサイクルを変更することでスイッチS3を開閉し、信号Sig4のデューティサイクルを変更することでスイッチS4を開閉して、スイッチのデューティサイクルが調整され得る。スイッチS1、S2、S3、又はS4のデューティサイクルを調整することで、例えば、共振回路610の出力電圧が制御され得る。
【0126】
幾つかの実施形態では、RFドライバ605の各スイッチS1、S2、S3、又はS4は、独立して、又は1つ以上の他のスイッチと連動して切り替えることができる。例えば、信号Sig1は信号Sig3と同じ信号であってもよい。別の例として、信号Sig2は信号Sig4と同じ信号であってもよい。別の例として、各信号は独立していてもよく、各スイッチS1、S2、S3、又はS4を独立又は別個に制御してもよい。
【0127】
幾つかの実施形態では、共振回路610は、ブロッキングダイオードD7を含み得る半波整流器615と結合されてもよい。
【0128】
幾つかの実施形態では、半波整流器615は、抵抗性出力ステージ620と結合されてもよい。抵抗性出力ステージ620は、当技術分野で知られている任意の抵抗性出力ステージを含んでもよい。例えば、抵抗性出力ステージ620は、「高電圧抵抗性出力ステージ回路(HIGH VOLTAGE RES1STIVE OUTPUT STAGE CIRCUIT)」というタイトルの米国特許出願第16/178,538号に記載されている任意の抵抗性出力ステージを含んでもよく、この特許出願は、あらゆる目的の為にその全体が本開示に組み込まれる。
【0129】
例えば、抵抗性出力ステージ620は、インダクタL11、抵抗器R3、抵抗器R1、及びコンデンサC11を含んでもよい。幾つかの実施形態では、インダクタL11は、約5μH~約25μHのインダクタンスを含んでもよい。幾つかの実施形態では、抵抗器R1は、約50オーム~約250オームの抵抗を含んでもよい。幾つかの実施形態では、抵抗器R3は、抵抗性出力ステージ620における浮遊抵抗を含み得る。
【0130】
幾つかの実施形態では、抵抗器R1は、直列及び/又は並列に配置された複数の抵抗器を含んでいてもよい。コンデンサC11は、配置された直列及び/又は並列の抵抗器の容量を含む抵抗器R1の浮遊容量を表し得る。浮遊容量C11の容量は、例えば、500pF、250pF、100pF、50pF、10pF、1pF未満等であってもよい。浮遊容量C11の容量は、例えば、C2、C3、及び/又はC9の容量よりも小さい等、負荷容量よりも小さくてもよい。
【0131】
幾つかの実施形態では、抵抗器R1は、負荷(例えば、プラズマシースの容量)を放電してもよい。幾つかの実施形態では、抵抗性出力ステージ620は、各パルスサイクル中に約1キロワットを超える平均電力を放電するように構成されてもよく、及び/又は各パルスサイクル中に1ジュール以下のエネルギーを放電するように構成されてもよい。幾つかの実施形態では、抵抗性出力ステージ620の抵抗器R1の抵抗値は200オーム未満であってもよい。幾つかの実施形態では、抵抗器R1は、約200pF(例えば、C11)未満の合成容量を有する直列又は並列に配置された複数の抵抗器を含み得る。
【0132】
幾つかの実施形態では、抵抗性出力ステージ620は、負荷上の電圧波形の形状を制御する為に使用され得る回路要素の集合を含んでもよい。幾つかの実施形態では、抵抗性出力ステージ620は、受動素子のみ(例えば、抵抗器、コンデンサ、インダクタ等)を含んでもよい。幾つかの実施形態では、抵抗性出力ステージ620は、受動回路素子だけでなく、能動回路素子(例えば、スイッチ)を含んでもよい。幾つかの実施形態では、抵抗性出力ステージ620は、例えば、波形の電圧立上り時間及び/又は波形の電圧立下り時間を制御する為に使用され得る。
【0133】
幾つかの実施形態では、抵抗性出力ステージ620は、容量性負荷(例えば、ウェハ及び/又はプラズマ)を放電することができる。例えば、これらの容量性負荷は、小さい容量(例えば、約10pF、100pF、500pF、1nF、10nF、100nF等)を有し得る。
【0134】
幾つかの実施形態では、抵抗性出力ステージは、高いパルス電圧(例えば、1kV、10kV、20kV、50kV、100kV等より大きい電圧)及び/又は高周波数(例えば1kHz、10kHz、100kHz、200kHz、500kHz、1MHz等より大きい周波数)及び/又は約400kHz、0.5MHz、2.0MHz、4.0MHz、13.56MHz、27.12MHz、40.68MHz、50MHz等の周波数を有する。
【0135】
幾つかの実施形態では、抵抗性出力ステージは、高い平均電力、高いピーク電力、高速立上がり時間及び/又は高速立下がり時間を処理するように選択されてもよい。例えば、平均電力定格は、約0.5kW、1.0kW、10kW、25kW等よりも大きい、及び/又は、ピーク電力定格は、約1kW、10kW、100kW、1MW等よりも大きい場合がある。
【0136】
幾つかの実施形態では、抵抗性出力ステージ620は受動部品の直列又は並列ネットワークを含んでもよい。例えば、抵抗性出力ステージ620は、抵抗器、コンデンサ、及びインダクタの直列を含んでもよい。別の例として、抵抗性出力ステージ620はインダクタと並列のコンデンサと、抵抗器と直列のコンデンサ-インダクタの組み合わせを含んでもよい。例えば、L11は、整流器から電圧が出ているときに、抵抗性出力ステージに大きいエネルギーが注入されないように、十分に大きく選択することができる。R3とR1の値は、L/R時間がRF周波数よりも速く負荷内の適切なコンデンサをドレインできるように選択され得る。
【0137】
幾つかの実施形態では、抵抗性出力ステージ620は、バイアス補償回路625と結合してもよい。バイアス補償回路625は、当技術分野で知られている任意のバイアス及び/又はバイアス補償回路を含んでもよい。例えば、バイアス補償回路625は、「ナノ秒パルサーバイアス補償(NANOSECOND PULSER BIAS COMPENSATION」というタイトルの米国特許出願第16/523,840号に記載されている任意のバイアス及び/又はバイアス補償回路を含んでもよく、この特許出願は全ての目的の為にその全体が本開示に組み込まれる。
【0138】
幾つかの実施形態では、バイアス補償回路625は、バイアスコンデンサC7、ブロッキングコンデンサC12、ブロッキングダイオードD8、スイッチS8(例えば、高電圧スイッチ)、オフセット供給電圧V1、抵抗R2、及び/又は抵抗R4を含んでもよい。幾つかの実施形態では、スイッチS8は、あらゆる目的の為にその全体が本開示に組み込まれている、「ナノ秒パルシング用高電圧スイッチ(HIGH VOLTAGE SWITCH FOR NANOSECOND PULS1NG)」というタイトルの米国特許出願第62/717,637号、及び/又は「ナノ秒パルシング用高電圧スイッチ(HIGH VOLTAGE SWITCH FOR NANOSECOND PULS1NG)」というタイトルの米国特許出願第16/178,565号に記載の高電圧スイッチを含む。
【0139】
幾つかの実施形態では、オフセット供給電圧V5は、出力電圧を正又は負の何れかにバイアスすることができる直流電圧源を含んでもよい。幾つかの実施形態では、コンデンサC12はオフセット電源電圧V5を、抵抗性出力ステージ620及び/又は他の回路要素から絶縁/分離してもよい。幾つかの実施形態では、バイアス補償回路625は、回路の一部分から別の部分への電力の潜在的なシフトを可能にしてもよい。幾つかの実施形態では、バイアス補償回路625は、高電圧パルスがチャンバ内でアクティブであるときにウェハを所定の位置に保持する為に使用されてもよい。抵抗R2は、直流バイアス電源をドライバから保護/絶縁してもよい。
【0140】
幾つかの実施形態では、スイッチS8は、RFドライバ605がパルシングしている間は開き、RFドライバ605がパルシングしていないときは閉じていてもよい。閉じている間、スイッチS8は、例えば、ブロッキングダイオードD8に流れる電流を短絡させてもよい。この電流を短絡させることで、ウェハとチャックとの間のバイアスを2kV未満にすることができ、これは許容範囲内であり得る。
【0141】
幾つかの実施形態では、プラズマ及びチャンバ630はバイアス補償回路625と結合してもよい。プラズマ及びチャンバ630は、例えば、図6に示される様々な回路要素によって表されてもよい。
【0142】
図6は、例えば、50オームのマッチングネットワーク、外部マッチングネットワーク、又はスタンドアロンのマッチングネットワーク等の従来のマッチングネットワークを含まない。実際、本明細書で説明した実施形態では、ウェハチャンバに印加されるスイッチング電力を調整する為に50オームのマッチングネットワークを必要としない。更に、本明細書で説明されている実施形態は、従来のマッチングネットワークなしで可変出力インピーダンスRF発生器を提供する。これにより、プラズマチャンバによって引き出される電力を迅速に変化させることができる。典型的には、マッチングネットワークのこの調整は、少なくとも100μs~200μsかかることがある。幾つかの実施形態では、電力の変化は、例えば、400kHzで2.5μs~5.0μsのように、1つ又は2つのRFサイクル内で発生し得る。
【0143】
図7は、600μsのタイムフレームにおける、トランスT1(赤)、ポール(緑)、及びウェハ(青)に掛かる電圧の波形である。図8は、10μsのタイムフレームにおける波形の拡大図である。
【0144】
図9は、幾つかの実施形態によるバイアス発生器900の回路図である。バイアス発生器900は、例えば、RFドライバ605と、共振回路610と、バイアス補償回路625と、プラズマチャンバ630とを含んでいてもよい。バイアス発生器900は、バイアス発生器600と同様であるが、抵抗性出力ステージ620がなく、エネルギー回収回路905を含む。
【0145】
この例では、エネルギー回収回路905は、トランスT1の二次側に配置されるか、又は二次側と電気的に結合されてもよい。エネルギー回収回路905は、例えば、トランスT1の二次側に跨るダイオードD9(例えば、クローバーダイオード)を含んでもよい。エネルギー回収回路905は、例えば、ダイオードD10及びインダクタL12(直列に配置)を含んでもよく、これにより、トランスT1の二次側から電流を流して電源C15を充電し、プラズマ及びチャンバ630に電流を流すことができる。ダイオードD12及びインダクタL12は、トランスT1の二次側と電気的に接続され、電源C15と結合されてもよい。幾つかの実施形態では、エネルギー回収回路905は、トランスT1の二次側と電気的に結合されたダイオードD13及び/又はインダクタL13を含んでもよい。インダクタL12は浮遊インダクタンスを表し得る、及び/又は、トランスT1の浮遊インダクタンスを含み得る。
【0146】
ナノ秒パルサーがオンになると、電流がプラズマ及びチャンバ630を充電する(例えば、コンデンサC3、コンデンサC2、又はコンデンサC9を充電する)場合がある。一部の電流は、例えば、トランスT1の二次側の電圧が電源C15の充電電圧よりも上昇すると、インダクタL12を流れてもよい。ナノ秒パルサーがオフになると、インダクタL12に掛かる電圧がゼロになるまで、プラズマチャンバ630内のコンデンサからインダクタL12を介して電流が流れ、電源C15を充電してもよい。ダイオードD9は、プラズマチャンバ630内のコンデンサがプラズマチャンバ630内のインダクタンスやバイアス補償回路625でリンギングすることを防止してもよい。
【0147】
ダイオードD12は、例えば、電源C15からプラズマチャンバ630内のコンデンサに電荷が流れるのを防止してもよい。
【0148】
インダクタL12の値は、電流立下り時間を制御する為に選択され得る。幾つかの実施形態では、インダクタL12は、1μH~500μHの間のインダクタンス値を有し得る。
【0149】
幾つかの実施形態では、エネルギー回収回路905は、インダクタL12を通る電流の流れを制御する為に使用され得るスイッチを含んでもよい。スイッチは、例えば、インダクタL12と直列に配置されてもよい。幾つかの実施形態では、スイッチS1が開いているとき及び/又はもはやパルシングしていないときにスイッチを閉じて、電流がプラズマ及びチャンバ630から電源C15に還流するようにしてもよい。
【0150】
エネルギー回収回路905のスイッチは、例えば、何れもその全体が参照により組み込まれる、2018年8月10日に出願された米国仮特許出願第62/717,637号の優先権を主張する、2018年11月1日に出願された「絶縁された電力を有する高電圧スイッチ(HIGH VOLTAGE SWITCH WITH ISOLATED POWER)」というタイトルの米国特許出願第16/178,565号に開示された高電圧スイッチを含んでもよい。幾つかの実施形態では、RFドライバ605は、RFドライバ605に示された様々なコンポーネントの代わりに、又はそれに加えて、高電圧スイッチを含んでもよい。幾つかの実施形態では、高電圧スイッチを使用することで、少なくともトランスT1及びスイッチS1を排除できる場合がある。
【0151】
図10は、幾つかの実施形態によるバイアス発生器1000の回路図である。バイアス発生器1000は、例えば、RFドライバ605と、共振回路610と、抵抗性出力ステージ620と、プラズマチャンバ630を含んでもよい。このように、バイアス発生器1000は、バイアス補償回路625のないバイアス発生器600と同様である。
【0152】
図11は、幾つかの実施形態によるバイアス発生器1100の回路図である。バイアス発生器1100は、例えば、RFドライバ605と、共振回路610と、エネルギー回収回路905と、プラズマチャンバ630を含んでもよい。このように、バイアス発生器1100は、バイアス補償回路625のないバイアス発生器900と同様である。
【0153】
図12は、幾つかの実施形態によるRFプラズマ発生器1200の回路図である。RFプラズマ発生器1200は、例えば、RFドライバ605と、共振回路610と、誘導放電プラズマ1205とを含んでいてもよい。この例では、インダクタL5は、誘導放電プラズマ1205と結合された、又は誘導放電プラズマ1205内に配置されたアンテナを含んでもよい。トランスT1は、誘導放電プラズマ1205がアンテナとどのように結合するかを表していてもよく、それは少なくとも部分的にインダクタL5によって表される。コンデンサC2は、インダクタL5と共振して、共振周波数を決定してもよい。RFドライバ605は、この共振周波数で駆動されるパルスを生成してもよい。
【0154】
図13は、幾つかの実施形態によるRFプラズマ発生器1200の回路図である。RFプラズマ発生器1200は、例えば、RFドライバ1305と、トランスを含んでもよい共振回路1310と、チャンバ630とを含んでもよい。コンデンサC1は、放電形状の容量、回路内の浮遊容量、又は回路内の任意のコンデンサの容量を表し得る。L5は、回路内の任意の浮遊インダクタンス、又は回路内の任意のインダクタンスのインダクタンスを表し得る。RFドライバ1305は、共振回路の共振周波数に実質的に等しいパルス周波数で共振回路1310を駆動してもよい。
【0155】
幾つかの実施形態では、RFドライバ1305内の各スイッチS1、S2、S3、又はS4は、独立して、又は1つ以上の他のスイッチと連動して切り替えられ得る。例えば、信号Sig1は信号Sig3と同じ信号であってもよい。別の例として、信号Sig2は信号Sig4と同じ信号であってもよい。別の例として、各信号は独立していてもよく、各スイッチS1、S2、S3、又はS4を独立又は別個に制御してもよい。
【0156】
幾つかの実施形態では、トランスT1は、RFプラズマ発生器1200に含まれていても、含まれていなくてもよい。
【0157】
図14A、14B、15A及び15Bは、図6の共振回路610の代わりに使用されてもよい例示的な共振回路の回路図である。これらの回路は、各図に示すトランスを含んでいても含んでいなくてもよい。
【0158】
図16は、エネルギー回収回路1610を有するナノ秒パルサーステージ101と、トランスT1と、リードステージ103と、直流バイアス回路104と、負荷ステージ106とを含むバイアス発生器1600の回路図である。
【0159】
幾つかの実施形態では、負荷ステージ106は、例えば、プラズマ成膜システム、半導体製造システム、プラズマスパッタリングシステム等の半導体処理チャンバの理想化された回路又は有効な回路を表し得る。容量C2は、例えば、半導体プロセスウェハが載り得る静電チャックの容量を表し得る。チャックは、例えば、誘電体材料(例えば、酸化アルミニウム、又は他のセラミック材料、及び誘電体材料内に収容された導体)を含み得る。例えば、コンデンサC1は、小さい容量(例えば、約10pF、100pF、500pF、1nF、10nF、100nF等)を有していてもよい。
【0160】
コンデンサC3は、例えば、プラズマからウェハまでの間のシース容量を表し得る。抵抗器R6は、例えば、プラズマとウェハとの間のシース抵抗を表し得る。インダクタL2は、例えば、プラズマとウェハとの間のシースインダクタンスを表し得る。電流源I2は、例えば、シースを流れるイオン電流を表し得る。例えば、コンデンサC1又はコンデンサC3は、小さい容量(例えば、約10pF、100pF、500pF、1nF、10nF、100nF等)を有していてもよい。
【0161】
コンデンサC9は、例えば、チャンバの壁に対するプラズマシースの容量を表し得る。抵抗器R7は、例えば、プラズマとチャンバ壁との間の抵抗を表し得る。電流源I1は、例えば、プラズマ中のイオン電流を表し得る。例えば、コンデンサC1又はコンデンサC9は、小さい容量(例えば、約10pF、100pF、500pF、1nF、10nF、100nF等)を有していてもよい。
【0162】
幾つかの実施形態では、プラズマ電圧は、グランドから回路点123まで測定された電圧であってもよく、ウェハ電圧は、グランドから回路点122まで測定された電圧であってウェハの表面における電圧を表していてもよく、チャッキング電圧は、グランドから回路点121まで測定された電圧であり、電極電圧は、グランドから回路点ラベル124(例えば、電極上)まで測定された電圧であり、入力電圧は、グランドから回路点125まで測定された電圧である。
【0163】
この例では、直流バイアス回路104はバイアス補償を含まない。直流バイアス回路104は、例えば、出力電圧が正又は負の何れかにバイアスされ得るオフセット供給電圧V5を含む。幾つかの実施形態では、オフセット供給電圧V5は、ウェハ電圧とチャック電圧との間の電位を変更するように調整され得る。幾つかの実施形態では、オフセット供給電圧V5は、約±5kV、±4kV、±3kV、±2kV、±1kV等のkVの電圧を有し得る。
【0164】
幾つかの実施形態では、バイアスコンデンサC12は、直流バイアス電圧を他の回路要素から絶縁(又は分離)し得る。例えば、バイアスコンデンサC12は、回路の或る部分から別の部分への電位シフトを可能にし得る。幾つかの実施形態では、この電位シフトにより、チャック上の所定の位置にウェハを保持する静電力が電圧閾値以下に保たれることを確実にする。抵抗器R2は、ナノ秒パルサーステージ101からの高電圧パルス出力から直流バイアス電源を分離してもよい。
【0165】
バイアスコンデンサC12は、例えば、約100pF、10pF、1pF、100μF、10μF、1μF等未満の容量を有していてもよい。抵抗器R2は、例えば、約1kオーム、10kオーム、100kオーム、1Mオーム、10Mオーム、100Mオーム等の高抵抗を有していてもよい。
【0166】
抵抗器R13は、例えば、高圧電源システムの出力から電極(例えば、負荷ステージ106)に接続するリード線や伝送路の抵抗を表し得る。また、コンデンサC1は、例えば、リード線又は伝送路の浮遊容量を表し得る。
【0167】
幾つかの実施形態では、ナノ秒パルサーステージ101は、高いパルス電圧(例えば、1kV、10kV、20kV、50kV、100kV等より大きい電圧)、高い周波数(例えば、1kHz、10kHz、100kHz、200kHz、500kHz、1MHz等より大きい周波数)、高速立上がり時間(例えば、約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns未満等の立上がり時間)、高速立下がり時間(例えば、約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns未満等の立下がり時間)及び/又は短いパルス幅(例えば、約1,000ns、500ns、250ns、100ns、20ns未満等のパルス幅)のパルスを生成してもよい。
【0168】
例えば、ナノ秒パルサーステージ101は、あらゆる目的の為に本開示に組み込まれる「高電圧ナノ秒パルサー(High Voltage Nanosecond Pulser)」というタイトルの米国特許出願第14/542,487号に記載された任意のデバイスの全て又は任意の部分、又は、あらゆる目的の為に本開示に組み込まれる「ガルバニック絶縁された出力可変パルス発生器開示(Galvanically Isolated Output Variable Pulse Generator Disclosure)」というタイトルの米国特許出願第14/635,991号に記載されたデバイスの全部又は一部、又は、あらゆる目的の為に本開示に組み込まれる「可変パルス幅とパルス繰り返し周波数を備える高電圧ナノ秒パルサー(High Voltage Nanosecond Pulser With Variable Pulse Width and Pulse Repetition Frequency)というタイトルの米国特許出願第14/798,154号に記載されたデバイスの全部又は一部を含み得る。
【0169】
幾つかの実施形態では、ナノ秒パルサーステージ101は、あらゆる方法で互いに結合された1つ以上のナノ秒パルサーを含んでもよい。
【0170】
幾つかの実施形態では、ナノ秒パルサーステージ101は、スイッチS6によって切り替えられ、切り替えられた電力をトランスT1に供給する一貫した直流電圧を提供する直流電源を含んでもよい。直流電源は、電圧源V5及びエネルギーストレージコンデンサC7を含んでいてもよい。トランスT1が1:10の巻数比を有する場合、トランスは負荷C1に10kVを発生させることができる。
【0171】
幾つかの実施形態では、負荷の容量(例えば、容量C3及び容量C9)がエネルギーストレージコンデンサC7の容量と比較して小さい場合、トランスの入力で倍電圧が発生してもよい(又は発生しなくてもよい)。例えば、エネルギーストレージコンデンサC7が500Vを供給する場合、トランスT1の入力で1kVが測定されることがある。
【0172】
スイッチS6は、例えば、IGBT、MOSFET、SiC-MOSFET、SiC接合トランジスタ、FET、SiCスイッチ、GaNスイッチ、光導電スイッチ等の1つ以上のソリッドステートスイッチを含んでもよい。スイッチS6は、Sig6+及びSig6-と表示するコントローラからの信号に基づいて切り替えられてもよい。
【0173】
幾つかの実施形態では、ナノ秒パルサーステージ101は、任意のタイプのスナバ回路を含んでいてもよいスナバ回路を含み得る。幾つかの実施形態では、スナバ回路はコンデンサを含んでもよい。幾つかの実施形態では、スナバ回路はコンデンサ及び抵抗器を含んでもよい。幾つかの実施形態では、スナバ回路は、コンデンサ、インダクタ、及び抵抗器を含んでもよい。
【0174】
幾つかの実施形態では、スナバ回路は、スナバダイオードD4と並列のスナバ抵抗器R3、及びスナバコンデンサC5を含んでもよい。スナバ回路は、浮遊インダクタンスも含んでもよい。幾つかの実施形態では、スナバ抵抗器R3及び/又はスナバダイオードD4は、スイッチS6のコレクタとトランスT1の一次巻線の間に配置されてもよい。スナバダイオードD4は、スイッチング時の過電圧をスナブアウトする為に使用してもよい。スイッチS6のエミッタ側に大容量及び/又は高速のコンデンサC5を結合してもよい。又、フリーホイーリングダイオードD2は、スイッチS1のエミッタ側に結合されていてもよい。図示されていない様々な他のコンポーネントが含まれていてもよい。1つ以上のスイッチ及び又は回路を、並列又は直列に配置してもよい。
【0175】
幾つかの実施形態では、スイッチS6は、切り替わった電圧が全電圧(例えば、エネルギーストレージコンデンサC7及び/又は電圧源V5の電圧)になることがないように、非常に高速に切り替わってもよい。幾つかの実施形態では、スイッチS6に結合されたゲート抵抗器は、短いターンオンパルスで設定されてもよい。
【0176】
幾つかの実施形態では、ナノ秒パルサーステージ101は、フリーホイーリングダイオードD2を含んでもよい。幾つかの実施形態では、フリーホイーリングダイオードD2は、誘導負荷と組み合わせて使用されてもよく、電流がインダクタを通って同じ方向に流れ続けるようにして、エネルギーが回路の抵抗素子に散逸されるようにすることで、誘導負荷に蓄積されたエネルギーが、スイッチS6が開かれた後に散逸されることを確実にする。フリーホイーリングダイオードD2が含まれていない場合、これは例えば、スイッチS6に大きな逆電圧をもたらす可能性がある。
【0177】
幾つかの実施形態では、ナノ秒パルサーステージ101は、浮遊インダクタンスL1及び/又は浮遊抵抗R1を含んでもよい。浮遊インダクタンスL1は、例えば、約10nH、100nH、1,000nH、10,000nH未満等であってもよい。浮遊抵抗R1は、例えば、約1オーム、100mオーム、10mオーム未満等であってもよい。
【0178】
幾つかの実施形態では、エネルギー回収回路1610は、トランスの二次側及び/又はエネルギーストレージコンデンサC7と電気的に結合されてもよい。エネルギー回収回路1610は、例えば、トランスT1の二次側に跨るダイオード130(例えば、クローバーダイオード)を含んでもよい。エネルギー回収回路1610は、例えば、エネルギー回収ダイオード1620及びエネルギー回収インダクタ1615(直列に配置)を含んでもよく、これにより、トランスT1の二次側から電流を流してエネルギーストレージコンデンサC7を充電することを可能にする。エネルギー回収ダイオード1620及びエネルギー回収インダクタ1615は、トランスT1の二次側及びエネルギーストレージコンデンサC7と電気的に接続されてもよい。幾つかの実施形態では、エネルギー回収回路1610は、トランスT1の二次側と電気的に結合されたダイオード130及び/又はインダクタ140を含んでもよい。インダクタ140は、浮遊インダクタンスを表していてもよく、及び/又は、トランスT1の浮遊インダクタンスを含んでいてもよい。
【0179】
幾つかの実施形態では、エネルギー回収インダクタ1615は、例えば、フェライトコアインダクタ又はエアコアインダクタ等の任意のタイプのインダクタを含んでもよい。幾つかの実施形態では、エネルギー回収インダクタ1615は、例えば、ソレノイド巻線、トロイダル巻線等の任意のタイプの形状を有していてもよい。幾つかの実施形態では、エネルギー回収インダクタ1615は、約10μH、50μH、100μH、500μH等より大きいインダクタンスを有してもよい。幾つかの実施形態では、エネルギー回収インダクタ1615は、約1μH~約100mHのインダクタンスを有していてもよい。
【0180】
幾つかの実施形態では、ナノ秒パルサーがオンになると、電流が負荷ステージ106を充電できる(例えば、コンデンサC3、コンデンサC2、又はコンデンサC9を充電する)。一部の電流は、例えば、トランスT1の二次側の電圧がエネルギーストレージコンデンサC7の充電電圧よりも高くなると、エネルギー回収インダクタ1615を流れ得る。ナノ秒パルサーがオフになると、エネルギー回収インダクタ1615に掛かる電圧がゼロになるまで、負荷ステージ106内のコンデンサ(例えば、コンデンサC1)からエネルギー回収インダクタ1615を介して電流が流れ、エネルギーストレージコンデンサC7を充電してもよい。ダイオード130は、負荷ステージ106内のコンデンサが、負荷ステージ106又は直流バイアス回路104内のインダクタンスでリンギングすることを防止してもよい。
【0181】
エネルギー回収ダイオード1620は、例えば、エネルギーストレージコンデンサC7から負荷ステージ106内のコンデンサに電荷が流れることを防止してもよい。
【0182】
エネルギー回収インダクタ1615の値は、電流立下がり時間を制御するように選択され得る。幾つかの実施形態では、エネルギー回収インダクタ1615は、1μH~600μHのインダクタンス値を有し得る。幾つかの実施形態では、エネルギー回収インダクタ1615は、50μHよりも大きいインダクタンス値を有し得る。幾つかの実施形態では、エネルギー回収インダクタ1615は、約50μH、100μH、150μH、200μH、250μH、300μH、350μH、350μH、400μH、400μH、500μH等未満のインダクタンスを有し得る。
【0183】
例えば、エネルギーストレージコンデンサC7が500Vを供給した場合、トランスT1の入力で1kVが測定される(例えば、上述のように倍電圧により)。トランスT1での1kVは、スイッチS6が開いているときに、エネルギー回収回路1610の構成要素の間で分割されてもよい。値が適切に選択された場合(例えば、インダクタL3は、エネルギー回収インダクタ1615のインダクタンスよりも小さいインダクタンスを有する)、エネルギー回収ダイオード1620とエネルギー回収インダクタ1615に掛かる電圧は、500Vより大きくてもよい。その後、電流がエネルギー回収ダイオード1620を流れ、及び/又はエネルギーストレージコンデンサC7を充電してもよい。又、電流は、ダイオードD3及びインダクタL6を通って流れてもよい。エネルギーストレージコンデンサC7が充電されると、電流は最早ダイオードD3及びエネルギー回収インダクタ1615を流れない場合がある。
【0184】
幾つかの実施形態では、エネルギー回収回路1610は、例えば、高速のタイムスケール(例えば、1ns、10ns、50ns、100ns、250ns、500ns、1,000ns等のタイムスケール)で、負荷ステージ106からエネルギーを移行(又は電荷を移行)してもよい。エネルギー回収回路の浮遊抵抗は、負荷ステージ106に掛かるパルスが高速立下がり時間tを有することを確実にする為に、低くてもよい。エネルギー回収回路1610の浮遊抵抗は、例えば、約1オーム、100mオーム、10mオーム等未満の抵抗値を有してもよい。幾つかの実施形態では、負荷ステージ106からのエネルギー移行効率は、例えば、約60%、70%、80%、又は90%等よりも大きい等、高くてもよい。
【0185】
図16に示されたあらゆる構成要素は、例えば、ダイオード135又はダイオード130又はインダクタ140等、必要であっても、必要でなくてもよい。
【0186】
幾つかの実施形態では、電圧源V1と、エネルギー回収回路1610が電圧源V1及び/又はエネルギーストレージコンデンサC7と接続する点との間に、ダイオードを配置してもよい。このダイオードは、例えば、電圧源V1からエネルギーストレージコンデンサC7への電流の流れを許容するが、エネルギー回収回路からエネルギーストレージコンデンサC7への電流の流れを許容しないように配置され得る。
【0187】
1700は、幾つかの実施形態によるエネルギー回収スイッチS5を有する能動エネルギー回収回路111を備えたナノ秒パルサーステージ101を含むバイアス発生器1700の回路図である。エネルギー回復スイッチS5は、Sig5+及びSig5-と表示されたコントローラからの信号に基づいて切り替えられてもよい。
【0188】
図17において、能動エネルギー回収回路111は、エネルギー回収インダクタ1615を通る電流の流れを制御する為に使用できるエネルギー回収スイッチS5を含んでもよい。幾つかの実施形態では、エネルギー回収スイッチS5は、エネルギー回収スイッチに跨って配置されたフリーホイーリングダイオードを含んでもよい。エネルギー回収スイッチS5は、例えば、エネルギー回収インダクタ1615と直列に配置されてもよい。幾つかの実施形態では、エネルギー回収スイッチS5は、Sig5+及び/又はSig5-からの信号に基づいて開閉されてもよい。幾つかの実施形態では、スイッチング入力V5は、スイッチS1が開いている及び/又はもはやパルシングしていないときにエネルギー回収スイッチを閉じて、負荷ステージ106から高電圧負荷C7に還流する電流を流すことを可能にしてもよい。幾つかの実施形態では、Sig5+及び/又はSig5-からのスイッチング信号は、スイッチS1が閉じているとき、及び/又は、パルシングしているときにエネルギー回収スイッチを開いて、高電圧負荷C7に電流が流れるのを制限してもよい。
【0189】
図17のエネルギー回収スイッチS5は、エネルギー回収ダイオード1620及びエネルギー回収インダクタ1615と直列に示されており、トランスT1の二次側と、エネルギー回収ダイオード1620及びエネルギー回収インダクタ1615の両方との間に配置されている。幾つかの実施形態では、エネルギー回収ダイオード1620とエネルギー回収インダクタ1615の両方が、エネルギー回収スイッチS5とトランスT1の二次側との間に配置されてもよい。幾つかの実施形態では、エネルギー回収スイッチS5は、エネルギー回収ダイオード1620とエネルギー回収インダクタ1615の間に配置されてもよい。エネルギー回収ダイオード1620、エネルギー回収インダクタ1615、及びエネルギー回収スイッチS5は、任意の順序で配置されてもよい。
【0190】
エネルギー回収スイッチS5は、例えば、高電圧スイッチ2300のような高電圧スイッチを含んでいてもよい。
【0191】
幾つかの実施形態では、負荷ステージ106は、エネルギー回収スイッチS5が開いている間に、ナノ秒パルサーステージ101によって充電されてもよい。例えば、高速のタイムスケール(例えば、約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns未満等)等で、負荷ステージ106から電荷を除去することが有益であり得る。負荷ステージ106から電荷を除去する為に、エネルギー回収スイッチS5を閉じてもよい。
【0192】
図18は、幾つかの実施形態によるエネルギー回収回路1610を備えた受動バイアス補償回路114を含むバイアス発生器1800の回路図である。
【0193】
この例では、受動バイアス補償回路114は受動バイアス補償回路であり、バイアス補償ダイオード1805及びバイアス補償コンデンサ1810を含み得る。バイアス補償ダイオード1805はオフセット供給電圧V5と直列に配置され得る。バイアス補償コンデンサ1810は、オフセット電源電圧V5と抵抗器R2の何れか又は両方に跨って配置され得る。バイアス補償コンデンサ1810は、例えば、約100μF、50μF、25μF、10μF、2μF、500nF、200nF等の、100nF~100μF未満の容量を有し得る。
【0194】
幾つかの実施形態では、バイアス補償ダイオード1805は、10Hz~500kHzの周波数で、10A~1kAの電流を伝導し得る。
【0195】
幾つかの実施形態では、バイアスコンデンサC12は、ナノ秒パルサーステージ101の出力(例えば、125と表示される位置)と、電極上の電圧(例えば、124と表示される位置)との間の電圧オフセットを可能にしてもよい。動作時、電極は、例えば、バースト中は-2kVの直流電圧であってもよく(1つのバーストは複数のパルスを含み得る)、一方、ナノ秒パルサーの出力は、パルス中の+6kVと、パルス間の0kVとで交番する。
【0196】
バイアスコンデンサC12は、例えば、100nF、10nF、1nF、100μF、10μF、1μF等である。抵抗器R2は、例えば、約1kオーム、10kオーム、100kオーム、1Mオーム、10Mオーム、100Mオーム等の高抵抗値を有していてもよい。
【0197】
幾つかの実施形態では、バイアス補償コンデンサ1810及びバイアス補償ダイオード1805は、ナノ秒パルサーステージ101の出力(例えば、125と表示される位置)と、電極上の電圧(例えば、124と表示される位置)との間の電圧オフセットが、各バーストの開始時に確立され、必要な平衡状態に達することを可能にしてもよい。例えば、電荷は、各バーストの開始時に、複数のパルス(例えば、約5~100パルス程度)の過程に亘り、コンデンサC12からバイアス補償コンデンサ1810に移行され、回路内の正しい電圧を確立する。
【0198】
幾つかの実施形態では、パルス繰り返し周波数(例えば、1バースト内のパルスの周波数)は、例えば、2MHz、13.56MHz、27MHz、60MHz、及び80MHz等、200kHz~800MHzであってもよい。幾つかの実施形態では、バースト繰り返し周波数(例えば、バーストの周波数)は、約10kHz、50Hz、100kHz、500kHz、1MHz等、例えば、400kHzであってもよい。
【0199】
エネルギー回収回路1610は、図17に示すように、エネルギー回収スイッチを含んでいてもよいし、含んでいなくてもよい。
【0200】
図19は、幾つかの実施形態によるエネルギー回収回路1610を備えた能動バイアス補償回路134を含むバイアス発生器1900の回路図である。
【0201】
能動バイアス補償回路134は、当技術分野で知られている任意のバイアス及び/又はバイアス補償回路を含んでもよい。例えば、能動バイアス補償回路134は、「ナノ秒パルサーバイアス補償(NANOSECOND PULSER BIAS COMPENSATION)」というタイトルの米国特許出願第16/523,840号に記載されている任意のバイアス及び/又はバイアス補償回路を含んでもよく、この特許出願は、あらゆる目的の為にその全体が本開示に組み込まれる。
【0202】
幾つかの実施形態では、図19に示すバイアス発生器1900の能動バイアス補償回路134は、バイアスコンデンサC6、ブロッキングコンデンサC12、ブロッキングダイオードD8、バイアス補償バイアス補償スイッチS8(例えば、高電圧スイッチ)、オフセット供給電圧V5、抵抗R2、及び/又は抵抗R4を含んでもよい。幾つかの実施形態では、スイッチS8は、例えば、図25に示す高電圧スイッチ2300のような高電圧スイッチを含んでもよい。バイアス補償スイッチS8は、Sig8+及びSig8-と表示されたコントローラからの信号に基づいて切り替えられてもよい。
【0203】
幾つかの実施形態では、オフセット供給電圧V5は、出力電圧を正又は負の何れかにバイアスし得る直流電圧源を含んでもよい。幾つかの実施形態では、コンデンサC12は、オフセット供給電圧V5を他の回路要素から絶縁/分離してもよい。幾つかの実施形態では、能動バイアス補償回路134は、回路の一部分から別の部分への電力の潜在的なシフトを可能にしてもよい。幾つかの実施形態では、能動バイアス補償回路134は、プロセスウェハと静電チャックとの間の一定のチャッキング力を維持する為に使用されてもよい。抵抗R2は、例えば、直流バイアス供給をドライバから保護/絶縁してもよい。別の例として、抵抗R2は、直流電源V5が過電流障害にならないようにする為に使用されてもよい。
【0204】
幾つかの実施形態では、バイアス補償スイッチS8は、ナノ秒パルサステージ101が10kHzを超えるパルスを盛んに生成していない、又はパルスのバーストを提供していない間は開き、ナノ秒パルサステージ101がパルスを生成していないときは閉じていてもよい。閉じている間、バイアス補償スイッチS8は、例えば、ブロッキングダイオードD8によって阻止される方向の電流を許容してもよい。この電流を短絡させることで、ウェハとチャックとの間のバイアスを2kV未満にすることができ、これは許容範囲内であり得る。
【0205】
幾つかの実施形態では、負荷ステージ106は能動バイアス補償回路134と結合してもよい。幾つかの実施形態では、エネルギー回収回路1610は、図17に示すように、エネルギー回収スイッチを含んでもよいし、含まなくてもよい。
【0206】
図20は、幾つかの実施形態による、能動エネルギー回収回路111を備えた能動バイアス補償回路134を含むバイアス発生器2000の回路図である。
【0207】
図21は、幾つかの実施形態によるエネルギー回収回路1610を備えたバイアス発生器2100の回路図である。この例では、バイアス発生器2100は、ナノ秒パルサーステージ101がエネルギーストレージコンデンサC7の他方の極性を切り替えることで、バイアス発生器1600と同様である。スイッチS6が開いているとき、コンデンサC1の電荷は、エネルギー回収回路1610を通って高電圧エネルギーストレージコンデンサC7に流れ、高電圧エネルギーストレージコンデンサC7を充電し得る。コンデンサC1上の電荷が高電圧エネルギーストレージコンデンサC7上の電荷よりも小さくなると、電流はエネルギー回収回路1610を流れるのを停止する。幾つかの実施形態では、直流バイアス回路104は、受動バイアス補償回路114又は能動バイアス補償回路134に置き換えられてもよい。幾つかの実施形態では、エネルギー回収回路1610は、能動エネルギー回収回路111と置き換えられてもよい。
【0208】
幾つかの実施形態では、電源V1及び/又はC7のグランド側(例えば、図16参照)又は正側(例えば、図21又は図22参照)を切り替えるナノ秒パルサー(又はスイッチ)が含まれる。何れの配置構成を使用してもよい。一方の配置構成を示す図を、他方の配置構成に置き換えてもよい。
【0209】
図22は、幾つかの実施形態による、容量性負荷2205を駆動するエネルギー回収回路1610を備えたバイアス発生器2200の回路図である。この例では、バイアス発生器2200は、直流バイアス回路104のないバイアス発生器1600と同様であり、容量性負荷2205を駆動している。容量性負荷2205は、例えば、プラズマ負荷、複数のグリッド、複数の電極、物理的なコンデンサ、光導電スイッチの容量等、任意の種類の負荷を含んでもよい。
【0210】
図23は、幾つかの実施形態による、絶縁された電力を有する高電圧スイッチ2300のブロック図である。高電圧スイッチ2300は、高電圧源2360からの電圧を高速立上がり時間及び/又は高周波数及び/又は可変パルス幅で切り替えることができる複数のスイッチモジュール2305(包括的に又は個別に2305、及び個別に2305A、2305B、2305C、2305D)を含んでもよい。各スイッチモジュール2305は、例えば、ソリッドステートスイッチのようなスイッチ2310を含んでもよい。
【0211】
幾つかの実施形態では、スイッチ2310は、電源2340及び/又は絶縁ファイバトリガ2345(ゲートトリガ又はスイッチトリガとも呼ばれる)を含み得るゲートドライバ回路2330と電気的に結合されてもよい。例えば、スイッチ2310は、コレクタ、エミッタ、及びゲート(又は、ドレイン、ソース、及びゲート)を含んでもよく、電源2340は、ゲートドライバ回路2330を介してスイッチ2310のゲートを駆動してもよい。ゲートドライバ回路2330は、例えば、高電圧スイッチ2300の他の構成要素から絶縁されていてもよい。
【0212】
幾つかの実施形態では、電源2340は、例えば、絶縁トランスを用いて絶縁されてもよい。絶縁トランスは低容量トランスを含んでもよい。絶縁トランスの低容量は、例えば、電源2340が大きな電流を要さずに高速タイムスケールで充電できるようにしてもよい。絶縁トランスは、例えば、約100pF未満の容量を有してもよい。別の例として、絶縁トランスは、約30~100pF未満の容量を有してもよい。幾つかの実施形態では、絶縁トランスは、1kV、5kV、10kV、23kV、50kV等までの電圧絶縁を提供してもよい。
【0213】
幾つかの実施形態では、絶縁トランスは低い浮遊容量を有していてもよい。例えば、絶縁トランスは、約1,000pF、100pF、10pF等未満の浮遊容量を有していてもよい。幾つかの実施形態では、低容量は、低電圧コンポーネント(例えば、入力制御電力源)への電気的結合を最小化してもよく、及び/又はEMIの発生(例えば、電気ノイズの発生)を低減してもよい。幾つかの実施形態では、絶縁トランスのトランス浮遊容量は、一次巻線と二次巻線の間で測定された容量を含んでもよい。
【0214】
幾つかの実施形態では、絶縁トランスは、直流/直流コンバータ又は交流/直流トランスであってもよい。幾つかの実施形態では、トランスは、例えば、110V交流トランスを含んでもよい。何れにせよ、絶縁トランスは、高電圧スイッチ2300内の他のコンポーネントから絶縁された電力を提供できる。幾つかの実施形態では、絶縁は、絶縁トランスの一次側の導体が、絶縁トランスの二次側の任意の導体を通過したり接触したりしないようにガルバニックであってもよい。
【0215】
幾つかの実施形態では、トランスは、トランスコアの周りに確りと巻かれた、又は巻き付けられた一次巻線を含んでもよい。幾つかの実施形態では、一次巻線は、トランスコアの周りに巻き付けられた導電性シートを含んでもよい。幾つかの実施形態では、一次巻線は、1つ以上の巻線を含んでもよい。
【0216】
幾つかの実施形態では、二次巻線は、コアから可能な限り離れてコアの周りに巻かれてもよい。例えば、二次巻線を含む巻線の束は、トランスコアの開口部の中心を通って巻かれてもよい。幾つかの実施形態では、二次巻線は1つ以上の巻線を含んでもよい。幾つかの実施形態では、二次巻線を含む巻線の束は、浮遊容量を最小化する為に、例えば、円形又は正方形である断面を含んでもよい。幾つかの実施形態では、一次巻線、二次巻線、又はトランスコアの間に絶縁体(例えば、油又は空気)が配置されてもよい。
【0217】
幾つかの実施形態では、二次巻線をトランスコアから離しておくと、幾つかの利点があり得る。例えば、絶縁トランスの一次側と絶縁トランスの二次側との間の浮遊容量を低減することになり得る。別の例として、動作中にコロナ及び/又は絶縁破壊が形成されないように、絶縁トランスの一次側と絶縁トランスの二次側との間の高電圧スタンドオフが可能になり得る。
【0218】
幾つかの実施形態では、絶縁トランスの一次側(例えば、一次巻線)と絶縁トランスの二次側(例えば、二次巻線)との間の間隔は、約0.1インチ、0.5インチ、1インチ、5インチ、又は10インチであり得る。幾つかの実施形態では、絶縁トランスのコアと絶縁トランスの二次側(例えば、二次巻線)との間の典型的な間隔は、約0.1インチ、0.5インチ、1インチ、5インチ、又は10インチであり得る。幾つかの実施形態では、巻線間のギャップは、例えば、真空、空気、任意の絶縁ガス若しくは液体、又は3未満の比誘電率を有する固体材料等、可能な限り低い誘電体材料で満たされてもよい。
【0219】
幾つかの実施形態では、電源2340は、高電圧スタンドオフ(絶縁)を提供できる、又は低容量(例えば、約1,000pF、100pF、10pF未満等)を有する任意のタイプの電源を含んでもよい。幾つかの実施形態では、制御電圧電源は、60Hzで交流1420V又は交流240Vを供給してもよい。
【0220】
幾つかの実施形態では、各電源2340は、単一の制御電圧電源と誘導的及び/又は電気的に結合されてもよい。例えば、電源2340Aは第1のトランスを介して電源と電気的に結合されてもよく、電源2340Bは第2のトランスを介して電源と電気的に結合されてもよく、電源2340Cは第3のトランスを介して電源と電気的に結合されてもよく、電源2340Dは第4のトランスを介して電源と電気的に結合されてもよい。例えば、様々な電源間の電圧絶縁を提供できる任意のタイプのトランスを使用してもよい。
【0221】
幾つかの実施形態では、第1のトランス、第2のトランス、第3のトランス、及び第4のトランスは、単一のトランスのコアの周りに異なる二次巻線を含んでもよい。例えば、第1のトランスが第1の二次巻線を含み、第2のトランスが第2の二次巻線を含み、第3のトランスが第3の二次巻線を含み、第4のトランスが第4の二次巻線を含んでもよい。これらの二次巻線の各々は、単一のトランスのコアに巻かれていてもよい。幾つかの実施形態では、第1の二次巻線、第2の二次巻線、第3の二次巻線、第4の二次巻線、又は一次巻線は、単一の巻線又はトランスのコアの周りに巻かれた複数の巻線を含んでもよい。
【0222】
幾つかの実施形態では、電源2340A、電源2340B、電源2340C、及び/又は電源2340Dは、リターン基準グランド又はローカルグランドを共有しなくてもよい。
【0223】
絶縁されたファイバトリガ2345は、例えば、高電圧スイッチ2300の他の構成要素からも絶縁されていてよい。絶縁されたファイバトリガ2345は、各スイッチモジュール2305が他のスイッチモジュール2305及び/又は高電圧スイッチ2300の他の構成要素に対して相対的に浮くことを、及び/又は、例えば、各スイッチモジュール2305のゲートのアクティブに制御させながら可能にする光ファイバ受信機を含んでもよい。
【0224】
幾つかの実施形態では、例えば、各スイッチモジュール2305のリターン基準グランド又はローカルグランド又はコモングランドは、例えば、絶縁トランスを使用して、互いに絶縁されてもよい。
【0225】
各スイッチモジュール2305を共通グランドから電気的に絶縁することで、例えば、複数のスイッチを累積的高電圧スイッチングの為に直列構成で配置することが可能になる。幾つかの実施形態では、スイッチモジュールのタイミングにおける幾分かのラグが許容又は設計され得る。例えば、各スイッチモジュール2305は、1kVをスイッチングする構成又は定格であってもよく、各スイッチモジュールは互いに電気的に絶縁されていてもよく、及び/又は、各スイッチモジュール2305を閉じるタイミングは、スナバコンデンサの容量及び/又はスイッチの電圧定格によって定義される期間、完全に一致していなくてもよい。
【0226】
幾つかの実施形態では、電気的絶縁は多くの利点をもたらし得る。例えば、1つの可能な利点は、スイッチ間のジッタを最小化すること、及び/又は、任意のスイッチタイミングを可能にすることを含み得る。例えば、各スイッチ2310は、約500ns、50ns、20ns、5ns等未満のスイッチ遷移ジッタを有してもよい。
【0227】
幾つかの実施形態では、2つのコンポーネント(又は回路)間の電気的絶縁は、2つのコンポーネント間の極めて高い抵抗を意味し得る、及び/又は、2つのコンポーネント間の小さい容量を意味し得る。
【0228】
各スイッチ2310は、例えば、IGBT、MOSFET、SiC-MOSFET、SiC接合トランジスタ、FET、SiCスイッチ、GaNスイッチ、光導電スイッチ等の任意のタイプのソリッドステートスイッチデバイスを含んでもよい。スイッチ2310は、例えば、高電圧(例えば約1kVを超える電圧)を、高周波で(例えば1kHzを超える)、高速で(例えば、約500kHzを超える繰り返し率)、及び/又は、高速立上がり時間(例えば約23ns未満の立上がり時間)、及び/又は、長いパルス長(例えば約10msを超える)で切り替えることができてもよい。幾つかの実施形態では、各スイッチは、個別には1,200V~1,700Vの電圧を切り替えることができるが、組み合わせて使用すると4,800V~6,800V(4スイッチの場合)を超える電圧を切り替えることができる。他にも様々な電圧定格のスイッチが使用され得る。
【0229】
少数の高電圧スイッチではなく、多数の低電圧スイッチを使用することには幾つかの利点がある。例えば、低電圧スイッチは一般的に性能が高く、低電圧スイッチは高電圧スイッチよりも高速にスイッチングする、遷移時間が早い、及び/又はスイッチング効率が高い可能性がある。しかし、例えばスイッチの数が多くなると、スイッチのタイミング精度の必要性が高くなる。
【0230】
図23に示す高電圧スイッチ2300は4つのスイッチモジュール2305を含む。本図では4つを示しているが、例えば、2、8、12、16、20、24等、任意の数のスイッチモジュール2305が使用され得る。例えば、各スイッチモジュール2305の各スイッチの定格が1200Vであり、16個のスイッチを使用する場合、高電圧スイッチは19.2kVまで切り替えることが可能である。別の例として、各スイッチモジュール2305内の各スイッチの定格が1700Vであり、16個のスイッチが使用される場合、高電圧スイッチは最大27.2kVを切り替えることができる。
【0231】
幾つかの実施形態では、高電圧スイッチ2300は、5kV、10kV、14kV、20kV、23kV等よりも大きい電圧を切り替えることができる。
【0232】
幾つかの実施形態では、高電圧スイッチ2300は高速コンデンサ2355を含んでもよい。高速コンデンサ2355は、例えば、直列及び/又は並列に配置された1つ以上のコンデンサを含んでもよい。これらのコンデンサは、例えば、1つ以上のポリプロピレンコンデンサを含んでもよい。高速コンデンサ2355は、高電圧源2360からのエネルギーを蓄積してもよい。
【0233】
幾つかの実施形態では、高速コンデンサ2355は低容量を有してもよい。幾つかの実施形態では、高速コンデンサ2355は、約1μF、約5μF、約1μF~約5μ、約100nF~約1,000nF等の容量値を有してもよい。
【0234】
幾つかの実施形態では、高電圧スイッチ2300は、クローバーダイオード2350を含んでもよいし、含まなくてもよい。クローバーダイオード2350は、例えば誘導性負荷の駆動に有益な直列又は並列に配置された複数のダイオードを含んでもよい。幾つかの実施形態では、クローバーダイオード2350は、例えば、炭化ケイ素ショットキーダイオード等の1つ以上のショットキーダイオードを含んでもよい。クローバーダイオード2350は、例えば、高電圧スイッチのスイッチからの電圧が或る閾値を超えているかどうかを感知してもよい。超えている場合、クローバーダイオード2350は、スイッチモジュールからの電力をグランドに短絡させてもよい。クローバーダイオードは、例えば、スイッチング後に誘導性負荷に蓄積されたエネルギーを散逸させる為の交流経路を許容してもよい。これは、例えば、大きな誘導電圧スパイクを防止し得る。幾つかの実施形態では、クローバーダイオード2350は、例えば、1nH、10nH、100nH等の低インダクタンスを有してもよい。幾つかの実施形態では、クローバーダイオード2350は、例えば、100pF、1nF、10nF、100nF等の低容量を有していてもよい。
【0235】
幾つかの実施形態では、例えば、負荷2365が主に抵抗性である場合等、クローバーダイオード2350は使用されなくてもよい。
【0236】
幾つかの実施形態では、各ゲートドライバ回路2330は、約1000ns、100ns、10.0ns、5.0ns、3.0ns、1.0ns未満等のジッタを生成してもよい。幾つかの実施形態では、各スイッチ2310は、最小スイッチオン時間(例えば、約10μs、1μs、500ns、100ns、50ns、10、5ns未満等)及び最大スイッチオン時間(例えば、23s、10s、5s、1s、500ms等を超える)を有してもよい。
【0237】
幾つかの実施形態では、動作中、高電圧スイッチの各々は、互いに1ns以内にスイッチオン及び/又はオフされてもよい。
【0238】
幾つかの実施形態では、各スイッチモジュール2305は、同一又は実質的に同一(±5%)の浮遊インダクタンスを有してもよい。浮遊インダクタンスは、例えば、リード線、ダイオード、抵抗、スイッチ2310、及び/又は回路基板のトレースのインダクタンス等、インダクタと関連しないスイッチモジュール2305内の任意のインダクタンスを含んでもよい。各スイッチモジュール2305内の浮遊インダクタンスは、例えば、約300nH、100nH、10nH、1nH等未満のインダクタンスのような低インダクタンスを含んでもよい。各スイッチモジュール2305の間の浮遊インダクタンスは、例えば、約300nH、100nH、10nH、1nH等未満のインダクタンス等の低インダクタンスを含んでもよい。
【0239】
幾つかの実施形態では、各スイッチモジュール2305は、同じ又は実質的に同じ(±5%)の浮遊容量を有してもよい。浮遊容量は、例えば、リード線、ダイオード、抵抗器、スイッチ2310及び/又は回路基板のトレースにおける容量等、コンデンサに関連しないスイッチモジュール2305内の任意の容量を含んでもよい。各スイッチモジュール2305内の浮遊容量は、例えば、約1,000pF、100pF、10pF未満等の低容量を含んでいてもよい。各スイッチモジュール2305間の浮遊容量は、例えば、約1,000pF、100pF、10pF未満等の低容量を含んでいてもよい。
【0240】
電圧分担の不完全さは、例えば、受動スナバ回路(例えば、スナバダイオード2315、スナバコンデンサ2320、及び/又は、フリーホイーリングダイオード2325)で対処され得る。例えば、各スイッチ2310がオン又はオフになるタイミングの僅かな違いや、インダクタンスや容量の違いにより、電圧スパイクが発生することがある。これらのスパイクは、様々なスナバ回路(例えば、スナバダイオード2315、スナバコンデンサ2320、及び/又は、フリーホイーリングダイオード2325)によって緩和され得る。
【0241】
スナバ回路は、例えば、スナバダイオード2315、スナバコンデンサ2320、スナバ抵抗器2316、及び/又は、フリーホイーリングダイオード2325を含んでもよい。幾つかの実施形態では、スナバ回路は、スイッチ2310と並列に一緒に配置されてもよい。幾つかの実施形態では、スナバコンデンサ2320は、例えば、約100pF未満の容量等、低い容量を有していてもよい。
【0242】
幾つかの実施形態では、高電圧スイッチ2300は、負荷2365(例えば、抵抗性又は容量性又は誘導性の負荷)と電気的に結合されるか、又はそれを含んでもよい。負荷2365は、例えば、50オーム~500オームの抵抗を有してもよい。代替的又は追加的に、負荷2365は誘導性負荷又は容量性負荷であってもよい。
【0243】
幾つかの実施形態では、エネルギー回収回路1610又は能動エネルギー回収回路111は、高電圧バイアス発生器のエネルギー消費量、及び/又は、エネルギー回収回路のないシステムと同じエネルギー出力性能で所定の負荷を駆動する為に必要な電圧を減少させることができる。例えば、エネルギー回収回路のないシステムと同じエネルギー出力性能の場合、エネルギー消費量は、10%、15%、20%、23%、30%、40%、45%、50%等、又はそれ以上に低減され得る。
【0244】
幾つかの実施形態では、ダイオード130、ダイオード135、及び/又はエネルギー回収ダイオード1620は、高電圧ダイオードを含み得る。
【0245】
図24は、幾つかの実施形態による、RF源2405、能動バイアス補償回路134、及びエネルギー回収回路1610を含むバイアス発生器2400の回路図である。この例では、バイアス発生器2400は、RFドライバ605及び共振回路610をRF源2405に置き換えたバイアス発生器900と同様である。図9に示すRFドライバ605は、全波整流器と共振回路610を含み、これをRF源2405に置き換えたものである。
【0246】
幾つかの実施形態では、RF源2405は、複数の高周波ソリッドステートスイッチ(複数可)、RF発生器、増幅管ベースのRF発生器、又は管ベースのRF発生器を含んでもよい。
【0247】
バイアス発生器2400は、例えば、50オームのマッチングネットワークや、外部マッチングネットワーク又はスタンドアロンマッチングネットワーク等の従来のマッチングネットワークを含んでもよいし、含まなくてもよい。幾つかの実施形態では、バイアス発生器2400は、ウェハチャンバに印加されるスイッチング電力を最適化する為に50オームマッチングネットワークを必要としない。従来のマッチングネットワークのないRF発生器は、プラズマチャンバによって引き出される電力を迅速に変化させることができる。典型的には、このマッチングネットワークの最適化には、少なくとも100μs~200μsかかることがある。幾つかの実施形態では、電力の変化は、1つ又は2つのRFサイクル内で発生することがあり、例えば、400kHzで2.5μs - 5.0μsである。
【0248】
幾つかの実施形態では、RF源2405は、約400kHz、0.5MHz、2.0MHz、4.0MHz、13.56MHz、27.12MHz、40.68MHz、50MHz等の周波数で動作してもよい。
【0249】
図25は、幾つかの実施形態による別の例示的なバイアス発生器2500を示す。バイアス発生器2500は5つのステージに一般化され得る(これらのステージは、他のステージに分解したり、より少ないステージに一般化され得る)。バイアス発生器2500は、ナノ秒パルサーステージ101、抵抗性出力ステージ2507、バイアス補償回路134、及び負荷ステージ106を含む。
【0250】
この例では、負荷ステージ106は、プラズマ成膜システム、プラズマエッチング装置、又はプラズマスパッタリング装置の実効回路を表し得る。容量C2は、ウェハが載り得る誘電体材料の容量を表し得る。コンデンサC3は、ウェハに対するプラズマのシース容量を表し得る。コンデンサC9は、チャンバの壁とウェハの上面との間のプラズマ内の容量を表し得る。また、電流源I2及び電流源I1は、シースを流れるイオン電流を表し得る。
【0251】
この例では、抵抗性出力ステージ2507は、インダクタL1及び/又はインダクタL5で表される1つ以上の誘導素子を含んでもよい。インダクタL5は、例えば、抵抗性出力ステージ2507におけるリードの浮遊インダクタンスを表し得る。インダクタL1は、ナノ秒パルサーステージ101から抵抗器R1に直接流れる電力を最小化するように設定されてもよい。
【0252】
幾つかの実施形態では、抵抗器R1は、例えば、高速タイムスケール(例えば、1ns、10ns、50ns、100ns、250ns、500ns、100ns等のタイムスケール)で負荷ステージ2515から電荷を散逸させてもよい。抵抗器R1の抵抗値は、負荷ステージ2515に掛かるパルスが高速立下がり時間tfを有するように、低くてもよい。
【0253】
幾つかの実施形態では、抵抗器R1は、直列及び/又は並列に配置された複数の抵抗器を含んでもよい。コンデンサC11は、直列及び/又は並列配置の抵抗器の容量を含む、抵抗器R1の浮遊容量を表し得る。また、浮遊容量C11の容量は、例えば、500pF、250pF、100pF、50pF、10pF、1pF等未満であってもよい。浮遊容量C11の容量は、例えば、C2、C3、及び/又はC9の容量よりも小さい等、負荷容量よりも小さくてもよい。
【0254】
幾つかの実施形態では、複数のナノ秒パルサーステージ2506は並列にギャングアップされ、インダクタL1及び/又は抵抗器R1に跨って抵抗性出力ステージ2507と結合され得る。複数のパルサー及びトランスステージ906夫々は、ダイオードD1及び/又はダイオードD6も含んでよい。
【0255】
幾つかの実施形態では、コンデンサC8は、ブロッキングダイオードD1の浮遊容量を表し得る。幾つかの実施形態では、コンデンサC4は、ダイオードD6の浮遊容量を表し得る。
【0256】
図26に示す計算システム2600は、本発明の実施形態の何れかを実行する為に使用され得る。例えば、計算システム2600は、プロセス500を実行する為に使用され得る。別の例として、計算システム2600は、ここで説明した任意の計算、識別及び/又は決定を実行する為に使用され得る。計算システム2600は、バス2605を介して電気的に結合され得る(又は、適宜、他の方法で通信してもよい)ハードウェア要素を含む。ハードウェア要素は、1つ以上の汎用プロセッサ及び/又は1つ以上の特殊用途プロセッサ(デジタル信号処理チップ、グラフィックスアクセラレーションチップ、及び/又は同様のもの等)を制限なく含む、1つ以上のプロセッサ2610と、マウス、キーボード及び/又は同様のものを制限なく含み得る、1つ以上の入力デバイス2615と、ディスプレイデバイス、プリンタ及び/又は同様のものを制限なく含み得る、1つ以上の出力デバイス2620とを含み得る。
【0257】
計算システム2600は、1つ以上のストレージデバイス2625を更に含む(及び/又はそれと通信する)ことがあり、これは、ローカル及び/又はネットワークアクセス可能なストレージを制限なく含むことができ、及び/又は、ディスクドライブ、ドライブアレイ、光学ストレージデバイス、ランダムアクセスメモリ(「RAM」)及び/又はリードオンリーメモリ(「ROM」)等のソリッドステートストレージデバイスを制限なく含むことができ、これは、プログラム可能、フラッシュアップデート可能等であり得る。計算システム2600は更に通信サブシステム2630をも含んでもよく、これは、モデム、ネットワークカード(無線又は有線)、赤外線通信デバイス、無線通信デバイス及び/又はチップセット(Bluetoothデバイス、802.6デバイス、Wi Fiデバイス、WiMaxデバイス、セルラー通信設備等)、及び/又は同様のものを制限なく含み得る。通信サブシステム2630は、ネットワーク(一例を挙げると、後述のネットワーク等)、及び/又は、本文書に記載されている任意の他のデバイスとデータを交換することを許可してもよい。多くの実施形態では、計算システム2600は、上述したように、RAM又はROMデバイスを含み得るワーキングメモリ2635を更に含むことになる。
【0258】
計算システム2600は、オペレーティングシステム2640及び/又は1つ以上のアプリケーションプログラム2645等の他のコードを含む、ワーキングメモリ2635内に現在位置するものとして示されるソフトウェア要素も含むことができ、これらは、本発明のコンピュータプログラムを含むことができ、及び/又は本明細書に記載されているように、本発明の方法を実施し、及び/又は本発明のシステムを構成するように設計され得る。例えば、上述の方法(複数可)に関して記載の1つ以上の手順は、コンピュータ(及び/又はコンピュータ内のプロセッサ)によって実行可能なコード及び/又は命令として実装され得る。これらの命令及び/又はコードのセットは、上述の記憶装置(複数可)2625等のコンピュータ可読記憶媒体に格納されてもよい。
【0259】
幾つかのケースでは、記憶媒体は、計算システム2600内に組み込まれているか、又は計算システム2600と通信していてもよい。他の実施形態では、記憶媒体は、記憶媒体がその上に記憶された命令/コードを用いて汎用コンピュータをプログラムする為に使用され得るように、計算システム2600とは別個に(例えば、コンパクトディスク等のリムーバブル媒体)、及び/又はインストールパッケージで提供され得る。これらの命令は、計算システム2600によって実行可能な実行コードの形態を取ることがあり、及び/又は、ソースコード及び/又はインストール可能なコードの形態を取ることがあり、これらのコードは、計算システム2600にコンパイル及び/又はインストールされると(例えば、一般に利用可能な様々なコンパイラ、インストールプログラム、圧縮/解凍ユーティリティ等の何れかを使用して)、実行コードの形態を取る。
【0260】
別段の定めがない限り、「実質的に」という用語は、言及された値の5%又は10%以内、或いは製造公差内を意味する。別段の定めがない限り、「約」とは、言及された値の5%又は10%以内、或いは製造公差内にあることを意味する。
【0261】
「又は」という用語は、包括的である。
【0262】
本明細書では、請求項に記載された内容を十分に理解する為に、数多くの具体的な内容が記載されている。しかし、当業者であれば、これらの具体的な詳細がなくても、請求項に記載された主題が実施され得ることを理解するであろう。他の例では、当業者が知り得る方法、装置、又はシステムは、請求項に記載された主題を不明瞭にしないように、詳細には記載されていない。
【0263】
幾つかの部分は、コンピュータメモリ等のコンピューティングシステムメモリ内に格納されたデータビット又はバイナリデジタル信号に対する操作のアルゴリズム又は記号的表現の観点から提示されている。これらのアルゴリズムの説明や表現は、データ処理技術に精通した当業者が、自分の仕事の本質を当業者に伝える為に使用する技術の一例である。アルゴリズムとは、所望の結果を得る為の、自己矛盾のない一連の操作又は同様の処理のことである。この文脈での操作や処理とは、物理量の物理的操作を包含する。必須ではないが、このような量は、一般的に、保存、転送、結合、比較、その他の操作が可能な電気信号又は磁気信号の形をしている。このような信号を、ビット、データ、値、要素、記号、文字、用語、数字、数値等と呼ぶのは、主に一般的な使用方法の理由から、便利であることが分かっている。しかし、これらの用語や同様の用語は全て、適切な物理量に関連するものであり、単なる便利な標識に過ぎないことを理解すべきである。特に断らない限り、本明細書では、「処理」、「コンピューティング」、「計算」、「決定」、「識別」等の用語を用いた論説は、コンピューティングプラットフォームのメモリ、レジスタ、又はその他の情報ストレージデバイス、伝送デバイス、又はディスプレイデバイス内の物理的な電子的又は磁気的な量として表現されたデータを操作又は変換する1つ以上のコンピュータ又は同様の電子コンピューティングデバイス又は複数のデバイス等のコンピューティングデバイスの動作又はプロセスを指すことを理解されたい。
【0264】
本明細書で説明するシステムは、特定のハードウェアアーキテクチャや構成に限定されるものではない。コンピューティングデバイスは、1つ以上の入力を条件とした結果を提供するコンポーネントの任意の適切な配置を含み得る。適切なコンピューティングデバイスは、コンピューティングシステムを汎用コンピューティング装置から本主題の1つ以上の実施形態を実装する特殊なコンピューティング装置にプログラム又は構成する、保存されたソフトウェアにアクセスする多目的マイクロプロセッサベースのコンピュータシステムを含む。本明細書に記載されている内容を、計算機のプログラミングや構成に使用するソフトウェアに実装する為に、任意の適切なプログラミング言語、スクリプト言語、その他の種類の言語又は言語の組み合わせが使用され得る。
【0265】
本明細書に開示されている方法の実施形態は、そのようなコンピューティングデバイスの動作において実行され得る。上記の例で示されたブロックの順序は変化させることができ、例えば、ブロックの順序入れ替え、組み合わせ、サブブロックへの分割が可能である。特定のブロックやプロセスは並行して実行され得る。
【0266】
本明細書での、「適応される(adapted to)」又は「構成される(configured to)」の使用は、追加のタスクやステップを実行するように適応又は構成されたデバイスを排除しない、オープンで包括的な言語として意図されている。更に、「基づく(based on)」の使用は、1つ以上の記載された条件又は値に「基づく」プロセス、ステップ、計算、又はその他のアクションが、実際には記載された条件又は値以外の追加の条件又は値に基づいている可能性があるという意味で、オープンで包括的なものであることを意味する。本明細書に記載されている見出し、リスト、及び番号は、説明を容易にする為のものであり、限定を意味するものではない。
【0267】
本主題を、その特定の実施形態に関して詳細に説明してきたが、当業者ならば、前述の理解を得た上で、そのような実施形態に対する変更、変形、及び同等物を容易に創造できることが理解されるであろう。したがって、本開示は、限定ではなく例示を目的として提示されており、当業者に容易に明らかになるような変更、変形、及び/又は追加を本主題に含めることを排除するものではないことを理解すべきである。
【符号の説明】
【0268】
100 プラズマシステム
110 プラズマチャンバ
105、1200、1300 RFプラズマ発生器
115、600、900、1000、1100、1600、1700、1800、1900、2000、2100、2200、2400、2500 バイアス発生器
120 コントローラ
130 ダイオード
140 インダクタ
400 プラズマ制御システム
410 分圧器
415 フィルタ
420 第1のADC
435 出力
450 センサ
605、1305 RFドライバ
610 共振回路
620 抵抗性出力ステージ
625 バイアス補償回路
630 チャンバ
905、1610 エネルギー回収回路
1205 誘導放電プラズマ
1610 エネルギー回収回路
1615 エネルギー回収インダクタ
2205 容量性負荷
2300 高電圧スイッチ
2305 スイッチモジュール
2340 電源
2345 絶縁ファイバトリガ
2350 クローバーダイオード
2355 高速コンデンサ
2360 高電圧負荷
2365 負荷
2405 RF源
2506 ナノ秒パルサーステージ
2507 抵抗性出力ステージ
2600 計算システム
2605 バス
2625 ストレージデバイス
2635 ワーキングメモリ
2640 オペレーティングシステム
2645 アプリケーションプログラム

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14A
図14B
図15A
図15B
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
【手続補正書】
【提出日】2023-04-11
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
プラズマシステムであって、
プラズマチャンバと、
前記プラズマチャンバと電気的に結合されたRFプラズマ発生器であって、複数のRFバーストを生成し、前記複数のRFバースト各々はRF波形を含み、前記複数のRFバースト各々は、RFバーストターンオン時間とRFバーストターンオフ時間を有する、前記RFプラズマ発生器と、
前記プラズマチャンバと電気的に結合されたバイアス発生器であって、複数のバイアスバーストを生成し、前記複数のバイアスバースト各々はバイアスパルスを含み、前記複数バイアスバーストの各々は、バイアスバーストターンオン時間とバイアスバーストターンオフ時間を有し、前記バイアス発生器はエネルギー回収回路を含む、前記バイアス発生器と、
前記RFプラズマ発生器及び前記バイアス発生器と通信し、前記RFバーストターンオン時間、前記RFバーストターンオフ時間、前記バイアスターンオン時間、及び前記バイアスターンオフ時間のタイミングを制御するコントローラと、を備えたプラズマシステム。
【請求項2】
前記複数のRFバーストは前記プラズマチャンバ内にプラズマを生成及び/又は駆動し、前記複数のバイアスバーストは前記プラズマ内のイオンを加速する、請求項1に記載のプラズマシステム。
【請求項3】
前記プラズマチャンバ内に配置された電極を更に備え、前記電極は前記RFプラズマ発生器と結合している、請求項1に記載のプラズマシステム。
【請求項4】
前記プラズマチャンバ内に配置された誘導アンテナを更に備え、前記アンテナは前記RFプラズマ発生器と結合している、請求項1に記載のプラズマシステム。
【請求項5】
前記プラズマチャンバ内に配置された電極を更に備え、前記電極は前記バイアス発生器と結合している、請求項1に記載のプラズマシステム。
【請求項6】
前記RFバーストターンオン時間は、前記バイアスバーストターンオン時間よりも約10ms未満先行する、請求項1に記載のプラズマシステム。
【請求項7】
前記バイアスバーストターンオン時間は、前記RFバーストターンオン時間後にRF波形の約10サイクルで発生する、請求項1に記載のプラズマシステム。
【請求項8】
前記バイアスバーストターンオン時間は、前記RFバーストターンオフ時間に約10ms未満先行する、請求項1に記載のプラズマシステム。
【請求項9】
前記RFバーストターンオン時間と前記RFバーストターンオフ時間との間の差は約1ms未満である、請求項1に記載のプラズマシステム。
【請求項10】
前記バイアスバーストターンオン時間と前記バイアスバーストターンオフ時間の差は約10ms未満である、請求項1に記載のプラズマシステム。
【請求項11】
前記バイアスパルスは1kHzより大きいパルス繰り返し周波数を有する、請求項1に記載のプラズマシステム。
【請求項12】
前記バイアスパルスは1キロボルトを超える電圧を有する、請求項1に記載のプラズマシステム。
【請求項13】
前記RF波形は10kHz~100MHzの周波数を有する、請求項1に記載のプラズマシステム。
【請求項14】
前記RF波形は13.56MHzの周波数を有する、請求項1に記載のプラズマシステム。
【請求項15】
前記コントローラは、前記プラズマチャンバからのフィードバックに基づいて、前記RFバーストターンオン時間、前記RFバーストターンオフ時間、前記バイアスターンオン時間、及び前記バイアスターンオフ時間のタイミングを制御する、請求項1に記載のプラズマシステム。
【請求項16】
前記バイアス発生器はバイアス補償回路を含む、請求項1に記載のプラズマシステム。
【請求項17】
前記RFプラズマ発生器は、フルブリッジ回路かハーフブリッジ回路と共振回路の何れかを含む、請求項1に記載のプラズマシステム。
【請求項18】
前記バイアス発生器はナノ秒パルサーを含む、請求項1に記載のプラズマシステム。
【請求項19】
前記バイアス発生器はRF発生器を含む、請求項1に記載のプラズマシステム。
【請求項20】
方法であって、
RFプラズマ発生器で、10MHz以上の周波数でプラズマチャンバを駆動するステップと、
第1の期間休止するステップと、
前記プラズマチャンバを、バイアス発生器で、1kHzを超えるパルス周波数で第1の電圧を有するパルスでパルシングするステップと、
第2の期間休止するステップであって、前記第1の期間は前記第2の期間より短いステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
第3の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む方法。
【請求項21】
更に、第4の期間休止するステップと、
前記RFプラズマ発生器を駆動するステップと、
前記第1の期間休止するステップと、
第2の電圧を有するパルスで前記バイアス発生器をパルシングするステップと、
前記第2の期間休止するステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
前記第3の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む請求項20に記載の方法。
【請求項22】
前記第2の電圧は前記第1の電圧よりも大きい、請求項21に記載の方法。
【請求項23】
更に、
第4の期間休止するステップと、
前記RFプラズマ発生器を駆動するステップと、
前記第1の期間とは異なる第5の期間休止するステップと、
前記バイアス発生器を第2の電圧を有するパルスでパルシングするステップと、
前記第1の期間とは異なる第6の期間休止するステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
前記第1の期間とは異なる第7の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む請求項20に記載の方法。
【請求項24】
前記第1の期間は約10ms未満であり、
前記第2の期間は約10ms未満であり、
前記第3の期間は約10ms未満である、
請求項20に記載の方法。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0267
【補正方法】変更
【補正の内容】
【0267】
本主題を、その特定の実施形態に関して詳細に説明してきたが、当業者ならば、前述の理解を得た上で、そのような実施形態に対する変更、変形、及び同等物を容易に創造できることが理解されるであろう。したがって、本開示は、限定ではなく例示を目的として提示されており、当業者に容易に明らかになるような変更、変形、及び/又は追加を本主題に含めることを排除するものではないことを理解すべきである。
〔付記1〕
プラズマシステムであって、
プラズマチャンバと、
前記プラズマチャンバと電気的に結合されたRFプラズマ発生器であって、複数のRFバーストを生成し、前記複数のRFバースト各々はRF波形を含み、前記複数のRFバースト各々は、RFバーストターンオン時間とRFバーストターンオフ時間を有する、RFプラズマ発生器と、
前記プラズマチャンバと電気的に結合されたバイアス発生器であって、複数のバイアスバーストを生成し、前記複数のバイアスバースト各々はバイアスパルスを含み、前記複数のバイアスバースト各々は、バイアスバーストターンオン時間とバイアスバーストターンオフ時間を有する、バイアス発生器と、
前記RFプラズマ発生器及び前記バイアス発生器と通信し、前記RFバーストターンオン時間、前記RFバーストターンオフ時間、前記バイアスターンオン時間、及び前記バイアスターンオフ時間のタイミングを制御するコントローラと、を備えたプラズマシステム。
〔付記2〕
前記複数のRFバーストは前記プラズマチャンバ内にプラズマを生成及び/又は駆動し、前記複数のバイアスバーストは前記プラズマ内のイオンを加速する、付記1に記載のプラズマシステム。
〔付記3〕
前記プラズマチャンバ内に配置された電極を更に備え、前記電極は前記RFプラズマ発生器と結合している、付記1に記載のプラズマシステム。
〔付記4〕
前記プラズマチャンバ内に配置された誘導アンテナを更に備え、前記アンテナは前記RFプラズマ発生器と結合している、付記1に記載のプラズマシステム。
〔付記5〕
前記プラズマチャンバ内に配置された電極を更に備え、前記電極は前記バイアス発生器と結合している、付記1に記載のプラズマシステム。
〔付記6〕
前記RFバーストターンオン時間は、前記バイアスバーストターンオン時間よりも約10ms未満先行する、付記1に記載のプラズマシステム。
〔付記7〕
前記バイアスバーストターンオン時間は、前記RFバーストターンオン時間後にRF波形の約10サイクルで発生する、付記1に記載のプラズマシステム。
〔付記8〕
前記バイアスバーストターンオン時間は、前記RFバーストターンオフ時間に約10ms未満先行する、付記1に記載のプラズマシステム。
〔付記9〕
前記RFバーストターンオン時間と前記RFバーストターンオフ時間との間の差は約1ms未満である、付記1に記載のプラズマシステム。
〔付記10〕
前記バイアスバーストターンオン時間と前記バイアスバーストターンオフ時間の差は約10ms未満である、付記1に記載のプラズマシステム。
〔付記11〕
前記バイアスパルスは1kHzより大きいパルス繰り返し周波数を有する、付記1に記載のプラズマシステム。
〔付記12〕
前記バイアスパルスは1キロボルトを超える電圧を有する、付記1に記載のプラズマシステム。
〔付記13〕
前記RF波形は10kHz~100MHzの周波数を有する、付記1に記載のプラズマシステム。
〔付記14〕
前記RF波形は13.56MHzの周波数を有する、付記1に記載のプラズマシステム。
〔付記15〕
前記コントローラは、前記プラズマチャンバからのフィードバックに基づいて、前記RFバーストターンオン時間、前記RFバーストターンオフ時間、前記バイアスターンオン時間、及び前記バイアスターンオフ時間のタイミングを制御する、付記1に記載のプラズマシステム。
〔付記16〕
前記バイアス発生器はバイアス補償回路を含む、付記1に記載のプラズマシステム。
〔付記17〕
前記バイアス発生器はエネルギー回収回路を含む、付記1に記載のプラズマシステム。
〔付記18〕
前記RFプラズマ発生器は、フルブリッジ回路かハーフブリッジ回路と共振回路の何れかを含む、付記1に記載のプラズマシステム。
〔付記19〕
前記バイアス発生器はナノ秒パルサーを含む、付記1に記載のプラズマシステム。
〔付記20〕
前記バイアス発生器はRF発生器を含む、付記1に記載のプラズマシステム。
〔付記21〕
方法であって、
RFプラズマ発生器で、10MHz以上の周波数でプラズマチャンバを駆動するステップと、
第1の期間休止するステップと、
前記プラズマチャンバを、バイアス発生器で、1kHzを超えるパルス周波数で第1の電圧を有するパルスでパルシングするステップと、
第2の期間休止するステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
第3の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む方法。
〔付記22〕
更に、第4の期間休止するステップと、
前記RFプラズマ発生器を駆動するステップと、
前記第1の期間休止するステップと、
第2の電圧を有するパルスで前記バイアス発生器をパルシングするステップと、
前記第2の期間休止するステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
前記第3の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む付記21に記載の方法。
〔付記23〕
前記第2の電圧は前記第1の電圧よりも大きい、付記22に記載の方法。
〔付記24〕
更に、
第4の期間休止するステップと、
前記RFプラズマ発生器を駆動するステップと、
前記第1の期間とは異なる第5の期間休止するステップと、
前記バイアス発生器を第2の電圧を有するパルスでパルシングするステップと、
前記第1の期間とは異なる第6の期間休止するステップと、
前記RFプラズマ発生器の駆動を停止するステップと、
前記第1の期間とは異なる第7の期間休止するステップと、
前記バイアス発生器のパルシングを停止するステップと、
を含む付記21に記載の方法。
〔付記25〕
前記第1の期間は約10ms未満であり、
前記第2の期間は約10ms未満であり、
前記第3の期間は約10ms未満である、
付記21に記載の方法。
〔付記26〕
前記第1の期間は前記第2の期間よりも短い、付記21に記載の方法。
【外国語明細書】