(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023097355
(43)【公開日】2023-07-07
(54)【発明の名称】積層セラミック電子部品
(51)【国際特許分類】
H01G 4/30 20060101AFI20230630BHJP
【FI】
H01G4/30 201L
H01G4/30 515
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2022177950
(22)【出願日】2022-11-07
(31)【優先権主張番号】10-2021-0188004
(32)【優先日】2021-12-27
(33)【優先権主張国・地域又は機関】KR
(71)【出願人】
【識別番号】594023722
【氏名又は名称】サムソン エレクトロ-メカニックス カンパニーリミテッド.
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】カン、ウーン ギ
(72)【発明者】
【氏名】ジェオン、ヒュン ジョーン
(72)【発明者】
【氏名】オー、ジ セオプ
(72)【発明者】
【氏名】キム、ジェオン リェオル
(72)【発明者】
【氏名】キム、エウン ジュン
【テーマコード(参考)】
5E001
5E082
【Fターム(参考)】
5E001AB03
5E001AE01
5E001AE02
5E001AE03
5E082AA01
5E082AB03
5E082EE01
5E082FF05
5E082FG26
5E082GG10
(57)【要約】
【課題】耐電圧特性及び信頼性に優れたセラミック電子部品を提供する。
【解決手段】
本発明の一実施形態は、誘電体層及び内部電極を含む本体、上記本体の外側に配置される外部電極を含み、上記誘電体層は、複数の誘電体グレイン及び上記誘電体グレイン間に存在するグレインバウンダリーを含み、上記グレインバウンダリーに含まれたAlとTiのモル比(Al/Ti)は、0.022~0.028を満たす、積層セラミック電子部品を提供する。
【選択図】
図4
【特許請求の範囲】
【請求項1】
誘電体層及び内部電極を含む本体と、
前記本体の外側に配置される外部電極と、を含み、
前記誘電体層は、複数の誘電体グレイン及び前記複数の誘電体グレイン間に存在するグレインバウンダリーを含み、
前記グレインバウンダリーに含まれたAlとTiのモル比(Al/Ti)は、0.022~0.028を満たす、積層セラミック電子部品。
【請求項2】
前記複数の誘電体グレインはコア-シェル構造を有する、請求項1に記載の積層セラミック電子部品。
【請求項3】
前記グレインバウンダリーに含まれたAlとTiのモル比(Al/Ti)をRgとし、前記シェルに含まれたAlとTiのモル比(Al/Ti)をRsとすると、
Rg/Rsは0.953以下である、請求項2に記載の積層セラミック電子部品。
【請求項4】
前記複数の誘電体グレインは、ABO3(AはBa、Sr、Pb及びCaの少なくとも一つであり、BはTi及びZrの少なくとも一つである)で表される主成分を含む、請求項1から3のいずれか一項に記載の積層セラミック電子部品。
【請求項5】
前記誘電体層は、Y、Ac、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、La及びLuのうち一つ以上を含む、請求項1から3のいずれか一項に記載の積層セラミック電子部品。
【請求項6】
前記誘電体層は、Mn、V、Cr、Fe、Ni、Co、Cu、Znのうち一つ以上及びMgを含む、請求項1から3のいずれか一項に記載の積層セラミック電子部品。
【請求項7】
前記誘電体層は、Baを含む酸化物または炭酸塩を含む、請求項1から3のいずれか一項に記載の積層セラミック電子部品。
【請求項8】
前記誘電体層は、Ca、Ti及びZrのうち一つ以上を含む酸化物または炭酸塩を含む、請求項1から3のいずれか一項に記載の積層セラミック電子部品。
【請求項9】
前記複数の誘電体グレインの平均結晶粒径は50~500nmである、請求項1から3のいずれか一項に記載の積層セラミック電子部品。
【請求項10】
前記グレインバウンダリーの平均厚さは0.7~1.5nmである、請求項1から3のいずれか一項に記載の積層セラミック電子部品。
【請求項11】
前記誘電体層の平均厚さは0.4μm以下である、請求項1から3のいずれか一項に記載の積層セラミック電子部品。
【請求項12】
誘電体層及び内部電極を含む本体と、
前記本体の外側に配置される外部電極と、を含み、
前記誘電体層は、コア-シェル構造を有する誘電体グレイン及び前記誘電体グレイン間に存在するグレインバウンダリーを含み、
前記グレインバウンダリーに含まれたAlとTiのモル比(Al/Ti)をRgとし、前記シェルに含まれたAlとTiのモル比(Al/Ti)をRsとすると、
Rg/Rsは0.953以下である、積層セラミック電子部品。
【請求項13】
前記グレインバウンダリーの平均厚さは0.7~1.5nmである、請求項12に記載の積層セラミック電子部品。
【請求項14】
前記誘電体層の平均厚さは0.4μm以下である、請求項12または13に記載の積層セラミック電子部品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、積層セラミック電子部品に関するものである。
【背景技術】
【0002】
一般的に、キャパシタ、インダクタ、圧電体素子、バリスタまたはサーミスタなどのセラミック材料を用いる電子部品は、セラミック材料からなるセラミック本体、本体内部に形成された内部電極、及び上記内部電極と接続されるようにセラミック本体の表面に配置された外部電極を備える。
【0003】
最近では、電子製品が小型化及び多機能化するにつれて、チップ部品も小型化及び高機能化する傾向にあるため、積層型電子部品の一つである積層セラミックキャパシタ(MLCC:Multi-Layered Ceramic Capacitor)もサイズが小さく、容量が大きい高容量製品が要求されている。
【0004】
積層セラミックキャパシタの小型化及び高容量化を同時に達成する方法としては、内部の誘電体層及び電極層の厚さを薄くして多数を積層する方法があるが、現在の誘電体層の厚さは0.6μm程度のレベルであり、引き続き薄いレベルでの開発が進行されている。上記のように積層セラミックキャパシタの小型化に伴って信頼性の確保が難しい状況であり、このような問題を解決するために誘電体組成に対する研究が進められている。
【0005】
従来には、積層セラミックキャパシタの耐電圧及び信頼性を改善するために、チタン酸バリウムなどの主成分に様々な酸化物及び/または炭酸塩の副成分を添加してきた。但し、このような副成分が積層セラミックキャパシタの電気的特性に寄与するためにはイオン化され、主成分を含む誘電体グレイン内に固溶される必要がある。しかしながら、イオン化される過程では大きなエネルギーが必要であり、上記エネルギーが十分でない場合、誘電体グレイン間のグレインバウンダリーに偏析する。
【0006】
したがって、一定レベル以上の副成分を添加するが、副成分を誘電体グレイン内に固溶させ、グレインバウンダリー内に偏析する副成分含量を制御することで、積層セラミックキャパシタの信頼性を改善する研究が必要である実情である。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明のいくつかの目的の一つは、耐電圧特性に優れたセラミック電子部品を提供することである。
【0008】
本発明のいくつかの目的の一つは、信頼性に優れたセラミック電子部品を提供することである。
【0009】
但し、本発明の目的は上述した内容に限定されず、本発明の具体的な実施形態を説明する過程でより容易に理解することができる。
【課題を解決するための手段】
【0010】
本発明の一実施形態は、誘電体層及び内部電極を含む本体、上記本体の外側に配置される外部電極を含み、上記誘電体層は、複数の誘電体グレイン及び上記誘電体グレイン間に存在するグレインバウンダリーを含み、上記グレインバウンダリーに含まれたAlとTiのモル比(Al/Ti)は、0.022~0.028を満たす積層セラミック電子部品を提供する。
【0011】
本発明の他の実施形態は、誘電体層及び内部電極を含む本体、上記本体の外側に配置される外部電極を含み、上記誘電体層は、コア-シェル構造を有する誘電体グレイン及び上記誘電体グレイン間に存在するグレインバウンダリーを含み、上記グレインバウンダリーに含まれたAlとTiのモル比(Al/Ti)をRgとし、上記シェルに含まれたAlとTiのモル比(Al/Ti)をRsとすると、Rg/Rsは、0.953以下である積層セラミック電子部品を提供する。
【発明の効果】
【0012】
本発明のいくつかの効果の一つは、誘電体層の薄層化時にも耐電圧特性に優れた積層セラミック電子部品を提供することである。
【0013】
本発明のいくつかの効果の一つは、誘電体層の薄層化時にも信頼性に優れた積層セラミック電子部品を提供することである。
【図面の簡単な説明】
【0014】
【
図1】本発明の一実施形態によるセラミック電子部品を概略的に示した斜視図である。
【
図2】
図1の積層セラミック電子部品における本体の概略的な斜視図である。
【
図3】
図1のI-I'線に沿った切断断面を概略的に示した断面図である。
【
図5】本発明の実施例によるTEM(Transmission Electron Microscope)分析イメージである。
【
図6】本発明の実施例によるTEM(Transmission Electron Microscope)分析イメージである。
【
図7】本発明の比較例によるTEM(Transmission Electron Microscope)分析イメージである。
【
図8】本発明の比較例によるTEM(Transmission Electron Microscope)分析イメージである。
【発明を実施するための形態】
【0015】
以下、具体的な実施形態及び添付の図面を参照して、本発明の実施形態を説明する。しかし、本発明の実施形態は、いくつかの他の形態に変形することができ、本発明の範囲が以下説明する実施形態に限定されるものではない。また、本発明の実施形態は、通常の技術者に本発明をより完全に説明するために提供されるものである。したがって、図面における要素の形状及び大きさなどはより明確な説明のために拡大縮小表示(又は強調表示や簡略化表示)がされることがあり、図面上に同一符号で示される要素は同一要素である。
【0016】
尚、図面において本発明を明確に説明するために説明と関係ない部分は省略し、図示した各構成の大きさ及び厚さは、説明の便宜のために任意で示したものであるため、本発明は必ずしも図示により限定されない。また、同一の思想の範囲内の機能が同一である構成要素は、同一の参照符号を用いて説明することができる。さらに、明細書全体において、ある部分がある構成要素を「含む」というのは、特に反対される記載がない限り、他の構成要素を除外するのではなく、他の構成要素をさらに含むことができることを意味する。
【0017】
図面において、第1方向は長さ(L)方向、第2方向は厚さ(T)方向、第3方向は幅(W)方向と定義することができる。
【0018】
図1は、本発明の一実施形態によるセラミック電子部品を概略的に示した斜視図であり、
図2は、
図1における積層セラミック電子部品の本体の概略的な斜視図であり、
図3は、
図1のI-I'線に沿った切断断面を概略的に示した断面図であり、
図4は、
図3のP領域拡大図である。
【0019】
以下、
図1~
図4を参照して、本発明の一実施形態によるセラミック電子部品100について詳細に説明する。また、セラミック電子部品の一例として積層セラミックキャパシタについて説明するが、本発明はこれに限定されるものではなく、セラミック材料を用いる様々なセラミック電子部品、例えば、インダクタ、圧電体素子、バリスタ、またはサーミスタなどにも適用されることができる。
【0020】
本発明の一実施形態は、誘電体層111及び内部電極121、122を含む本体110、本体110の外側に配置される外部電極131、132を含み、誘電体層111は、複数の誘電体グレイン11及び誘電体グレイン11間に存在するグレインバウンダリー11cを含み、グレインバウンダリー11cに含まれたAlとTiのモル比(Al/Ti)は0.022~0.028を満たす積層セラミック電子部品100を提供する。
【0021】
本体110の具体的な形状に特に制限はないが、図示のように本体110は六面体状またはこれと類似した形状からなることができる。焼成過程で本体110に含まれたセラミック粉末の収縮やエッジ部の研磨により、本体110は完全な直線を有した六面体状ではないが、実質的に六面体状を有することができる。
【0022】
本体110は、第1方向に互いに対向する第1及び第2面1、2、上記第1及び第2面1、2と連結され、第2方向に互いに対向する第3及び第4面3、4、第1及び第2面1、2と連結され、第3及び第4面3、4と連結され、第3方向に互いに対向する第5及び第6面5、6を有することができる。
【0023】
本体110は、誘電体層111及び内部電極121、122が交互に積層されていることができる。本体110を形成する複数の誘電体層111は焼成された状態であり、隣接する誘電体層111間の境界は、走査電子顕微鏡(SEM:Scanning Electron Microscope)を利用せずには確認しにくいほど一体化することができる。
【0024】
本体110は、本体110の内部に配置され、誘電体層111を間に挟んで互いに対向するように配置される複数の第1内部電極121及び複数の第2内部電極122を含んで、容量が形成される容量形成部Acと、容量形成部Acの上部に配置される第1カバー部112及び容量形成部Acの下部に配置される第2カバー部113を含むことができる。
【0025】
第1カバー部112及び第2カバー部113は、単一誘電体層または2つ以上の誘電体層を容量形成部Acの上下面にそれぞれ第2方向に積層して形成することができ、基本的に物理的または化学的ストレスによる内部電極の損傷を防止する役割を果たすことができる。第1及び第2カバー部112、113はそれぞれ20μm以下の厚さを有することができるが、本発明はこれに限定されるものではない。
【0026】
本体110は、第3方向を基準に容量形成部Acの側面に配置されるマージン部114、115をさらに含むことができる。マージン部114、115は、本体110の第5面5に配置される第1マージン部114及び第6面6に配置される第2マージン部115を含むことができる。マージン部114、115は、基本的に物理的または化学的ストレスによる内部電極121、122の損傷を防止する役割を果たすことができる。
【0027】
マージン部114、115は、セラミックグリーンシート上にマージン部が形成されるところを除いて導電性ペーストを塗布して内部電極を形成することにより形成されたものであることができる。あるいは、内部電極121、122による段差を抑制するために、積層後の内部電極121、122が本体の第5及び第6面5、6に露出するように切断した後、単一誘電体層または2つ以上の誘電体層を容量形成部Acの第3方向の両側面に積層してマージン部114、115を形成することもできる。マージン部114、115の厚さは20μm以下であることができるが、本発明はこれに限定されるものではない。
【0028】
内部電極121、122は誘電体層111と交互に配置されることができ、複数の第1内部電極121と複数の第2内部電極122は誘電体層111を間に挟んで互いに対向するように配置されることができる。すなわち、第1及び第2内部電極121、122は、互いに異なる極性を有する一対の電極であって、誘電体層111の積層方向に沿って本体110の第1及び第2面1、2を介して交互に露出するように形成されることができる。複数の第1内部電極121及び複数の第2内部電極122は、その間に配置された誘電体層111によって互いに電気的に分離されることができる。
【0029】
内部電極121、122に含まれる導電性金属は、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、銀(Ag)、金(Au)、白金(Pt)、スズ(Sn)、タングステン(W)、チタン(Ti)及びこれらの合金のうち一つ以上であることができ、本発明はこれに限定されるものではない。
【0030】
内部電極121、122は、セラミックグリーンシート上に所定の厚さで導電性金属を含む内部電極用導電性ペーストを印刷することで形成することができる。内部電極用導電性ペーストの印刷方法は、スクリーン印刷法やグラビア印刷法などを用いることができ、本発明はこれに限定されるものではない。
【0031】
外部電極131、132は、本体110の第1面及び第2面1、2に配置され、第3面、第4面、第5面、及び第6面3、4、5、6でそれぞれ一部が延びることができる。外部電極131、132は、本体110の第1面1に配置され、複数の第1内部電極121と連結された第1外部電極131及び本体110の第2面2に配置され、複数の第2内部電極122と連結された第2外部電極132を含むことができる。
【0032】
外部電極131、132は、金属などのように電気導電性を有するものであれば、どのような物質を用いても形成されることができ、電気的特性、構造的安定性などを考慮して、具体的な物質が決定されることができ、さらには多層構造を有することができる。例えば、外部電極131、132の導電性金属を含むことができ、外部電極131、132に含まれる導電性金属は、銅(Cu)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)、金(Au)、銀(Ag)、鉛(Pb)及び/またはこれらを含む合金などを含むことができるが、これに限定されるものではない。
【0033】
外部電極131、132は、本体110の第1面及び第2面1、2を導電性金属及びガラスを含む外部電極用導電性ペーストにディッピング(dipping)した後に焼成することで形成されることができる。または、導電性金属及びガラスを含むシートを転写する方式で形成されることもできる。
【0034】
誘電体層111は、複数の誘電体グレイン11を含み、誘電体グレイン11間に存在するグレインバウンダリー11cを含む。誘電体層111を形成する原料は、十分な静電容量が得られる限り、特に制限されず、例えば、チタン酸バリウム(BaTiO3)粉末を含むことができる。誘電体層111は、チタン酸バリウム(BaTiO3)などのセラミック粉末、有機溶剤及びバインダーを含むセラミックグリーンシートの焼成によって形成されることができる。
【0035】
誘電体グレイン11は、ABO3で表されるペロブスカイト構造を有する主成分を含むことができる。上記Aは、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)及びカルシウム(Ca)からなる群から選択された一つ以上を含むことができ、本発明はこれに限定されるものではない。上記Bは、例えば、チタン(Ti)及びジルコニウム(Zr)からなる群から選択された一つ以上を含むことができるが、本発明はこれに限定されるものではない。
【0036】
例えば、誘電体グレイン11は、BamTiO3(0.995≦m≦1.010)、(Ba1-xCax)m(Ti1-yZry)O3(0.995≦m≦1.010、0≦x≦0.10、0<y≦0.20)、Bam(Ti1-xZrx)O3(0.995≦m≦1.010、x≦0.10)あるいは上記希土類元素のうち一つまたはそれ以上が一部固溶されたBamTiO3(0.995≦m≦1.010)、(Ba1-xCax)m(Ti1-yZry)O3(0.995≦m≦1.010、0≦x≦0.10、0<y≦0.20)、Bam(Ti1-xZrx)O3(0.995≦m≦1.010、x≦0.10)からなる群から選択された一つ以上を含むことができるが、これに制限されるものではない。
【0037】
誘電体グレイン11の平均結晶粒径(Grain size)は特に限定する必要はないが、例えば50~500nmであることができる。平均結晶粒径が50nm未満の場合には、誘電率低下及び粒成長率の低下に伴う添加元素の固溶不足現象による期待効果の実現が不十分となる問題点が発生するおそれがあり、500nmを超える場合には温度及びDC電圧による容量変化率が増加するおそれがあり、誘電体層111当たり誘電体結晶粒の個数の減少により信頼性が低下するおそれがある。誘電体グレイン11の平均結晶粒径は、直径測定法またはASTM結晶粒度試験法など様々な方法で測定されることができる。
【0038】
本発明の一実施形態によると、誘電体層111は、還元雰囲気で焼成可能な耐還元性誘電体組成物を含むことができ、以下、誘電体グレイン11を含む誘電体層111を形成する誘電体組成物の各成分についてより具体的に説明する。
【0039】
1)主成分
上記誘電体組成物は、BaTiO3、(Ba、Ca)(Ti、Ca)O3、(Ba、Ca)(Ti、Zr)O3、Ba(Ti、Zr)O3及び(Ba、Ca)(Ti、Sn)O3のうち一つを主成分として含むことができる。
【0040】
より具体的な例として、BaTiO3、(Ba1-xCax)(Ti1-yCay)O3(ここで、xは0≦x≦0.3、yは0≦y≦0.1)、(Ba1-xCax)(Ti1-yZry)O3(ここで、xは0≦x≦0.3、yは0≦y≦0.5)、Ba(Ti1-yZry)O3(ここで、0<y≦0.5)及び(Ba1-xCax)(Ti1-ySny)O3(ここで、xは0≦x≦0.3、yは0≦y≦0.1)からなる群から選択される一つ以上であることができる。
【0041】
2)第1副成分
上記誘電体組成物は、希土類元素を含む第1副成分を含むことができる。このとき、上記希土類元素は、例えば、Y、Ac、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、La及びLuのうち一つ以上を含むことができる。
【0042】
上記第1副成分は、ABO3構造のA-siteを置換してドナー(donor)の役割を果たすことで、酸素空孔の濃度を減らして信頼性を向上させることができる。また、上記希土類元素は、結晶粒界における電子の流れを防ぐ障壁として作用し、リーク電流の増加を抑制する役割を果たすことができる。
【0043】
このとき、上記第1副成分は、上記主成分100モルに対して上記希土類元素を含む酸化物または炭酸塩を0.2モル以上4.0モル以下含むことができる。上記主成分100モルに対して希土類元素を含む酸化物または炭酸塩含有量が0.2モル未満である場合には、上述した効果が不十分であることができる。上記主成分100モルに対して上記希土類元素を含む酸化物または炭酸塩含有量が4.0モル超過である場合には、半導体化されて絶縁体の特性を低下させ、焼結性が劣るというおそれがある。
【0044】
3)第2副成分
上記誘電体組成物は、原子価可変アクセプター元素及び原子価固定アクセプター元素のうち一つ以上を含む第2副成分を含むことができる。原子価可変アクセプター元素及び原子価固定アクセプター元素は、主にABO3構造のB-siteを置換してアクセプター(acceptor)の役割を果たし、電子濃度を減らす役割を果たすことができる。したがって、希土類元素のA-site固溶による誘電体層の半導体化を抑制する役割を果たすことができる。また、誘電体組成物が適用された積層セラミックキャパシタの焼成温度の低下及び高温耐電圧の特性を向上させる役割を果たすことができる。
【0045】
このとき、上記原子価可変アクセプターは、Mn、V、Cr、Fe、Ni、Co、Cu、及びZnのうち一つ以上を含み、上記原子価固定アクセプターはMgを含むことができる。また、上記第2副成分は、上記主成分100モルに対して上記原子価可変アクセプター元素及び原子価固定アクセプター元素のうち一つ以上を含む酸化物または炭酸塩を0.01モル以上4.0モル以下含むことができる。
【0046】
上記主成分100モルに対して上記原子価可変アクセプター元素及び原子価固定アクセプター元素のうち一つ以上を含む酸化物または炭酸塩が0.01モル未満である場合には、希土類元素添加による誘電体層の半導体化を抑制することが困難であることがあり、焼成温度が高くなって高温耐電圧の特性が多少低下するおそれがある。上記主成分100モルに対して上記原子価可変アクセプター元素及び原子価固定アクセプター元素のうち一つ以上を含む酸化物または炭酸塩が4.0モル超過である場合には、破壊電圧(BDV)または常温比抵抗が低下することがある。
【0047】
4)第3副成分
上記誘電体組成物は、Baを含む酸化物または炭酸塩である第3副成分を含み、上記第3副成分は、上記主成分100モルに対して0.37モル以上4.0モル以下含まれることができる。
【0048】
上記第3副成分の含有量は、酸化物または炭酸塩などの添加形態を区分することなく、第3副成分に含まれたBa元素の含有量を基準とすることができる。上記第3副成分は、誘電体磁器組成物内で焼結促進、誘電率調節などの役割を果たすことができ、その含有量が上記主成分100モルに対して、0.37モル未満の場合には、その効果が不十分であることがあり、4.0モルを超過する場合、誘電率が低くなるか、焼成温度が高くなるという問題がある可能性がある。
【0049】
5)第4副成分
上記誘電体組成物は、Ca、Ti及びZrのうち一つ以上を含む酸化物または炭酸塩である第4副成分を含むことができる。このとき、上記第4副成分は、上記主成分100モルに対して24モル以下含まれることができる。
【0050】
上記第4副成分は上記誘電体組成物内でコア-シェル(core-shell)構造を形成し、誘電率及び信頼性の向上の役割を果たすことができる。上記第4副成分の含有量が上記主成分100モルに対して24モルを超過する場合には、常温誘電率及び高温耐電圧の特性が低下する可能性がある。
【0051】
6)第5副成分
上記誘電体組成物は、Si及びAlの少なくとも一つを含む酸化物を含むことができる。上記第5副成分は、上記誘電体組成物が適用された積層セラミック電子部品の焼成温度低下及び高温耐電圧特性を向上させる役割を果たすことができる。また、後述するように、Alは誘電体層111を形成するセラミック粉末の表面にコーティングされることで誘電体層111に含まれることができる。
【0052】
積層セラミック電子部品100の一つである積層セラミックキャパシタは、高容量化及び超薄層化される傾向にある。高容量化及び薄層化に伴い、積層セラミックキャパシタにおける誘電体層111の耐電圧特性及び信頼性確保が主な問題となっている。このような問題点を解決するために、従来には誘電体層111に上述した副成分、特にAlを含む酸化物を添加して積層セラミックキャパシタの耐電圧特性を改善した。
【0053】
しかしながら、このようなAlを含む酸化物が積層セラミックキャパシタの電気的特性に寄与するためには、Alがイオン化されて上記主成分を含む誘電体グレイン11内に固溶される必要がある。しかしながら、Alはイオン化される過程で大きなエネルギーが必要であり、上記エネルギーが十分でない場合、誘電体グレイン11間に存在するグレインバウンダリー11cに偏析する。また、誘電体グレイン11内にAlを固溶させるためにAlを含む酸化物を過度に添加する場合、誘電体層111の誘電率が低下する可能性があり、DCバイアス変化率が高くなるという問題点が発生する可能性がある。これによって、同量のAlを添加しながらも、Alを誘電体グレイン11内に固溶させてグレインバウンダリー11cにおけるAl含有量を減少させることが必要である。
【0054】
これによって、本発明の一実施形態によると、グレインバウンダリー11cに含まれたAlとTiのモル比(Al/Ti)が0.022~0.028を満たす。すなわち、グレインバウンダリー11cに含まれるAl含有量を制御することで、誘電体グレイン11内にAlを効果的に固溶させることができる。これにより、積層セラミック電子部品100のリーク電流を効果的に抑制することができる。また、優れた絶縁破壊電圧特性を実現して積層セラミック電子部品100の耐電圧特性及び信頼性を改善することができる。
【0055】
グレインバウンダリー11cに含まれたAlとTiのモル比(Al/Ti)が0.022未満である場合、グレインバウンダリー11cにおける絶縁抵抗が低下することがあり、これにより積層セラミック電子部品100の耐電圧特性及び信頼性が低下する可能性がある。
【0056】
グレインバウンダリー11cに含まれたAlとTiのモル比(Al/Ti)が0.028超過である場合、グレインバウンダリー11cに含まれたAl含有量が高すぎてDCバイアス変化率が増加し、積層セラミック電子部品100の誘電率が低下するという問題が発生する可能性がある。
【0057】
グレインバウンダリー11cに含まれたAl含有量を調節する方法の一例として、イオン化されたAlがコーティングされたBaTiO3などのセラミック粉末で誘電体層111を形成することで、グレインバウンダリー11cに含まれたAl含有量を調節することができる。
【0058】
このとき、BaTiO3粉末にAlをコーティングさせる方法は、例えば、水熱合成でBaTiO3製造時に、上記副成分に含まれる希土類元素及びAlを含む添加剤コーティング液を添加してコーティングすることができる。このとき、上記希土類元素がドナー(donor)として作用し、Alがアクセプター(acceptor)として作用することができる。これにより、Alがイオン化することができ、イオン化したAlがBaTiO3粉末の表面にコーティングされることができる。これにより、Alが誘電体グレイン11内に固溶するためのエネルギーが低くなって、誘電体グレイン11内に容易に固溶することができ、これによりグレインバウンダリー11c内に含まれるAl含有量が減少することができる。
【0059】
グレインバウンダリー11cに含まれたTi含有量を調節する方法は、例えば誘電体層111にTiO2を添加してTi含有量を調節することができるが、本発明はこれに限定されるものではない。
【0060】
本発明の一実施形態において、誘電体グレイン11はコア(core)-シェル(shell)構造を有することができる。すなわち、誘電体グレイン11は、コア11a及びコア11aを囲むシェル11b構造を有することができる。一方、コア11aでは、Alが存在しないか、存在しても微量のみが存在する。これにより、コア11aに含まれたAlとTiのモル比(Al/Ti)とシェル11bに含まれたAlとTiのモル比(Al/Ti)は、コア11aとシェル11bの境界で急激に変化するため、コア11a及びシェル11bを容易に区分することができ、これはTEM-EDS(Transmission Electron Microscope-Energy Dispersive X-ray Spectroscopy)分析によって確認することができる。
【0061】
このとき、グレインバウンダリー11cに含まれたAlとTiのモル比(Al/Ti)をRgとし、シェル11bに含まれたAlとTiのモル比(Al/Ti)をRsとすると、Rg/Rsは0.953以下であることができる。Rg/Rsが0.953以下である場合、積層セラミック電子部品100の耐電圧特性及び信頼性が向上することができる。上記範囲を満足するとは、グレインバウンダリー11cに偏析したAl含有量が減少してシェル11bに十分なAlが固溶したことを意味することができる。これにより、積層セラミック電子部品100の耐電圧特性及び信頼性を向上させることができる。Rg/Rsの下限値は特に制限されるものではなく、0超過であることができる。
【0062】
本発明の一実施形態において、グレインバウンダリー11cの平均厚さは0.7~1.5nmであることができる。上記グレインバウンダリー11cの平均厚さが0.7~1.5nmを満たす場合、グレインバウンダリー11cの絶縁抵抗が強化され、積層セラミック電子部品の信頼性を向上させることができる。グレインバウンダリー11cの平均厚さが0.7nm未満の場合には、絶縁抵抗が低くなって信頼性が低下することがあり、グレインバウンダリー11cの平均厚さが1.5nmを超過する場合には誘電率が低くなることがある。
【0063】
グレインバウンダリー11cの平均厚さは、積層セラミック電子部品100の第1方向及び第2方向の断面で誘電体層111をTEMで分析したイメージで測定されることができる。より具体的には、グレインバウンダリー11cにおける多数の地点、例えば、任意の30個の地点でその厚さを測定して平均値を測定することができる。
【0064】
本発明の一実施形態において、誘電体層111の平均厚さは0.1~10μmであることができ、積層セラミック電子部品100の小型化及び高容量化のために0.4μm以下であることができるが、本発明はこれに限定されるものではない。誘電体層111の平均厚さは、本体110の第1方向及び第2方向の断面を1万倍率の走査電子顕微鏡を用いてスキャンして測定することができる。より具体的には、一つの誘電体層111の多数の地点、例えば第1方向に等間隔の30個の地点でその厚さを測定して平均値を測定することができる。また、このような平均値測定を多数の誘電体層111に拡張して平均値を測定すると、誘電体層111の平均厚さをさらに一般化することができる。
【0065】
本発明の一実施形態において、内部電極121、122の平均厚さは0.2~1.0μmであることができ、積層セラミック電子部品100の小型化及び高容量化のために0.4μm以下であることができるが、本発明はこれに限定されるものではない。内部電極121、122の平均厚さは、本体110の第1方向及び第2方向の断面を1万倍率の走査電子顕微鏡を用いてスキャンして測定することができる。より具体的には、一つの内部電極の多数の地点、例えば第1方向に等間隔の30個の地点でその厚さを測定して平均値を測定することができる。このような平均値測定を多数の内部電極に拡張して平均値を測定すると、内部電極の平均厚さをさらに一般化することができる。
【0066】
本発明の他の実施形態は、誘電体層111及び内部電極121、122を含む本体110、本体110の外側に配置される外部電極131、132を含み、誘電体層111は、コア11a-シェル11bの構造を有する誘電体グレイン11、及び誘電体グレイン11間に存在するグレインバウンダリー11cを含み、グレインバウンダリー11cに含まれたAlとTiのモル比(Al/Ti)をRgとし、シェル11bに含まれたAlとTiのモル比(Al/Ti)をRsとすると、Rg/Rsは0.953以下である積層セラミック電子部品を提供する。
【0067】
誘電体グレイン11は、コア11a及びコア11aを囲むシェル11bの構造を有することができる。コア11aでは、Alが存在しないか、存在しても微量のみが存在する。これにより、コア11aに含まれたAlとTiのモル比(Al/Ti)とシェル11bに含まれたAlとTiのモル比(Al/Ti)は、コア11aとシェル11bの境界で急激に変化するため、コア11a及びシェル11bを容易に区分することができ、これはTEM-EDS(Transmission Electron Microscope-Energy Dispersive X-ray Spectroscopy)分析によって確認することができる。
【0068】
このとき、Ra/Rsは0.953以下であることができる。Ra/Rsが0.953以下である場合、積層セラミック電子部品100の耐電圧特性及び信頼性が向上することができる。上記範囲を満足するとは、グレインバウンダリー11cに偏析したAl含有量が減少してシェル11bに十分なAlが固溶したことを意味することができる。これにより、積層セラミック電子部品100の耐電圧特性及び信頼性を向上させることができる。Ra/Rsの下限値は特に制限されるものではなく、0超過であることができる。
【0069】
上記本発明の他の実施形態による積層セラミック電子部品100は、上述した本発明の一実施形態による積層セラミック電子部品100の一実施形態と同様の構成を有することができる。したがって、上述した本発明の一実施形態と重複する説明を省略する。
【実施例0070】
以下、実施例及び比較例により本発明をさらに詳細に説明するが、これは本発明の具体的な理解を助けるためのものであり、本発明の範囲が実施例によって限定されるものではない。
【0071】
まず、本発明の実施例を製造する方法について説明する。まず、主成分であるチタン酸バリウム(BaTiO3)粉末を設けた。このとき、チタン酸バリウム(BaTiO3)粉末は水熱合成して製造し、上記第1副成分に含まれるDy及びAlを含む添加剤コーティング液を添加した。より詳細には、上記Dyを含む硝酸(HNO3)溶液及びアルミニウム硝酸塩(Aluminum nitrate)溶液を混合した後、粒成長したチタン酸バリウム(BaTiO3)粒子を含むBTスラリーに添加した。この後、上記BTスラリーを乾燥してチタン酸バリウム(BaTiO3)粉末を形成した。また、上記第1~第4副成分を酸化物または炭酸塩の形態で添加した後、バインダー、有機溶剤などを投入して混合してセラミックスラリーを製造した。
【0072】
製造されたセラミックスラリーをキャリアフィルム上にドクターブレード法により数μmの厚さを有するシート(sheet)状に塗布した後、乾燥してセラミックグリーンシートを設けた。
【0073】
次に、ニッケル粒子の平均サイズが0.1~0.2μmであり、40~50重量部のニッケル粉末を含む内部電極用導電性ペーストを設けた。
【0074】
上記グリーンシート上に上記内部電極用導電性ペーストをスクリーン印刷工法で塗布して内部電極を形成した後、内部電極パターンが配置されたグリーンシートを約0.3mm厚さに積層して積層体を形成した後、上記積層体を圧着及び0603(長さ×幅、0.6mm×0.3mm)サイズに切断した。
【0075】
この後、切断した積層体を400℃以下、窒素雰囲気で加熱してバインダーを除去した後、焼成温度1200℃以下、水素濃度0.5%H2以下条件で焼成して誘電体層及び内部電極を含む本体を設けた。次に、焼成された本体に対して銅(Cu)ペーストでターミネーション工程及び電極焼成を経て外部電極を形成して試料番号4~6のサンプルチップを完成した。
【0076】
比較例の場合、従来のようにチタン酸バリウム(BaTiO3)粉末にバインダー、有機溶剤などを投入して混合してセラミックスラリーを製造した。このとき、Alは実施例と異なって酸化物の形態で添加された。この後には、Alが酸化物形態で添加されたことを除いては実施例と同様の方法で製造され、これにより試料番号1*~3*及び試料番号7*~9*のサンプルチップを完成した。
【0077】
上記のように完成したサンプルチップの試験片である試料番号1~9について、上記グレインバウンダリーに含まれたAlとTiのモル比(Al/Ti)、Rg/Ra比率(Rgは、グレインバウンダリーに含まれたAlとTiのモル比、Rsはシェルに含まれたAlとTiのモル比)、絶縁破壊電圧を測定して過酷信頼性テスト(HALT)を行って故障率を評価して下記表1に記載した。
【0078】
グレインバウンダリーに含まれたAlとTiのモル比(Rg)とシェルに含まれたAlとTiのモル比(Rs)は、各サンプルをTEM-EDS分析により測定した。より具体的には、各試料番号当たり10個のサンプルチップについて第3方向の中央部で切断した第1方向及び第2方向の断面をTEM及びEDS装置を用いて分析し、各サンプル当たり任意の3ポイントで測定された値の平均値を算出した。
【0079】
絶縁破壊電圧(Break-down voltage、BDV)はKeithely測定器で測定し、0Vから1.00000VずつSweep方式で電圧を印加し、電流値が20mAとなる瞬間の電圧値をBDV値として測定した。40個のサンプルについて測定されたBDVの平均値が80V以上であるときを良好(○)、70V以上80V未満であるときを普通(△)、70V未満であるときを不良(×)と判定した。
【0080】
過酷信頼性テスト(HALT)は、各サンプル番号当たりサンプルチップ80個を基板に実装し、105℃、12.6V(DC)印加条件で12時間測定した。測定結果について故障率が0%であるときを良好(○)、10%以下であるときを普通(△)、10%超過であるときを不良(×)と判定した。
【0081】
【0082】
グレインバウンダリーにおけるAlとTiのモル比(Al/Ti)が0.022未満であり、Rg/Rs値が0.953を超過する試料番号1*~3*の場合、BDV値が低下し、HALT故障が発生したことが確認できる。また、グレインバウンダリーにおけるAlとTiのモル比(Al/Ti)が0.028超過である試料番号7*~9*もBDV値が低下し、HALT故障率が増加したことが確認できる。特に、試料番号7*~9*の場合、Rg/Rs値が過度に高く、リーク電流が増加することで、試料番号1*~3*よりもBDV及びHALT特性が低下したことが確認できる。
【0083】
グレインバウンダリーにおけるAl/Ti値が0.022~0.028を満たす試料番号4~6は優れたBDV値を有し、HALT故障が発生しないことを介してAl/Ti値を調節することで、積層セラミック電子部品の耐電圧特性及び信頼性が改善されたことが確認できる。
【0084】
また、試料番号4~6は、Rg/Rs値が0.953以下であり、グレインバウンダリーに偏析したAlに対してシェルに固溶したAl比率が高く、積層セラミック電子部品の耐電圧特性及び信頼性が改善されたことが確認できる。一方、試料番号1*~3*及び7*~9*の場合、Rg/Rs値が0.953超過であることから、耐電圧特性及び信頼性が低下したことが確認できる。
【0085】
図5及び
図6は、本発明の実施例によるTEM(Transmission Electron Microscope)分析イメージであり、
図7及び
図8は、本発明の比較例によるTEM(Transmission Electron Microscope)分析イメージである。
【0086】
図5~
図8を参照すると、本発明の実施例による誘電体グレイン11は、コア11aとシェル11bが比較例に比べてさらに明確に区分されることが分かり、これによって絶縁抵抗が強化されて信頼性に優れることが分かる。
【0087】
以上、本発明の実施形態について詳細に説明したが、本発明は、上述の実施形態及び添付の図面によって限定されるものではなく、添付の特許請求の範囲によって限定される。したがって、特許請求の範囲に記載された本発明の技術的思想から外れない範囲内で、当技術分野における通常の知識を有する者によって多様な形態の置換、変形、及び変更が可能であり、これも本発明の範囲に属するといえる。