IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ダイヘンの特許一覧

<>
  • 特開-電力システム 図1
  • 特開-電力システム 図2
  • 特開-電力システム 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023094759
(43)【公開日】2023-07-06
(54)【発明の名称】電力システム
(51)【国際特許分類】
   H02J 7/00 20060101AFI20230629BHJP
   H02J 3/38 20060101ALI20230629BHJP
   H02J 3/32 20060101ALI20230629BHJP
   H02J 7/35 20060101ALI20230629BHJP
   H02J 7/34 20060101ALI20230629BHJP
【FI】
H02J7/00 302B
H02J3/38 180
H02J3/32
H02J3/38 130
H02J7/35 J
H02J7/34 B
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2021210261
(22)【出願日】2021-12-24
(71)【出願人】
【識別番号】000000262
【氏名又は名称】株式会社ダイヘン
(74)【代理人】
【識別番号】100135389
【弁理士】
【氏名又は名称】臼井 尚
(74)【代理人】
【識別番号】100168044
【弁理士】
【氏名又は名称】小淵 景太
(72)【発明者】
【氏名】宇田 尚哉
(72)【発明者】
【氏名】西尾 隆平
【テーマコード(参考)】
5G066
5G503
【Fターム(参考)】
5G066HB06
5G066HB09
5G066JA02
5G066JB03
5G503AA06
5G503BA02
5G503BB01
5G503CA08
5G503CC02
5G503EA05
5G503GD03
5G503GD06
(57)【要約】
【課題】自立運転時に各負荷への電力供給をできる限り継続させることが可能な電力システムを提供する。
【解決手段】電力システムS1は、複数の負荷L1~Lnが接続され、自立運転が可能である。電力システムS1は、複数の負荷L1~Lnに電力供給可能な蓄電池3と、複数の負荷L1~Lnに電力供給可能な電力源1と、自立運転の制御を行う自立運転制御部5と、を備える。複数の負荷L1~Lnの各々に対して、自立運転中の電力供給の優先順位を示す重要度が設定されており、自立運転制御部5は、自立運転中において、蓄電池3の充電率、電力源1の供給可能電力、および複数の負荷L1~Lnの各重要度に基づいて、複数の負荷L1~Lnへの各電力供給路を、接続状態にするか遮断状態にするかを切り替える。
【選択図】図1
【特許請求の範囲】
【請求項1】
複数の負荷が接続され、自立運転が可能な電力システムであって、
前記複数の負荷に電力供給可能な蓄電池と、
前記複数の負荷に電力供給可能な電力源と、
前記自立運転の制御を行う自立運転制御部と、
を備え、
前記複数の負荷の各々に対して、前記自立運転中の電力供給の優先順位を示す重要度が設定されており、
前記自立運転制御部は、前記自立運転中において、前記蓄電池の充電率、前記電力源の供給可能電力、および前記複数の負荷の各重要度に基づいて、前記複数の負荷への各電力供給路を、接続状態にするか遮断状態にするかを切り替える、電力システム。
【請求項2】
前記自立運転制御部は、前記電力源の現在の状態に基づいて、前記電力源の現在の供給可能電力を推定する、請求項1に記載の電力システム。
【請求項3】
前記自立運転制御部は、前記電力源の状態の変化予定に基づいて、前記電力源の将来の供給可能電力を推定する、請求項1または請求項2のいずれかに記載の電力システム。
【請求項4】
前記蓄電池の充放電を行う蓄電池充放電制御部をさらに備えており、
前記電力源は、前記自立運転中、前記蓄電池充放電制御部の出力電圧を基準に電力供給しており、
前記複数の負荷は、前記重要度が最も高い最重要負荷を含み、
前記自立運転制御部は、前記供給可能電力が前記最重要負荷の消費電力を下回り、且つ、前記蓄電池の充電率が第1閾値以下になった場合、前記蓄電池充放電制御部の一部のみを継続しつつ、前記自立運転を休止し、
前記第1閾値は、前記蓄電池充放電制御部の一部のみを継続して動作させるための稼働継続下限値に応じた値である、請求項1ないし請求項3のいずれかに記載の電力システム。
【請求項5】
前記自立運転制御部は、前記自立運転を休止した状態において、前記供給可能電力が前記最重要負荷の消費電力に基づく第2閾値以上となった場合、前記自立運転を再開する、請求項4に記載の電力システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電力システムに関する。
【背景技術】
【0002】
従来、電力系統に連系し、電力系統から得られる電力を負荷に供給する電力システムがある。また、電力システムには、電力系統の異常時(例えば停電時)において、電力系統から解列して、自立運転を行うものがある。自立運転を行う電力システムは、分散型電源を備えており、自立運転時において、電力系統からの電力の供給を受けずに、分散型電源から得られた電力を負荷に供給する。これにより、電力系統の異常時においても負荷を電力に供給できる。例えば、特許文献1には、自立運転を行う電力システムが開示されている。特許文献1に記載の電力システムは、分散型電源としてのバッテリーを備えており、自立運転時において、バッテリーの放電により負荷に電力を供給する。このとき、バッテリーの充電率(SoC:State Of Charge)に応じて電力供給する負荷数を変更する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開第2020/230264号
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の構成では、自立運転時において、負荷に電力を供給するものがバッテリーだけであり、バッテリーの充電率が所定の閾値(特許文献1においては第3閾値)以下となると、各負荷への電力供給が停止する。
【0005】
本開示は、上記事情に鑑みて考え出されたものであり、その目的は、自立運転時に各負荷への電力供給をできる限り継続させることが可能な電力システムを提供することにある。
【課題を解決するための手段】
【0006】
本開示の電力システムは、複数の負荷が接続され、自立運転が可能な電力システムであって、前記複数の負荷に電力供給可能な蓄電池と、前記複数の負荷に電力供給可能な電力源と、前記自立運転の制御を行う自立運転制御部と、を備え、前記複数の負荷の各々に対して、前記自立運転中の電力供給の優先順位を示す重要度が設定されており、前記自立運転制御部は、前記自立運転中において、前記蓄電池の充電率、前記電力源の供給可能電力、および前記複数の負荷の各重要度に基づいて、前記複数の負荷への各電力供給路を、接続状態にするか遮断状態にするかを切り替える。
【0007】
前記電力システムの好ましい実施の形態においては、前記自立運転制御部は、前記電力源の現在の状態に基づいて、前記電力源の現在の供給可能電力を推定する。
【0008】
前記電力システムの好ましい実施の形態においては、前記自立運転制御部は、前記電力源の状態の変化予定に基づいて、前記電力源の将来の供給可能電力を推定する。
【0009】
前記電力システムの好ましい実施の形態においては、前記蓄電池の充放電を行う蓄電池充放電制御部をさらに備えており、前記電力源は、前記自立運転中、前記蓄電池充放電制御部の出力電圧を基準に電力供給しており、前記複数の負荷は、前記重要度が最も高い最重要負荷を含み、前記自立運転制御部は、前記供給可能電力が前記最重要負荷の消費電力を下回り、且つ、前記蓄電池の充電率が第1閾値以下になった場合、前記蓄電池充放電制御部の一部のみを継続しつつ、前記自立運転を休止し、前記第1閾値は、前記蓄電池充放電制御部の一部のみを継続して動作させるための稼働継続下限値に応じた値である。
【0010】
前記電力システムの好ましい実施の形態においては、前記自立運転制御部は、前記自立運転を休止した状態において、前記供給可能電力が前記最重要負荷の消費電力に基づく第2閾値以上となった場合、前記自立運転を再開する。
【発明の効果】
【0011】
本開示の電力システムによれば、蓄電池の充電率の他、電力源の供給可能電力を考慮して、複数の負荷への各電力供給路を、接続状態にするか遮断状態にするかを切り替えるので、自立運転時に、電力源の状態に応じて、各負荷への電力供給をできる限り継続させることが可能となる。
【図面の簡単な説明】
【0012】
図1】電力システムを示す全体構成例を示す図である。
図2】自立運転制御部が行う自立運転制御の基本処理を示す図である。
図3】自立運転制御部が行う自立運転制御の休止処理を示す図である。
【発明を実施するための形態】
【0013】
本開示の電力システムの好ましい実施の形態について、図面を参照して、以下に説明する。以下では、同一あるいは類似の構成要素に、同じ符号を付して、重複する説明を省略する。
【0014】
図1は、本実施形態に係る電力システムS1の全体構成例を示している。電力システムS1は、複数の負荷L1~Ln、複数の開閉器SW1~SWn、複数の電力源1、複数の電力制御装置2、蓄電池3、蓄電池パワーコンディショナ4(以下「蓄電池PCS4」という)および連系盤C1を備える(nは2以上の整数)。また、電力システムS1において、蓄電池PCS4は、自立運転制御部5を含む。図1において、太い接続線は、電力線であり、細い接続線は、信号線である。
【0015】
電力システムS1は、電力系統Kに接続されている時、系統連系運転を行う。一方で、電力システムS1は、電力系統Kの停電時および異常時において、電力系統Kから解列され、自立運転(非系統連系運転)を行う。図1は、電力システムS1が電力系統Kから解列された状態を示している。電力システムS1は、自立運転中、複数の負荷L1~Lnのいずれに電力を供給するかを選択的に切り替える。電力システムS1の自立運転は、自立運転制御部5によって制御される。
【0016】
複数の負荷L1~Lnはそれぞれ、複数の開閉器SW1~SWnをそれぞれ介して、連系盤C1に接続される。i番目(i=1~nの整数)の負荷Liは、i番目の開閉器SWiを介して、連系盤C1に接続される。複数の開閉器SW1~SWnは、後述する自立運転制御部5と通信可能であり、当該自立運転制御部5から入力される切り替え信号によって、接続状態(オン)と開放状態(オフ)とが切り替わる。開閉器SWiが接続状態のとき、連系盤C1から負荷Liまでの電力供給路が繋がり、連系盤C1から負荷Liに電力が供給される。一方、開閉器SWiが開放状態のとき、連系盤C1から負荷Liまでの電力供給路が遮断され、負荷Liに電力が供給されない。図1は、各開閉器SW1~SWnがすべて接続状態である例を示しており、各開閉器SW1~SWnが開放状態のとき、図1の二点鎖線で示す状態となる。複数の開閉器SW1~SWnはそれぞれ、例えば真空遮断器である。電力システムS1では、自立運転制御部5の自立運転制御によって、選択的に複数の負荷L1~Lnに電力が供給される。以下では、複数の負荷L1~Lnのうち、自立運転制御中に、電力供給されるものを投入負荷Loといい、電力供給されないものを開放負荷Lxという。また、複数の開閉器SW1~SWnのうち、投入負荷Loに接続されるものを開閉器SWoといい、開放負荷Lxに接続されるものを開閉器SWxという。
【0017】
連系盤C1は、電力分配機能、および、系統連系機能(例えば連系保護機能、FRT機能、逆潮流電力制限機能、電圧調整機能、力率一定制御など)を有する。電力分配機能では、連系盤C1は、入力される電力を、複数の負荷L1~Lnに供給する。また、電力分配機能では、連系盤C1は、必要に応じて、入力される電力を、蓄電池PCS4および複数の電力制御装置2の一部(後述のEV(Electric Vehicle)充放電器22)のそれぞれにも供給する。系統連系機能では、例えば、連系盤C1は、電力系統Kの停電を検出すると、電力システムS1を電力系統Kから解列する。また、系統連系機能では、連系盤C1は、電力系統Kの停電からの復帰を検出すると電力システムS1を電力系統Kに接続する。
【0018】
複数の電力源1および蓄電池3はそれぞれ、複数の負荷L1~Lnに対して電力供給が可能である。電力システムS1では、複数の電力源1は、太陽電池11、電気自動車12および発電機13を含む。太陽電池11は、太陽光などの光エネルギーを電気エネルギー(電力)に変換することで、発電する。電気自動車12は、内蔵バッテリーに蓄積された電力によって走行する。本開示において、電気自動車12の充電および放電とは、この内蔵バッテリーに対する充電および放電のことを意味する。発電機13は、電力以外のエネルギーを電気エネルギー(電力)へ変換することで、発電する。発電機13には、例えば、水車を用いる水力発電機、風車を用いる風力発電機、内燃機関(例えばディーゼルエンジン)を用いる内燃力発電機(例えばディーゼル発電機)などがある。蓄電池3は、繰り返し充放電可能なものであり、例えば二次電池あるいはコンデンサである。
【0019】
複数の電力制御装置2はそれぞれ、複数の電力源1の各制御を行う。各電力制御装置2は、連系盤C1と各電力源1との間に接続される。各電力制御装置2は、蓄電池PCS4(自立運転制御部5)と通信可能である。図1に示す例では、複数の電力制御装置2は、太陽光PCS21、EV充放電器22および発電機制御器23を含む。
【0020】
太陽光PCS21は、太陽電池11の出力制御を行う。太陽光PCS21は、太陽光発電制御部211を含む。太陽光発電制御部211は、太陽電池11と連系盤C1との間に電気的に接続される。太陽光発電制御部211は、太陽電池11が発電した電力を、連系盤C1に出力する。図1に示す例では、1つの太陽光PCS21に対して、1つの太陽電池11が接続されているが、1つの太陽光PCS21に対して、複数の太陽電池11が接続されてもよい。
【0021】
EV充放電器22は、電気自動車12の充放電制御を行う。EV充放電器22は、EV充放電制御部221を含む。EV充放電制御部221は、電気自動車12と連系盤C1との間に電気的に接続される。EV充放電制御部221は、電気自動車12に蓄積された電力を連系盤C1に出力することで電気自動車12の放電を行い、連系盤C1から供給される電力を電気自動車12に出力することで電気自動車12の充電を行う。図1に示す例では、1つのEV充放電器22に対して、1つの電気自動車12が接続されているが、1つのEV充放電器22に対して、複数の電気自動車12が接続されてもよい。
【0022】
発電機制御器23は、発電機13の出力制御を行う。発電機制御器23は、発電機制御部231を含む。発電機制御部231は、発電機13と連系盤C1との間に電気的に接続される。発電機制御部231は、発電機13が発電した電力を、連系盤C1に出力する。発電機制御器23は、電力システムS1の自立運転時にのみ、発電機13を稼働させる構成であってもよいし、電力システムS1の自立運転時および連系運転時の両方において、発電機13を稼働させる構成であってもよい。
【0023】
図示を省略するが、太陽光発電制御部211、EV充放電制御部221および発電機制御部231はそれぞれ、インバータ回路、制御回路および通信回路を少なくとも含む。インバータ回路は、各電力制御装置2における電力変換を行う。制御回路は、インバータ回路の制御を行う。通信回路は、自立運転制御部5と通信する。
【0024】
蓄電池PCS4は、蓄電池3の充放電制御、および、電力システムS1の自立運転制御をそれぞれ行う。蓄電池PCS4は、蓄電池3に蓄積された電力を用いて動作する。蓄電池PCS4は、蓄電池充放電制御部411および自立運転制御部5を含む。
【0025】
蓄電池充放電制御部411は、蓄電池3と連系盤C1との間に電気的に接続される。蓄電池充放電制御部411は、蓄電池3に蓄積された電力を連系盤C1に出力することで蓄電池3の放電を行い、連系盤C1から供給される電力を蓄電池3に出力することで蓄電池3の充電を行う。図1に示す例では、1つの蓄電池充放電制御部411に対して、1つの蓄電池3が接続されているが、1つの蓄電池充放電制御部411に対して、複数の蓄電池3が接続されてもよい。図示を省略するが、蓄電池充放電制御部411は、インバータ回路、制御回路および通信回路を少なくとも含む。インバータ回路は、蓄電池PCS4における電力変換を行う。制御回路は、インバータ回路の制御を行う。通信回路は、自立運転制御部5と通信する。
【0026】
自立運転制御部5は、電力システムS1が電力系統Kから解列すると、自立運転の制御を行う。自立運転制御部5は、電力システムS1が系統連系している際、自立運転の制御を行わない。自立運転制御部5は、電力システムS1が電力系統Kから解列したか否かを、例えば連系盤C1からの情報を基に判断する。自立運転制御部5は、蓄電池PCS4に設けられており、自立運転時、蓄電池PCS4が電圧源となるように蓄電池充放電制御部411に制御させる。自立運転制御部5は、自立運転制御において、各開閉器SW1~SWnの接続状態と開放状態との切り替えを行い、連系盤C1から各負荷L1~Lnへの電力供給路を選択的に遮断する。つまり、自立運転制御部5は、自立運転制御において、複数の負荷L1~Lnを、電力供給を行う投入負荷Loと電力供給を行わない開放負荷Lxとに分ける。このとき、自立運転制御部5は、蓄電池3の充電率、複数の電力源1の供給可能電力、および、複数の負荷L1~Lnの各重要度の情報をそれぞれ用いて、投入負荷Loと開放負荷Lxとの選別を行う。
【0027】
複数の負荷L1~Lnの重要度は、予めまたはユーザの入力によって自立運転制御部5に設定されている。重要度は、複数の負荷L1~Lnへの電力供給の優先順位を示す情報である。重要度が高い程、自立運転時において、優先的に電力が供給される。つまり、電力システムS1は、自立運転時において、重要度が高いものほど、電力供給が継続されやすく、重要度が低いものほど、電力供給が遮断されやすい。本実施形態においては、負荷L1の重要度が最も高く、負荷L1は、最重要負荷である。次いで、負荷L2、負荷L3、・・・、負荷Ln-1、負荷Lnの順に、重要度が高いものとする。なお、複数の負荷L1~Lnには、重要度が同じものがあってもよい。例えば、ある事業所において、事業所内のメインシステムの電源は、重要度が高く、非常用照明、従事者のパソコン、換気設備、空調設備、一般用照明、エレベータなどの順に、重要度が低くなる。また、各負荷L1~Lnの重要度は、各負荷L1~Lnにそれぞれ設定されており、自立運転制御部5が、各負荷L1~Lnから各負荷L1~Lnの重要度の情報を取得してもよい。
【0028】
蓄電池3の充電率は、蓄電池充放電制御部411から通信によって取得される。自立運転制御部5が蓄電池PCS4に設置されている例では、自立運転制御部5は、蓄電池3の充電率を蓄電池3から直接取得してもよい。
【0029】
各電力源1の供給可能電力は、各電力制御装置2との通信によって取得される各電力源1の状態を示す情報に基づいて、推定される。電力システムS1では、自立運転制御部5は、各電力制御装置2との通信によって、各電力源1の現在の状態を示す情報(以下「現状データ」)を取得し、取得した現状データに基づいて、各電力源1の現在の供給可能電力を推定する。また、自立運転制御部5は、各電力制御装置2との通信によって、各電力源1の将来の状態の変化予定(または変化予測)を示す情報(以下「変移予測データ」)を取得し、取得した変移予測データに基づいて、各電力源1の将来の供給可能電力を推定する。例えば、自立運転制御部5は、各電力源1における以下の情報を現状データまたは変移予測データとして取得し、各電力源1の現在の供給可能電力および将来の供給可能電力を推定する。
【0030】
自立運転制御部5は、太陽光PCS21との通信によって、太陽電池11の設置場所での現在の日射強度(例えば日射計の計測値)の情報を、太陽電池11の現状データとして取得する。そして、取得した太陽電池11の現状データを用いて、太陽電池11の現在の発電可能量を推定する。また、自立運転制御部5は、太陽光PCS21との通信によって、太陽電池11の設置場所での将来の日射強度の変化予測(例えば天気予報、過去の日射情報、季節など)の情報を、太陽電池11の変移予測データとして取得する。そして、取得した太陽電池11の変移予測データを用いて、太陽電池11の将来の発電可能量を推定する。なお、発電可能量を推定する際に用いられる太陽電池11の仕様情報(例えば最大出力および変換効率など)は、太陽光PCS21から取得してもよいし、自立運転制御部5に予め設定しておいてもよい。また、太陽電池11の現状データおよび太陽電池11の変化予測データの各取得場所は、上記した例に限定されない。例えば、自立運転制御部5は、現在の日射強度を日射計から直接取得してもよいし、天気予報および過去の日射情報をインターネットまたは他の管理装置から取得してもよいし、季節の情報を自立運転制御部5の図示しないタイマから取得(判断)してもよい。
【0031】
自立運転制御部5は、EV充放電器22との通信によって、当該EV充放電器22への電気自動車12の接続有無および電気自動車12の充電率などの情報を、電気自動車12の現状データとして取得する。そして、取得した電気自動車12の現状データを用いて、電気自動車12の現在の放電可能量を推定する。また、自立運転制御部5は、EV充放電器22との通信によって、電気自動車12の接続予定などの情報を、電気自動車12の変移予測データとして取得する。そして、取得した電気自動車12の変移予測データを用いて、電気自動車12の将来の放電可能量を推定する。なお、放電可能量を推定する際に用いられる電気自動車12の仕様情報(例えば放電定格容量および放電Cレートなど)は、EV充放電器22から取得してもよいし、自立運転制御部5に予め設定しておいてもよい。また、電気自動車12の現状データおよび電気自動車12の変化予測データの各取得場所は、上記した例に限定されない。例えば、自立運転制御部5は、電気自動車12の接続有無の情報および電気自動車12の接続予定の情報を、インターネットまたは他の管理装置から取得してもよいし、電気自動車12の充電率を電気自動車12から直接取得してもよい。
【0032】
自立運転制御部5は、発電機制御器23との通信によって、発電機13が内燃力発電機の場合は燃料残量、発電機13が水力発電機の場合は水車の設置場所での流量(例えば流量計の計測値)、発電機13が風力発電機の場合は風車の設置場所での風量および風速(例えば風量計および風速計の各計測値)の情報を、発電機13の現状データとして取得する。そして、取得した発電機13の現状データを用いて、発電機13の現在の発電可能量を推定する。また、自立運転制御部5は、発電機制御器23との通信によって、発電機13が内燃力発電機の場合は燃料残量の変化予定(例えば補給予定および消費予測など)、発電機13が水力発電機の場合は水車の設置場所での流量の変化予定(例えば天気予報、過去の流量情報、季節)、発電機13が風力発電機の場合は風車の設置場所での風量および風速の各変化予定(例えば天気予報、過去の風量情報および風速情報、季節など)の情報を、発電機13の変移予測データとして取得する。そして、取得した発電機13の変移予測データを用いて、発電機13の将来の発電量を推定する。なお、発電可能量を推定する際に用いられる発電機13の仕様情報(例えば最大出力、定格容量および変換効率など)は、発電機制御器23から取得してもよいし、自立運転制御部5に予め設定しておいてもよい。また、発電機13の現状データおよび発電機13の変化予測データの各取得場所は、上記した例に限定されない。例えば、自立運転制御部5は、燃料残量を内燃力発電機から、流量を流量計から、または、風量および風速を風量計および風速計から、それぞれ直接取得してもよいし、燃料残量の変化予定、流量の変化予定、または、風量および風速の各変化予定を、それぞれインターネットまたは他の管理装置から取得してもよい。
【0033】
自立運転制御部5は、自立運転中、上記した蓄電池3の充電率、上記した複数の電力源1の各供給可能電力、および、上記した複数の負荷L1~Lnの各重要度に基づき、これらを総合的に判断して、複数の負荷L1~Lnへの各電力供給路を、接続状態にするか遮断状態にするかを切り替える。
【0034】
なお、図1に示す例では、自立運転制御部5は、蓄電池PCS4に設けられているが、この構成と異なり、複数の電力制御装置2(太陽光PCS21、EV充放電器22および発電機制御器23)のいずれかに設けられてもよい。つまり、太陽光PCS21、EV充放電器22または発電機制御器23のいずれかが、自立運転制御を行ってもよい。この場合、蓄電池PCS4ではなく、自立運転制御部5が設けられた電力制御装置2が電圧源として動作する。あるいは、自立運転制御部5は、それ単体で1つの装置として構成されてもよい。
【0035】
図2および図3は、自立運転制御部5が行う自立運転制御を示すフローチャートである。図2は、自立運転制御の基本処理の一例であり、図3は、図2に示す基本処理と並行して行われる休止処理の一例である。自立運転制御部5は、図2および図3に示す各処理を、電力システムS1のシステム電源がオフとなるまで、繰り返し継続する。
【0036】
まず、図2を参照して、自立運転制御の基本処理について説明する。自立運転制御部5は、電力システムS1が電力系統Kから解列している間、図2に示す基本処理を、例えば1sec~1min毎に繰り返し実行する。なお、自立運転制御部5は、電力システムS1が電力系統Kに連系されている間、図2に示す基本処理を行わない。自立運転制御部5は、電力システムS1が電力系統Kに連系しているか解列しているかを、連系盤C1からの情報を基に判断する。基本処理の制御サイクルは、先述の数値例(1sec~1min)に限定されない。また、自立運転制御部5は、時間ではなく、何らかの処理または変化をトリガーに実行してもよい。例えば、自立運転制御部5は、蓄電池3の充電率を確認する度に、基本処理を実行してもよい。
【0037】
図2に示すように、自立運転制御の基本処理では、自立運転制御部5は、まず、各電力制御装置2から電力源1の変移予測データを取得し、取得した変移予測データから将来の供給可能電力を推定する(S101)。次いで、自立運転制御部5は、各電力制御装置2から電力源1の現状データを取得し、取得した現状データから現在の供給可能電力を推定する(S102)。なお、ステップS101とステップS102との順序は反対であってもよい。
【0038】
次いで、自立運転制御部5は、所定の時間帯ごとの供給可能電力を算出し、供給可能電力のスケジュールを作成する(S103)。時間帯の区分けは、特に限定されないが、例えば、10分、30分、1時間、2時間、3時間などである。時間帯ごとの供給可能電力は、複数の電力源1の合計値であってもよいし、複数の電力源1ごとの個別値であってもよい。供給可能電力のスケジュールの作成期間は、特に限定されないが、24時間分、1週間分あるいは1ヶ月分などである。ステップS103の供給可能電力のスケジュール作成において、適宜、各電力源1の動作条件を設けてもよい。例えば、発電機13がディーゼル発電機である場合、当該発電機13の発電は、太陽電池11が発電不可能な時(例えば夜間)または太陽電池11の発電量が少ない時(例えば雨の日)に限定する。電気自動車12の充電率が、所定値以下であれば、電気自動車12の放電を禁止する。
【0039】
次いで、自立運転制御部5は、複数の負荷L1~Lnの各消費電力および重要度、供給可能電力のスケジュール(現在の供給可能電力および将来の供給可能電力の変移など)、蓄電池3の充電率および放電Cレートなどから算出される放電量および放電継続時間などを総合的に判断して、複数の負荷L1~Lnを、電力供給を行う投入負荷Loと電力供給を行わない開放負荷Lxとに選別する(S104)。このとき、自立運転制御部5は、現時点において、各負荷L1~Lnを投入負荷Loにするか開放負荷Lxにするかを選別する。このとき、自立運転制御部5は、ステップS104において、さらに、所定の時間帯ごとに、各負荷L1~Lnを、投入負荷Loとするか開放負荷Lxとするかをスケジューリングしておいてもよい。このように所定の時間帯ごとに投入負荷Loと開放負荷Lxとをスケジューリングしておけば、当該スケジューリングの情報をユーザに知らせることで、ユーザが各負荷L1~Lnの今後の利用可能状態を確認することができる。
【0040】
ステップS104の選別において、重要度が最も高い負荷L1への電力供給はできる限り継続させる。つまり、負荷L1は、できる限り長い時間、投入負荷Loとなるようにする。また、ステップS104の選別において、投入負荷Loの数を減らして消費電力を供給可能電力よりも意図的に低くして、余剰電力を、蓄電池3の充電または電気自動車12の充電に用いてもよい。例えば、太陽電池11が発電不可能な時(例えば夜間)または太陽電池11の発電量が少ない時(例えば雨の日)に備えて、蓄電池3および電気自動車12の各充電率を確保するように、投入負荷Loにしてもよい。また、ステップS104の投入負荷Loと開放負荷Lxとの選別において、複数の負荷L1~Lnのうち、重要度が所定以下のものは、自立運転中、一律、開放負荷Lxにしてもよい。
【0041】
自立運転制御部5は、ステップS104において、例えば、次のように投入負荷Loにするか開放負荷Lxにするかを選別する。それは、現在時刻と供給可能電力のスケジュールから、太陽電池11の将来の供給可能電力および発電機13の将来の供給可能電力を確認し、蓄電池3の放電および電気自動車12の放電であと何時間自立運転が必要となるかを算出する。あるいは、太陽電池11の将来の供給可能電力を確認し、あと何時間、太陽電池11が発電可能であるかを算出する。そして、蓄電池3の充電率および電気自動車12の充電率から、太陽電池11の発電開始まで何kWまでなら放電可能かを算出し、あるいは、太陽電池11の発電終了後、翌朝に太陽電池11が発電開始するまで何kWでの放電であれば自立運転を継続できるかを算出し、算出したデータを基に投入負荷Loを決定する(投入負荷Loではないものは開放負荷Lxである)。
【0042】
次いで、自立運転制御部5は、ステップS104での選別結果を基に、各開閉器SW1~SWnの切り替えを行う(S105)。具体的には、自立運転制御部5は、ステップS104の選別結果から、投入負荷Loと選別されたものに対して、当該投入負荷Loが接続される開閉器SWoを接続状態にし、連系盤C1から投入負荷Loへの電力供給路を接続する。また、自立運転制御部5は、開放負荷Lxと選別されたものに対して、当該開放負荷Lxが接続される開閉器SWxを開放状態にして、連系盤C1から開放負荷Lxへの電力供給路を遮断する。
【0043】
電力システムS1では、上記した自立運転制御の基本処理を行うことで、供給可能電力のスケジュール、および、投入負荷Loと開放負荷Lxとの選別により、自立運転制御の運用方法を適宜変更可能である。例えば、投入負荷Loの数を減らし、且つ、各電力源1からの電力供給をメインに蓄電池3の放電を補助的に動作させることで、最重要負荷(重要度が最も高い負荷L1)の電力供給時間をより長く継続させ、同時に可能な限り重要度の高い順に電力供給を継続させるように自立運転を運用できる。また、投入負荷Loの数を増やし、且つ、各電力源1からの電力供給および蓄電池3の放電を積極的に行うことで、投入負荷Loの数が多くなうように自立運転を運用できる。
【0044】
次に、図3を参照して、自立運転制御の休止処理について説明する。上述の通り、自立運転制御の休止処理は、図2に示す基本処理と並行して行われる。ただし、図3に示す休止処理の一部が実行中は、図2に示す基本処理が中断する。
【0045】
図3に示すように、自立運転制御の休止処理では、自立運転制御部5は、最重要負荷である負荷L1のみが投入負荷Loである状態において、現在の供給可能電力Ptが、最重要負荷である負荷L1の消費電力PL1を下回ったか否かを判定する(S201)。ステップS201で下回っていない(Pt≧PL1)と判定された場合(S201:NO)、ステップS201の判定を繰り返し行う。一方、ステップS201で下回った(Pt<PL1)と判定された場合、次いで、蓄電池3の充電率が所定の第1閾値以下であるか否かを判定する(S202)。この第1閾値は、蓄電池3の電力によって動作する蓄電池PCS4を所定期間完全に停止させないための値であって、蓄電池充放電制御部411のうちの一部(例えば通信回路)と、自立運転制御部5とを所定時間継続して動作させるために必要な電力量(稼働継続下限値)に基づいて設定される。本実施形態では、先述の第1閾値、つまり、稼働継続下限値は、例えば5「%」である。なお、自立運転制御部5が蓄電池PCS4に設けられていない構成では、先述の第1閾値は、蓄電池充放電制御部411のうちの通信回路を、所定期間継続して動作させるための稼働継続下限値となる。ステップS202で第1閾値以下でない(第1閾値よりも大きい)と判定された場合(S202:NO)、蓄電池3を放電し、負荷L1に電力を供給する。そして、ステップS201の判定に戻る。一方、ステップS202で第1閾値以下であると判定された場合(S202:YES)、自立運転を休止する(S203)。自立運転の休止は、例えば、蓄電池充放電制御部411のインバータ回路および制御回路への、蓄電池3からの電力供給を停止させる。このとき、蓄電池3から蓄電池充放電制御部411の通信回路および自立運転制御部5への電力供給は、停止させない。ステップS203にて自立運転が休止すると、図2に示す基本処理は中断する。
【0046】
次に、ステップS203で自立運転の休止中に、現在の供給可能電力Ptが、最重要負荷である負荷L1の消費電力に基づく第2閾値以上となったか否かを判定する。具体的には、図3に示すように、自立運転制御部5は、現在の供給可能電力Ptが、最重要負荷である負荷L1の消費電力PL1よりも一定値α以上大きくなったか否かを判定する(S204)。つまり、本実施形態では、先述の第2閾値は、消費電力PL1と一定値αとの和であり、自立運転制御部5は、ステップS204で、Pt≧PL1+αとなるか否かを判定する。なお、一定値αは、0(ゼロ)を含んでもよい。この場合、自立運転制御部5は、ステップS204において、現在の供給可能電力Ptが、消費電力PL1以上となったか否かを判定する。ステップS204で第2閾値以上でない(Pt<PL1+α)と判定された場合(S204:NO)、自立運転の休止を継続し、ステップS204の判定を繰り返し行う。一方、ステップS204で第2閾値以上である(Pt≧PL1+α)と判定された場合(S204:YES)、自立運転制御部5は、蓄電池3から蓄電池充放電制御部411のインバータ回路および制御回路への電力供給を再開して、自立運転を再開させる。例えば、EV充放電器22に新たに電気自動車12が接続されたり、太陽電池11への日射強度が高くなったりすると、現在の供給可能電力Ptが大きくなる。自立運転制御部5が、自立運転を再開すると、図2に示す基本処理も再開される。そして、自立運転制御部5は、ステップS201の判定に戻る。
【0047】
電力システムS1の作用および効果は、次の通りである。
【0048】
電力システムS1は、複数の負荷L1~Lnに電力供給可能な電力源1を備える。電力源1は、例えば、太陽電池11、電気自動車12または発電機13である。そして、自立運転制御部5は、電力システムS1の自立運転中、蓄電池3の充電率、電力源1の供給可能電力および負荷L1~Lnの各重要度に基づいて、連系盤C1から複数の負荷L1~Lnへの各電力供給路を、接続状態にするか遮断状態にするかを切り替える。この構成によると、蓄電池3の放電ができない程度まで蓄電池3の充電率が低下した場合でも、電力源1から電力供給可能な間は、自立運転を継続することができる。また、電力システムS1は、自立運転時に、電力源1の状態に応じて、各負荷への電力供給をできる限り継続させることが可能となる。
【0049】
電力システムS1では、自立運転制御部5は、各電力源1の現在の状態を示す情報(現状データ)を取得し、この現状データから各電力源1の現在の供給可能電力を推定する。また、自立運転制御部5は、各電力源1の将来の状態の変化予定を示す情報(変移予測データ)を取得し、この変移予測データから各電力源1の将来の供給可能電力を推定する。そして、自立運転制御部5は、各電力源1の現在の供給可能電力および将来の供給可能電力を用いて、供給可能電力のスケジュールを作成する。この構成によると、自立運転制御部5は、複数の負荷L1~Lnを、電力供給する投入負荷Loと電力供給する開放負荷Lxとに選別する際、各電力源1の将来の供給可能電力を加味することができる。これにより、自立運転制御部5は、将来の供給可能電力を参照しつつ自立運転を制御できるので、例えば、最重要負荷である負荷L1への電力供給時間をできる限り長くしつつ、可能な限り他の負荷L2~Lnにも電力供給するように自立運転を運用することが可能である。あるいは、例えば、電力供給を行う投入負荷Loの数が多くなるように自立運転を運用することも可能である。従って、電力システムS1は、各電力源1の将来の供給可能電力を加味した制御によって、自立運転を柔軟に運用できる。
【0050】
電力システムS1では、電力源1の現在の供給可能電力Ptが、最重要負荷である負荷L1の消費電力PL1を下回り、且つ、蓄電池3の充電率が、第1閾値(蓄電池充放電制御部411の通信回路のみを継続して動作させるための稼働継続下限値)以下となった場合、自立運転制御部5は、蓄電池充放電制御部411のインバータ回路および制御回路を停止させ、自立運転を休止する。この構成によると、蓄電池PCS4の補機損による蓄電池3の過放電を抑制できる。これにより、その後、電力源1の現在の供給可能電力が、最重要負荷(負荷L1)の消費電力に基づく第2閾値(消費電力PL1と一定値αとの和)以上となった場合、停止していた自立運転制御部5の一部(インバータ回路および制御回路)を再稼働させ、自立運転を再開させることが可能となる。つまり、自立運転を、ユーザが操作することなく、自動で再開させることができる。また、蓄電池3が過放電すると、蓄電池PCS4が復帰不可能な状態となる。そのため、蓄電池PCS4によって蓄電池3を充電できなくなるので、ユーザが蓄電池3の設置場所まで行き、蓄電池3を別途充電する必要がある。つまり、蓄電池充放電制御部411の一部を停止させて、蓄電池3の過放電を抑制することは、電力システムS1は、自立運転が休止した状態から自立運転の早急な復帰を可能にする。
【0051】
電力システムS1において、各負荷L1~Lnの消費電力の変移予定が分かる場合、自立運転制御部5は、自立運転制御において、各負荷L1~Lnの消費電力の変移予定をさらに考慮してもよい。例えば、複数の負荷L1~Lnがある事業所に設置されたものとしたとき、複数の負荷L1~Lnのうちのいくつか(例えば照明または個人の業務パソコンなど)は、平日の日中と、平日の夜間または休日とで、消費電力が変動する。一方、複数の負荷L1~Lnのいくつか(例えばメインシステムの電源)は、平日、休日関わらず、消費電力が一定である。このような、各負荷L1~Lnの消費電力の変移予定を考慮すれば、さらに柔軟な自立運転の運用が可能となる。
【0052】
電力システムS1において、計画停電によって停電スケジュール(電力系統Kからの解列予定)が分かる場合、自立運転制御部5は、自立運転制御において、停電スケジュールをさらに考慮してもよい。このような、停電スケジュールを考慮すれば、例えば自立運転前の系統連系時に、蓄電池3の充電率を大きくすることができる。また、例えば停電から復帰するまでの時間が分かるので、蓄電池3の放電を最大限活用することもできる。
【0053】
電力システムS1では、自立運転制御部5が蓄電池PCS4に設けられた例を示したが、自立運転制御部5は、複数の電力制御装置2(太陽光PCS21、EV充放電器22および発電機制御器23)のいずれかに設けられてもよい。つまり、太陽光PCS21、EV充放電器22または発電機制御器23のいずれかが、自立運転制御を行ってもよい。この場合、蓄電池PCS4ではなく、自立運転制御部5が設けられた電力制御装置2が電圧源として動作する。あるいは、自立運転制御部5は、それ単体で1つの装置として構成されてもよい。
【0054】
電力システムS1では、複数の電力源1を備えた例を示したが、電力源1の数は、1つでもよい。例えば、蓄電池3に対して、太陽電池11だけが併設された構成、電気自動車12だけが併設された構成あるいは発電機13だけが併設された構成であってもよい。
【0055】
電力システムS1において、各電力源1の現在の供給可能電力のみを考慮して、投入負荷Loと開放負荷Lxとを選別してもよい。この構成では、自立運転制御部5は、各電力源1の将来の供給可能電力を推定しなくてもよいし、供給可能電力のスケジュールを作成しなくてもよい。この変形例に係る電力システムにおいても、自立運転中、電力源1から供給される電力を各負荷L1~Lnに供給可能であるので、蓄電池3の放電ができない程度まで蓄電池3の充電率が低下した場合でも、電力源1から電力供給可能な間は、自立運転を継続することができる。また、当該変形例に係る電力システムにおいても、自立運転時に、電力源1の状態に応じて、各負荷への電力供給をできる限り継続させることが可能となる。
【0056】
電力システムS1において、供給可能電力のスケジュールを作成する際、現在の供給可能電力を考慮しなくてもよい。この変形例に係る電力システムにおいても、電力源1から電力供給可能な間は、自立運転を継続することができる。また、当該変形例に係る電力システムにおいても、自立運転時に、電力源1の状態に応じて、各負荷への電力供給をできる限り継続させることが可能となる。ただし、現在の供給可能電力を考慮した方が、現在時点での供給可能電力の推定値が、実際の供給可能電力に近い値となるので、供給可能電力の誤差(過不足)が抑制される。
【0057】
本開示に係る電力システムは、上記した実施形態に限定されるものではない。本開示の電力システムの各部の具体的な構成は、種々に設計変更自在である。
【符号の説明】
【0058】
S1:電力システム、1:電力源、3:蓄電池、4:蓄電池パワーコンディショナ(蓄電池PCS)、5:自立運転制御部、11:太陽電池、12:電気自動車、13:発電機、411:蓄電池充放電制御部、K:電力系統、L1~Ln,Li:負荷
図1
図2
図3