IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヘモネティクス・コーポレーションの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023093736
(43)【公開日】2023-07-04
(54)【発明の名称】流体流れの圧力を測定するための装置
(51)【国際特許分類】
   A61M 1/36 20060101AFI20230627BHJP
【FI】
A61M1/36 105
【審査請求】有
【請求項の数】22
【出願形態】OL
(21)【出願番号】P 2023075512
(22)【出願日】2023-05-01
(62)【分割の表示】P 2021100555の分割
【原出願日】2016-07-20
(31)【優先権主張番号】62/194,436
(32)【優先日】2015-07-20
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】594202615
【氏名又は名称】ヘモネティクス・コーポレーション
【氏名又は名称原語表記】Haemonetics Corporation
【住所又は居所原語表記】125 Summer Street Boston MA 02110 UNITED STATES OF AMERICA
(74)【代理人】
【識別番号】100087642
【弁理士】
【氏名又は名称】古谷 聡
(74)【代理人】
【識別番号】100082946
【弁理士】
【氏名又は名称】大西 昭広
(74)【代理人】
【識別番号】100195693
【弁理士】
【氏名又は名称】細井 玲
(72)【発明者】
【氏名】レイ,ミン
(72)【発明者】
【氏名】マーフィー,マシュー,ジェイ
(57)【要約】      (修正有)
【課題】負圧を正確かつ再現可能に測定することができる、流体管路内の圧力を測定するための装置を提供する。
【解決手段】装置の構造を画定するハウジングは、ハウジングを貫通して、流体がハウジングを通過できるようにする流体管路160を備える。装置はまた、流体管路と流体連絡し、かつ第1の容積室開口を有する第1の容積室と、第1の容積室開口よりも小さい第2の容積室開口を有する第2の容積室とを備える。ダイヤフラム190が、第1の容積室を第2の容積室から分離し、かつ第2の容積室を流体管路から流体的に分離する。ダイヤフラムは、流体管路内の圧力に基づいて変形する。装置はまた、圧力センサーに接続可能なインターフェースを備え、第2の容積室は、インターフェースと流体連絡する。
【選択図】図2
【特許請求の範囲】
【請求項1】
流体管路内の圧力を測定するための装置であって、
前記装置の構造を画定するハウジングであって、該ハウジングは該ハウジングを少なくとも部分的に通って延びる流体管路を有し、該流体管路は、流体が該ハウジングを通ることができるように構成される、ハウジングと、
前記流体管路と流体連絡し、及び第1の容積室開口を有する第1の容積室と、
第2の容積室開口を有する第2の容積室であって、該第2の容積室開口は前記第1の容積室開口よりも小さい、第2の容積室と、
前記第2の容積室から前記第1の容積室を分離するダイヤフラムであって、該ダイヤフラムは第1の容積室開口及び第2の容積室開口を横切って延び、前記第2の容積室を前記流体管路から流体的に分離し、該流体管路内の圧力に基づいて変形するように構成されたダイヤフラムと、
圧力センサーに接続可能なインターフェースであって、前記第2の容積室は該インターフェースと流体連絡する、インターフェース
を備える装置。
【請求項2】
前記ハウジングは、第1の部分及び第2の部分を備え、前記第1の容積室は前記第1の部分内に配置され、前記第2の容積室は前記第2の部分内に配置され、前記ダイヤフラムは、前記第1の部分と前記第2の部分の間に配置される、請求項1の装置。
【請求項3】
前記第2の部分は空気マニホールドである、請求項2の装置。
【請求項4】
前記第1の部分は使い捨て可能であり、及び、該第1の部分は、前記第2の部分から分離されるように構成される、請求項2の装置。
【請求項5】
前記第1の部分と前記第2の部分の間を延びるガスケットをさらに備え、該ガスケットは、前記第1の部分と前記第2の部分が結合されているときに空気の漏れを防ぐように構成される、請求項2の装置。
【請求項6】
前記ガスケットは、該ガスケットを貫通する開口を有し、該開口は、前記第2の容積室の少なくとも一部を画定する、請求項5の装置。
【請求項7】
前記流体管路は、前記ハウジングの前記第1の部分を少なくとも部分的に通って延びる、請求項2の装置。
【請求項8】
前記ダイヤフラムは、前記第1の部分に超音波溶接され、これによって、前記第1の容積室を密閉する、請求項2の装置。
【請求項9】
前記ハウジングは、通気路を介して前記第2の容積室と流体連絡する通気口を有し、該通気口及び該通気路は、前記ダイヤフラムが変形したときに前記第2の容積室が排気できるように構成される、請求項1の装置。
【請求項10】
前記通気口に配置された通気弁をさらに備える、請求項9の装置。
【請求項11】
前記ダイヤフラムは、前記流体管路内の圧力が正の場合には、前記第2の容積室内へと変形するように構成される、請求項1の装置。
【請求項12】
前記ダイヤフラムは、前記流体管路内の圧力が負の場合には、前記第1の容積室内へと変形するように構成される、請求項1の装置。
【請求項13】
前記第2の容積室の壁は湾曲した表面を有しており、前記ダイヤフラムは、前記流体管路内の最大圧力下で前記湾曲した表面に合致するように変形すべく構成される、請求項1の装置。
【請求項14】
前記ハウジングは、前記第2の容積室と前記インターフェースの間に空気路を備える、請求項1の装置。
【請求項15】
前記第2の容積室は、該第2の容積室の壁内に配置されたくぼみを有し、該くぼみは、前記ダイヤフラムが前記空気路を塞ぐのを防止するように構成される、請求項14の装置。
【請求項16】
前記ハウジングは、前記第1の容積室と前記流体管路の間に壁を有し、該壁は、前記第1の容積室と前記流体管路を流体的に接続するために、該壁を貫通する1以上の穴を有することからなる、請求項1の装置。
【請求項17】
前記インターフェースに接続可能な圧力センサーであって、前記流体管路内の圧力を測定するように構成された圧力センサーをさらに備える、請求項1の装置。
【請求項18】
前記第1の容積室は第1の体積を有し、前記第2の容積室は第2の体積を有し、前記第2の体積は前記第1の体積よりも小さい、請求項1の装置。
【請求項19】
前記第1の容積室開口の大きさに対する前記第2の容積室開口の大きさの比は、4:1と9:1の間である、請求項1の装置。
【請求項20】
前記第1の容積室開口の大きさに対する前記第2の容積室開口の大きさの比は、1.4:1と100:1の間である、請求項1の装置。
【請求項21】
前記第1の容積室は液体室であり、前記第1の体積は、前記流体管路を通る流体の少なくとも一部で満たされるように構成される、請求項1の装置。
【請求項22】
前記第2の容積室は空気室である、請求項1の装置。

【発明の詳細な説明】
【技術分野】
【0001】
本願は、2015年7月20日に出願されて、代理人整理番号1611/C45が割り当てられ、発明者としてミン・レイ及びマーフィー・ジェイ・マシューを指定する、「流体流れの圧力を測定するためのシステム及び方法」と題する米国仮特許出願第62/194,436に基づいて優先権を主張するものであり、参照により、その開示内容全体が本明細書に組み込まれるものとする。
【0002】
本発明は、血液処理システムなどの流体流れシステムに関し、より具体的には、流体流れシステム内の圧力モニタリング(圧力監視)に関する。
【背景技術】
【0003】
現在の多くの血液システム(たとえばアフェレーシスシステム)は、複数の流体を処理し、かつ複雑な流体管路の配置を有する。血液処理中は、流体管路(流体ライン)内の圧力は、患者の安全、システムの性能及び効率にとって極めて重要である。そのために、血液処理システムは、典型的には、流体ライン(特に採血および返血ライン)の一部もしくは全体内の圧力を監視する。例えば、アフェレーシス装置では、全血の採血および血液成分の返血の間に、ドナーの圧力がある閾値を超えたり該閾値より下になったりすることがないようにドナーの圧力を監視することができる。圧力の監視のためのいくつかの解決策が実施されてきたが、それらには重大な欠点がある。
【0004】
いくつかの従来技術のシステムは、流体ラインに接続される監視(モニタリング)ラインを有している。該監視ラインは、0.2マイクロメートル(ミクロン)のフィルタを含むことができ、及び、該監視ラインを、ルアーテーパー継ぎ手によって圧力変換器に手動で接続することができる。流体ライン内の圧力が上昇するにつれて、該流体は、該監視ラインに閉じ込められている空気柱を、流れている流体と該変換器の間で圧縮する。次に、該圧力変換器は圧力の変化を検出する。該システムは、同様のやり方で圧力の低下を検出することができる。このアプローチは、効果的であることが立証されているが、いくつかの欠点を有する。第1に、それらの構成は、オペレータが手動でそれぞれの変換器に接続しなければならいので、接続不良を起こしがちである。もし接続が気密性でない場合には、流体は空気を該柱から追い出して、該変換器の保護装置を濡らしうる。かかる事態が生じると、センサー/変換器はもはや機能しなくなる。さらに、大きな負圧が測定されているときには、圧力管内の空気は、血液ライン内に入って、該血液内に気泡を形成しうるが、そうなった場合には、該気泡が除去されないと、患者またはドナーにとって非常に危険である。逆に、大きな正圧が生じているときには、血液が該フィルタに到達して、圧力測定システムを故障させる場合がある。さらに、繰り返される圧力変動によって、該圧力管に余分な気泡が導入される場合があり、これは、圧力の測定精度に悪影響を与える。
【0005】
他の従来技術のシステムは異なるアプローチをとっている。それらのシステムは、流体管路内に可撓性の(薄)膜(たとえばシリコーン)を有する。該膜は、一方の側で流体と接触し、他方の側で変換器と接触する。流体ライン内の圧力の上昇は、該可撓性の膜を介して変換器に対する圧力を生成する。
【0006】
しかしながら、これらのシステムでは、負圧を正確かつ再現可能に測定することは難しい。
【発明の概要】
【0007】
本発明の第1の実施形態では、流体管路(流路)内の圧力を測定するための装置が提供される。該装置は、ハウジング(筐体)、第1の容積室、及び第2の容積室を備えている。該ハウジングは、該装置の構造ないし構成を画定し、並びに、該ハウジングを少なくとも部分的に通って延び(すなわち、該ハウジングの少なくとも一部分を通り抜け)、及び流体が該ハウジングを通ることができるようにする流体管路を有することができる。該第1の容積室は、該流体管路と流体連絡する(すなわち、該第1の容積室と該流体管路の間で流体が流れるようにする)ことができ、かつ、第1の容積室開口を有することができる。該第2の容積室は、該第1の容積室開口よりも小さい第2の容積室開口を有することができる。該装置はまた、該第1の容積室を該第2の容積室から分離し、かつ、該第2の容積室を該流体管路から流体的に分離する(すなわち、該第2の容積室と該流体管路との間を流体が流れないようにする)ダイヤフラムを有することができる。該ダイヤフラムは、該流体管路内の圧力に基づいて変形することができる。該第2の容積室は、圧力センサーに接続可能なインターフェースと流体連絡することができる。
【0008】
いくつかの実施形態では、該ハウジングは、第1の部分及び第2の部分を備えることができる。該第1の容積室を該第1の部分内に配置することができ、該第2の容積室を該第2の部分内に配置することができ、該ダイヤフラムを該第1の部分と該第2の部分の間に配置することができる。該第2の部分を空気マニホールドとすることができ、及び/又は、該第1の部分を、使い捨て可能なものとすることができ、かつ該第2の部分から分離することができる。さらに、該第1の部分と該第2の部分の間にガスケットを延在させて、該第1の部分と該第2の部分が結合しているときに空気の漏れを防止することができる。該ガスケットは、該第2の容積室の少なくとも一部を画定する開口を有することができる。該ダイヤフラムを該第1の部分に超音波溶接して、該第1の容積室をシール(密閉)することができる。該流体管路は、該ハウジングの該第1の部分を少なくとも部分的に通って延びる(すなわち、該ハウジングの少なくとも一部分を通り抜ける)ことができる。該ハウジングはまた、通気路を介して該第2の容積室と流体連絡する通気口を有することができる。該通気口及び通気路は、該ダイヤフラムが変形すると、該第2の容積室が排気することができるようにすることができる。該装置はまた、該通気口に配置された通気弁を備えることができる。
【0009】
該ダイヤフラムは、該流体管路内の圧力が正の場合には該第2の容積室内へと変形することができ、及び/又は該流体管路内の圧力が負の場合には該第1の容積室内へと変形することができる。いくつかの実施形態では、該第2の容積室の壁は曲面を有することができ(すなわち、該壁の表面を湾曲したものとすることができ)、及び、該ダイヤフラムは、該流体管路内の最大圧力下で(すなわち該最大圧力において)該曲面へと変形する(すなわち、該曲面(もしくは該曲面の形状)にぴったりと合致ないし適合するように変形する)ことができる。該ハウジングは、該第2の容積室と該インターフェースの間に空気路を有することができる。さらにまたは代替的に、該第2の容積室は、該第2の容積室の壁内に配置されたくぼみを有することができる。該くぼみは、該ダイヤフラムが該空気路をふさぐ(閉塞する)のを防ぐことができる。該ハウジングは、該第1の容積室と該流体管路の間に壁を有することができ、及び、該壁は、該壁を貫通して、該第1の容積室と該流体管路を流体的に接続する(すなわち、該第1の容積室と該流体管路の間で流体が移動できるようにする)1以上の穴を有することができる。
【0010】
該装置は、該インターフェースに接続でき、かつ該流体管路内の圧力を測定することができる圧力センサーを備えることができる。該第1の容積室は第1の体積(容積)を有することができ、該第2の容積室は第2の体積(容積)を有することができる。該第2の体積を該第1の体積よりも小さいものとすることができる。該第1の容積室開口の大きさに対する該第2の容積室開口の大きさの比を4:1と9:1の間とすることができる(4:1と9:1を含んでもよい)。該第1の容積室を液体室とすることができ、該第1の体積を、該流体管路を通る流体の少なくとも一部で満たすことができる。該第2の容積室を空気室とすることができる。
【0011】
さらなる実施形態によれば、流体管路内の圧力を監視するための方法は、圧力監視装置を流体流れシステム(たとえば血液処理システム)に流体的に接続すること、及び、該圧力監視装置に(たとえば該装置内の流体管路を介して)流体を流すことを含む。該圧力監視装置は、ハウジング、第1の容積室、及び第2の容積室を備えることができる。該ハウジングは、該装置の構造ないし構成を画定し、及び、該ハウジングを少なくとも部分的に通って延びる(すなわち、該ハウジングの少なくとも一部分を通り抜ける)流体管路を有している。該流体管路は、流体が該ハウジングを通る(ないし通り抜ける)ことを可能にする。該第1の容積室は、該流体管路と流体連絡し、かつ、第1の容積室開口を有している。該第2の容積室は、該第1の容積室開口よりも小さい第2の容積室開口を有している。該装置はまた、ダイヤフラム及びインターフェースを備えることができる。該ダイヤフラムは、該第1の容積室を該第2の容積室から分離し、かつ、該第2の容積室を該流体管路から流体的に分離する。該インターフェースは圧力センサーに接続することができ、該第2の容積室は該インターフェースと流体連絡することができる。
【0012】
流体が、該流体管路を介して該圧力監視装置内を流れると、該流体管路内に圧力が生成される。該流体管路内の負圧は、該ダイヤフラムを該第1の容積室内へと変形させ、該流体管路内の正圧は、該ダイヤフラムを該第2の容積室内へと変形させ、かつ、該第2の体積を圧縮する。その後、該方法は、圧力監視装置を用いて該流体管路内の圧力を測定することができる。たとえば、該流体管路内の圧力は、該第2の体積の圧縮または膨張(拡張)の量の関数でありうる。
【0013】
該ハウジングは、第1の部分及び第2の部分(たとえば空気マニホールド)を備えることができ、該第1の容積室は該第1の部分に配置され、該第2の容積室は該第2の部分に配置される。該ダイヤフラムを該第1の部分と該第2の部分の間に配置することができる。該第1の部分を使い捨て可能なものとすることができ、及び、該第2の部分から分離することができる。該装置はまた、該第1の部分と該第2の部分の間を延びて、該第1の部分と該第2の部分が結合しているときに空気の漏れを防止するガスケットを有することができる。該ガスケットは、該ガスケットを貫通する開口であって、該第2の容積室の少なくとも一部を画定する開口を有することができる。該流体管路は、該ハウジングの該第1の部分を通って延びる(ないし通り抜ける)ことができ、該ダイヤフラムを該第1の部分に超音波溶接することができる。
【0014】
いくつかの実施形態では、該ハウジングは、通気路を介して該第2の容積室と流体連絡する通気口を備えることができる。該通気口及び通気路は、該ダイヤフラムが変形すると(もしくは変形したときに)、該第2の容積室が排気することができるようにすることができる。該装置は、該通気口に配置された通気弁を有することができる。該第2の容積室の壁は曲面を有することができ(すなわち、該壁の表面を湾曲したものとすることができ)、及び、該ダイヤフラムは、該流体管路内の最大圧力下で該曲面へと変形することができる(すなわち該曲面(もしくは該曲面の形状)にぴったりと合致ないし適合するように変形することができる)。該ハウジングは、該第2の容積室と該インターフェースの間に空気路を有することができる。該第2の容積室は、該ダイヤフラムが該空気路をふさぐのを防ぐために、該第2の容積室の壁内に配置されたくぼみを有することができる。
【0015】
さらなる実施形態では、該ハウジングは、該第1の容積室と該流体管路の間に壁を有することができる。該壁は、該第1の容積室と該流体管路を流体的に接続するために該壁を貫通する1以上の穴を有することができる。該壁は、該流体管路からの液体が該第1の容積室に入るのを防ぐことができる。該第1の容積室は第1の体積(容積)を有することができ、該第2の容積室は、該第1の体積よりも小さい第2の体積(容積)を有することができる。該第1の容積室を液体室とすることができ、該第1の体積を、該流体管路を通る流体で満たすことができる。該第2の容積室を空気室とすることができ、及び/又は、該方法は、該圧力監視装置を該インターフェースに接続することを含むことができる。
【0016】
本発明のさらなる実施形態では、流体管路内の圧力を測定するための装置が提供される。該装置は、ハウジング、第1の容積室、及び第2の容積室を備えることができる。該ハウジングは、該装置の構造ないし構成を画定することができ、及び、該ハウジングを少なくとも部分的に通って延びる(すなわち、該ハウジングの少なくとも一部分を通り抜ける)流体管路を有することができる。該流体管路を、流体が該ハウジングを通る(ないし通り抜ける)ことを可能にするように構成することができる。該第1の容積室は、該流体管路と流体連絡することができ、及び、第1の体積を有することができる。該第2の容積室は、該第1の体積よりも小さい第2の体積を有することができる。該装置はまた、圧力センサーに接続可能なダイヤフラム及びインターフェースを備えることができる。該ダイヤフラムは、該第1の容積室を該第2の容積室から分離することができ、かつ、該第2の容積室を該流体管路から流体的に分離することができる。該ダイヤフラムを、該流体管路内の圧力に基づいて変形するように構成することもできる。該第2の容積室は該インターフェースと流体連絡することができる。
【0017】
いくつかの実施形態では、該ハウジングは、第1の部分及び第2の部分を備えることができる。かかる実施例では、該第1の容積室を該第1の部分内に配置することができ、該第2の容積室を該第2の部分に配置することができ、該ダイヤフラムを該第1の部分と該第2の部分の間に配置することができる。該第2の部分を空気マニホールドとすることができ、該第1の部分を流体ハウジングとすることができる。さらにまたは代替的に、該第1の部分を使い捨て可能なものとすることができ、かつ該第2の部分から分離されるように構成することができる。該装置はまた、該第1の部分と該第2の部分の間を延びて、該第1の部分と該第2の部分が結合しているときに空気の漏れを防ぐように構成されたガスケットを備えることができる。該ガスケットは、該第2の容積室の少なくとも一部分を画定する開口を有することができる。該流体管路は、該ハウジングの該第1の部分を少なくとも部分的に通って延びる(すなわち該第1の部分の少なくとも一部を通り抜ける)ことができ、及び、該ダイヤフラムを該第1の部分に超音波溶接して、該第1の容積室をシール(密閉)することができる。
【0018】
該ハウジングはまた、通気路を介して該第2の容積室と流体連絡する通気口を有することができる。該通気口及び通気路を、該ダイヤフラムが変形すると(ないし変形したときに)、該第2の容積室が排気することができるように構成することができる。該装置は、該通気口に配置された通気弁を備えることができる。
【0019】
該ダイヤフラムは、該流体管路内の圧力が正の場合には該第2の容積室内へと変形することができ、及び/又は該流体管路内の圧力が負の場合には該第1の容積室内へと変形することができる。該第2の容積室の壁は曲面を有することができ(すなわち、該壁の表面を湾曲したものとすることができ)、及び、該ダイヤフラムは、該流体管路内の最大圧力下で該曲面へと変形することができる(すなわち該曲面(もしくは該曲面の形状)にぴったりと合致ないし適合するように変形することができる)。さらにまたは代替的に、該ハウジング(たとえば該第1の部分)は、該第1の容積室と該流体管路の間に壁を有することができる。該壁は、該第1の容積室と該流体管路を流体的に接続するために、該壁を貫通する1以上の穴を有することができる。該壁は、液体が該第1の容積室に入るのを防ぐことができる。
【0020】
いくつかの実施形態では、該ハウジングは、該第2の容積室と該インターフェースの間に空気路を有することができる。該第2の容積室はまた、該第2の容積室の壁内に配置されたくぼみを有することができる。該くぼみは、該ダイヤフラムが該空気路をふさぐのを防ぐことができる。該装置はまた、該インターフェースに接続でき、かつ該流体管路内の圧力を測定するように構成された圧力センサーを備えることができる。該第1の容積室は第1の容積室開口を有することができ、該第2の容積室は第2の容積室開口を有することができる。該第1の容積室開口の大きさに対する該第2の容積室開口の大きさの比を4:1と9:1の間(4:1と9:1を含んでもよい)とすることができる。該流体室の深さを、該第1の容積室内への最大ダイヤフラム変形量よりも大きいものとすることができる。該第1の容積室を液体室とすることができ、該第1の容積室を、該流体管路を通る流体の少なくとも一部で満たすことができる。該第2の容積室を空気室とすることができる。
【0021】
さらなる実施形態によれば、流体管路内の圧力を監視するための方法は、圧力監視装置を流体流れシステムに流体的に接続することを含むことができる。該圧力監視装置は、ハウジング、第1及び第2の容積室、ダイヤフラム、及びインターフェースを備えることができる。該ハウジングは、該装置の構造ないし構成を画定することができ、及び、該ハウジングを少なくとも部分的に通って延びて(すなわち、該ハウジングの少なくとも一部分を通り抜けて)、流体が該ハウジングを通る(ないし通り抜ける)ことができるようにする流体管路を有することができる。該第1の容積室は、該流体管路と流体連絡することができ、かつ、第1の体積を有することができる。該第2の容積室は、該第1の体積よりも小さい第2の体積を有することができる。該ダイヤフラムは、該第1の容積室を該第2の容積室から分離することができ、かつ、該第2の容積室を該流体管路から流体的に分離することができる。該インターフェースは、圧力センサーに接続することができ、かつ、該第2の容積室と流体連絡することができる。
【0022】
該方法はまた、(1)該流体管路を介して該圧力監視装置に流体を流して該流体管路内に圧力を生じさせること、及び(2)圧力監視装置を使用して該流体管路内の圧力を測定することを含むことができる。たとえば、該流体管路内の負圧は、該ダイヤフラムを該第1の容積室内へと変形させることができ、該流体管路内の正圧は、該ダイヤフラムを該第2の容積室内へと変形させて該第2の体積を圧縮することができる。該流体管路内の圧力を、該第2の体積の圧縮及び/又は膨張(拡張)の量に相互に関連付けることができる。該方法はまた、該圧力監視装置を該インターフェースに接続することを含むことができる。該流体流れシステムを血液処理装置とすることができる。
【図面の簡単な説明】
【0023】
本発明の上記特徴は、添付の図面と共に以下の詳細な説明を参照することによってより容易に理解されよう。
図1】本発明の実施形態による、流体管路内の圧力を測定するための圧力測定装置を概略的に示す。
図2】本発明のいくつかの実施形態による、図1に示されている圧力測定装置の断面図を概略的に示す。
図3】本発明のいくつかの実施形態による、図1に示されている圧力測定装置の空気マニホールド部分の底面図を概略的に示す。
図4】本発明のいくつかの実施形態による、図1に示されている圧力測定装置の流体流れ部分を概略的に示す。
図5】本発明のさらなる実施形態による、代替の圧力測定装置の断面図を概略的に示す。
図6】本発明のいくつかの実施形態による、図5に示されている代替の圧力測定装置の空気マニホールド部分の底面図を概略的に示す。
図7A】本発明のさらなる実施形態による、図5に示されている代替の圧力測定装置で使用するためのガスケットを概略的に示す。
図7B】本発明のさらなる実施形態による、代替のガスケットを有する圧力測定装置の断面図を概略的に示す。
図8】本発明のさらなる実施形態による、さらなる代替の圧力測定装置の断面図を概略的に示す。
図9】本発明のいくつかの実施形態による、図8に示されているさらなる代替の圧力測定装置の流体流れ部分を概略的に示す。
図10】本発明の種々の実施形態による、流体管路内の圧力を測定するためのさらなる代替の圧力測定装置を概略的に示す。
図11A】本発明のいくつかの実施形態による、図10に示されている圧力測定装置の流体流れ部分の上面図を概略的に示す。
図11B】本発明のいくつかの実施形態による、図10に示されている圧力測定装置の流体流れ部分の底面図を概略的に示す。
図11C】本発明のいくつかの実施形態による、固定されたダイヤフラムを有する、図10に示されている圧力測定装置の流体流れ部分の上面図を概略的に示す。
図12】本発明の種々の実施形態による、圧力測定装置のさらなる代替の実施形態を概略的に示す。
図13】本発明の種々の実施形態による例示的な装置の圧力応答を示す。
図14】本発明の種々の実施形態による例示的な装置の圧力応答を示す。
図15】本発明のいくつかの実施形態による、単一の例示的な装置の圧力応答の再現性を示す。
図16】本発明のいくつかの実施形態による、単一の例示的な装置の圧力応答の再現性を示す。
図17】本発明の種々の実施形態による、ポンプの出口における圧力測定値を示す。
図18】本発明の種々の実施形態による、ポンプの入口における圧力測定値を示す。
図19A】本発明の種々の実施形態による、使用中の例示的な圧力監視装置の断面を概略的に示す。
図19B】本発明の種々の実施形態による、使用中の例示的な圧力監視装置の断面を概略的に示す。
図19C】本発明の種々の実施形態による、使用中の例示的な圧力監視装置の断面を概略的に示す。
【発明を実施するための形態】
【0024】
図1は、本発明の種々の実施形態にしたがう圧力測定装置100を概略的に示す。装置100は、装置100の構造ないし構成を画定するハウジング(筐体)110を備えている。ハウジング110を単一の部品からなる構造(たとえば一体成形体)とすることも、複数の部品からなる構造とすることもできる。たとえば、ハウジング110は、第1/下部ハウジング120と第2/上部ハウジング130を有することができる。該ハウジングの構成要素(コンポーネント)を、クランピング(締め付け)、接着剤、溶剤結合、熱接合、スナップフィット、超音波溶接、およびレーザー溶接を含むがそれらに限定されない様々な方法で組み立てることができる。代替的には、ユーザーが必要に応じてハウジング110の一部を接続し及び分離できるようにするスナップ/クランプ機構によって、下部ハウジング120と上部ハウジング130を接続する(及び、詳細に後述するように、その後分離する)ことができる。
【0025】
流体が装置100を流れるのを容易にするために、図2に示されているように、装置100(たとえば、下記では流体ハウジングとも呼ばれる下部ハウジング120)は、入口(入口ポートともいう)140、出口(出口ポートともいう)150、及び入口140と出口150の間を延びる流体管路(または流路。以下同じ)160を備えることができる。流体(たとえば血液または血液成分)は、流体流れ/処理装置(たとえば血液処理装置)に接続されると、入口140を介して圧力測定装置100に入り、流体管路160を通って流れて、出口150を介して該装置100から出ることができる。本明細書における説明の大部分では、ポート140を入口と呼び、ポート150を出口と呼んでいるが、ポート140、150を、それぞれ、出口、入口として使用することもできることに留意されたい。換言すれば、流体はポート150を介して装置100に入り、流体管路160を流れて、ポート140を介して装置100から出ることができる。
【0026】
上記したように、装置100は、流体(たとえば血液または血液成分)が装置100内を通るときに、流体管路160内の圧力を測定することができる。そのために、流体ハウジング120は、装置100内を流れる流体が流体室170に入ることができるように流体管路160と流体連絡する容積室(たとえば流体室170)を備えることができる。同様に、上部ハウジング130(たとえば、より詳細に後述する空気マニホールド/ハウジング)もまた、容積室(たとえば空気室180)を備えることができる。流体室170を空気室180から分離し、及び、空気室180を流体管路160から流体的に分離するために、装置100は、ハウジング120と130の間を延びるダイヤフラム190を有している。いくつかの実施形態では、ダイヤフラム190を、流体ハウジング120に固定して(ないし取り付けて)該ハウジング120の一部とすることができ、及び、ダイヤフラム190は、より詳細に後述するように、流体管路160内の圧力の変化に応じて、(たとえば、該圧力が正であるか負であるかに依存して流体室170または空気室180内へと)変形することができる。ダイヤフラム190を、装置100及び流体管路160内を送られる流体に適合するPVCフィルムまたは他のプラスチック材料とすることができる。
【0027】
図2に最も良く示されているように、上部ハウジング130は、圧力センサー/変換器200を接続することができるインターフェース220、及び、空気室180からインターフェース220まで延びる空気通路182を備えることができる。より詳細に後述するように、空気通路182は、装置100/流体管路160内の圧力変化が圧力センサー/変換器200に伝わることを可能にする。ダイヤフラム190が(たとえば最大圧力状態下で)変形したときに、空気通路182がダイヤフラム190によって遮られないようにするために、上部ハウジング130は、空気通路182への入口にくぼみ(凹部)184を備えることができる。さらに、空気室180が、上昇した圧力の存在下で排気することができるように、及び/又は、低下した圧力の存在下で空気を吸い込むことができるように、上部ハウジング130はまた、通気路212及び通気口214を備えることができる。通気口214を介する通気路212への流体の流入及び通気路212からの流体の流出を選択的に制御するために、装置100は、通気口214に接続された通気弁210を備えることができる。
【0028】
流体は、流体ハウジング120を通り、(たとえば、該流体が上部ハウジング130に入ることができず、かつ、流体室170が密閉されるように)ダイヤフラム190を介して上部ハウジング130から分離されているので、下部ハウジング120は本質的に、流体ハウジング(または、血液処理用途における血流ユニット)として機能することに留意されたい。逆に、流体は上部ハウジング130に入ることはないので、上部ハウジング130は本質的に、空気ハウジング/マニホールドとして機能する。さらに、上部ハウジング130は、装置100のより高価な構成要素のうちの多く(たとえば、圧力センサー200、通気弁210など)を含んでおり、かつ、流体は、上部ハウジング130の構成要素のうちのどれにも接触しないので、上部ハウジング130を再使用することができ、及び/又は、上部ハウジング130をより大きな装置/機械(たとえば、血液処理装置/システム)の一部とすることができ、一方で、流体ハウジング120を使い捨て可能なものとすることができる。代替的には、いくつかの用途及び実施形態(たとえば、流体が、腐食性であるか、または浸食性であるか、または危険であるか、または有害である用途)において、十分安価な圧力センサー/変換器が使用される場合には、装置100全体を使い捨て可能なものとすることができる。
【0029】
図2図4に示されているように、流体室170及び該室170の開口172(たとえば、約2188μLで30×15mmの楕円形もしくは32×15mmの楕円形もしくは30×22mmの楕円形)を、空気室180及び空気室180の開口186(たとえば、約191μLで直径が12mm)よりもかなり大きいものとすることができる。かくして、より大きな膜(または薄膜)/ダイヤフラム領域が、空気室180よりも流体/液体室170に向かって撓むことができる。流体室開口172の空気室開口186に対する(サイズ(たとえば直径または容積)の)比を1.4:1と100:1の間(1.4:1と100:1を含んでもよい)とすることができる。たとえば、流体室開口172の空気室開口186に対する(サイズの)比を2.5:1と25:1の間(2.5:1と25:1を含んでもよい)、または、4:1と9:1の間(4:1と9:1を含んでもよい)とすることができる。さらに、流体管路160及び流体室170を通る流れが滑らかで気泡が生じない限り、流体室170の開口172及び空気室180の開口186を任意の形状(たとえば、円形、楕円形、卵型、正方形、長方形など)とすることができる。さらに、流体室開口172の形状は、空気室開口186の形状と同じである必要はない(たとえば、図3及び図4に示されているように、空気室開口186を円形とすることができ、流体室開口172を楕円形とすることができる)。
【0030】
この不均等な変形可能な膜(または薄膜)領域を提供することによって、本発明の種々の実施形態は、非常に大きな正圧及び非常に大きな負圧(たとえば高真空)を正確に測定することができ、これによって、装置100を(サイズが)等しい室170/180及び開口172/186を有するシステムよりもよりロバストにすることができる。たとえば、流体室開口172が約25.4mmで空気室開口186が18mmである場合には、システム/装置100は、0.5%よりも小さいフルスケール(「FS」)誤差で700mmHgまでの正圧を測定することができ、1%よりも小さいFS誤差で-400mmHgまでの負圧を測定することができる。
【0031】
さらに、いくつかの実施形態は、(サイズが)等しくない室170/180及び開口172/186を使用することによって、いくつかの不完全な膜状態、温度変化、並びに、場合によっては多少の膜性質の変化、を許容することができる。たとえば、システム/装置100の種々の実施形態は、膜を横断する圧力差0.5mmHg並びに15℃の温度変化によって引き起こされる撓みと同等の初期の膜の撓みを、該装置の性能を犠牲にすることなく、かつ、フルスケール精度がわずかに低下するだけで(たとえば、700mmHgの正圧の場合は、FS誤差は1.5%まで上がり、-400mmHgの負圧の場合は、FS誤差は1.8%に増加する)許容することができる。これとは対照的に、(サイズが)等しい室170/180及び開口172/186(たとえば25.4mm)を使用する従来技術のシステムは、推定FS誤差2.75%で-240mmHgの負圧を測定することができるにすぎない。
【0032】
室170/180の各々は、それらのそれぞれの開口172/186と同様に、任意の形状(たとえば、長方形、円形、卵型、正方形など)を有することができることに留意されたい。さらにまたは代替的に、いくつかの実施形態では、空気室180(図2)の壁188を曲げる/湾曲させることができる。かくして、ダイヤフラム190が空気室180内へと変形すると、ダイヤフラム190は、(たとえば最大圧力下にあるときに)壁188の形状に合致することができる。しかしながら、いくつかの実施形態では、湾曲した表面(曲面)188の深さを、予測されるダイヤフラムの最大撓みよりもわずかに大きくすることができる。さらに、上述したように、くぼみ184は、ダイヤフラム190が最大圧力にさらされたとき、及び、ダイヤフラム190が空気室180内への最大撓みに達したときに、ダイヤフラム190が空気路182を塞ぐ(閉塞する)のを防ぐ。
【0033】
ユーザー/技師は、使用中、流体圧力監視装置100を流体流れシステム(たとえば血液処理システム)に接続することができる。たとえば、ユーザー/技師は、入口140を流体源(たとえば、全血バッグ、患者、抗凝血剤の供給源、血液成分バッグなど)に接続することができ、及び、出口150を、流体流れ/処理機器(たとえば、遠心分離機、ポンプ、血液浄化装置、または全血を分離するかもしくは別のやり方で血液を処理するために使用することができる他の機器などの血液処理機器)、または(血液成分をドナーに返す場合には)患者/ドナーに接続することができる。入口140と出口150が接続されると、ユーザーは、流体/液体を該装置に流すことを開始することができる(たとえば、ユーザーは、血液処理手順を開始することができる)。
【0034】
流体/液体が装置100を通っていくと、該流体/液体は流体室170に入り、流体管路160内の圧力によって、ダイヤフラム190が変形する。具体的には、流体管路160が正圧下にある場合には、該ダイヤフラムは、空気室180内へと変形して、流体管路160内の正圧を空気室180及び空気路182に伝え、(たとえば、空気室180内の空気を圧縮することによって)最終的に、該正圧を、インターフェース220に接続された圧力センサー/変換器200に伝えることになる。逆に、流体管路160が負圧(たとえば真空)下にあるときには、ダイヤフラム190は、流体室170内へと変形して、空気室180を膨張させ、これによって、該負圧を圧力センサー/変換器200に伝えることになる。
【0035】
いくつかの実施形態では、圧力センサー/変換器200が流体管路160内の圧力を測定すると、装置100は、その圧力情報を流体流れ/処理システム(たとえば血液処理装置)に伝送/送信/伝達することができる。流体流れ/処理システムがそのように装備されている(たとえば、マイクロプロセッサまたは他のコントローラを備えている)場合には、該血液処理システムは、圧力監視装置100によって測定された圧力に基づいて、流体管路160内の流体流れを増加させ、または減少させ、または維持することができる。
【0036】
上述の及び図2図4に示されている装置は、装置100の空気ハウジング130と流体ハウジング120の間に配置されたダイヤフラム190だけを有しているが、図5及び図6に示されているように、他の実施形態は、追加の構成要素を備えることができる。たとえば、いくつかの実施形態では、装置100は、空気ハウジング130と流体ハウジング120の間にガスケット230を備えることができる。ハウジング120と130が互いに固定されると、ガスケット230は、ハウジング120と130の間にシールを生成して(すなわち、ハウジング120と130との間を密閉して)、空気がハウジング120と130の間(たとえば、空気マニホールド130とダイヤフラム190の間)から、室170/180内へとまたは室170/180の外へと漏れるのを防ぐことができる。
【0037】
いくつかの実施形態では、ガスケット230は空気室180の少なくとも一部を形成することができることに留意されたい。たとえば、図5に最も良く示されているように、(たとえば、くぼみ184を有しているかまたは有していない)空気室180を(たとえば第1のハウジング130の本体部とは対照的に)ガスケット230内に直接形成することができる(図7A)。代替的には、他の実施形態では、空気室180を、依然として、第1のハウジング130内に形成することができ、ガスケット230は、空気室180と同様の大きさのスルーホール232を単に備えることができる。そのような実施形態では、ガスケット230内のスルーホール232は、空気室180の開口186として機能ないし作用して、ダイヤフラム190が空気室180内へと変形できるようにすることができる。
【0038】
代替的には、図7Bに示されているように、ガスケット230を、スルーホールがない固体薄膜とすることができる。そのような実施形態では、ガスケット230は、ダイヤフラム190と共に空気室180及び流体室170内へと変形する(たとえば、流体管路160内の圧力が増減するときにダイヤフラム190の一部として機能する)。そのような実施形態では、平坦な/固体のガスケット230を、空気室開口186を完全に覆って、ダイヤフラムの変形に対して何の抵抗も加えないかまたは最小限の抵抗を加える可撓性の薄いシリコーンゴムフィルム(シリコーンゴム膜)とすることができる。
【0039】
ガスケット230を、限定はしないがシリコーンゴムまたは取り外し可能なダブル粘着フィルム(removable double adhesive film)を含む任意の数の材料から作製することができる。たとえば、空気室180がガスケット230内に形成される実施形態では、ガスケット230を比較的厚いシリコーンゴムとすることができる。代替的には、空気室180がガスケット230内に形成されない場合には、ガスケット230を薄いシリコーンゴムフィルムとすることができる。選択される材料及び厚さには関係なく、ガスケット材料は、(ダイヤフラム190が空気室の壁にくっつくのを防ぐために)空気室180の側部にある空気室開口186において非粘着性の表面を有しなければならず、及び、(ダイヤフラム190が該ガスケットにくっつくのを防ぐために)該ガスケットが移動するダイヤフラム190に接触する、流体室170の側部にある流体室開口172において非粘着性の表面を有しなければならない。
【0040】
いくつかの用途では、流体室170を流体管路160から少なくとも部分的に分離するのが有益でありうる。そのために、図8及び図9に示されているように、流体ハウジング120のいくつかの実施形態は、流体室170を流体管路160から分離する壁132を備えることができる。壁132は、流体室170と流体管路160を流体的に接続して(すなわち、流体室170と流体管路160との間で流体が移動できるようそれらを接続して)、流体管路160内の圧力を流体室170に伝えることができるようにする1または複数の穴134A/134Bを備えることができる。いくつかの実施形態では、壁132及び穴134A/134Bは、装置100を流れる液体が流体室170に入ることを可能にすることができることに留意されたい。しかしながら、他の実施形態では、穴134A/134Bを、該装置を流れる液体が流体室170に入らないような大きさとすることができる。
【0041】
上記の実施形態は、(たとえば、入口140と出口150が、ハウジング110の対向するそれぞれの側にあって位置合わせされるように)装置100を通ってまっすぐに延びる流体管路160を有しているが、他の実施形態は、それとは異なる流体管路構成を有することができる。たとえば、図10及び図11A図11Cに示されているように、流体管路240をU字形(図11B)とし、入口140と出口150をハウジング110の同じ側に配置することができる。そのような実施形態では、流体/液体は、入口140に入って、U字形の流体管路240を通って流れて、装置100の入口140と同じ側にある出口150を通って装置100から出ることができる。
【0042】
上記の実施形態と同様に、流体管路240は流体室170と流体連絡することができる。たとえば、図11Aに最も良く示されているように、流体ハウジング120は、流体室170を流体管路240から分離する壁132と、(たとえば、上記のようにダイヤフラム190を変形させるために)流体管路240内の圧力変化を流体室170に伝えることができるようにする1または複数の穴134A/134Bを備えることができる。代替的には、流体室170は、流体管路240と直接流体連絡することができる(たとえば、流体ハウジング120は、図2及び図4に示されているハウジング120と同様のやり方で壁132を備えていなくてもよい)。さらに、上記の実施形態と同様に、ダイヤフラム190を、流体ハウジング120に固定し/流体ハウジング120に対してシール(密閉)することができる(図11C)。
【0043】
上記の図面には長方形のハウジング100が示されており、及び上記の実施形態は長方形のハウジング100を有しているが、他の実施形態は、それとは異なるハウジング構成を有することができる。たとえば、図12に示されているように、装置100の全体の大きさを小さくするために、ハウジング100の形状を卵形(たとえば、流体室170の形状に似た形状)とすることができる。代替的には、いくつかの例を挙げれば、ハウジング100を、円形、正方形、三角形とすることができる。いくつかの実施形態では、流体室ハウジング120の形状は、空気室ハウジング130の形状とは異なりうる。たとえば、空気室ハウジング130を長方形とすることができ、流体室ハウジング120を楕円形とすることができる。代替的には、該空気室ハウジングを楕円形とすることができ、該流体室ハウジングを長方形とすることができる。
【0044】
上記の実施形態は、流体管路160内の圧力を測定する本質的に独立型の装置/システムであるが、他の実施形態は、流体処理装置に組み込まれることができることに留意することは重要である。たとえば、該流体処理装置が血液処理装置である場合には、圧力センサー200及び空気マニホールド130を、該血液処理装置に組み込んで該装置の一部とすることができる。そのような実施形態では、ユーザーは、空気マニホールド130と流体ハウジング120を接続するために該血液処理装置に流体ハウジング120を挿入することができ、及び、該血液処理システム内の管を、流体ハウジング120の入口140及び出口150に接続することができる。その後、ユーザー/技師は、液体(たとえば、血液または血液成分)を流体ハウジング120に流すことができ、上記したように、圧力センサー200は、流体管路160(または流体管路240)内の圧力を測定することができる。
【0045】
例示的な検討
流体室及び空気室の異なるサイズ、異なる膜(または薄膜)材料及び異なる組立方法が試験され、及び、32mm×15mmの楕円(21mmの円に相当する)形の流体室が設計されてPVCプラスチックを用いて射出成形された。0.015インチ(公称0.016インチ)のPVC膜がPVC基板に超音波溶接され、12mmの円形の穴が、主空気室としての1/16インチ厚のシリコーンガスケットを貫通して開けられた。空気マニホールドは、空気の体積を小さくするために円形の空気室内へと突き出したボスを有していた。空気の全体積は、空気マニホールド内の空気流路及びプラスチック製の通気管の一部を含み、約190μLであった。それらの部品は、互いに固定されて密閉(シール)された空気室を形成し、流体室は、外部の供給源(ソース)、及び/又は液体、及び/又は空気に接続(連絡)された。
【0046】
結果が図13図16に示されている。図13及び図14に示されている結果に関しては、4つの異なるクランプについて、(接続された)同じ圧力源を用いて、4つの個々の圧力インターフェース装置が共に試験された。図15及び図16に示されている結果に関しては、単一の装置が10回繰り返し試験された(該試験は、クランプの交換と流体の変更(水と空気)を択一的に含む正圧試験と負圧試験である)。それぞれの装置は2つのクランプについて試験され、それらの結果が平均された。図13は、4つの装置の正圧応答を示しており、図14は、それらと同じ4つの装置の負圧応答を示している。図15及び図16は、正と負の両方の応答に対する単一の装置の再現性を示している。温度変化はなかった。図示されているそれらの結果のフルスケール誤差は、600mmHgの正圧の場合には約6%であり、-400mmHgの負圧の場合には12%である。空気の体積は最適値よりもはるかに大きかったので、フルスケール誤差は非常に大きく、そのため、流体圧力と空気室の圧力の相関関係が測定のために必要とされた。応答曲線は、装置間及び単一の装置について非常に再現性があり、また、ヒステリシス(圧力は、最大値まで増加してその後0に減少する)は、非常に小さく、最大でも1%未満であった。図17及び図18は、従来技術のピグテール圧力管(pigtail pressure tubing)と比較した動的ポンプ試験の結果である。(相関関係を有する)圧力インターフェース装置は、非常に良好な動的応答及び正確さを有し、重大な誤差を生じることなく、正の900mmHg及び負の400mmHgまで測定することができる。
【0047】
空気室の開口及び流体室の開口と体積の計算
図19A図19Cは、不均等なダイヤフラム圧力検出インターフェース構成を示しており、該構成は、左側にある空気室キャビティと右側にある流体(液体)室キャビティで構成されており、それらの間にダイヤフラムがある。該空気室と該流体室の両方によって覆われている(該断面図中に線として示されている)ダイヤフラム領域が、直径dとdの円形であると仮定すると、該空気室は、図に示されている深さでも断面積でもなく、該空気室が覆うダイヤフラム領域(たとえば、図19A図19Cに示されているインターフェースの長さ)の点で、該流体室よりも小さい。該ダイヤフラムは、左側にある空気室開口及び右側にある流体室開口を覆う一枚(または一体)の膜(または薄膜)であって、流体室開口と同じ直径dを有しており、そのエッジは、流体室基板に超音波溶接されるかまたは他の方法を使って固定される。所与の膜材料(材料の性質及び厚さ)について、空気室開口と流体室開口の最適なサイズ、並びに、許容できる空気室及び流体室の最小の深さ、空気室の最大初期体積、及び、膜の最大初期撓み(量)または空気体積の変化を決定するやり方については後述する。
【0048】
を(全ての流路(管)を含み、かつ完全に平坦なダイヤフラムを有する)空気室の初期体積とし、Pを初期空気圧とし、Tを初期空気温度とし、流体(液体)室の初期圧力Pf0をPf0=Pと仮定する。流体室のこの初期圧力は、該流体室が液体で満たされる、すなわち液体で一杯になる前に、両方の室を大気に通気することによって実現することができる。可撓性のプラスチック膜(塑性膜)がダイヤフラムとして使用されるため、該膜を横断する圧力差がゼロの場合でも、ダイヤフラムの完全な平坦性を達成するのは難しい。膜の多少の初期変形が常に存在するので、空気室の真の初期体積はその設計体積Vからずれる。我々は、このずれを表すためにδVを用いるので、初期の空気体積は実際にはV+δVである。ここで、δVは正及び負(の値)でありうる。該流体室が液体で満たされる、すなわち液体で一杯になると、該流体室の圧力はPとなり、該空気室の圧力はPに変化し、圧力はVになり、温度はTになる。該ダイヤフラムは、流体圧力Pが正か負かによって、該空気室と該流体室のいずれか一方に向かって撓む。撓みfの大きさ(量)は、該膜を横断する圧力差ΔP=P-Pに依存する。理想気体の法則PV=nRTに基づいて、
【数1】

が得られる。ここで、Rは気体定数であり、nは気体のモル質量(ある密閉体積に対して一定値)である。
【0049】
ΔT=T-T、ΔV=V-(V+δV)、及びβ=ΔT/Tとすれば、式(1)から、
【数2】

が得られる。
【0050】
ここで、空気室の体積の変化ΔVは、該膜を横断する圧力差ΔPの存在下で該ダイヤフラムの変形によって引き起こされる。すなわち、ΔVはΔPの関数であり、
【数3】

である。
【0051】
β、P、V、及びδVが与えられても、式(3)の関数を知らなければ、我々は依然として、式(2)を解くことができない。ΔVは該膜の変形によって引き起こされるので、我々は、ΔPに基づいてfを見出すことができ、次に、変形した該膜の幾何学的形状ないし寸法からΔVを計算することができる。
【0052】
我々は、ダイヤフラムは、厚さが均一で直径がdの円形の等方性弾性膜であって、そのエッジが固定されており、かつ、均一に圧力がかけられ、最初は平坦な膜(δV=0)であると仮定する。フィシュテル(Fichter)の分析(NASA Technical Paper 3658, 1997)に基づいて、次のとおり理論解が得られる。
【0053】
中心から半径rの任意のポイントにおける膜の撓み(量)は、
【数4】

である。
【0054】
最大の撓み(量)は該中心で生じ、この場合、r=0であるから、
【数5】

である。
【0055】
ここで、係数w、w、w、…を、次の式で計算することができる。
【数6】
【0056】
ここで、a=(3+μ)/2、q=(ΔPd)/(2Eh)、μはポアソン比、Eは弾性係数であり、hは該膜の厚さ、nは次式の解である。
【数7】
【0057】
ここで、n、n、n、n、…は、次式によって、nに関連付けられる。
【数8】
【0058】
または、直接表現によれば、
【数9】

となる。
【0059】
式(6)及び式(9)を式(7)に代入することによってnを求めることができ、したがって、式(6)からwsを得ることができる。該膜の撓みは、全てのws(理論上は無限項)の総和である。幸いにも、一般的に、式(5)における最初の5つの項w、w、w、w、wの和は、真の撓み(量)fを表すのに十分である。これより項番が大きくなると値は非常に小さくなり無視することができる。反復法を用いて、上記の式を解くことができる。
【0060】
変形した膜は、撓み(量)に比例する応力を生じる。最大の応力は、該膜のエッジ(端)で生じ、該最大の応力を次式によって推定することができる。
【数10】
【0061】
ここで、n、n、n、…は、式(9)から計算される。変形した膜の形状が(実際は放物線状であるが)球形であると仮定する(これは、膜の撓みが小さい場合には、極めて正確な推定である)と、次式によって、空気室の体積変化ΔVを該膜の撓み(量)fに関連付けることができる。
【数11】
【0062】
正の流体圧力下では、該膜は空気室に向かって撓み、該膜の直径dの代わりにdが使用され、及び、ΔPが負であるためfは負である。負の流体圧力下では、該膜は流体室に向かって撓み、dの代わりにdが使用され、及びfは正である。
【0063】
ΔVがわかると、測定されることになる最大予測流体圧力Pから、変形した該膜の形状(+安全のための体積または深さδf)に合致する空気室の最大体積を計算することができる。全空気体積Vを、
【数12】

と推定することができる。
【0064】
ここで、Vchは、空気流路、通気口、及びその他の構造体(小さいほどよい)に起因する空気の体積であり、ΔVは、該膜の最大予測撓み(量)fに、安全のための深さδfと最大予測事前撓み(量)fm0とのうちのどちらか大きい方を加えたものに基づいて計算される。Pはゲージ圧であり、Pは局所的な大気圧に等しい。該膜を変形させて空気室の圧力-体積関係を満たすために必要なΔPは、測定誤差を規定する。すなわち、
【数13】

である。
【0065】
圧力インターフェース設計の例
1例として、0.016インチ(0.406mm)厚のPVC膜がダイヤフラムとして選択され、それは、円形であり、弾性係数E=13.79MPaであり、ポアソン比は0.382であり、密度は1.21g/cmであった。初期の空気圧Pを760mmHg(大気圧)、T=22℃=295.15Kとし、空気室の底部は、湾曲して、変形した膜の形状に合致し(最小の空気体積)、空気室膜の最大予測撓み(量)の1.2倍の深さを有していると仮定する。対象(目標)とする圧力測定範囲は、(回転遠心分離機によって高HCT赤血球を除去して、遠心分離ベースの血液アフェレーシス機器でドナーに戻すために)-300mmHg~+600mmHgである。圧力検出インターフェース設計の要件として、変動及び公差を許容するために、100mmHgを両端に加える、すなわち、-400mmHg~+700mmHgの範囲とすることができる。フルスケール測定誤差は、2%未満であることが要求される。(たとえばこの例では)空気流路、センサー及び通気口、及びその他の構造体に起因する空気体積の部分は、Vch=24μlに固定されて変更できないと仮定する。空気室開口の直径d及び流体室開口の直径dを決定し、その後、該膜の最大予測撓み(量)に基づいて、空気室及び流体室に必要とされる最小の深さを決定することができる。初期の全空気体積Vは、空気室の体積と空気流路の体積の和(この例では24μl)に等しい。
【0066】
以下では、3つの均等なダイヤフラム設計(d=d=12.7、25.4、及び50.8mm)と2つの不均等なダイヤフラム設計(d/d=25.4/12.7及び25.4/18.0)の予想性能を比較する。以下では、いくつかの用途において、不均等なダイヤフラム設計が、性能及びロバスト性(頑強さ)の点で、均等なダイヤフラム設計よりもどれほど優れているかを明らかにする。
【0067】
最初は完全に平坦なダイヤフラム(fm0=0)の場合
この例では、全てのものが完全であり、膜の初期の撓みはなく、温度変化もないと仮定する。該設計が最大圧力(+700mmHgまたは-400mmHg)を測定できる場合は、目標は、該装置が達成できる正確さを確かめることである。該設計が最大性能に達することができない場合は、目標は、該装置が2%のフルスケール誤差で測定できる圧力の大きさを確かめることである。空気室の体積は、該装置が測定できる最大の正圧下における該膜の最大撓み(量)fによって決まる。不測の状態に対応するために、空気室の深さは、fの1.2倍(δf=fの20%)に等しい。
【0068】
表Iは予測結果を示している。それらの結果は、空気室開口が小さい(d=12.7mm)場合には、圧力インターフェース装置は、最大で550mmHgまでの圧力を測定できることを示している。700mmHgを測定するために、空気室開口を少なくとも18mmに大きくすることができる。流体室開口の大きさ(サイズ)は、正圧の測定には影響しない。しかしながら、空気室の大きさは、負圧の測定に影響する。均等なダイヤフラム設計では、dが25.4mm以下のときには、該圧力インターフェース装置は、-400mmHgを測定することができない。膜の大きさが2倍の50.8mmのときでも、該装置は、-400mmHgを2%のフルスケール誤差でかろうじて測定できるに過ぎない。一方、不均等なダイヤフラム設計では、該装置は、空気室のサイズが最小の12.7mmで、かつ、2倍の正確さ(FS誤差<1%)でもって、(絶対値が)最大で400mmHgまでの負圧を容易に測定することができる。したがって、本明細書に記載されている不均等なダイヤフラム設計は、均等なダイヤフラム構成を有する従来技術のシステムに対して大きな優位性を有する。
【0069】
【表1】
【0070】
膜の初期の撓みと温度変化の影響
上記の例では、初期の膜が完全に平坦な状態にあることが仮定された(たとえば、δV=0が仮定されたが、これを実現するのは実際には困難でありうる)。δV≠0のとき(たとえば、該膜が量fm0だけ予め撓んでいるとき)は、圧力の測定精度は影響を受ける。該膜が空気室に向かって予め撓んでいる(δV<0)場合には、直観的により良い性能を期待することができる。なぜなら、空気の体積がより小さいために、理想気体の法則に基づいてより高い圧力を測定できるからである。しなしながら、これとは反対に、正圧の測定精度は低下する。なぜなら、膜のより大きくなった変形(量)に対して、膜を横断する圧力差としてより高い圧力差が必要とされるが、これは、同じ入力流体圧力Pに対する空気圧の測定値Pがより小さいことを意味するからである。しかしながら、これは、負圧の測定の場合には有益である。なぜなら、同じPに対して必要とされる最終的な膜変形(の量)がより小さいからである。他方、該膜が流体室に向かって予め撓んでいる(δV>0)場合には、正圧の測定には有益であるが、負圧の測定には有益ではない。
【0071】
ロバストな装置の設計の場合、圧力インターフェースは、平坦ではない初期の膜状態を許容できなければならない。最悪の場合に備えて、正圧測定に対する負のδV及び負圧測定に対する正のδVを考慮すべきである。公正な比較のために、全ての場合について、後続の計算において、0.5mmHgの膜を横断する圧力差によって引き起こされる撓み量に等しい撓み量の初期値が設定される。
【0072】
同時に、理想気体の法則に基づいて、圧力インターフェースの性能が温度変化によって影響を受ける。いくつかの実際の用途では、流体の温度は変化しうる。たとえば、ドナーから抜き取られた血液の温度は、最初は体温(~37℃)に近く、処理中に室温(約22℃)に低下する。また、いくつかの試薬または保存血液は、それらが冷蔵庫から取り出されたときには、室温より低い温度(~8℃)を有しうる.該システムが較正されて室温で始動されるときには、流体の温度変化は、空気圧の測定に影響する。一般に、温度が下がると、正圧の測定精度は低下するが負圧の測定には有益であり、一方、温度が上がると、負圧の測定精度は低下するが正圧の測定には有益である。温度変化を許容することができる装置を設計するために、最悪の場合として、正圧の測定に対する14℃(22℃-8℃)の温度降下、及び負圧の測定に対する15℃(37℃-22℃)の温度上昇を考慮して、異なるインターフェース設計の許容範囲を試験することができる。
【0073】
分析の際に平坦ではない膜状態及び温度変化を組み合わせることができる。その結果を表IIに示す。該結果は、該膜の初期の撓み(量)及び温度変化は、全ての均等なダイヤフラム設計の負圧測定に対して劇的な効果を有しており、それらを動作不能にするが、両方の不均等なダイヤフラム設計の負圧測定に対してはわずかに影響するだけであって、測定精度を少しだけ低下させるだけである(依然として2%未満)ことを示している。正圧測定に関する効果は、均等なダイヤフラム設計と不均等なダイヤフラム設計とで同じである。これらの結果から、膜(の撓み量)の変化または温度変化を、均等なダイヤフラム設計は許容できないが、不均等なダイヤフラム設計は許容できるということがわかる。これは、不均等なダイヤフラム設計の重要な利点である。不均等なダイヤフラム設計によれば、材料特性の変化を含む所定の膜状態の変化、及び温度や動作エラーなどの動作環境条件の変化を(それらの変化が大きすぎない限り)許容できるロバストな圧力検出インターフェース装置を開発することが可能である。
【0074】
【表2】
【0075】
本発明の上記の実施形態は、例示に過ぎないものであることが意図されており、当業者には多くの変形及び修正が明らかであろう。それら全ての変形及び修正は、添付の特許請求の範囲で画定される本発明の範囲内のものであることが意図されている。

図1
図2
図3
図4
図5
図6
図7A
図7B
図8
図9
図10
図11A
図11B
図11C
図12
図13
図14
図15
図16
図17
図18
図19A
図19B
図19C