IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ルネサスエレクトロニクス株式会社の特許一覧

特開2023-96404半導体装置およびSRAM回路のテスト方法
<>
  • 特開-半導体装置およびSRAM回路のテスト方法 図1
  • 特開-半導体装置およびSRAM回路のテスト方法 図2
  • 特開-半導体装置およびSRAM回路のテスト方法 図3
  • 特開-半導体装置およびSRAM回路のテスト方法 図4
  • 特開-半導体装置およびSRAM回路のテスト方法 図5
  • 特開-半導体装置およびSRAM回路のテスト方法 図6
  • 特開-半導体装置およびSRAM回路のテスト方法 図7
  • 特開-半導体装置およびSRAM回路のテスト方法 図8
  • 特開-半導体装置およびSRAM回路のテスト方法 図9A
  • 特開-半導体装置およびSRAM回路のテスト方法 図9B
  • 特開-半導体装置およびSRAM回路のテスト方法 図9C
  • 特開-半導体装置およびSRAM回路のテスト方法 図9D
  • 特開-半導体装置およびSRAM回路のテスト方法 図10
  • 特開-半導体装置およびSRAM回路のテスト方法 図11
  • 特開-半導体装置およびSRAM回路のテスト方法 図12
  • 特開-半導体装置およびSRAM回路のテスト方法 図13
  • 特開-半導体装置およびSRAM回路のテスト方法 図14
  • 特開-半導体装置およびSRAM回路のテスト方法 図15
  • 特開-半導体装置およびSRAM回路のテスト方法 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023096404
(43)【公開日】2023-07-07
(54)【発明の名称】半導体装置およびSRAM回路のテスト方法
(51)【国際特許分類】
   G11C 29/50 20060101AFI20230630BHJP
   G11C 11/417 20060101ALI20230630BHJP
   G11C 29/12 20060101ALI20230630BHJP
   G11C 5/14 20060101ALI20230630BHJP
【FI】
G11C29/50 150
G11C11/417 100
G11C29/12
G11C5/14
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2021212146
(22)【出願日】2021-12-27
(71)【出願人】
【識別番号】302062931
【氏名又は名称】ルネサスエレクトロニクス株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】長田 俊哉
(72)【発明者】
【氏名】松嶋 潤
【テーマコード(参考)】
5B015
5L206
【Fターム(参考)】
5B015HH01
5B015HH03
5B015KA06
5B015KA23
5B015KB64
5B015MM07
5B015RR01
5L206AA02
5L206DD36
5L206DD50
5L206EE02
5L206FF04
5L206FF05
5L206HH04
(57)【要約】
【課題】ユーザの使用中に半導体装置に搭載されたSRAM回路の劣化度をテストする。
【解決手段】半導体装置に搭載されたSRAM回路100において、電源電圧低減回路30~32は、外部電源電圧VDDを低減させた低減電圧を生成する。第1電源電圧選択回路35は、ワード線ドライバWDに供給する駆動電圧として外部電源電圧および低減電圧の一方を選択する。第2電源電圧選択回路34は、メモリセルMCに動作電圧を供給する電源線PLの電圧として外部電源電圧および低減電圧の一方を選択する。
【選択図】図1
【特許請求の範囲】
【請求項1】
外部電源電圧に基づいて動作するSRAM(Static Random Access Memory)回路を備えた半導体装置であって、
前記SRAM回路は、
第1方向に延在する第1ビット線対と、
前記第1方向と交差する第2方向に延在する第1ワード線と、
前記第1ワード線を駆動する第1ワード線ドライバと、
前記第1ビット線対および前記第1ワード線と電気的に接続される第1メモリセルと、
前記第1メモリセルに動作電圧を供給する第1電源線と、
前記外部電源電圧を低減させた低減電圧を生成する電源電圧低減回路と、
前記第1ワード線ドライバの駆動電圧として、前記外部電源電圧または前記低減電圧の一方を選択する第1電源電圧選択回路と、
前記第1電源線に供給する前記動作電圧として、前記外部電源電圧または前記低減電圧の一方を選択する第2電源電圧選択回路とを含む、半導体装置。
【請求項2】
前記SRAM回路は、前記SRAM回路の動作を制御する内部コントローラをさらに含み、
前記内部コントローラは、テストモード時に前記第1メモリセルにテストデータを書き込む場合に、前記第1ワード線ドライバの駆動電圧として前記第1電源電圧選択回路に前記低減電圧を選択させ、前記第1電源線に供給する電圧として前記外部電源電圧を選択させ、
前記内部コントローラは、前記テストモード時に前記第1メモリセルから前記テストデータを読み出す場合に、前記第1ワード線ドライバの駆動電圧として前記第1電源電圧選択回路に前記外部電源電圧を選択させ、前記第1電源線に供給する電圧として前記第2電源電圧選択回路に前記低減電圧を選択させる、請求項1に記載の半導体装置。
【請求項3】
前記SRAM回路は、
前記第1方向に延在する第2ビット線対と、
前記第2ビット線対および前記第1ワード線と電気的に接続される第2メモリセルと、
前記第2メモリセルに動作電圧を供給する第2電源線と、
前記第2電源線に供給する前記動作電圧として、前記外部電源電圧または前記低減電圧の一方を選択する第3電源電圧選択回路とを含み、
前記内部コントローラは、前記テストモード時に前記第1メモリセルから前記テストデータを読み出す場合に、前記第2電源線に供給する電圧として前記第3電源電圧選択回路に前記低減電圧を選択させる、請求項2に記載の半導体装置。
【請求項4】
前記電源電圧低減回路は、前記低減電圧として、第1の低減電圧と、前記第1の低減電圧よりも低電圧の第2の低減電圧とを選択可能である、請求項2に記載の半導体装置。
【請求項5】
前記半導体装置は、BIST(Built-In Self-Test)回路をさらに備え、
前記BIST回路は、前記テストモード時に前記第1メモリセルに書き込まれたテストデータと、前記テストモード時に前記テストデータの書き込み後に前記第1メモリセルから読み出された前記テストデータとが一致するか否かを判定し、判定結果を出力する、請求項4に記載の半導体装置。
【請求項6】
前記半導体装置は、前記BIST回路から前記判定結果を受信する主コントローラをさらに備え、
前記主コントローラは、前記半導体装置の使用開始から前記書き込まれたテストデータと前記読み出したテストデータとの間に不一致が生じるまでの経過時間を記録する、請求項5に記載の半導体装置。
【請求項7】
前記主コントローラは、前記低減電圧として前記第1の低減電圧が選択された場合の前記経過時間と、前記低減電圧として前記第2の低減電圧が選択された場合の前記経過時間との違いに基づいて、前記半導体装置の前記SRAM回路の故障時期を予測する、請求項6に記載の半導体装置。
【請求項8】
前記主コントローラは、前記予測した故障時期を前記半導体装置の外部に出力する、請求項7に記載の半導体装置。
【請求項9】
前記電源電圧低減回路は、
前記外部電源電圧を受ける電源ノードと前記低減電圧を出力する出力ノードとの間に接続された第1トランジスタと、
基準電圧を受けるグランドノードと前記出力ノードとの間に接続された第2トランジスタとを含み、
前記第1トランジスタの電流駆動能力は、前記第2トランジスタの電流駆動能力よりも大きい、請求項1に記載の半導体装置。
【請求項10】
前記電源電圧低減回路は、
前記外部電源電圧を受ける電源ノードと前記低減電圧を出力する出力ノードとの間に接続された第1トランジスタと、
基準電圧を受けるグランドノードと前記出力ノードとの間に接続された第2トランジスタと、
前記第2トランジスタと並列に接続された第3トランジスタとを含み、
前記第1トランジスタの電流駆動能力は、前記第2トランジスタの電流駆動能力よりも大きく、前記第3トランジスタの電流駆動能力よりも大きく、
前記第3トランジスタの電流駆動能力は、前記第2トランジスタの電流駆動能力よりも大きい、請求項4に記載の半導体装置。
【請求項11】
SRAM回路の第1メモリセルに接続された第1ワード線を駆動する第1ワード線ドライバに、駆動電圧として外部電源電圧を低減した第1低減電圧を供給し、前記第1メモリセルに動作電圧を供給する第1電源線に前記外部電源電圧を供給した状態で、前記第1メモリセルに第1テストデータを書き込むステップと、
前記第1ワード線ドライバに駆動電圧として前記外部電源電圧を供給し、前記第1電源線に前記第1低減電圧を供給した状態で、前記書き込んだ第1テストデータを前記第1メモリセルから読み出すステップと、
前記書き込んだ第1テストデータと前記読み込んだ第1テストデータとが一致するか否かを判定するステップとを備える、SRAM回路のテスト方法。
【請求項12】
前記第1ワード線ドライバに駆動電圧として前記外部電源電圧を低減した前記第1低減電圧よりも低い第2低減電圧を供給し、前記第1電源線に前記外部電源電圧を供給した状態で、前記第1メモリセルに第2テストデータを書き込むステップと、
前記第1ワード線ドライバに駆動電圧として前記外部電源電圧を供給し、前記第1電源線に前記第2低減電圧を供給した状態で、前記書き込んだ第2テストデータを前記第1メモリセルから読み出すステップと、
前記書き込んだ第2テストデータと前記読み込んだ第2テストデータとが一致するか否かを判定するステップと、
前記SRAM回路の使用開始から前記第1テストデータおよび前記第2テストデータの各々に不一致が生じるまでの経過時間を計測するステップと、
前記計測した経過時間に基づいて、前記SRAM回路の故障時期を予測するステップとを備える、請求項11に記載のSRAM回路のテスト方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、半導体装置およびSRAM回路のテスト方法に関し、たとえば、SRAM(Static Random Access Memory)の寿命を予測する技術に関する。
【背景技術】
【0002】
半導体装置が故障する前に、半導体装置が故障する可能性があることをユーザに通知する技術に関して、たとえば、特開2017-173242号公報(特許文献1)が知られている。
【0003】
具体的に、この文献に開示された半導体装置は、機能ユニットと、寿命予測回路とを備える。機能ユニットの1つは、中央処理回路である。寿命予測回路は、半導体装置の電源電圧を低下させて機能ユニットについてのテストを実行することによって、機能ユニットの劣化度を取得する。寿命予測回路は、劣化度が予め定められた閾値を超える場合に、半導体装置の寿命が近いことをユーザに通知する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2017-173242号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記の特開2017-173242号公報(特許文献1)に開示された技術の場合、劣化予測テストを実行するときには半導体装置全体の電源電圧を低下する必要がある。このため、劣化予測テストは半導体装置のパワーオン時のみしか実行できず、ユーザの使用中に半導体装置の劣化度をテストできない。
【0006】
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【課題を解決するための手段】
【0007】
一実施形態の半導体装置に搭載されたSRAM回路は、電源電圧低減回路と、第1電源電圧選択回路と、第2電源電圧選択回路とを備える。電源電圧低減回路は、外部電源電圧を低減させた低減電圧を生成する。第1電源電圧選択回路は、ワード線ドライバに供給する駆動電圧として外部電源電圧および低減電圧の一方を選択する。第2電源電圧選択回路は、メモリセルに動作電圧を供給する電源線の電圧として外部電源電圧および低減電圧の一方を選択する。
【発明の効果】
【0008】
上記の実施形態によれば、ユーザの使用中に半導体装置に搭載されたSRAM回路の劣化度をテストできる。
【図面の簡単な説明】
【0009】
図1】SRAM回路の全体構成を概略的に示す図である。
図2】動作モードに応じたワード線WLおよび電源線PLの電位を表形式でまとめた図である。
図3】データ読み出し時に電源線に低減電圧を与える効果について説明するための図である。
図4】データ書き込み時にワード線に低減電圧を与える効果について説明するための図である。
図5図1の電源電圧低減回路および電源電圧選択回路の回路構成の一例を示す回路図である。
図6】第1の実施形態の半導体装置の全体構成を示すブロック図である。
図7】パワーオン診断の手順を示すフローチャートである。
図8】ランタイム診断の手順を示すフローチャートである。
図9A図8の劣化予測テストの実施手順の一例を説明するための図である。
図9B図8の劣化予測テストの実施手順の一例を説明するための図である。
図9C図8の劣化予測テストの実施手順の一例を説明するための図である。
図9D図8の劣化予測テストの実施手順の一例を説明するための図である。
図10】第1の実施形態の効果を説明するための図である。
図11】第2の実施形態のSRAM回路100Aにおいて、電源電圧低減回路の構成の一例を示す図である。
図12】テストモード信号TM1,TM2に応じた低減電圧大きさを説明するための図である。
図13】第2の実施形態の半導体装置の全体構成を示すブロック図である。
図14】第2の実施形態において、ランタイム診断の手順を示すフローチャートである。
図15】SRAM回路の故障時期の予測方法について説明するための図である。
図16図13の半導体装置において、主コントローラが故障時刻を予測する手順を示すフローチャートである。
【発明を実施するための形態】
【0010】
以下、SRAMの劣化予測に関する各実施形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰り返さない場合がある。
【0011】
<第1の実施形態>
[SRAMの概略構成]
図1は、SRAM回路の全体構成を概略的に示す図である。本明細書では、SRAM回路をSRAMマクロ(MACRO)とも称する。
【0012】
図1に示すように、SRAM回路100は、メモリセルMCが行列状に配列されたメモリセルアレイ10を備える。図1の例では、(n+1)行、(m+1)列のメモリセルMCが設けられている。以下、メモリセルアレイ10の行方向をX方向とも称し、メモリセルアレイ10の列方向をY方向とも称する。各メモリセルMCの詳細な構成については、図3を参照して後述する。
【0013】
メモリセルアレイ10の行に対応してワード線WL0~WLnが設けられる。ワード線WL0~WLnは、対応する行の各メモリセルMCに電気的に接続される。メモリセルアレイ10の列に対応してビット線対BL0,/BL0~BLm,/BLmが設けられる。ビット線対BL0,/BL0~BLm,/BLmの各々は、対応する列の各メモリセルMCに電気的に接続される。さらに、メモリセルアレイ10の列に対応して電源線PL0~PLmが設けられる。電源線PL0~PLmの各々は、対応する列の各メモリセルMCに動作電圧を供給する。なお、後述するように、動作電圧として、外部電源電圧VDDと、外部電源電圧VDDを低下させた低減電圧VDD-αとを選択的に供給できる。
【0014】
以下の説明において、ワード線WL0~WLnについて、総称する場合または任意の1つを示す場合にワード線WLと記載する。ビット線対BL0,/BL0~BLm,/BLmについて、総称する場合または任意の1対を示す場合にビット線対BL,/BLと記載する。電源線PL0~PLmについて、総称する場合または任意の1つを示す場合に電源線PLと記載する。
【0015】
SRAM回路100は、上記のワード線WLを制御するために、行デコーダ(ROW DECODER)21と、ワード線ドライバWD0~WDnとを備える。行デコーダ21は、行アドレス信号RAに従って行選択信号を生成する。ワード線ドライバWD0~WDnの各々は、行選択信号に従って、ワード線WL0~WLnのうちそれぞれ対応するワード線を電源電圧に駆動する。ワード線ドライバWD0~WDnは、電源線25に接続されることによって電源電圧の供給を受ける。後述するように、ワード線ドライバWD0~WDnに供給される電源電圧も、外部電源電圧VDDと、外部電源電圧VDDを低下させた低減電圧VDD-αとを選択できる。なお、以下の説明において、ワード線ドライバWD0~WDnについて、総称する場合または任意の1つを示す場合にワード線ドライバWDと記載する。
【0016】
さらに、SRAM回路100は、列デコーダ(COLUMN DECODER)22と、書き込み回路(WRITE CIRCUIT)23と、読み出し回路(READ CIRCUIT)24とを備える。これらは、上記のビット線対BL,/BLの電圧を制御するために設けられる。具体的に、列デコーダ22は、列アドレス信号CAに従ってメモリセルアレイ10の列を選択する。通常、複数列が一度に選択される。そして、列デコーダ22は、データ書き込み時に選択列のビット線対BL,/BLと書き込み回路23とを電気的に接続する。列デコーダ22は、データ読み出し時に選択列のビット線対BL,/BLと読み出し回路24とを電気的に接続する。
【0017】
書き込み回路23は、入力バッファおよび書き込みドライブ回路を含み、データ書き込み時、外部からの書き込みデータDIに従って内部書き込みデータを生成する。書き込みドライブ回路は、内部書き込みデータに従って、選択列のビット線対BL,/BLの一方をH(High)レベルに駆動し、他方をL(Low)レベルに駆動する。読み出し回路24は、センスアンプ回路および出力バッファを含む。データ読み出し時、センスアンプは、選択列のビット線対BL,/BLに生じた電位差を検知して増幅する。出力バッファは、センスアンプによって検知し増幅された電位差に基づいて外部読み出しデータDOを生成する。
【0018】
さらに、SRAM回路100は、電源電圧低減回路(VDD REDN.)30~32と、電源電圧選択回路(VDD SELECT)34_0~34_mおよび35とを備える。これらの回路はテストモード時に使用される。
【0019】
電源電圧低減回路30~32の各々は、外部から供給された外部電源電圧VDDを低減させた低減電圧VDD-αを生成し、生成した低減電圧VDD-αを電圧供給線33に出力する。図1の例では、電源電圧低減回路30~32および電圧供給線33は、メモリセルアレイ10と行デコーダ21との間にY方向に沿って配置される。電圧供給線33は、さらに、メモリセルアレイ10と列デコーダ22との間にX方向に沿って配置される。Y方向の両端の電源電圧低減回路30,32は、テストモード時に常に動作する。電源電圧低減回路31は、テストモード時に選択的に動作する。電源電圧低減回路31は、図1では代表的に1個のみ示されているが、実際には電源電圧低減回路30と32との間に複数個設けられている。
【0020】
電源電圧選択回路34_1~34_mは、メモリセルアレイ10と列デコーダ22との間に、メモリセルアレイ10の列ごとに個別に配置される。以下の説明において、電源電圧選択回路34_1~34_mを総称する場合または任意の1つを示す場合に、電源電圧選択回路34と記載する。各電源電圧選択回路34は、外部電源電圧VDDと電圧供給線33から供給された低減電圧VDD-αとのうち一方を電源電圧として選択する。各電源電圧選択回路34の各々は、選択した電源電圧を対応する電源線PLに供給する。ここで、各電源電圧選択回路34は、テストモードかつデータ読み出しモード時に、対応する列のメモリセルMCに対して低減電圧VDD-αを選択する。電源電圧選択回路34は、その他の場合に外部電源電圧VDDを選択する。
【0021】
電源電圧選択回路35は、メモリセルアレイ10と行デコーダ21との間に配置される。図1では、代表的に1個のみ示されているが、実際にはY方向に複数個配列される。また、図1に示すように、電源電圧選択回路35は、電源電圧選択回路34に対してX方向に隣接して配置される。電源電圧選択回路35は、外部電源電圧VDDと電圧供給線33から供給された低減電圧VDD-αとのうち一方を電源電圧として選択する。電源電圧選択回路35は、選択した電源電圧をワード線ドライバWD用の電源線25に供給する。これにより、行デコーダ21によって選択された行のワード線WLには選択された電源電圧(すなわち、VDDまたはVDD-α)が供給される。ここで、電源電圧選択回路35は、テストモードかつデータ書き込みモード時に、電源電圧として低減電圧VDD-αを選択する。電源電圧選択回路35は、その他の場合に外部電源電圧VDDを選択する。
【0022】
さらに、SRAM回路100は、上記の各構成要素を全体的に制御するコントローラ()20を備える。コントローラ20は、SRAM回路100の外部から制御信号としてアドレス信号AD、書き込みイネーブル信号WE、およびテストモード信号TMとを受ける。コントローラ20は、アドレス信号ADから行アドレス信号RAおよび列アドレス信号CAを生成する。書き込みイネーブル信号WEがアサートされているときデータ書き込みモードであり、書き込みイネーブル信号WEがネゲートされているときデータ読み出しモードである。また、テストモード信号TMがアサートされているときテストモードであり、テストモード信号TMがネゲートされているとき通常モードである。
【0023】
図2は、動作モードに応じたワード線WLおよび電源線PLの電位を表形式でまとめた図である。図1を参照して説明したように、モード(MODE)には、ノーマル(NORMAL)モードとテスト(TEST)モードとがある。また、RAMの動作(OPERATION)にはデータ書き込み(WRITE)とデータ読み出し(READ)とがある。
【0024】
図2に示すように、ノーマルモードでは、ワード線電位(WL POTENTIAL)および電源線電位(PL POTENTIAL)のいずれも外部電源電位VDDである。テストモードかつデータ書き込み動作時には、選択行のワード線電位が低減電位VDD-αに設定される。この場合、メモリセルMC用の電源線電位は外部電源電位VDDのままである。テストモードかつデータ読み出し動作時には、メモリセルMC用の電源線電位が低減電位VDD-αに設定される。この場合、ワード線電位は外部電源電位VDDのままである。なお、以下の説明では、特に区別を要しない場合には、電位と電圧(基準電位に対する電位差)とを同一視する。
【0025】
次に、上記の低減電圧VDD-αを電源線PLおよびワード線WLに与えることによる効果について説明する。以下では、まず図3を参照して、SRAMのメモリセルの構成と基本的な動作について簡単に説明し、その後、低減電圧VDD-αを与える効果について説明する。以下に詳しく説明するように、低減電圧VDD-αを与えることによって、SRMMのメモリセルMCの動作マージンを厳しく(すなわち、小さく)する効果がある。
【0026】
[SRAMのメモリセルの構成および基本的な動作]
図3を参照して、メモリセルMC0は、2個のCMOS(Complementary Metal Oxide Semiconductor)インバータからなるラッチ回路を基本構成とする。さらに、メモリセルMC0は、ラッチ回路に接続される2個のNMOS(N-channel MOS)のアクセストランジスタ45,46を含む。他のメモリセルMCも同じ構成を有している。
【0027】
ラッチ回路は、第1のCMOSインバータおよび第2のCMOSインバータによって構成される。第1のCMOSインバータは、電源線PL0とグランドVSSとの間に直列に接続されたPMOS(P-channel MOS)の負荷トランジスタ41およびNMOSの駆動トランジスタ43を含む。第2のCMOSインバータは、電源線PL0とグランドVSSとの間に直列に接続されたPMOSの負荷トランジスタ42およびNMOSの駆動トランジスタ44を含む。負荷トランジスタ41および駆動トランジスタ43の接続ノード47は、負荷トランジスタ42および駆動トランジスタ44のゲートに接続される。負荷トランジスタ42および駆動トランジスタ44の接続ノード48は、負荷トランジスタ41および駆動トランジスタ43のゲートに接続される。
【0028】
アクセストランジスタ45は、接続ノード47とビット線BL0(TRUE)との間に接続される。アクセストランジスタ46は、接続ノード48とビット線/BL0(BAR)との間に接続される。アクセストランジスタ45,46のゲートは、共通のワード線WLに接続される。
【0029】
メモリセルMC0は、接続ノード47,48に相補となる電圧(一方がHレベルで他方がLレベルとなる電圧)を保持する。以下、書き込み動作の手順を簡単に説明する。たとえば、接続ノード47にHレベルの電圧を保持させ、接続ノード48にLレベルの電圧を保持させる場合について説明する。この場合、最初に、ビット線BL0の電圧をHレベルに設定し、ビット線/BL0の電圧をLレベルに設定する。次に、ワード線WLの電圧をLレベルからHレベルに変化させた状態を所定時間保持することによって、接続ノード47の電圧はHレベルに変化し、接続ノード48の電圧はLレベルに変化する。
【0030】
次に、読み出し動作の手順を簡単に説明する。接続ノード47の電圧はHレベルに予め設定され、接続ノード48の電圧はLレベルに予め設定されているとする。最初に、ビット線対BL0,/BL0を電源電圧にプリチャージ(VDD PRECHARGED)する。その後、ワード線WLの電圧をLレベルからHレベルに変化させると、Hレベルの電圧を保持している接続ノード47に接続されたビット線BLの電圧は変化しないのに対して、Lレベルの電圧を保持している接続ノード48に接続されたビット線/BL0の電圧は低下する。このビット線BL0,/BL0間の電圧差を読み出し回路24に設けられた図示しないセンスアンプによって増幅することによって、メモリセルMCに保持されたデータを読み出すことができる。
【0031】
[データ読み出し時に電源線に低減電圧VDD-αを与える効果]
次に、テストモード(テストモード信号TM=Hレベル)かつデータ読み出し時(書き込みイネーブル信号WE=Lレベル)に、電源線PLに低減電圧VDD-αを与える効果について説明する。ワード線WLの電圧は外部電源電圧VDDから下げない。
【0032】
図3は、データ読み出し時に電源線に低減電圧を与える効果について説明するための図である。図3には、選択行である同一のワード線WLに接続された2個のメモリセルMC0,MC1が示されている。メモリセルMC0は選択列(SELECTED COLUMN)のメモリセルであり、メモリセルMC1は非選択列(DESELECTED COLUMN)のメモリセルである。メモリセルMC0,MC1の各々において、接続ノード47にHレベルの電圧が保持され、接続ノード48にLレベルの電圧が保持されている。
【0033】
テストモード(TM=H)かつデータ読み出し時(WE=L)の場合、電源線PL0,PL1の電圧が外部電源電圧VDDから低減電圧VDD-αに低減される。この場合、メモリセルMC0,MC1において、接続ノード48がLレベルであるために、負荷トランジスタ41がオン状態になる。この結果、図3において太線で示す接続ノード47を含む配線部分の電圧が低減電圧VDD-αになる。
【0034】
データ読み出し時には、まず、ビット線対BL0,/BL0およびBL1,/BL1が外部電源電圧VDDにプリチャージされる。その後、ワード線WLに外部電源電圧VDDが印加される。これにより、メモリセルMC0,MC1の各々において、アクセストランジスタ45,46が導通状態に切り替わる。
【0035】
このとき、選択列のメモリセルMC0では、接続ノード47の電圧が低減電圧VDD-αであるために駆動トランジスタ44が十分にオン状態にならない場合がある。この場合、ビット線/BL0から駆動トランジスタ44を通ってグランドVSSに流れる放電電流49が制限される。この結果、ビット線/BL0の放電(DISCHARGED)が不十分になり、ビット線対BL0,/BL0の電圧差が十分でない場合には、読み出し回路24による検出に誤りが生じる可能性がある。すなわち、低減電圧VDD-αを電源線PL0に与えることによって、選択列のメモリセルMC0の読み出しマージンを若干厳しくできる。
【0036】
非選択列のメモリセルMC1においても同様である。具体的に、接続ノード47の電圧が低減電圧VDD-αであるために駆動トランジスタ44が十分にオン状態にならずに、ビット線/BL0の放電が制限される場合がある。この場合、接続ノード48の電圧はプリチャージ電圧VDDからほとんど低下しない。結果として、負荷トランジスタ41が非導通状態に切り替わり、駆動トランジスタ43が導通状態に切り替わることにより、非選択列のメモリセルMC1の記憶データが反転する。すなわち、低減電圧VDD-αを電源線PL0に与えることによって、非選択列のメモリセルMC1のスタティックノイズマージンを若干厳しくできる。
【0037】
詳しくは後述するように、上記のように動作マージンを厳しくした状態で読み出しテストを行う。読み出しテストでは、既に書き込まれたデータが正しく読み出されるか、さらに非選択列のメモリセルMCにおいてデータ反転が起こらないかがテストされる。これにより、現時点で正常なメモリセルであっても、将来的に故障が起こるか否かの劣化予測テストが実施できる。
【0038】
[データ書き込み時にワード線に低減電圧VDD-αを与える効果]
次に、テストモード(テストモード信号TM=Hレベル)かつデータ書き込み時(書き込みイネーブル信号WE=Hレベル)に、ワード線WLに低減電圧VDD-αを与える効果について説明する。電源線PLの電圧は外部電源電圧VDDから下げない。
【0039】
図4は、データ書き込み時にワード線に低減電圧を与える効果について説明するための図である。図4には、選択行であるワード線WLに接続されたメモリセルMC0が示されている。メモリセルMC0は選択列のメモリセルである。非選択列のメモリセルはテストには関係しない。
【0040】
データ書き込み前のメモリセルMC0において、接続ノード47にHレベルの電圧が保持され、接続ノード48にLレベルの電圧が保持されている。保持データの論理値と逆の論理値をメモリセルMC0に書き込むために、ビット線BL0がLレベル(VSS)に設定され、ビット線/BL0がHレベル(VDD)に設定される。この状態で、ワード線WLにHレベルの電圧が供給される。テストモード(TM=H)かつデータ書き込み時(WE=H)の場合、ワード線WLの電圧は低減電圧VDD-αであるので、アクセストランジスタ45が十分にオン状態にならない場合がある。この場合、接続ノード47からアクセストランジスタ45を通ってビット線BL0に流れ込む放電電流50が制限される。結果として、接続ノード48の電圧が電源電圧VDDからほとんど変化せず、記憶データの反転が生じない。すなわち、低減電圧VDD-αをワード線WLに与えることによって、選択列のメモリセルMC0の書き込みマージンを若干厳しくできる。
【0041】
詳しくは後述するように、上記のように書き込みマージンを厳しくした状態で書き込みテストを行う。書き込みテストでは、メモリセルMC書き込んだデータを読み出すことによってデータが正しく書き込まれているか否かがテストされる。これにより、現時点で正常なメモリセルであっても、将来的に故障が起こるか否かの劣化予測テストが実施できる。
【0042】
[電源電圧低減回路および電源電圧選択回路の一例]
図5は、図1の電源電圧低減回路および電源電圧選択回路の回路構成の一例を示す回路図である。以下、図5を参照して、図1の電源電圧低減回路30~32および電源電圧選択回路34,35の回路構成の一例について説明する。
【0043】
なお、図5では、電源線PL0に接続される電源電圧選択回路34を代表的に示しているが、他の電源線PLに接続される電源電圧選択回路34の構成も同様である。また、図5では、図1のコントローラ20のうち、電源電圧低減回路30~32および電源電圧選択回路34,35の制御に関係する部分の回路構成が示されている。具体的に、コントローラ20は、フリップフロップ(FF)80、インバータ81~87、NOR回路88,89、およびNAND回路90を含む。これらの論理回路の構成は一例であって、同様の機能を奏する他の構成であってもよい。
【0044】
図5に示すように、電源電圧低減回路30~32の各々は、互いに直列に接続されたPMOSトランジスタ60,61を含む。PMOSトランジスタ60は、外部電源電圧VDDが与えられる電源ノード(以下、VDDノードと称する)と電圧供給線33との間に接続される。PMOSトランジスタ61は、基準電圧VSSが与えられるグランドと電圧供給線33との間に接続される。
【0045】
ここで、PMOSトランジスタ60の電流供給能力は大きく、PMOSトランジスタ61の電流供給能力は小さい。たとえば、PMOSトランジスタ60のチャネル幅Wとチャネル長Lとの比W/L幅は、PMOSトランジスタ61の比W/Lよりも大きく形成される。この電流供給能力の違いにより、PMOSトランジスタ60,61が両方ともオンのとき、電圧供給線33には外部電源電圧VDDよりも低い電圧である低減電圧VDD-αが供給される。
【0046】
電源電圧低減回路30,32の場合、PMOSトランジスタ60のゲートには基準電圧VSSが入力され、PMOSトランジスタ61のゲートは信号線66に接続される。信号線66には、インバータ82,83,84を介してテストモード信号TMが供給される。したがって、非テストモード時(TM=Lレベル)には、PMOSトランジスタ60はオン状態になり、PMOSトランジスタ61はオフ状態になる。この場合、電源電圧低減回路30,32は、外部電源電圧VDDを電圧供給線33に供給する。一方、テストモード時(TM=Hレベル)には、PMOSトランジスタ60,61は共にオン状態になる。この場合、電源電圧低減回路30,32は、低減電圧VDD-αを電圧供給線33に供給する。
【0047】
電源電圧低減回路31の場合、PMOSトランジスタ60,61の各ゲートは信号線67に接続される。信号線67には、テストモード信号TMをインバータ82により反転した信号と、制御信号CNTL1をインバータ85により反転した信号とのOR演算結果が入力される。図5の場合、OR演算はNOR回路89とインバータ87との直列接続によって実現される。したがって、テストモード(TM=Hレベル)かつ制御信号CNTL1がHレベルのとき、PMOSトランジスタ60,61はオン状態になる。このように、電源電圧低減回路31は、テストモード時(TM=Hレベル)に、制御信号CNTL1に応じて一時的に低減電圧VDD-αを生成するように制御される。その他の場合、電源電圧低減回路31は電圧供給を行わない。
【0048】
電源電圧選択回路34は、PMOSトランジスタ75,76と、インバータ77とを含む。PMOSトランジスタ75は、VDDノードと電源線PL0との間に接続される。PMOSトランジスタ76は、電圧供給線33と電源線PL0との間に接続される。PMOSトランジスタ75のゲートには、フリップフロップ(FF)80およびインバータ81を介して書き込みイネーブル信号WEが入力される。PMOSトランジスタ76のゲートには、フリップフロップ80およびインバータ81,77を介して書き込みイネーブル信号WEが入力される。
【0049】
上記の接続によれば、書き込み動作時(WE=Hレベル)には、PMOSトランジスタ75がオン状態になり、PMOSトランジスタ76がオフ状態になる。したがって、電源線PL0には、外部電源電圧VDDが供給される。一方、読み出し動作時(WE=Lレベル)には、PMOSトランジスタ75がオフ状態になり、PMOSトランジスタ76がオン状態になる。したがって、電源線PL0には電圧供給線33の電圧が供給される。電圧供給線33の電圧は、テストモード時(TM=Hレベル)には低減電圧VDD-αであり、非テストモード時(TM=Lレベル)には外部電源電圧VDDである。
【0050】
電源電圧選択回路35は、PMOSトランジスタ70,71と、NAND回路72,73と、インバータ74とを含む。PMOSトランジスタ70は、VDDノードとワード線ドライバWD0用の電源線25との間に接続される。PMOSトランジスタ71は、電圧供給線33と電源線25との間に接続される。PMOSトランジスタ70のゲートには、信号線68の論理レベルと信号線69の論理レベルとのNAND演算結果が入力される。PMOSトランジスタ71のゲートには、信号線68の論理レベルをインバータ74で反転させた値と、信号線69の論理レベルとのNAND演算結果が入力される。信号線68には、テストモード信号TMと書き込みイネーブル信号WEとのNAND演算結果と、制御信号CNTL1をインバータ85で反転させた値とのOR演算結果が入力される。この場合のOR演算は、NOR回路88とインバータ86との直列接続によって実現される。信号線69には、制御信号CNTL2が入力される。
【0051】
上記の接続によれば、制御信号CNTL2がLレベルのときには、PMOSトランジスタ70,71は共にオフ状態になるので、電源線25には電源電圧が供給されない。一方、制御信号CNTL2がHレベルのときには、次のように制御される。
【0052】
(i)制御信号CNTL1、テストモード信号TM、および書き込みイネーブル信号WEがいずれもHレベルの場合について。この場合、PMOSトランジスタ70はオフ状態になり、PMOSトランジスタ71はオン状態になる。したがって、ワード線ドライバWD0用の電源線25には、電圧供給線33から低減電圧VDD-αが供給される。
【0053】
(ii)制御信号CNTL1がHレベルであり、テストモード信号TMおよび書き込みイネーブル信号WEの少なくとも一方がLレベルの場合について。この場合、PMOSトランジスタ70はオン状態になり、PMOSトランジスタ71はオフ状態になる。したがって、ワード線ドライバWD0用の電源線25には、外部電源電圧VDDが供給される。
【0054】
(iii)制御信号CNTL1がLレベルの場合について。この場合、PMOSトランジスタ70はオン状態になり、PMOSトランジスタ71はオフ状態になる。したがって、ワード線ドライバWD0用の電源線25には、外部電源電圧VDDが供給される。
【0055】
上記では簡単のために1個のテストモード信号TMを用いているが、メモリセルアレイ10の領域ごとに異なるテストモード信号TMを用いてもよい。これにより、SRAM回路100を動作させながら、特定の領域だけ低減電圧VDD-αを与えることができる。
【0056】
[劣化予測テスト]
次に、上述した電源電圧低減回路30~32および電源電圧選択回路34,35を用いて、SRAM回路の劣化予測テストを行う方法について説明する。
【0057】
図6は、第1の実施形態の半導体装置の全体構成を示すブロック図である。図6を参照して、半導体装置(SEMICONDUCTOR DEVICE)110は、SRAM回路100と、フィールド・メモリBIST(FIELD MEMORY BIST)回路102とを備える。
【0058】
SRAM回路100は、図1図5を参照して説明したように、動作マージンをより厳しくするための電源電圧低減回路30~32および電源電圧選択回路34,35を含む。以下、これらの回路をテスト回路(TEST CIRCUIT)101と総称する。SRAM回路100は、従来のSRAM回路にテスト回路101を追加したものであるが、テスト回路101の内蔵による面積オーバーヘッドの増加は殆ど無い。また、劣化予測テストのために、SRAM回路100に供給する電源電圧を低減する必要はなく、モード変更のみで局所的に電源電圧を低減できる。
【0059】
BISTとは、組み込み自己テスト(Built-In Self-Test)の頭字語である。BIST回路は、テストパターン発生回路とテスト結果の評価回路とを内部に含む。特に、フィールド・メモリBIST回路102は、メモリのパワーオン診断(POWER-ON DIAGNOSTICS)に加えてランタイム診断(RUNTIME DIAGNOSTICS)も可能である。パワーオン診断は、ユーザによる半導体装置110の使用開始時に異常をその場で検知するものである。ランタイム診断は、半導体装置110を動作させたまま異常をその場で検知するものである。
【0060】
図7は、パワーオン診断の手順を示すフローチャートである。まず、フィールド・メモリBIST回路102は、たとえば、マーチングテスト(MARCHING TEST)などの既存の通常テスト(NORMAL TEST)を実施する(S101)。通常テストの場合、フィールド・メモリBIST回路102は、テストモード信号TMをLレベル(ネゲート)に設定する。これにより、各電源線PLおよびワード線WLには、ユーザが通常使用する外部電源電圧VDDが供給される。アドレスの総数をNとすると、マーチングテストでは、12Nのメモリアクセス回数(書き込みおよび読み出しの回数)が必要になる。
【0061】
次に、フィールド・メモリBIST回路102は、通常テストの結果が合格(PASS)か不合格(FAIL)かを判定する(S102)。通常テスト結果が不合格の場合(S102でFAIL)、フィールド・メモリBIST回路102は、ユーザに警告(WARNING)を通知する(S103)。この場合、半導体装置110のSRAM回路100は故障しているために使用できない。
【0062】
図8は、ランタイム診断の手順を示すフローチャートである。まず、フィールド・メモリBIST回路102は、たとえば、マーチングテストなどの既存の通常テストを実施する(S201)。通常テストの場合、フィールド・メモリBIST回路102は、テストモード信号TMをLレベル(ネゲート)に設定する。
【0063】
次に、フィールド・メモリBIST回路102は、通常テストの結果が合格か不合格かを判定する(S202)。通常テストの結果が不合格の場合(S202でFAIL)、フィールド・メモリBIST回路102は、ユーザに警告を通知し(S203)、処理を終了する。この場合、半導体装置110のSRAM回路100は故障しているので、これ以上半導体装置110を動作させることはできない。
【0064】
一方、通常テストの結果が合格の場合(S202でPASS)、フィールド・メモリBIST回路102は、劣化予測テスト(DETERIORATION PREDICTION TEST)を実施する(S204)。劣化予測テストの場合、フィールド・メモリBIST回路102は、テストモード信号TMをHレベル(アサート)に設定する。これにより、テスト領域のワード線WLまたは電源線PLに低減電圧VDD-αが供給される。劣化予測テストでは、たとえば、チェッカーボード(CHECKER BOARD)テストが実施される。劣化予測テストの詳細な手順については、図9A図9Dを参照して後述する。
【0065】
その次に、フィールド・メモリBIST回路102は、劣化予測テストの結果が合格か不合格かを判定する(S205)。劣化予測テストの結果が不合格の場合(S205でFAIL)、フィールド・メモリBIST回路102は、ユーザに警告を通知する(S206)。この場合、現時点で半導体装置110のSRAM回路100が故障しているわけではないので、半導体装置110の動作を停止させる必要はない。
【0066】
その後、フィールド・メモリBIST回路102は、処理を最初のステップS201に戻し、上記の各ステップを定期的に又は上位システムの要求に応じて繰り返す。
【0067】
図9A図9Dは、図8の劣化予測テストの実施手順の一例を説明するための図である。各図において、列アドレスCA、行アドレスRA、SRAMの動作(OPERATION)、書き込みデータ、読み出しデータ、およびテストモードTMであるか否かが記載されている。列アドレスCAは0から7まであり、行アドレスRAは0から255まである。したがって、全アドレスの個数Nは2048である。SRAMの動作には、書き込み(WRITE)と読み出し(READ)とがある。書き込みデータ(WRITE DATA)には、“0000”と“1111”とが交互に選択される。読み出しデータ(READ DATA)は、SRAM回路100が正常な場合の期待値(EXPECTATION)である。劣化予測テストの間、テストモード信号TMはHレベルにアサートされる。
【0068】
まず、図9Aを参照して、フィールド・メモリBIST回路102は、アドレスの順に“0000”と“1111”とを交互にメモリセルMCに書き込む。次に、図9Bを参照して、フィールド・メモリBIST回路102は、アドレスの順に各メモリセルMCに格納されているデータを読み出す。ここで、列アドレスCA=0の各行のデータを最後にもう一度読み出している理由は、非選択列の場合の読み出しテストを実行するためである。
【0069】
その次に、図9Cを参照して、フィールド・メモリBIST回路102は、アドレスの順に“1111”と“0000”とを交互にメモリセルMCに書き込む。次に、図9Dを参照して、フィールド・メモリBIST回路102は、アドレスの順に各メモリセルMCに格納されているデータを読み出す。ここで、列アドレスCA=0の各行のデータを最後にもう一度読み出している理由は、非選択列の場合の読み出しテストを実行するためである。
【0070】
このように、劣化予測テストによるSRAM回路100のアクセス回数はほぼ4Nである(Nはアドレス総数)。したがって、メモリアクセス回数の大幅な増加にはならない。
【0071】
[第1の実施形態の効果]
上記のとおり、第1の実施形態の半導体装置110によれば、データ読み出し時に電源線PLに低減電圧VDD-αが与えられ、データ書き込み時にワード線WLに低減電圧VDD-αが与えられる。これにより、将来的なSRAMの動作マージンの劣化を予測したテストが可能になる。
【0072】
上記の低減電圧VDD-αの供給は、電源電圧を変更するのでなく、局所的に電源電圧を低下させることにより実施される。これにより、製品チップ上での付加的なテスト用電源電圧制御システムの実装および構築が不要になる。また、パワーオン時のみならず、チップの実使用中に将来的なSRAM回路の故障を事前に検知できる。
【0073】
図10は、第1の実施形態の効果を説明するための図である。図10の縦軸は、SRAM回路が動作可能な最小電源電圧VDDminを表す。図10の横軸は時間(TIME)を表す。図10の実線はテストモード信号TM=Lレベルの場合、すなわち、通常動作の場合を示す。図10の破線は、テストモード(TM=H)の場合を示す。
【0074】
図10の実線で示すように、時間の経過とともに動作マージンが劣化するので、SRAM回路が動作可能な最小電源電圧VDDminは上昇する。ユーザが使用する通常の電源電圧Voが最小電源電圧VDDminに等しくなったとき(時刻T2)、SRAM回路100が故障したことを示す。テストモード(TM=H)の場合の特性(破線)は、通常使用(TM=L)の場合の特性(実線)を上方にシフトしたものに相当する。したがって、テストモードでは、時刻T2の前の時刻T1に、ユーザが使用する通常の電源電圧Voが最小電源電圧VDDminに等しくなるので、将来の故障の発生を予測できる。
【0075】
<第2の実施形態>
第2の実施形態では、SRAM回路の動作マージンを厳しくさせる度合いを調整する場合について説明する。具体的には、低減電圧VDD-αのαを多段階に変化させる。これにより、SRAM回路の不良発生時期の具体的な予測が可能になる。以下、図面を参照して詳しく説明する。
【0076】
[SRAM回路の変更点]
図11は、第2の実施形態のSRAM回路100Aにおいて、電源電圧低減回路の構成の一例を示す図である。図11のSRAM回路100Aの回路図は、図5の第1の実施形態のSRAM回路100の回路図に対応するものである。
【0077】
具体的に、図11のSRAM回路100Aは、電源電圧低減回路30~32が電源電圧低減回路30A~32Aに置換されている点で、図5のSRAM回路100回路と異なる。図11の電源電圧低減回路30A~32Aでは、PMOSトランジスタ61と並列にPMOSトランジスタ62が設けられている。PMOSトランジスタ62の電流駆動能力は、PMOSトランジスタ60の電流駆動能力よりも小さいが、PMOSトランジスタ61の電流駆動能力よりも大きい。一例として、PMOSトランジスタ62の電流駆動能力は、PMOSトランジスタ61の電流駆動能力の2倍ある。
【0078】
ここで、電源電圧低減回路30A,32Aの場合、PMOSトランジスタ60のゲートには基準電圧VSSが入力される。したがって、PMOSトランジスタ60は常時オン状態である。また、PMOSトランジスタ61のゲートは信号線66に接続される。信号線66には、インバータ82,83,84を介してテストモード信号TM1が供給される。また、PMOSトランジスタ62のゲートは信号線66Aに接続される。信号線66Aには、インバータ91,92,93を介してテストモード信号TM2が供給される。したがって、テストモード信号TM1がHレベルにアサートされているとき、PMOSトランジスタ61はオン状態になる。テストモード信号TM2がHレベルにアサートされているとき、PMOSトランジスタ62はオン状態になる。
【0079】
電源電圧低減回路31Aの場合、PMOSトランジスタ61のゲートは信号線67に接続され、PMOSトランジスタ62のゲートは信号線67Aに接続される。PMOSトランジスタ60のゲートは、PMOSトランジスタ61,62のゲート信号のAND演算結果が入力される。このAND演算は、NAND回路63とインバータ64との直列接続によって実現される。したがって、PMOSトランジスタ60は、PMOSトランジスタ61,62の少なくとも一方のゲート信号がLレベルのとき導通する。
【0080】
ここで、上記の信号線67には、テストモード信号TM1をインバータ82により反転した信号と、制御信号CNTL1をインバータ85により反転した信号とのOR演算結果が入力される。このOR演算はNOR回路89とインバータ87との直列接続によって実現される。したがって、テストモード信号TM1がHレベルかつ制御信号CNTL1がHレベルのとき、PMOSトランジスタ60,61はオン状態になる。
【0081】
同様に上記の信号線67Aには、テストモード信号TM2をインバータ91により反転した信号と、制御信号CNTL1をインバータ85により反転した信号とのOR演算結果が入力される。このOR演算はNOR回路95とインバータ94との直列接続によって実現される。したがって、テストモード信号TM2がHレベルかつ制御信号CNTL1がHレベルのとき、PMOSトランジスタ60,62はオン状態になる。テストモード信号TM1,TM2が両方ともHレベルかつ制御信号CNTL1がHレベルのとき、PMOSトランジスタ60,61,62は全てオン状態になる。
【0082】
図11のコントローラ20Aは、インバータ91~94,96およびNOR回路95,97が追加されている点で図5のコントローラ20と異なる。インバータ91~94およびNOR回路95については既に説明したので、説明を繰り返さない。
【0083】
NAND回路90の第1の入力端子には書き込みイネーブル信号WEが入力され、第2の入力端子にはテストモード信号TM1,TM2のOR演算結果が入力される。このOR演算は、NOR回路97とインバータ96との直列接続によって実現される。したがって、制御信号CNTL1および書き込みイネーブル信号WEがHレベルでありかつテストモード信号TM1,TM2の少なくとも一方がHレベルの場合に、電源線25に低減電圧VDD-αが供給される。この場合、電源電圧選択回路35のPMOSトランジスタ70はオフ状態になり、PMOSトランジスタ71はオン状態になるからである。一方、制御信号CNTL1がHレベルであり、書き込みイネーブル信号WEがLレベルの場合又はテストモード信号TM1,TM2がいずれもLレベルの場合、電源線25に外部電源電圧VDDが供給される。この場合、電源電圧選択回路35のPMOSトランジスタ70はオン状態になり、PMOSトランジスタ71はオフ状態になるからである。なお、上記の説明において、制御信号CNTL2はHレベルであると仮定した。
【0084】
図11のその他の点は図5の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
【0085】
図12は、テストモード信号TM1,TM2に応じた低減電圧大きさを説明するための図である。図12を参照して、低減電圧VDD-αにおいてαの電圧値はテストモード信号TM1,TM2がHレベルにアサートされているか否かによって変化する。具体的には次のとおりである。
【0086】
(i)テストモード信号TM1,TM2が共にLレベルの場合、図11のPMOSトランジスタ60はオン状態になるが、PMOSトランジスタ61,62はオフ状態である。したがって、α=0となり、電圧供給線33には低減電圧でなく、外部電源電圧VDDが供給される。
【0087】
(ii)テストモード信号TM1がHレベルであり、テストモード信号TM2がLレベルの場合、PMOSトランジスタ60,61はオン状態であるが、PMOSトランジスタ62はオフ状態である。したがって、αの値、すなわち動作マージンの低下量は小さい(SMALL)。
【0088】
(iii)テストモード信号TM1がLレベルであり、テストモード信号TM2がHレベルの場合、PMOSトランジスタ60,62はオン状態であるが、PMOSトランジスタ61はオフ状態である。したがって、αの値、すなわち動作マージンの低下量は中程度(MEDIUM)になる。なお、PMOSトランジスタ62の電流駆動能力は、PMOSトランジスタ61の電流駆動能力の2倍あるものとする。
【0089】
(iv)テストモード信号TM1,TM2が共にHレベルの場合、PMOSトランジスタ60,61,62はいずれもオン状態になる。したがって、αの値、すなわち動作マージンの低下量は最も大きい(LARGE)。
【0090】
[劣化予測テスト]
次に、上述した図11の電源電圧低減回路30A~32Aおよび電源電圧選択回路34,35を用いて、SRAM回路の劣化予測テストを行う方法について説明する。
【0091】
図13は、第2の実施形態の半導体装置の全体構成を示すブロック図である。図13を参照して、半導体装置110Aは、主コントローラ(MAIN CONTROLLER)103をさらに備える点で、図6の半導体装置110と異なる。主コントローラ103は、プロセッサと、メモリ(揮発性メモリおよび不揮発性メモリ)と、計時用のクロック回路(CLK)104とを含む。プロセッサは、マイクロコンピュータのCPU(Central Processing Unit)として実現されてもよいし、FPGA(Field Programmable Gate Array)によって実現されてもよい。もしくは、プロセッサは、その他の専用の回路によって実現されてもよいし、CPUおよびFPGAの組み合わせによって実現されてもよく、特に限定されない。
【0092】
主コントローラ103は、フィールド・メモリBIST回路102に対してテスト開始を要求する(TEST CALL)。これに応答して、フィールド・メモリBIST回路102は、SRAM回路100Aのテストを実施し、テスト結果(TEST RESULTS)を主コントローラ103に送信する。テスト結果には、通常テストの結果と劣化予測テストの結果とが含まれる。
【0093】
図14は、第2の実施形態において、ランタイム診断の手順を示すフローチャートである。まず、フィールド・メモリBIST回路102は、たとえば、マーチングテストなどの既存の通常テストを実施する(S301)。通常テストの場合、フィールド・メモリBIST回路102は、テストモード信号TM1,TM2をLレベル(ネゲート)に設定する。
【0094】
次に、フィールド・メモリBIST回路102は、通常テストの結果が合格か不合格かを判定する(S302)。通常テストの結果が不合格の場合(S302でFAIL)、フィールド・メモリBIST回路102は、テスト結果を主コントローラ103に出力する(RESULTS OUTPUT)(S303)。この場合、半導体装置110AのSRAM回路100Aは故障しているので、これ以上半導体装置110Aを動作させることはできない。したがって、フィールド・メモリBIST回路102は処理を終了する。
【0095】
一方、通常テストの結果が合格の場合(S302でPASS)、フィールド・メモリBIST回路102は、電圧低減量αを最も小さくして劣化予測テストを実施する(S304)。具体的に、フィールド・メモリBIST回路102は、テストモード信号TM1をHレベル(アサート)に設定し、テストモード信号TM2をLレベルに設定する。劣化予測テストでは、たとえば、チェッカーボードテストが実施される。
【0096】
その次に、フィールド・メモリBIST回路102は、劣化予測テストの結果が合格か不合格かを判定する(S305)。劣化予測テストの結果が不合格の場合(S305でFAIL)、フィールド・メモリBIST回路102は、テスト結果を主コントローラ103に出力する(S306)。この場合、現時点で半導体装置110AのSRAM回路100Aが故障しているわけではないので、半導体装置110Aの動作を停止させる必要はない。
【0097】
続いて、フィールド・メモリBIST回路102は、電圧低減量αを中程度にして劣化予測テストを実施する(S307)。具体的に、フィールド・メモリBIST回路102は、テストモード信号TM1をLレベルに設定し、テストモード信号TM2をHレベルに設定する。劣化予測テストでは、たとえば、チェッカーボードテストが実施される。
【0098】
その次に、フィールド・メモリBIST回路102は、劣化予測テストの結果が合格か不合格かを判定する(S308)。劣化予測テストの結果が不合格の場合(S308でFAIL)、フィールド・メモリBIST回路102は、テスト結果を主コントローラ103に出力する(S309)。
【0099】
続いて、フィールド・メモリBIST回路102は、電圧低減量αを最も大きく設定して劣化予測テストを実施する(S310)。具体的に、フィールド・メモリBIST回路102は、テストモード信号TM1,TM2を両方ともHレベルに設定する。劣化予測テストでは、たとえば、チェッカーボードテストが実施される。
【0100】
その次に、フィールド・メモリBIST回路102は、劣化予測テストの結果が合格か不合格かを判定する(S311)。劣化予測テストの結果が不合格の場合(S311でFAIL)、フィールド・メモリBIST回路102は、テスト結果を主コントローラ103に出力する(S312)。
【0101】
その後、フィールド・メモリBIST回路102は、処理を最初のステップS301に戻し、上記の各ステップを定期的に又は主コントローラ103の要求に応じて繰り返す。なお、上記のステップS304,S307,S310の実行順序は、どのような実行順序であってもよい。
【0102】
図13に戻って、主コントローラ103は、受信したテスト結果に基づいて、半導体装置110Aの使用開始からテスト結果が不合格となるまでの時間を計測する。この計測結果に基づいて、主コントローラ103は、SRAM回路100Aに故障が生じる時期を予測し、予測結果を外部に出力する(OUTPUT)。
【0103】
図15は、SRAM回路の故障時期の予測方法について説明するための図である。図15の縦軸は、SRAM回路が動作可能な最小電源電圧VDDminを表す。図15の横軸は時間を表す。図15の実線はテストモード信号TM1,TM2が共にLレベルの場合、すなわち、通常動作の場合を示す。図15の破線は、テストモード信号TM1,TM2の少なくとも一方がHレベルの場合を示す。
【0104】
図15の実線で示すように、時間の経過とともに動作マージンが劣化するので、SRAM回路が動作可能な最小電源電圧VDDminは上昇する。ユーザが使用する通常の電源電圧Voが最小電源電圧VDDminに等しくなったとき(時刻T4)、SRAM回路100Aが実際に故障したことを示す。
【0105】
破線で示すテストモードの経時変化特性は、実線で示す通常使用(TM1,TM2=L)の場合の経時変化特性を上方にシフトした場合に相当する。具体的に図15の場合、電源電圧の低減量αが最も大きい場合(すなわち、TM1=TM2=H)に時刻T1でテスト結果が不合格になる。電源電圧の低減量αが中程度の場合(すなわち、TM1=L、TM2=H)に時刻T2でテスト結果が不合格になる。電源電圧の低減量αが最も小さい場合(すなわち、TM1=H、TM2=L)に時刻T3でテスト結果が不合格になる。この場合、時刻T1,T2,T3の測定結果を用いて、実際に故障が生じる時刻T4を推定できる。
【0106】
図16は、図13の半導体装置において、主コントローラが故障時刻を予測する手順を示すフローチャートである。まず、主コントローラ103は、フィールド・メモリBIST回路102からのテスト結果出力に基づいて、電源電圧低減量αに応じてテスト結果が不合格になるまでの時間T1,T2,T3を測定する(S401)。主コントローラ103は、測定した時間T1,T2,T3をメモリに記憶する(MEASURE & STORE)。
【0107】
次に、主コントローラ103は、上記の測定結果に基づいて、実際にSRAM回路100Aが故障するまでの時間T4を計算(CALCULATE)する(S402)。この場合、テスト結果が不合格となるまでの時間T1,T2,T3と電圧低減量αとの関係に基づいて実験的に故障時期を推定してもよいし、電圧低減量αから残存マージンを定量化してもよい。
【0108】
その次に、主コントローラ103は、推定した故障発生までの時間T4を外部に出力する(S403)。たとえば、半導体装置110Aを搭載したシステムの表示装置に出力することにより、ユーザに基板交換等の処置を促すことができる。もしくは、主コントローラ103は、ネットワークを介してデータセンターに故障推定結果を出力してもよい。この場合、データセンターからシステムの管理者に基板交換等の処置を促すことができる。もしくは、半導体装置110Aを搭載したシステムのメンテナンス時に、メンテナンス作業者が、主コントローラ103の不揮発性メモリに格納された故障推定結果の情報を取り出してもよい。
【0109】
[第2の実施形態の効果]
上記のとおり、第2の実施形態の半導体装置110Aによれば、電源電圧の低減量αを変更することができる。これにより、動作マージンを低減させる度合いを変化させてメモリテストを実施できるので、メモリテストの結果が不合格となるまでの期間から不良発生時期を予測できる。また、この不良発生時期の予測は、半導体装置110Aの内部の主コントローラ103によって実行されるので、別途処理システムを必要としない。さらに、実際の故障発生前に不良発生時期をある程度正確に予測できるので、故障発生を未然に回避するための行動をユーザに促すことができる。
【0110】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【符号の説明】
【0111】
10 メモリセルアレイ、20 コントローラ、21 行デコーダ、22 列デコーダ、23 書き込み回路、24 読み出し回路、25 ワード線ドライバの電源線、30~32 電源電圧低減回路、33 電圧供給線、34,35 電源電圧選択回路、41,42 負荷トランジスタ、43,44 駆動トランジスタ、45,46 アクセストランジスタ、47,48 接続ノード、49,50 放電電流、60,61,62 PMOSトランジスタ、100 SRAM回路、101 テスト回路、102 フィールド・メモリBIST回路、103 主コントローラ、110 半導体装置、BL,/BL ビット線、CA 列アドレス信号、CNTL1,CNTL2 制御信号、DI 書き込みデータ、DO 外部読み出しデータ、MC メモリセル、PL メモリセルの電源線、RA 行アドレス信号、TM テストモード信号、VDD 外部電源電圧、VDD-α 低減電圧、VSS 基準電圧(グランド)、WD ワード線ドライバ、WE 書き込みイネーブル信号、WL ワード線。
図1
図2
図3
図4
図5
図6
図7
図8
図9A
図9B
図9C
図9D
図10
図11
図12
図13
図14
図15
図16