IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東洋ゴム工業株式会社の特許一覧

<>
  • 特開-空気入りタイヤ 図1
  • 特開-空気入りタイヤ 図2
  • 特開-空気入りタイヤ 図3
  • 特開-空気入りタイヤ 図4
  • 特開-空気入りタイヤ 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023097772
(43)【公開日】2023-07-10
(54)【発明の名称】空気入りタイヤ
(51)【国際特許分類】
   B60C 11/12 20060101AFI20230703BHJP
   B60C 11/03 20060101ALI20230703BHJP
【FI】
B60C11/12 C
B60C11/03 C
B60C11/03 300A
B60C11/12 A
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2021214055
(22)【出願日】2021-12-28
(71)【出願人】
【識別番号】000003148
【氏名又は名称】TOYO TIRE株式会社
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】里井 彩
【テーマコード(参考)】
3D131
【Fターム(参考)】
3D131BB01
3D131BB11
3D131BC12
3D131BC13
3D131BC18
3D131BC19
3D131BC20
3D131BC31
3D131BC33
3D131BC47
3D131CB05
3D131EA08U
3D131EB22X
3D131EB24X
3D131EB28X
3D131EB52U
3D131EB52V
3D131EB55U
3D131EB64U
3D131EB64V
3D131EB66U
3D131EB66V
3D131EB67U
3D131EB67V
3D131EB68U
3D131EB68V
3D131EB82V
3D131EB83V
3D131EB83X
3D131EB91V
3D131EB91X
3D131EB94V
3D131EB94X
3D131EC12V
3D131EC12X
(57)【要約】
【課題】乾燥路面および雪氷路面における制動性能に優れた空気入りタイヤを提供する。
【解決手段】実施形態の一例である空気入りタイヤ1は、回転方向が指定されたタイヤであって、主溝20,21と、タイヤ周方向に主溝20,21と交互に配置されたセンターブロック32,34とを有する。センターブロック32,34は、ストレートサイプ50と、小振幅の波形サイプ51と、大振幅の波形サイプ52とを有する。ストレートサイプ50には、センターブロック32,34に形成された複数のサイプのうち、各ブロックの長手方向両端から最も近くに配置された末端サイプが含まれ、小振幅の波形サイプ51は、少なくともセンターブロック32,34の赤道CL側において末端サイプと隣り合って配置されている。
【選択図】図2
【特許請求の範囲】
【請求項1】
トレッドを備え、回転方向が指定された空気入りタイヤであって、
前記トレッドは、
赤道側から接地端側に向かって延び、前記接地端側よりも前記赤道側でタイヤ軸方向に対する傾斜が大きくなった主溝と、
前記主溝に沿って形成され、タイヤ周方向に前記主溝と交互に配置されたブロックと、
を有し、
前記ブロックは、前記赤道側に位置する第1ブロックと、前記接地端側に位置する第2ブロックとを含み、
前記第1ブロックは、平面視において、直線に形成された第1サイプと、波形に形成された第2サイプと、波形に形成され、波の振幅が前記第2サイプよりも大きな第3サイプとを有し、
前記第1サイプには、前記第1ブロックに形成された複数のサイプのうち、前記第1ブロックの長手方向両端から最も近くに配置された末端サイプが含まれ、前記第2サイプは、少なくとも前記第1ブロックの前記赤道側において前記末端サイプと隣り合って配置されている、空気入りタイヤ。
【請求項2】
前記第3サイプは、前記第1ブロックの前記接地端側において前記末端サイプと隣り合って配置されている、請求項1に記載の空気入りタイヤ。
【請求項3】
前記第1ブロックには、前記主溝から延びて当該ブロック内で終端するスリットが形成され、
前記スリットは、前記第1ブロックのタイヤ軸方向中央から、前記第1ブロックのタイヤ軸方向に沿った長さの30%に相当する長さだけ前記赤道側に位置する地点との間に形成されている、請求項1又は2に記載の空気入りタイヤ。
【請求項4】
前記スリットにつながるサイプは、前記第1サイプ又は前記第2サイプである、請求項3に記載の空気入りタイヤ。
【請求項5】
前記第1ブロックには、前記スリット側から、前記第1サイプ、前記第2サイプ、および前記第3サイプの順で配置されている、請求項3に記載の空気入りタイヤ。
【請求項6】
前記スリットよりも前記赤道側部分に形成されるサイプ群は、前記スリットよりも前記接地端側部分に形成されるサイプ群と比べて、タイヤ軸方向に沿うように形成されている、請求項3~5のいずれか一項に記載の空気入りタイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空気入りタイヤに関し、より詳しくは、回転方向が指定された空気入りタイヤに関する。
【背景技術】
【0002】
従来、タイヤの回転方向が指定された方向性タイヤが知られている。例えば、特許文献1には、タイヤ周方向に沿った2本の主溝と、タイヤ周方向に延びる複数の傾斜溝と、タイヤ軸方向に延びる複数の横断溝と、各溝により区画された複数のブロックとを含むトレッドパターンを備えた方向性タイヤが開示されている。また、特許文献1のタイヤの各ブロックには、平面視形状が異なる2種類のサイプ(ストレートサイプと波形サイプ)が形成されている。特許文献2には、トレッドのブロックに形成されるサイプとして、波の振幅が異なる2種類以上の波形サイプが開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010-167930号公報
【特許文献2】国際公開2017/0928974号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、ブロックに形成されるサイプの形状と配置は、雪氷路面および乾燥路面における制動性能に大きな影響を与える。例えば、サイプはエッジを増やすことでスノー性能の向上に寄与するが、サイプの本数、配置等が適切ではない場合、ブロック剛性が低下してブロックの倒れ込みにより接地面積が減少し、ドライ性能が大きく低下することが想定される。良好なドライ性能を確保しつつ、エッジ効果を高めてスノー性能を向上させることは容易ではなく、特にオールシーズンタイヤにおいて重要な課題となっている。
【0005】
本発明の目的は、乾燥路面および雪氷路面における制動性能に優れた空気入りタイヤを提供することである。
【課題を解決するための手段】
【0006】
本発明に係る空気入りタイヤは、トレッドを備え、回転方向が指定された空気入りタイヤであって、前記トレッドは、接地端側から赤道側に向かって延び、前記接地端側よりも前記赤道側でタイヤ軸方向に対する傾斜が大きくなった主溝と、前記主溝に沿って形成され、タイヤ周方向に前記主溝と交互に配置されたブロックとを有し、前記ブロックは、前記赤道側に位置する第1ブロックと、前記接地端側に位置する第2ブロックとを含み、前記第1ブロックは、平面視において、直線に形成された第1サイプと、波形に形成された第2サイプと、波形に形成され、波の振幅が前記第2サイプよりも大きな第3サイプとを有し、前記第1サイプには、前記第1ブロックに形成された複数のサイプのうち、前記第1ブロックの長手方向両端から最も近くに配置された末端サイプが含まれ、前記第2サイプは、少なくとも前記第1ブロックの前記赤道側において前記末端サイプと隣り合って配置されている。
【発明の効果】
【0007】
本発明に係る空気入りタイヤは、乾燥路面および雪氷路面における制動性能に優れる。本発明に係る空気入りタイヤは、オールシーズンタイヤに好適である。
【図面の簡単な説明】
【0008】
図1】実施形態の一例である空気入りタイヤの一部を示す斜視図である。
図2】実施形態の一例である空気入りタイヤの平面図である。
図3】センターブロックにおけるスリットの形成範囲を示す図である。
図4】トレッドパターンの一部(図2中の領域A)を拡大して示す図である。
図5】トレッドパターンの一部(領域A)を示す斜視図である。
【発明を実施するための形態】
【0009】
以下、図面を参照しながら、本発明に係る空気入りタイヤの実施形態の一例について詳細に説明する。以下で説明する実施形態はあくまでも一例であって、本発明は以下の実施形態に限定されない。また、以下で説明する複数の実施形態および変形例の各構成要素を選択的に組み合わせてなる形態は本発明に含まれている。
【0010】
図1は、実施形態の一例である空気入りタイヤ1の一部を示す斜視図であって、タイヤの内部構造を併せて図示している。図1に示すように、空気入りタイヤ1は、路面に接地する部分であるトレッド10を備える。トレッド10は、赤道CL(図2参照)側から接地端側に向かって延び、接地端側よりも赤道CL側でタイヤ軸方向に対する傾斜角度が大きくなった主溝20,21と、主溝20,21に沿ってそれぞれ形成されたブロック30,31とを有する。主溝20とブロック30は、赤道CL側から接地端E1側に延び、主溝21とブロック31は、赤道CL側から接地端E2側に延びている。
【0011】
赤道CLとは、トレッド10のタイヤ軸方向の丁度中央(接地端E1,E2から等距離の位置)を通るタイヤ周方向に沿った線を意味する。本明細書において、接地端E1,E2は、未使用の空気入りタイヤ1を正規リムに装着して正規内圧となるように空気を充填した状態で、所定の荷重を加えたときに平坦な路面に接地する領域のタイヤ軸方向両端と定義される。乗用車用タイヤの場合、所定の荷重は正規荷重の88%に相当する荷重である。
【0012】
ここで、「正規リム」とは、タイヤ規格により定められたリムであって、JATMAであれば「標準リム」、TRAおよびETRTOであれば「Measuring Rim」である。「正規内圧」は、JATMAであれば「最高空気圧」、TRAであれば表「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、ETRTOであれば「INFLATION PRESSURE」である。正規内圧は、乗用車用タイヤの場合は通常180kPaとするが、Extra Load、又はReinforcedと記載されたタイヤの場合は220kPaとする。「正規荷重」は、JATMAであれば「最大負荷能力」、TRAであれば表「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、ETRTOであれば「LOAD CAPACITY」である。レーシングカート用タイヤの場合、正規荷重は392Nである。
【0013】
空気入りタイヤ1は、回転方向が指定された方向性タイヤである。図1には、タイヤの回転方向を示す矢印を図示している。本明細書において、タイヤの「回転方向」とは、タイヤが装着される車両が前進するときの回転方向を意味する。また、本明細書では、説明の便宜上「左右」の用語を使用するが、この左右とは、タイヤが車両に装着された状態で車両の進行方向に向かって左右を意味する。空気入りタイヤ1は、車両に対する装着方向を示すための表示を有することが好ましい。空気入りタイヤ1の側面には、例えば、回転方向を示す文字および矢印の少なくとも一方が設けられている。
【0014】
トレッド10は、ブロック30,31がタイヤ周方向に沿って千鳥状に配置されたトレッドパターンを有する。ブロック30,31の大部分は、赤道CLを挟んでトレッド10の左右に分かれて配置されている。ブロック30は、主溝20に沿って形成され、タイヤ周方向に主溝20と交互に配置されている。ブロック30は、赤道CL側に位置するセンターブロック32(第1ブロック)と、接地端E1側に位置するショルダーブロック33(第2ブロック)とを含むブロックのペアである。センターブロック32とショルダーブロック33の間には、2本の主溝20をつなぐ副溝22が形成され、副溝22がブロック30を2つのブロックに分断している。
【0015】
ブロック31は、主溝21に沿って形成され、タイヤ周方向に主溝21と交互に配置されている。ブロック31は、赤道CL側に位置するセンターブロック34(第1ブロック)と、接地端E2側に位置するショルダーブロック35(第2ブロック)とを含むブロックのペアである。センターブロック34とショルダーブロック35の間には、2本の主溝21をつなぐ副溝23が形成され、副溝23がブロック31を2つのブロックに分断している。
【0016】
空気入りタイヤ1は、タイヤ軸方向外側に膨らんだ一対のサイドウォール11と、一対のビード12とを備える。ビード12は、ホイールのリムに固定される部分であって、ビードコア17とビードフィラー18を有する。サイドウォール11とビード12は、タイヤ周方向に沿って環状に形成され、空気入りタイヤ1の側面を形成している。サイドウォール11は、トレッド10のタイヤ軸方向両端からタイヤ径方向に延びている。
【0017】
空気入りタイヤ1には、トレッド10の接地端E1,E2と、サイドウォール11のタイヤ軸方向外側に最も張り出した部分との間に、サイドリブ13が形成されていてもよい。サイドリブ13は、タイヤ軸方向外側に向かって突出し、タイヤ周方向に沿って環状に形成されている。空気入りタイヤ1の接地端E1,E2、又はその近傍から左右のサイドリブ13までの部分は、ショルダー又はバットレス領域とも呼ばれる。トレッド10とサイドウォール11は、一般的に、異なる種類のゴムで構成されている。ショルダーは、トレッド10と同じゴムで構成されていてもよく、異なるゴムで構成されていてもよい。
【0018】
以下、図2を参照しながら、空気入りタイヤ1のトレッドパターンについて詳説する。図2は、空気入りタイヤ1(トレッド10)の平面図である。
【0019】
図2に示すように、主溝20は、タイヤ周方向に任意の間隔で配置されて形成されている。主溝21についても同様に、タイヤ周方向に任意の間隔で配置されて形成されている。トレッド10は、主溝20とブロック30の大部分が赤道CLよりも接地端E1側(トレッド10の左側領域)に配置され、主溝21とブロック31の大部分が赤道CLよりも接地端E2側(トレッド10の右側領域)に配置されたトレッドパターンを有する。ブロックは、タイヤ径方向外側に向かって突出した部分であって、一般的に、陸とも呼ばれる。
【0020】
主溝20には、長さが異なる2種類の主溝20A,20Bが含まれている。主溝20Aは、主溝20Bよりも長く、赤道CLを超えてトレッド10の右側領域に至る長さで形成されている。主溝20Bは、トレッド10の左側領域において赤道CLを超えない長さで形成されている。また、主溝20に沿って形成されるセンターブロック32には、長さが異なる2種類のセンターブロック32A,32Bが含まれている。センターブロック32Aは、センターブロック32Bよりも長く、赤道CLを超えてトレッド10の右側領域に至る長さで形成されている。
【0021】
主溝21についても同様に、長さが異なる2種類の主溝21A,21Bが含まれている。また、主溝21に沿って形成されるセンターブロック34には、長さが異なる2種類のセンターブロック34A,34Bが含まれている。センターブロック32は、センターブロック32A,32Bを一組として、当該センターブロックのペアがタイヤ周方向にバリアブルピッチで並ぶように形成されている。センターブロック34は、センターブロック34A,34Bを一組としてタイヤ周方向にバリアブルピッチで並び、赤道CL上およびその近傍において、センターブロック32とタイヤ周方向に重なっている。
【0022】
トレッド10のタイヤ軸方向中央には、センターブロック32A,32Bの組と、センターブロック34A,34Bの組とが、タイヤ周方向に沿って交互に配置されている。トレッド10の左側領域では、センターブロック32A、主溝20B、センターブロック32B、および主溝20Aの順でタイヤ周方向に繰り返し配置されている(右側領域についても同様)。なお、センターブロック32A,32Bの組、およびセンターブロック34A,34Bの組は、赤道CLに沿って千鳥状に配置されている。
【0023】
本実施形態のトレッドパターンは、平面視において、例えば、赤道CLに対し、ブロック30,31をタイヤ周方向に所定ピッチずらして左右対称に配置したパターンである。ブロック30の形状は、ブロック31を赤道CLに対して反転させた場合の形状と同じである(主溝20,21についても同様)。赤道CLで反転させたブロック31をタイヤ周方向にスライドさせれば、ブロック30と一致する。本実施形態のトレッドパターンは、左右のバランスが良く、操縦安定性の改善において有効である。
【0024】
主溝20とブロック30は、タイヤ回転方向後方に向かって凸となるように湾曲した平面視形状を有する。主溝21とブロック31についても同様に、タイヤ回転方向後方に向かって凸となるように湾曲した平面視形状を有する。主溝20,21およびブロック30,31は、空気入りタイヤ1のタイヤ軸方向中央側から軸方向両側に向かって次第にタイヤ回転方向後方に位置するようにタイヤ軸方向に対して傾斜している。
【0025】
主溝20,21は、上述のように、接地端E1,E2側よりも赤道CL側でタイヤ軸方向に対する傾斜角度が大きくなっている。言い換えると、主溝20,21は、タイヤ赤道CL側から接地端E1,E2に向かって、次第にタイヤ軸方向に沿うようになり、タイヤ軸方向に対する傾斜が緩やかになっている。タイヤ軸方向に対する主溝20,21の傾斜角度は、タイヤ赤道CL側で、例えば、30°~60°又は40°~50°である。
【0026】
主溝20は、赤道CLの近傍において、主溝21につながっている。主溝20は、主溝21との交点から接地端E1側に延び、接地端E1を超えて左側のサイドリブ13にわたって形成されている。主溝21は、赤道CLの近傍における主溝20との交点から接地端E2側に延び、接地端E2を超えて右側のサイドリブ13にわたって形成されている。詳しくは後述するが、主溝20,21の溝内には、隣り合うブロック同士を連結するタイバー36が形成されている。
【0027】
主溝20,21の幅は、全長にわたって一定であってもよいが、本実施形態では、赤道CL側から接地端E1,E2側に向かって次第に大きくなっている。主溝20,21の幅は、例えば、接地端E1,E2又はその近傍、或いは副溝22,23との交点又はその近傍で最大となっていてもよい。この場合、排水・排雪性能が向上し、また雪をつかみ踏み固める雪柱せん断力が向上して、良好なウェット性能とスノー性能が得られる。空気入りタイヤ1には、夏用タイヤに比べて幅広の主溝20が形成されている。
【0028】
副溝22,23は、主溝20,21よりも幅(最大幅)が狭い溝である。副溝22は、タイヤ周方向に延びてブロック30を分断し、主溝20Aと主溝20Bを接続している。副溝22は、タイヤ回転方向前方から後方に向かって次第に接地端E1から離れるようにタイヤ周方向に対して傾いている。副溝23についても同様に、ブロック31を分断して主溝21Aと主溝21Bを接続し、タイヤ回転方向前方から後方に向かって次第に接地端E2から離れるようにタイヤ周方向に対して傾いている。副溝22,23は、例えば、主溝20,21と同じ深さで形成されている。
【0029】
センターブロック32,34には、主溝20,21からそれぞれ延びて当該ブロック内で終端する第1のスリット40,41が形成されている。センターブロック32,34は、主溝20,21に沿って長く延びた大きなブロックであって、その長手方向中央から所定範囲内にスリット40が形成されている。スリット40は、センターブロック32,34を分断することなく、当該ブロック内で終端している。これにより、ブロックの剛性を確保しつつエッジを増やすことができ、良好なドライ性能とウェット性能を維持しながら、スノー性能を向上させることが可能になる。
【0030】
センターブロック32,34には、さらに、第2および第3のスリットが形成されている。センターブロック32A,32Bには、主溝20Bを隔てて対向する位置から延びて各ブロック内で終端する第2のスリット42,43がそれぞれ形成されている。また、センターブロック32Aには、スリット42と、当該ブロックの赤道CL側の端との間に第3のスリット46が形成されている。センターブロック34A,34Bには第2のスリット44,45がそれぞれ形成され、センターブロック34Aには第3のスリット47が形成されている。
【0031】
トレッド10の各ブロックには、サイプが形成されている。サイプは、主溝20,21および副溝22,23よりも幅が狭い溝であって、雪氷をひっかくエッジを形成する。また、サイプは毛細管現象による排水効果を発揮し、雪氷路面における制駆動性、操縦安定性の向上に寄与する。一般的には、溝幅が1.0mm以下の溝がサイプと定義される。センターブロック32,34は、平面視において、直線に形成されたストレートサイプ50(第1サイプ)と、波形に形成された第1の波形サイプ51と(第2サイプ)と、波形に形成され、波の振幅が波形サイプ51よりも大きな第2の波形サイプ52(第3サイプ)とを有する。
【0032】
ショルダーブロック33は、トレッド10の接地端E1側において、タイヤ周方向に任意の間隔で一列に並んで配置されている。ショルダーブロック33の列は、互いに相似形状の有する1種類のブロックで構成されている。ショルダーブロック35の列についても同様に、1種類のブロックがタイヤ周方向に任意の間隔で一列に並んで形成されている。ショルダーブロック33,35は、主溝20,21に沿って緩やかに湾曲した平面視形状を有し、タイヤ軸方向に対する傾斜角度は、サイドリブ13側よりも副溝22,23側でやや大きくなっている。
【0033】
ショルダーブロック33,35の各々には、ショルダーサイプ53,54が形成されている。ショルダーサイプ53は、副溝22から接地端E1を超えてバットレス領域まで延び、サイドリブ13に至らない長さで形成されている。ショルダーサイプ53は、ショルダーブロック33の長手方向に沿って複数(例えば、3本)形成されている。ショルダーサイプ54は、ショルダーブロック35の長手方向に沿って複数形成され、副溝23から接地端E2を超えてバットレス領域まで延びている。ショルダーサイプ53,54の少なくとも一部は、波形に形成されていてもよい。
【0034】
以下、図2に加えて、図3図5を適宜参照しながら、センターブロック32,34について、さらに詳説する。図3は、スリット40の形成範囲を説明するための図である。図4図2中の領域Aの拡大図、図5は領域Aの斜視図である。
【0035】
以下では、主に接地端E1側のセンターブロック32を例に挙げて、ブロックの形状、ブロックに形成されたスリットおよびサイプの構成について説明する。なお、接地端E2側のセンターブロック34は、上述の通り、センターブロック32を赤道CLで反転させた構成であるため、センターブロック32の構成に関する以下の説明は、センターブロック34の構成についても当てはまる。
【0036】
図2に示すように、センターブロック32,34は、赤道CLの左右両側において、赤道CLから所定範囲内に形成されている。トレッド10のタイヤ軸方向中央に大きなセンターブロック32,34を形成することにより、乾燥路面における優れた制動性能と操縦安定性が得られる。また、上述のように、センターブロック32,34を分断しない長さでスリット40,41を形成することにより、ブロックの剛性を確保しつつエッジを増やすことができ、良好なドライ/ウェット性能とスノー性能を実現している。
【0037】
タイヤのスノー性能を向上させるためには、溝面積を大きくするか、或いはサイプの本数を増やすこと等により、又はトレッドを多数のブロックに区画することによりエッジを増やす必要がある。しかし、この場合、ブロック剛性が低下するため、良好なドライ性能を確保することは難しい。空気入りタイヤ1では、スリット40が形成された大きなセンターブロック32,34を設けることにより、大きな接地面積と高いブロック剛性を確保して良好なドライ性能を実現し、かつエッジを増やしてスノー性能を向上させている。なお、溝内にタイバーを形成してブロック剛性を確保することは可能であるが、この場合、接地面積の減少と排水性の低下が問題となる。
【0038】
センターブロック32の接地端E1側の端X1から、センターブロック34の接地端E2側の端X2までの領域である第1領域R1の幅(タイヤ軸方向に沿った長さ)は、トレッド10の接地幅Dの50%~70%が好ましい。接地幅Dは、接地端E1,E2間のタイヤ軸方向に沿った長さである。即ち、センターブロック32の端X1から赤道CLまでの領域、およびセンターブロック34の端X2から接地端E2までの領域である各第2領域R2の幅は、接地幅Dの15%~25%が好ましい。第1領域R1の接地面積は、第2領域R2の接地面積と同等か、又はやや大きいことが好ましい。この場合、良好なコーナリングパワー特性等を維持しつつ、制動性能と操縦安定性の改善効果がより顕著になる。
【0039】
本実施形態では、赤道CLからセンターブロック32の端X1までの長さと、赤道CLからセンターブロック34の端X2までの長さは同じである。赤道CL上には、センターブロック32A,34Aが形成され、センターブロック32Aとセンターブロック34Aが赤道CLに沿って交互に配置されている。センターブロック32Bとセンターブロック34Bは、タイヤ周方向に重ならず、赤道CLの左右に分かれて形成されている。センターブロック32A,32Bの端X1、およびセンターブロック34A,34Bの端X2は、それぞれタイヤ周方向に並んでいる。
【0040】
センターブロック32には、上述の通り、主溝20から延びて当該ブロック内で終端するスリット40が形成されている。センターブロック32Aには、当該ブロックのタイヤ回転方向後方に位置する主溝20Aからスリット40が形成されている。センターブロック32Bについても同様に、当該ブロックのタイヤ回転方向後方に位置する主溝20Bからスリット40が形成されている。スリット40は、耐摩耗性、制動性能等の観点から、センターブロック32のタイヤ回転方向後方側に形成されることが好ましい。
【0041】
本実施形態では、センターブロック32A,32Bのいずれにも、同じ形状、同じ大きさ、および同じ深さで第1のスリット40が1つずつ形成されている。他方、第2のスリット42,43および第3のスリット46については、互いに異なる長さで形成されている。詳しくは後述するが、スリット42,43,46は、スリット40より浅く形成されることが好ましい。なお、各センターブロック32A,32Bに、互いに異なる第1のスリットを形成してもよい。
【0042】
図3に示すように、スリット40は、センターブロック32Aのタイヤ軸方向中央WCから、ブロックのタイヤ軸方向に沿った長さWの30%に相当する長さ(0.3W)だけ赤道CL側に位置する地点WSとの間に形成されている。軸方向中央WCは、センターブロック32Aの長手方向両端Xa,Yaから等距離の位置である。スリット40を当該範囲に形成することにより、高いブロック剛性とエッジ効果をより高次元で両立できる。
【0043】
図3では、センターブロック32AのWC,WSを図示しているが、センターブロック32Bのスリット40も、センターブロック32Aの場合と同様の位置に形成されている。本実施形態では、センターブロック32Bのスリット40の方が、センターブロック32Aのスリット40よりも、ブロックのタイヤ軸方向中央WC側に形成されている。
【0044】
センターブロック32Aにおいて、スリット42は軸方向中央WCよりも端Xa側に形成され、スリット44は地点WSよりも端Ya側に形成されている。センターブロック32Bのスリット43は、当該ブロックのタイヤ軸方向の丁度中央よりも端Xb側に形成されている。なお、センターブロック32Bには、スリット40よりも赤道CL側にスリットは形成されていない。センターブロック32Aのタイヤ軸方向長さWは、例えば、接地幅Dの25%~35%である。センターブロック32Bのタイヤ軸方向長さは、長さWよりも短く、一例としては、長さWの70%~95%である。
【0045】
図4および図5に示すように、センターブロック32Aは、平面視略長方形のブロックであって、主溝20A,20Bに沿った縁Fa3,Fa4はタイヤ回転方向後方に向かって凸となるように緩やかに湾曲している。同様に、センターブロック32Bは平面視略長方形に形成されているが、その長手方向長さはセンターブロック32Aよりも短くなっている。センターブロック32Bの縁Fb3,Fb4は、主溝20A,20Bに沿って緩やかに湾曲している。センターブロック32A,32Bの長手方向両端に位置する縁Fa1,Fa2,Fb1,Fb2は、タイヤ周方向に対して傾斜し、その傾斜角度は、縁Fa1,Fb1よりも、縁Fa2,Fb2で大きくなっている。
【0046】
センターブロック32A,32Bの赤道CL側の縁Fa2,Fb2は、接地端E2側から延びる主溝21Aに沿って形成され、主溝21Aを隔ててセンターブロック34Aと対向している。そして、主溝21A内に形成された隆起部分であるタイバー36により、センターブロック32Bとセンターブロック34Aが連結されている。また、センターブロック34A,34Bの赤道CL側の縁は、主溝20Aを隔ててセンターブロック32Aと対向している。言い換えると、センターブロック32Aの縁Fa3は、主溝20Aを隔ててセンターブロック34A,34Bと対向している。
【0047】
センターブロック32Aは、主溝20A内に形成されたタイバー36により、センターブロック34Bに連結されている。また、主溝20B内のタイバー36により、センターブロック32Aとセンターブロック32Bが連結され、主溝21B内のタイバー36により、センターブロック34Aとセンターブロック34Bが連結されている。タイバー36は、各主溝の赤道CL側の先端に形成されている。タイバー36の主溝に沿った長さは、例えば、各主溝の先端からスリット40の長さよりも短い長さで形成される。
【0048】
即ち、各主溝を隔てて隣り合う各センターブロックは、赤道CL側においてタイバー36を介して互いに連結されている。即ち、各センターブロックがタイヤ周方向に連結されるので、赤道CLの近傍でブロック剛性が高くなりドライ性能をより効果的に改善できる。また、タイバー36は、各主溝の先端のみに形成されているため、良好な排水・排雪性能が確保される。タイバー36は、主溝の深さの30%~70%、又は40%~60%の高さで形成されることが好ましい。
【0049】
スリット40は、上述のように、センターブロック32A,32Bのタイヤ軸方向中央WCから赤道CL側の地点WS(図3参照)までの間に形成されている。スリット40は、タイヤ回転方向後方側から、即ちセンターブロック32A,32Bの縁Fa3,Fb3側から形成されることが好ましい。この場合、耐摩耗性と制動性能の改善効果がより顕著になる。スリット40は、例えば、主溝20A,20Bの深さの10%~100%の深さで形成される。
【0050】
スリット40の深さは、好ましくは主溝20A,20Bの深さの40%~100%であり、より好ましくは50%~100%、特に好ましくは50%~80%である。スリット40は、スリット42,43,46よりも深く形成されることが好ましい。なお、主溝20A,20Bは、互いに同じ深さで形成され、例えば、第1領域R1において一定の深さで形成される。
【0051】
スリット40は、平面視四角形等に形成されてもよいが、ブロックの耐久性、デザイン性、排雪性能等の観点から、本実施形態ではブロック内の先端に向かって次第に細くなった先細り形状を有する。スリット40の長さは、センターブロック32A,32Bを横断しない長さであればよいが、好ましくはスリット40が形成された部分のブロック幅の50%~80%である。また、スリット40の深さは、主溝20A,20Bにつながった開口部分で最も深く、ブロック内の先端に向かって次第に浅くなっていてもよい。
【0052】
スリット40は、タイヤ周方向およびタイヤ軸方向に対して傾斜している。この場合、タイヤ周方向および軸方向の両方にエッジ効果が働き、雪氷路面における制動性能と操縦安定性の改善効果がより顕著になる。スリット40は、例えば、タイヤ軸方向に対してより大きく傾いている。タイヤ軸方向に対するスリット40の傾斜角度の一例は、50°~70°である。
【0053】
センターブロック32A,32Bのスリット40はいずれも、主溝21Aの延長線上に形成されている。センターブロック34A,34Bのスリット41についても同様に、主溝20Aの延長線上に形成されている。この場合、安定したエッジ効果が発揮され、またセンターブロック32Aのスリット40が、主溝20Aを隔てて主溝21Aと対向配置されるため、効果的なスノーポケットが形成され、スノー性能の改善効果がより顕著になる。スリット40の幅は、特に限定されないが、主溝21Aの先端における幅以下であることが好ましい。
【0054】
センターブロック32A,32Bには、主溝20Bを隔てて対向する位置から、即ち各ブロックの縁Fa4,Fb3から延びて各ブロック内で終端する第2のスリット42,43がそれぞれ形成されている。スリット42,43を対向配置することにより、大きなスノーポケットを効率良く形成でき、スノー性能の改善効果がより顕著になる。また、スリット42,43は、スリット40と同様にエッジを増加させる。スリット42は、センターブロック32Aのタイヤ回転方向前方側に形成され、スリット43は、センターブロック32Bのタイヤ回転方向後方側に形成されている。
【0055】
スリット42,43は、スリット40と、各ブロックの接地端E1側の長手方向一端Xa,Xbとの間に形成されている。本実施形態では、赤道CLおよび接地端E1から略等距離の位置にスリット42,43が形成されている。スリット42,43は、ブロックの剛性、耐久性等の観点から、スリット40および端Xa,Xbから離れた位置に形成されることが好ましく、スリット40と端Xa,Xbの丁度中間に形成されてもよい。
【0056】
スリット42,43は、ブロックを横断しない長さであればよいが、好ましくはスリット42,43が形成された部分のブロック幅の30%~80%の長さである。スリット42,43は、互いに同じ長さで形成されてもよいが、本実施形態では、スリット42がスリット43よりも長くなっている。例えば、スリット42はブロック幅の50%~80%の長さであり、スリット43はブロック幅の30%~50%の長さである。この場合、高いブロック剛性と良好なスノー性能を両立し易くなる。
【0057】
スリット42,43は、スリット40と同様の深さで形成されてもよいが、ブロックの剛性、耐久性等の観点から、スリット40より浅く形成されることが好ましい。スリット42,43は、主溝20A,20Bの深さの15%~30%の深さで形成されることが好ましい。スリット42,43は、スリット40と同様に、ブロック内の先端に向かって次第に細くなった先細り形状を有する。また、スリット42,43の深さは、主溝20A,20Bにつながった開口部分で最も深く、ブロック内の先端に向かって次第に浅くなっている。スリット42,43の幅は、特に限定されないが、スリット40の幅以下であることが好ましい。
【0058】
スリット42,43は、タイヤ周方向およびタイヤ軸方向に対して傾斜している。この場合、タイヤ周方向および軸方向の両方にエッジ効果が働く。スリット42,43は、例えば、スリット40と平行に、又はスリット40よりもタイヤ周方向に沿うように形成され、タイヤ軸方向に対してより大きく傾いている。タイヤ軸方向に対するスリット42,43の傾斜角度の一例は、50°~70°である。
【0059】
センターブロック32Aには、スリット40と、赤道CL側の長手方向他端Yaとの間にスリット46が形成されている。スリット46は、センターブロック32Aのタイヤ回転方向後方側に形成され、主溝20Aから延びてブロック内で終端している。スリット46は、スリット40等と同様に、タイヤ周方向およびタイヤ軸方向に対して傾斜し、例えば、スリット40と平行に形成されている。なお、センターブロック32Bには、スリット40よりも赤道CL側にスリットは形成されていない。
【0060】
スリット46は、スリット40等と同様に、ブロック内の先端に向かって次第に細くなった先細り形状を有する。また、スリット46の深さは、主溝20A,20Bにつながった開口部分で最も深く、ブロック内の先端に向かって次第に浅くなっている。スリット46は、スリット40と同様の深さで形成されてもよいが、主溝20A,20Bの深さの15%~30%の深さで形成されることが好ましい。スリット46の長さは、スリット40の長さより短く、スリット46が形成された部分のブロック幅の20%~50%であってもよい。
【0061】
スリット46は、主溝21Bの延長上に形成されている。スリット46は、他のスリットと同様に、ブロック剛性の低下を抑えつつ、スノーポケットの形成とエッジ効果の向上に寄与する。スリット46の幅は、特に限定されないが、主溝21Bの先端における幅以下であることが好ましい。
【0062】
センターブロック32A,32Bには、上述の通り、複数のサイプが形成されている。複数のサイプには、平面視において、直線に形成されたストレートサイプ50と、波形に形成された第1の波形サイプ51と、波形に形成され、波の振幅が波形サイプ51より大きな第2の波形サイプ52とが含まれている。波形サイプは、ストレートサイプと比較してエッジの増加に寄与する一方、ブロック剛性をより低下させる傾向がある。このため、詳しくは後述するが、波形サイプの形成箇所を適切に設定する必要がある。
【0063】
タイヤのスノー性能を向上させるためには、サイプの本数を増やす、又は長いサイプを形成すること等により、エッジを増やす必要がある。しかし、サイプの本数を増やすと、例えば、ブロック剛性が低下し、ブロックの倒れ込みによって接地面積が減少する。ブロックの倒れ込みはドライ性能/ウェット性能を低下させ、倒れ込みが大きくなり過ぎると、スノー性能の低下にもつながる。また、サイプを波形に形成してサイプ長を長くした場合、波の鋭角部分に大きな接地圧が作用することにより、ブロックの欠損が発生する可能性がある。空気入りタイヤ1では、ストレートサイプ50と2種類の波形サイプ51,52を適切に配置することで、高いブロック剛性とエッジ効果を高次元で両立している。
【0064】
波形サイプ51,52の波は、サイプの長さ方向に対して直交する方向に凸となった部分であって、平面視略三角形に形成されている。波形サイプ51,52は、直線に形成されたストレート部分と、複数の波が繰り返された波形部分とを有する。ストレート部分は波形サイプ51,52の長さ方向両端に形成され、波形部分はストレート部分の間に形成されている。波形部分は、サイプの長さ方向両端を結ぶ中心線α(図4参照)の両側に凸となるように、サイプがジグザグ状に屈曲して形成されている。本明細書において、波形サイプの振幅とは、中心線αから最大の波の頂点Pまでの距離を意味する。
【0065】
波形サイプ51の振幅は、例えば、各波で一定であり、波形サイプ51の波形部分は一定の周期で規則的に形成されている。波形サイプ51の振幅の一例は、0.5mm~3.0mmである。波形サイプ52についても同様に、複数の波は一定の振幅を有し、波形部分は一定の周期で規則的に形成されている。波形サイプ52の振幅は、波形サイプ51の振幅より大きく、例えば、波形サイプ51の振幅の2倍~5倍である。波形サイプ52の振幅の一例は、1.0mm~5.0mmである。
【0066】
各サイプは、スリット42,43,46より深く形成されることが好ましく、例えば、主溝20A,20Bの深さの50%~90%の深さで形成されている。ストレートサイプ50の深さは、波形サイプ51,52の深さより浅くてもよい。ストレートサイプ50の深さの好適な一例は、主溝20A,20Bの深さの50%~70%の深さである。
【0067】
ストレートサイプ50には、センターブロック32A,32Bに形成された複数のサイプのうち、各ブロックの長手方向両端から最も近くに配置された末端サイプが含まれている。即ち、各ブロックの長手方向両端から最も近くに形成されるサイプは、ストレートサイプ50である。センターブロック32A,32Bの長手方向両端には、大きな接地圧が作用し易く、特に高い耐久性が要求されるため、ストレートサイプ50を配置してブロック剛性の低下を抑えつつ、エッジ効果を付与することが好ましい。
【0068】
センターブロック32A,32Bの赤道CL側の末端サイプ(ストレートサイプ50)は、主溝21Aに沿った縁Fa2,Fb2から主溝20A,20Bに沿った縁Fa4,Fb4にわたって、それぞれ形成されている。各ブロックの接地端E1側の末端サイプは、主溝20A,20Bに沿った縁Fa3,Fb3から副溝22に沿った縁Fa1,Fb1にわたって、それぞれ形成されている。末端サイプ以外のサイプについても同様に、スリット40の近傍に形成された一部のサイプを除き、ブロックを横断するように形成されている。
【0069】
センターブロック32A,32Bには、ストレートサイプ50を末端サイプとし、各ブロックの長手方向に間隔をあけて複数のサイプが形成されている。各サイプの間隔は一定であり、隣り合うサイプの長さ方向は互いに平行となっている。詳しくは後述するが、スリット40を境に赤道CL側部分と接地端E1側部分とで、タイヤ軸方向に対するサイプの傾きが変化している。
【0070】
センターブロック32A,32Bの赤道CL側には、上記末端サイプと隣り合って小振幅の波形サイプ51が配置されている。各ブロックの長手方向両端のうち、特に赤道CL側の端にはより大きな接地圧が作用するため、ストレートサイプ50、波形サイプ51の順で配置することにより、ブロックの耐久性を確保しつつ、エッジ効果を高めることが容易になる。波形サイプ51の末端サイプと反対側の隣には、大振幅の波形サイプ52が配置されている。
【0071】
センターブロック32A,32Bの接地端E1側には、上記末端サイプと隣り合って大振幅の波形サイプ52が配置されている。各ブロックの接地端E1側の端では赤道CL側と比べると接地圧が小さいため、サイプ長を長くしてエッジを増やし、スノー性能を向上させることが好ましい。本実施形態では、接地端E1側の端から、ストレートサイプ50、波形サイプ52が順に配置され、スリット40の近傍まで複数の波形サイプ52が連続して配置されている。
【0072】
スリット40には、サイプが接続されている。スリット40につながるサイプは、ブロック剛性の確保等の観点から、ストレートサイプ50、又は小振幅の波形サイプ51であることが好ましい。本実施形態では、2本のストレートサイプ50がセンターブロック32Aのスリット40につながり、ストレートサイプ50と波形サイプ51が1本ずつ、センターブロック32Bのスリット40につながっている。なお、ストレートサイプ50と小振幅の波形サイプ51は、スリット40の縁まで形成され、スリット40の内部には形成されていない。他方、大振幅の波形サイプ52は、スリット42,43,46を横断し、各スリットの内部にも形成されている。
【0073】
センターブロック32Aには、スリット40側から、ストレートサイプ50、小振幅の波形サイプ51、および大振幅の波形サイプ52の順で配置されている。スリット40よりも赤道CL側部分において、ストレートサイプ50と隣り合う波形サイプ51は、スリット40につながることなく、またブロック内で終端している。センターブロック32A,32Bの赤道CL側部分には、スリット40側から、ストレートサイプ50、波形サイプ51、2本の波形サイプ52、波形サイプ51、およびストレートサイプ50(末端サイプ)の順で並ぶサイプ群が形成されている。
【0074】
センターブロック32Aの接地端E1側部分には、スリット40側から、ストレートサイプ50、波形サイプ51、5本の波形サイプ52、および末端サイプの順で並ぶサイプ群が形成されている。他方、センターブロック32Bの接地端E1側部分には、スリット40側から、波形サイプ51、4本の波形サイプ52、および末端サイプの順で並ぶサイプ群が形成されている。即ち、センターブロック32Bのサイプ群は、センターブロック32Aの場合と比べて、ストレートサイプ50と波形サイプ52が1本ずつ少なくなっている。
【0075】
センターブロック32A,32Bのいずれにおいても、スリット40よりも赤道CL側に形成されるサイプ群は、スリット40よりも接地端E1側に形成されるサイプ群と比べて、タイヤ軸方向に沿うように形成されている。赤道CL側部分のサイプ群は、タイヤ軸方向と平行に形成され、赤道CL側部分のサイプ群は、タイヤ軸方向に対して、例えば、5°~20°の角度で傾斜している。この場合、制動性能と操縦安定性の改善効果がより顕著になる。
【実施例0076】
以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
【0077】
<実施例1>
図1図5に示すトレッドパターンを有する空気入りタイヤA1(タイヤサイズ:205/55R16 91H)を作製した。上述の通り、各センターブロックの末端サイプはストレートサイプとし、末端サイプと隣り合うサイプは赤道CL側では小振幅の波形サイプ、接地端側では大振幅の波形サイプとした。
【0078】
<比較例1>
センターブロックのサイプ形成パターンを変更したこと以外は、実施例1と同様にして空気入りタイヤB1を作製した。各センターブロックの末端サイプをストレートサイプと小振幅の波形サイプの混在とし、末端サイプと隣り合う接地端側のサイプを小振幅の波形サイプに変更した。
【0079】
空気入りタイヤA1,B1について、下記の方法により、スノー制動性能およびドライ制動性能の評価を行い、評価結果を表1に示した。表1の評価結果は、空気入りタイヤB1の値を100とした相対値である。
【0080】
[スノー制動性能の評価]
テストタイヤ(空気入りタイヤA1,B1)を装着した実車(2名乗車)で雪上を走行し、40km/hで制動力をかけてABSを作動させたときの制動距離を測定して、その逆数を算出した。比較例1の空気入りタイヤB1の結果を100とした指数で評価し、数値が大きいほどスノー制動性能に優れることを示す(以下同様)。
【0081】
[ドライ制動性能の評価]
テストタイヤを装着した実車(2名乗車)で乾燥路面を走行し、100km/hで制動力をかけてABSを作動させたときの制動距離を測定して、その逆数を算出した。
【0082】
【表1】
【0083】
以上のように、上記構成を備えた空気入りタイヤ1(実施例の空気入りタイヤA1)は、雪氷路面および乾燥路面における制動性能に優れる。空気入りタイヤ1は、回転方向が指定された方向性タイヤであり、オールシーズンタイヤに好適である。
【0084】
空気入りタイヤ1のトレッドパターンは、主溝20,21に沿って長く延びた大きなセンターブロック32,34にストレートサイプ50と2種類の波形サイプ51,52を特定のパターンで形成して、高いブロック剛性とエッジ効果を高次元で両立している。空気入りタイヤ1によれば、高いブロック剛性と大きな接地面積を確保しつつ、エッジを効果的に増やすことができ、良好なドライ/ウェット性能を維持しながら、スノー性能を向上させることが可能になる。比較例から明らかであるように、サイプの形成パターンが適切ではない場合、ドライ性能とスノー性能が大きく低下する。
【0085】
なお、上述の実施形態は、本発明の目的を損なわない範囲で適宜設計変更できる。例えば、本発明に係る空気入りタイヤのトレッドパターンにおいて、第1~第3のスリット等の構成は、特にスノー性能の改善にとって有用であるが、これらの構成を他の構成に変更して本発明の目的を実現することは可能である。本発明の目的を損なわない範囲で、センターブロックの少なくとも一部に関し、第1のスリットに代えてブロックを横断する溝を形成してもよい。
【符号の説明】
【0086】
1 空気入りタイヤ、10 トレッド、11 サイドウォール、12 ビード、13 サイドリブ、14 カーカス、15 ベルト、16 インナーライナー、17 ビードコア、18 ビードフィラー、20,20A,20B,21,21A,21B 主溝、22,23 副溝、30,31 ブロック、32,32A,32B,34,34A,34B センターブロック、33,35 ショルダーブロック、36 タイバー、40,41,42,43,44,45,46,47 スリット、50 ストレートサイプ、51,52 波形サイプ、53,54 ショルダーサイプ、CL タイヤ赤道、E1,E2 接地端、R1 第1領域、R2 第2領域
図1
図2
図3
図4
図5