(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023097808
(43)【公開日】2023-07-10
(54)【発明の名称】導電性高分子含有液及びその製造方法、並びに導電性積層体の製造方法
(51)【国際特許分類】
C08L 65/00 20060101AFI20230703BHJP
C08L 25/18 20060101ALI20230703BHJP
C08G 61/12 20060101ALI20230703BHJP
H01B 13/00 20060101ALI20230703BHJP
H01B 1/20 20060101ALI20230703BHJP
H01B 1/12 20060101ALI20230703BHJP
【FI】
C08L65/00
C08L25/18
C08G61/12
H01B13/00 503B
H01B1/20 A
H01B1/12 F
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021214131
(22)【出願日】2021-12-28
(71)【出願人】
【識別番号】000190116
【氏名又は名称】信越ポリマー株式会社
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100152272
【弁理士】
【氏名又は名称】川越 雄一郎
(74)【代理人】
【識別番号】100152146
【弁理士】
【氏名又は名称】伏見 俊介
(72)【発明者】
【氏名】松林 総
【テーマコード(参考)】
4J002
4J032
5G301
5G323
【Fターム(参考)】
4J002BC10X
4J002CE00W
4J002CF00Y
4J002EH066
4J002EJ046
4J002EJ066
4J002EP016
4J002EV066
4J002EV096
4J002FD116
4J002FD11W
4J002FD11X
4J002GH01
4J002GQ02
4J002HA06
4J032BA04
4J032BB01
4J032BC32
4J032BD05
4J032CG01
4J032CG06
5G301DA28
5G301DA42
5G301DA51
5G301DA53
5G301DA57
5G301DA59
5G301DD01
5G323BA05
5G323BB01
5G323BB02
5G323BB06
5G323BC03
(57)【要約】
【課題】導電性高分子含有液の塗膜を加熱加湿条件で処理することにより、導電層の表面抵抗値を低減できる導電性積層体の製造方法と、その製造方法における使用に適した導電性高分子含有液及びその製造方法を提供する。
【解決手段】π共役系導電性高分子及びポリアニオンを含む導電性複合体と、バインダ成分と、高導電化剤とを含む導電性高分子含有液であって、下記の工程1~3を順に行うことにより導電性積層体を製造する用途で使用される、導電性高分子含有液。
(工程1)基材に導電性高分子含有液を塗布し、塗膜を乾燥して導電層を形成し、導電性積層体Aを得る工程
(工程2)導電性積層体Aを60℃以上85℃以下かつ60%RH以上85%RH以下の加熱加湿条件下で10日以上30日以下保持し、導電性積層体Bを得る工程
(工程3)導電性積層体Bを60℃以上85℃以下かつ非加湿の加熱条件下で10日以上30日以下保持し、導電性積層体Cを得る工程
【選択図】なし
【特許請求の範囲】
【請求項1】
π共役系導電性高分子及びポリアニオンを含む導電性複合体と、バインダ成分と、高導電化剤とを含む導電性高分子含有液であって、下記の工程1~3を順に行うことにより導電性積層体を製造する用途で使用される、導電性高分子含有液。
(工程1)
基材の少なくとも一部の面に前記導電性高分子含有液を塗布して塗膜を形成し、塗膜を乾燥して導電層を形成することにより、導電性積層体Aを得る工程
(工程2)
前記基材と前記導電層を備えた導電性積層体Aを60℃以上85℃以下かつ60%RH以上85%RH以下の加熱加湿条件下で10日以上30日以下保持することにより、導電性積層体Bを得る工程
(工程3)
導電性積層体Bを60℃以上85℃以下かつ非加湿の加熱条件下で10日以上30日以下保持し、前記導電層を乾燥することにより、導電性積層体Cを得る工程
【請求項2】
前記導電性積層体Bが備える前記導電層の表面抵抗値B(単位:Ω/□)が、
前記導電性積層体Aが備える前記導電層の表面抵抗値A(単位:Ω/□)よりも低い、
請求項1に記載の導電性高分子含有液。
【請求項3】
前記導電性積層体Cが備える前記導電層の表面抵抗値C(単位:Ω/□)が、
前記導電性積層体Aが備える前記導電層の表面抵抗値A(単位:Ω/□)よりも低い、
請求項1又は2に記載の導電性高分子含有液。
【請求項4】
前記導電性積層体Bが備える前記導電層の表面抵抗値B(単位:Ω/□)が、
前記導電性積層体Cが備える前記導電層の表面抵抗値C(単位:Ω/□)よりも低い、
請求項1~3の何れか一項に記載の導電性高分子含有液。
【請求項5】
前記高導電化剤が、ヒドロキシ基を2つ以上有する化合物、カルボキシ基を2つ以上有する化合物、アミド基を有する化合物、及び含窒素芳香族化合物から選択される1種以上である、請求項1~4の何れか一項に記載の導電性高分子含有液。
【請求項6】
前記π共役系導電性高分子がポリ(3,4-エチレンジオキシチオフェン)であるか、又は、前記ポリアニオンがポリスチレンスルホン酸である、請求項1~5の何れか一項に記載の導電性高分子含有液。
【請求項7】
前記導電性複合体が、エポキシ化合物、アミン化合物、及び第四級アンモニウム化合物から選択される1種以上との反応により修飾されている、請求項1~6の何れか一項に記載の導電性高分子含有液。
【請求項8】
請求項1~7の何れか一項に記載の導電性高分子含有液を用い、前記工程1~3を順に行うことにより前記導電性積層体Cを得ることを含む、導電性積層体の製造方法。
【請求項9】
前記基材がフィルム基材である、請求項8に記載の導電性積層体の製造方法。
【請求項10】
請求項7に記載の導電性高分子含有液の製造方法であって、
π共役系導電性高分子及びポリアニオンを含む導電性複合体と、水系分散媒とを含む原料液に、エポキシ化合物、アミン化合物、及び第四級アンモニウム化合物から選択される1種以上を添加する工程と、
添加した化合物と前記導電性複合体との反応生成物を回収する工程と、
前記反応生成物、溶剤、バインダ成分、及び高導電化剤を混合することにより、導電性高分子含有液を得る工程と、を含む、導電性高分子含有液の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、π共役系導電性高分子を含有する導電性高分子含有液及びその製造方法、並びに導電性積層体の製造方法に関する。
【背景技術】
【0002】
主鎖がπ共役系で構成されているπ共役系導電性高分子は、アニオン基を有するポリアニオンがドープすることによって導電性複合体を形成し、水に対する分散性が生じる。導電性複合体を含有する導電性高分子含有液(導電性高分子分散液ということもある。)をフィルム基材等に塗工することにより、導電層を備えた導電性フィルムを製造することができる。また、導電性高分子含有液のフィルム基材に対する濡れ性を高めたり、形成する導電層の導電性を高めたりする目的で、導電性複合体にエポキシ化合物を反応させることがある。例えば特許文献1には、環式エポキシ化合物を反応させることにより導電性複合体の導電性を向上させる方法が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の導電性高分子含有液の塗膜が硬化してなる導電層には、その表面抵抗値をさらに低くすることが求められている。
本発明は、導電性高分子含有液の塗膜を加熱加湿条件で処理することにより、導電層の表面抵抗値を低減できる導電性積層体の製造方法と、その製造方法における使用に適した導電性高分子含有液及びその製造方法を提供する。
【課題を解決するための手段】
【0005】
[1] π共役系導電性高分子及びポリアニオンを含む導電性複合体と、バインダ成分と、高導電化剤とを含む導電性高分子含有液であって、下記の工程1~3を順に行うことにより導電性積層体を製造する用途で使用される、導電性高分子含有液。
(工程1)
基材の少なくとも一部の面に前記導電性高分子含有液を塗布して塗膜を形成し、塗膜を乾燥して導電層を形成することにより、導電性積層体Aを得る工程
(工程2)
前記基材と前記導電層を備えた導電性積層体Aを60℃以上85℃以下かつ60%RH以上85%RH以下の加熱加湿条件下で10日以上30日以下保持することにより、導電性積層体Bを得る工程
(工程3)
導電性積層体Bを60℃以上85℃以下かつ非加湿の加熱条件下で10日以上30日以下保持し、前記導電層を乾燥することにより、導電性積層体Cを得る工程
[2] 前記導電性積層体Bが備える前記導電層の表面抵抗値B(単位:Ω/□)が、前記導電性積層体Aが備える前記導電層の表面抵抗値A(単位:Ω/□)よりも低い、[1]に記載の導電性高分子含有液。
[3] 前記導電性積層体Cが備える前記導電層の表面抵抗値C(単位:Ω/□)が、前記導電性積層体Aが備える前記導電層の表面抵抗値A(単位:Ω/□)よりも低い、[1]又は[2]に記載の導電性高分子含有液。
[4] 前記導電性積層体Bが備える前記導電層の表面抵抗値B(単位:Ω/□)が、前記導電性積層体Cが備える前記導電層の表面抵抗値C(単位:Ω/□)よりも低い、[1]~[3]の何れか一項に記載の導電性高分子含有液。
[5] 前記高導電化剤が、ヒドロキシ基を2つ以上有する化合物、カルボキシ基を2つ以上有する化合物、アミド基を有する化合物、及び含窒素芳香族化合物から選択される1種以上である、[1]~[4]の何れか一項に記載の導電性高分子含有液。
[6] 前記π共役系導電性高分子がポリ(3,4-エチレンジオキシチオフェン)であるか、又は、前記ポリアニオンがポリスチレンスルホン酸である、[1]~[5]の何れか一項に記載の導電性高分子含有液。
[7] 前記導電性複合体が、エポキシ化合物、アミン化合物、及び第四級アンモニウム化合物から選択される1種以上との反応により修飾されている、[1]~[6]の何れか一項に記載の導電性高分子含有液。
[8] [1]~[7]の何れか一項に記載の導電性高分子含有液を用い、前記工程1~3を順に行うことにより前記導電性積層体Cを得ることを含む、導電性積層体の製造方法。
[9] 前記基材がフィルム基材である、[8]に記載の導電性積層体の製造方法。
[10] [7]に記載の導電性高分子含有液の製造方法であって、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、水系分散媒とを含む原料液に、エポキシ化合物、アミン化合物、及び第四級アンモニウム化合物から選択される1種以上を添加する工程と、添加した化合物と前記導電性複合体との反応生成物を回収する工程と、前記反応生成物、溶剤、バインダ成分、及び高導電化剤を混合することにより、導電性高分子含有液を得る工程と、を含む、導電性高分子含有液の製造方法。
【発明の効果】
【0006】
本発明の導電性高分子含有液を用いた導電性積層体の製造方法によれば、表面抵抗値が低い導電層を備えた導電性積層体を製造することができる。
本発明の導電性高分子含有液は、上記の導電性積層体の製造方法での使用に有用である。
本発明の導電性高分子含有液の製造方法によれば、上記の導電性高分子含有液を容易に製造することができる。
【0007】
本発明はSDGs目標12「つくる責任 つかう責任」に資すると考えられる。
【0008】
本明細書及び特許請求の範囲において、「~」で示す数値範囲の下限値及び上限値はその数値範囲に含まれるものとする。
【発明を実施するための形態】
【0009】
≪導電性高分子含有液≫
本発明の第一態様は、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、バインダ成分と、高導電化剤とを含む導電性高分子含有液である。本態様の導電性高分子含有液は、後述する導電性積層体の製造方法において使用することが好ましい。
本態様の導電性高分子含有液において、導電性複合体は、分散状態であってもよいし、溶解状態であってもよい。本明細書において、特に明記しない限り、分散状態と溶解状態とを区別しない。
【0010】
<π共役系導電性高分子>
π共役系導電性高分子としては、主鎖がπ共役系で構成されている有機高分子であれば本発明の効果を有する限り特に制限されず、例えば、ポリピロール系導電性高分子、ポリチオフェン系導電性高分子、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子、ポリフェニレンビニレン系導電性高分子、ポリアニリン系導電性高分子、ポリアセン系導電性高分子、ポリチオフェンビニレン系導電性高分子、及びこれらの共重合体等が挙げられる。空気中での安定性の点からは、ポリピロール系導電性高分子、ポリチオフェン類及びポリアニリン系導電性高分子が好ましく、透明性の面から、ポリチオフェン系導電性高分子がより好ましい。
【0011】
ポリチオフェン系導電性高分子としては、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブチレンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)が挙げられる。
ポリピロール系導電性高分子としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)が挙げられる。
ポリアニリン系導電性高分子としては、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)が挙げられる。
上記π共役系導電性高分子のなかでも、導電性、透明性、耐熱性の点から、ポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。
導電性複合体に含まれるπ共役系導電性高分子は、1種類でもよいし、2種類以上でもよい。
【0012】
<ポリアニオン>
ポリアニオンとは、アニオン基を有するモノマー単位を、分子内に2つ以上有する重合体である。このポリアニオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能し、π共役系導電性高分子の導電性を向上させ得る。
ポリアニオンのアニオン基としては、スルホ基、またはカルボキシ基であることが好ましい。
このようなポリアニオンの具体例としては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、スルホ基を有するポリアクリル酸エステル、スルホ基を有するポリメタクリル酸エステル(例えば、ポリ(4-スルホブチルメタクリレート、ポリスルホエチルメタクリレート、ポリメタクリロイルオキシベンゼンスルホン酸)、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸等のスルホ基を有する高分子や、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリル酸、ポリメタクリル酸、ポリ(2-アクリルアミド-2-メチルプロパンカルボン酸)、ポリイソプレンカルボン酸等のカルボキシ基を有する高分子が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
これらポリアニオンのなかでも、導電性をより高くできることから、スルホ基を有する高分子が好ましく、ポリスチレンスルホン酸がより好ましい。
前記ポリアニオンは1種類でもよいし、2種類以上でもよい。
【0013】
ポリアニオンが、π共役系導電性高分子にドープすることによって導電性複合体を形成する。ただし、導電性複合体を形成したポリアニオンにおいて、一部のアニオン基がπ共役系導電性高分子にドープせず、ドープに関与しない余剰のアニオン基を有している。この余剰のアニオン基は親水基であるため、導電性複合体は水分散性が高く、有機溶剤分散性が低い。
導電性複合体を形成したポリアニオンが有する全てのアニオン基の個数を100モル%としたとき、余剰のアニオン基は、30モル%以上90モル%以下が好ましく、45モル%以上75モル%以下がより好ましい。
【0014】
導電性複合体中のポリアニオンの含有割合は、π共役系導電性高分子100質量部に対して1質量部以上1000質量部以下の範囲が好ましく、10質量部以上700質量部以下がより好ましく、100質量部以上500質量部以下がさらに好ましい。ポリアニオンの含有割合が前記下限値以上であれば、π共役系導電性高分子へのドーピング効果が強くなる傾向にあり、導電性がより高くなる。一方、ポリアニオンの含有量が前記上限値以下であれば、π共役系導電性高分子を充分に含有させることができるので、充分な導電性を確保できる。
【0015】
本態様の導電性高分子含有液の総質量に対する導電性複合体の含有量は、例えば0.01質量%以上10.0質量%以下とすることができ、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上2.0質量%以下がより好ましく、0.5質量%以上1.0質量%以下がさらに好ましい。
上記範囲の下限値以上であると、形成する導電層の導電性がより高くなる。
上記範囲の上限値以下であると、導電性高分子含有液における導電性複合体の分散性を高め、均一な導電層を形成することができる。
【0016】
本態様の導電性高分子含有液の総質量に対する、π共役系導電性高分子の含有量は、例えば0.01質量%以上2.0質量%以下とすることができる。
本態様の導電性高分子含有液の総質量に対する、ポリアニオンの含有量は、例えば、0.03質量%以上10質量%以下とすることができる。
本態様の導電性高分子含有液に含まれるπ共役系導電性高分子:ポリアニオンの含有比は、質量基準で(1:2)~(1:5)が好ましく、(1:2)~(1:4)がより好ましく、(1:2)~(1:3)がさらに好ましい。
【0017】
本態様の導電性高分子含有液に含まれる導電性複合体は、エポキシ化合物、アミン化合物、及び第四級アンモニウム化合物から選択される1種以上との反応により修飾されていてもよい。導電性複合体に含まれるポリアニオンのドープに関与しない余剰のアニオン基の少なくとも一部が上記反応により修飾され、後述する置換基(A)~(C)の何れかが形成される。置換基(A)~(C)を有する導電性複合体は疎水性が高まっており、有機溶剤に対する分散性が向上している。
【0018】
<バインダ成分>
本態様の導電性高分子含有液は、バインダ成分を含む。バインダ成分を含むことにより、形成する導電層の強度を向上させ、特に後述する加熱加湿条件下での静置処理と、その後の非加湿の加熱条件下での乾燥処理に充分耐えることができる。
【0019】
バインダ成分は、前記π共役系導電性高分子及び前記ポリアニオン以外の樹脂又はその前駆体であり、熱可塑性樹脂、又は、導電層形成時に硬化する硬化性のモノマー又はオリゴマーである。熱可塑性樹脂はそのままバインダ樹脂となり、硬化性のモノマー又はオリゴマーは硬化により形成した樹脂がバインダ樹脂となる。
バインダ成分は1種のみが含まれていてもよいし、2種以上が含まれていてもよい。
【0020】
バインダ成分由来のバインダ樹脂の具体例としては、例えば、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、ポリエーテル樹脂、メラミン樹脂、シリコーン等が挙げられる。
【0021】
本態様の導電性高分子含有液が水系分散媒を含有する場合、バインダ樹脂としては、水分散性樹脂が好ましく、水分散性エマルション樹脂がより好ましい。水分散性樹脂は、エマルション樹脂又は水溶性樹脂である。
【0022】
水分散性エマルション樹脂の具体例としては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、メラミン樹脂等であって、乳化剤によってエマルションにされたものが挙げられる。
【0023】
本態様の導電性高分子含有液を基材に塗工した塗膜の強度が高くなることから、バインダ樹脂は、エポキシ基を有する樹脂を含むことが好ましく、エポキシ基を有するアクリル樹脂を含むことがより好ましく、エポキシ基を有するアクリル樹脂のエマルションを含むことがさらに好ましい。
【0024】
本態様の導電性高分子含有液を基材に塗工した塗膜の強度が高くなることから、バインダ樹脂は、ポリエステル樹脂を含むことが好ましく、ポリエステル樹脂のエマルションを含むことがより好ましい。特に、ポリエステルフィルム基材に塗工する場合、基材に対する塗膜の密着性が高くなるのでポリエステル樹脂又はそのエマルションを含むことが好ましい。
上記のアクリル樹脂とポリエステル樹脂を併用すると、塗膜の強度と密着性がより一層高まるので好ましい。
【0025】
また、水溶性樹脂の具体例としては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、メラミン樹脂であって、カルボキシ基やスルホ基等の酸基又はその塩を有するものが挙げられる。ここで、水溶性樹脂は、25℃の蒸留水100gに、1g以上、好ましくは5g以上、より好ましくは10g以上溶解するものが好ましい。
水分散性樹脂が有するカルボキシ基、スルホ基等の酸基は、ナトリウムイオンやカリウムイオン等のカチオンと塩を形成していてもよい。
【0026】
本態様の導電性高分子含有液が有機溶剤を充分に含む場合、水に対する溶解性が低いバインダ成分を含有させることができる。
【0027】
バインダ成分は、硬化性のモノマー又はオリゴマーは、熱硬化性のモノマー又はオリゴマーであってもよいし、光硬化性のモノマー又はオリゴマーであってもよい。ここで、オリゴマーは、質量平均分子量が1万未満の重合体のことである。
硬化性のモノマーとしては、例えば、アクリルモノマー(アクリル化合物)、エポキシモノマー、オルガノシロキサン等が挙げられる。硬化性のオリゴマーとしては、例えば、アクリルオリゴマー(アクリル化合物)、エポキシオリゴマー、シリコーンオリゴマー(硬化型シリコーン)等が挙げられる。
バインダ成分としてアクリルモノマー又はアクリルオリゴマーを用いた場合には、加熱又は光照射により容易に硬化させることができる。
バインダ成分としてオルガノシロキサン又はシリコーンオリゴマーを用いた場合には、導電層に離型性(非粘着性)を付与することができる。
【0028】
硬化性のモノマー又はオリゴマーを含む場合には、さらに硬化触媒を含むことが好ましい。例えば、熱硬化性のモノマー又はオリゴマーを含む場合には、加熱によりラジカルを発生させる熱重合開始剤を含むことが好ましく、光硬化性のモノマー又はオリゴマーを含む場合には、光照射によりラジカルを発生させる光重合開始剤を含むことが好ましい。また、オルガノシロキサン又はシリコーンオリゴマーを含む場合には、硬化用の白金触媒を含むことが好ましい。
【0029】
本態様の導電性高分子含有液に含まれるバインダ成分の含有割合は、導電性複合体100質量部に対して、100質量部以上20000質量部以下が好ましく、500質量部以上10000質量部以下がより好ましく、1000質量部以上5000質量部以下がさらに好ましい。
上記範囲の下限値以上であれば、本態様の導電性高分子含有液を基材に塗工する際の製膜性と膜強度を向上させることができる。
上記範囲の上限値以下であれば、導電性複合体の含有割合の低下による導電性の低下を抑制することができる。
【0030】
<高導電化剤>
本態様の導電性高分子含有液は、高導電化剤を含む。高導電化剤を含むことにより、形成する導電層の導電性を向上させることができ、特に後述する加熱加湿条件下での静置処理によって導電性を格段に向上させることができる。
ここで、前述したπ共役系導電性高分子、ポリアニオン、バインダ樹脂、有機溶剤は、高導電化剤に分類しない。
【0031】
高導電化剤は、糖類、2個以上のヒドロキシ基を有する化合物、2個以上のカルボキシ基を有する化合物、1個以上のヒドロキシ基および1個以上のカルボキシ基を有する化合物、アミド基を有する化合物、イミド基を有する化合物、含窒素芳香族化合物(窒素含有芳香族化合物)、ラクタム化合物、及び、グリシジル基を有する化合物、からなる群より選ばれる少なくとも1種の化合物であることが好ましい。ここで、ヒドロキシ基とカルボキシ基は区別する。
本態様の導電性高分子含有液に含有される高導電化剤は、1種類であってもよいし、2種類以上であってもよい。
【0032】
2個以上のヒドロキシ基を有する化合物(多価アルコール)としては、例えば、チオジグリコール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオールなど)、ビスフェノール類(ビスフェノールAなど)、糖アルコール類(キシリトールやソルビトールなど)、ガリック酸、ガリック酸アルキルエステルなどが挙げられる。
【0033】
2個以上のカルボキシ基を有する化合物(多価カルボン酸)としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸、チオジプロピオン酸等の含硫黄カルボン酸などが挙げられる。
【0034】
アミド基を有する化合物(アミド化合物)は、-CO-NH-(COの部分は二重結合)で表されるアミド結合を分子中に有する単分子化合物である。具体的には例えば、アセトアミド、マロンアミド、スクシンアミド、マレアミド、フマルアミド、ベンズアミド、ナフトアミド、フタルアミド、イソフタルアミド、テレフタルアミド、ニコチンアミド、イソニコチンアミド、2-フルアミド、ホルムアミド、N-メチルホルムアミド、プロピオンアミド、プロピオルアミド、ブチルアミド、イソブチルアミド、パルミトアミド、ステアリルアミド、オレアミド、オキサミド、グルタルアミド、アジプアミド、シンナムアミド、グリコールアミド、ラクトアミド、グリセルアミド、タルタルアミド、シトルアミド、グリオキシルアミド、ピルボアミド、アセトアセトアミド、ジメチルアセトアミド、ベンジルアミド、アントラニルアミド、エチレンジアミンテトラアセトアミド、ジアセトアミド、トリアセトアミド、ジベンズアミド、トリベンズアミド、ローダニン、尿素、1-アセチル-2-チオ尿素、ビウレット、ブチル尿素、ジブチル尿素、1,3-ジメチル尿素、1,3-ジエチル尿素及びこれらの誘導体、N-メチルアクリルアミド、N-メチルメタクリルアミド、N-エチルアクリルアミド、N-エチルメタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、2-ヒドロキシエチルアクリルアミド、2-ヒドロキシエチルメタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のアクリルアミド類が挙げられる。
【0035】
含窒素芳香族化合物(少なくとも1つの窒素原子が環構造を形成する芳香族化合物)としては、例えば、ピロール、インドール、イミダゾール、2-メチルイミダゾール、2-プロピルイミダゾール、N-メチルイミダゾール、N-プロピルイミダゾール、N-ブチルイミダゾール、1-(2-ヒドロキシエチル)イミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、1-アセチルイミダゾール、2-アミノベンズイミダゾール、2-アミノ-1-メチルベンズイミダゾール、2-ヒドロキシベンズイミダゾール、2-(2-ピリジル)ベンズイミダゾール、ピリジン、ピリミジン、ピラジン及びこれらのアルキル置換体(例えば、メチル、エチル、プロピル、ブチル等の炭素数1~4のアルキル基での置換体)、ハロゲン置換体(例えば、フロロ、クロロ、ブロム等のハロゲン基での置換体)、ニトリル置換体等の誘導体が挙げられる。
【0036】
本態様の導電性高分子含有液の総質量に対する高導電化剤の含有量は、0.001質量%以上10質量%以下が好ましく、0.01質量%以上1.0質量%以下がより好ましく、0.02質量%以上0.2質量%以下がさらに好ましい。
上記の好適な範囲であると、高導電化剤添加による導電性向上効果がより一層得られる。
【0037】
本態様の導電性高分子含有液に含まれ高導電化剤の含有割合は、導電性複合体100質量部に対して、10質量部以上10000質量部以下が好ましく、30質量部以上1000質量部以下がより好ましく、50質量部以上2000質量部以下がさらに好ましい。
上記の好適な範囲であると、高導電化剤添加による導電性向上効果がより一層得られる。
【0038】
[分散媒]
本態様の導電性高分子含有液は、導電性複合体を液中に分散させることが容易であることから、分散媒を含むことが好ましい。分散媒としては、水、有機溶剤、水と有機溶剤との混合液が挙げられる。前記高導電化剤は分散媒には該当しないものとする。
【0039】
有機溶剤としては、例えば、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、エステル系溶剤、芳香族炭化水素系溶剤等が挙げられる。具体例は後述する。
有機溶剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
【0040】
未修飾の導電性複合体は水に対する分散性が高いので、未修飾の導電性複合体に対する分散媒は水を含有する水系分散媒であることが好ましい。
本態様の導電性高分子含有液が含む水系分散媒の総質量に対する水の含有割合は、例えば、50質量%以上100質量%以下とすることができ、60質量%以上100質量%以下が好ましく、70質量%以上100質量%以下がより好ましい。水以外の分散媒としては、一価アルコールが好ましい。
後述する置換基(A)~(C)を有する修飾された導電性複合体は疎水性が高まっているので、修飾された導電性複合体に対する分散媒は有機溶剤であることが好ましい。
【0041】
(その他の添加剤)
本態様の導電性高分子含有液には、その他の添加剤が含まれていてもよい。
添加剤としては、本発明の効果が得られる限り特に制限されず、例えば、界面活性剤、無機導電剤、消泡剤、カップリング剤、酸化防止剤、紫外線吸収剤などを使用できる。
界面活性剤としては、ノニオン系、アニオン系、カチオン系の界面活性剤が挙げられるが、保存安定性の面からノニオン系が好ましい。また、ポリビニルピロリドンなどのポリマー系界面活性剤を添加してもよい。
無機導電剤としては、金属イオン類、導電性カーボン等が挙げられる。なお、金属イオンは、金属塩を水に溶解させることにより生成させることができる。
消泡剤としては、シリコーン樹脂、ポリジメチルシロキサン、シリコーンオイル等が挙げられる。
カップリング剤としては、ビニル基又はアミノ基を有するシランカップリング剤等が挙げられる。
酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、糖類等が挙げられる。
紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、オキサニリド系紫外線吸収剤、ヒンダードアミン系紫外線吸収剤、ベンゾエート系紫外線吸収剤等が挙げられる。
本態様の導電性高分子含有液が上記添加剤を含有する場合、その含有割合は、添加剤の種類に応じて適宜決められるが、例えば、前記π共役系導電性高分子及び全ポリアニオンの100質量部に対して、0.001質量部以上5質量部以下の範囲とすることができる。
【0042】
≪導電性高分子含有液の製造方法(1)≫
第一態様の導電性高分子含有液は、例えば次に説明する重合工程を含む製造方法によって製造することができる。
重合工程は、ポリアニオンと、水系分散媒とを含む反応液で、π共役系導電性高分子を形成するモノマーを重合することにより、前記π共役系導電性高分子及び前記ポリアニオンを含む導電性複合体と、前記水系分散媒と、を含む導電性高分子含有液を得る工程である。重合工程で得た導電性高分子含有液に、バインダ成分と高導電化剤を添加することにより、第一態様の導電性高分子含有液が得られる。
【0043】
重合工程に供するポリアニオンの重量平均分子量(Mw)は、8.0万以上100万以下が好ましく、10万以上80万以下がより好ましく、15万以上60万以下がさらに好ましい。ここで、重量平均分子量は、ゲル・パーミエーション・クロマトグラフィ(GPC)により測定し、既知の重量平均分子量のプルランを標準物質として求めた質量基準の平均分子量である。
重量平均分子量が上記の好適な範囲であると、前記導電層の導電性がより高まる。
なお、ポリアニオンの水溶液をGPCに供する前に、水溶液中に含まれる不純物等を除去する目的で、平均孔径0.2μmのメンブレンフィルターにより濾過し、そのろ液をGPC測定に供することが好ましい。
【0044】
特定の重量平均分子量のポリアニオンを合成する方法として、例えば、ポリアニオンを構成するモノマーを重合する酸化剤の添加量を調整する方法が挙げられる。具体的には、酸化剤の濃度を高くすると、モノマーの重合により形成されるポリアニオンの重量平均分子量を小さくすることができる。この方法により、例えば、重量平均分子量Mwが10万以上100万以下のポリスチレンスルホン酸を得ることができる。
【0045】
[重合工程]
前記π共役系導電性高分子を形成するモノマーと、前記ポリアニオンとを任意の含有比で含む反応液を調製し、前記モノマーを重合させることにより、π共役系導電性高分子を形成する。前記反応液において、π共役系導電性高分子にポリアニオンが自然にドープし、π共役系導電性高分子とポリアニオンからなる導電性複合体が形成される。
【0046】
前記反応液には触媒を添加してもよい。前記触媒は、前記モノマーの重合を促進させるものであれば特に制限されず、例えば、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、塩化第二銅等の遷移金属化合物等が挙げられる。なかでも、室温におけるモノマーの重合が安定に進むことから、鉄を含む触媒を使用することが好ましい。
【0047】
前記反応液には前記触媒とともに、酸化剤を含有させることが好ましい。酸化剤は、前記モノマーを重合させることができる。酸化剤としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩が挙げられる。
前記酸化剤は予めイオン交換水に溶解した酸化剤溶液として、前記モノマー、前記ポリアニオン及び前記触媒を含む混合液S1に対してゆっくり添加し、重合を開始することが好ましい。
前記酸化剤溶液の濃度は、1.0質量%以上3.0質量%以下が好ましい。
【0048】
反応終了までに要する反応時間の目安は4~12時間であり、6~10時間で反応終了することが好ましい。重合反応の終了は、ガスクロマトグラフィーによってπ共役系導電性高分子を形成するモノマーが消失していることを確認することで知ることができる。
【0049】
前記混合液S1に含まれる前記モノマー:前記ポリアニオンの含有比は、質量基準で(1:2)~(1:5)が好ましく、(1:2)~(1:4)がより好ましく、(1:2)~(1:3)がさらに好ましい。
上記範囲の下限値以上であると、ポリアニオンによるドープ効果が充分に発揮され、導電性複合体の分散安定性がより向上する。
上記範囲の上限値以下であると、導電性に優れた導電層を形成可能な導電性高分子含有液が容易に得られる。
【0050】
前記混合液S1の総質量に対する前記モノマーの含有量は、例えば、0.1質量%以上10質量%以下が好ましく、0.2質量%以上5.0質量%以下がより好ましく、0.3質量%以上1.0質量%以下がさらに好ましい。
上記範囲であると、重合反応を安定に進められるので、反応系に存在するポリアニオンとの複合化が容易に進む。
【0051】
前記混合液S1の総質量に対する前記ポリアニオンの含有量は、前記モノマーに対する前記含有比に基づいて設定されることが好ましい。例えば、0.1質量%以上10質量%以下が好ましく、0.3質量%以上8.0質量%以下がより好ましく、0.6質量%以上4.0質量%以下がさらに好ましい。
【0052】
(触媒及び酸化剤の除去)
触媒及び酸化剤を添加した反応液を用いた場合、反応後に得られた導電性高分子含有液から触媒及び酸化剤を除去することが好ましい。
除去する方法としては、例えば、イオン交換樹脂に導電性高分子含有液を接触させ、触媒及び酸化剤をイオン交換樹脂に吸着させる方法、導電性高分子含有液を限外ろ過することにより水系分散媒の置換とともに除去する方法等が挙げられる。このうち、イオン交換樹脂を使用する方法が簡便であるため好ましい。前記イオン交換樹脂は、陽イオン交換樹脂及び陰イオン交換樹脂を併用することが好ましい。
【0053】
(分散処理)
重合工程で得た導電性高分子含有液を攪拌し、導電性複合体の分散処理を施してもよい。攪拌の方法は特に制限されず、スターラー等の剪断力が弱い攪拌であってもよいし、高圧ホモジナイザー等の高剪断力の分散機を用いて攪拌してもよいが、分散性を高める観点から高圧ホモジナイザー等を用いることが好ましい。
【0054】
以上の重合工程により、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、前記水系分散媒とを含む、導電性高分子含有液が得られる。
さらに、バインダ成分と、高導電化剤とを常法により添加し、混合することにより、目的の導電性高分子含有液が得られる。
【0055】
≪導電性高分子含有液の製造方法(2)≫
本発明の第二態様は、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、水系分散媒とを含む原料液に、エポキシ化合物、アミン化合物、及び第四級アンモニウム化合物から選択される1種以上を添加する工程(反応工程)と、添加した化合物と前記導電性複合体との反応生成物を回収する工程(回収工程)と、前記反応生成物、溶剤、バインダ成分、及び高導電化剤を混合することにより、導電性高分子含有液を得る工程(混合工程)と、を含む、導電性高分子含有液の製造方法である。
【0056】
[反応工程]
前記原料液として、上述の製造方法(1)で得た導電性高分子含有液(以下では、導電性高分子分散液ということがある。)を適用することができる。
導電性高分子分散液に、エポキシ化合物、アミン化合物及び第四級アンモニウム化合物から選択される1種以上を添加することにより、前記導電性複合体を含む反応生成物を析出させることができる。
本工程で析出した反応生成物のスルホン酸基等のアニオン基は、添加した上記の化合物が反応して、次の置換基(A)~(C)の何れかが形成されて疎水化されている。
【0057】
ポリアニオンが有するドープに関与しない余剰のアニオン基を以下では「一部のアニオン基」ということがある。
一部のアニオン基とエポキシ化合物との反応によって下記の置換基(A)が形成される。
一部のアニオン基とアミン化合物との反応によって下記の置換基(B)が形成される。
一部のアニオン基と第四級アンモニウム化合物との反応によって下記の置換基(C)が形成される。
【0058】
(置換基A)
置換基(A)は下記式(A1)で示される基、又は下記式(A2)で表される基であると推測される。
【0059】
【0060】
[式(A1)中、R1、R2、R3、及びR4はそれぞれ独立に、水素原子、又は任意の置換基である。]
【0061】
【0062】
[式(A2)中、mは2以上の整数であり、複数のR5、複数のR6、複数のR7、及び複数のR8はそれぞれ独立に、水素原子、又は任意の置換基であり、複数のR5は同一でも異なっていてもよく、複数のR6は同一でも異なっていてもよく、複数のR7は同一でも異なっていてもよく、複数のR8は同一でも異なっていてもよい。]
【0063】
式(A1)及び(A2)において、左端の結合手は、置換基(A)が、スルホン酸基等のアニオン基のプロトンと置換していることを表す。
【0064】
式(A1)において、R1、R2、R3、及びR4の任意の置換基としては、置換基を有していてもよい炭素数1~20の脂肪族炭化水素基、置換基を有していてもよい炭素数6~20の芳香族炭化水素基等が挙げられる。R1とR3とは結合して置換基を有していてもよい環を形成していてもよい。例えば、R1とR3とが前記炭化水素基であり、R1の1価の炭化水素基の任意の1つの水素原子を除いた2価の炭化水素基と、R3の1価の炭化水素基の任意の1つの水素原子を除いた2価の炭化水素基とが、前記水素原子が除かれた炭素原子同士で結合して環を形成する場合が挙げられる。
式(A2)において、R5、R6、R7、及びR8の任意の置換基としては、置換基を有していてもよい炭素数1~20の脂肪族炭化水素基、置換基を有していてもよい炭素数6~20の芳香族炭化水素基等が挙げられる。R5とR7とは結合して置換基を有していてもよい環を形成していてもよい。環を形成する例は、上記と同様である。
ここで、「置換基を有していてもよい」とは、水素原子(-H)を1価の基で置換する場合と、メチレン基(-CH2-)を2価の基で置換する場合との両方を含む。
置換基としての1価の基としては、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、トリアルコキシシリル基(トリメトキシシリル基等)、等が挙げられる。
置換基としての2価の基としては、酸素原子(-O-)、-C(=O)-、-C(=O)-O-等が挙げられる。
mは2以上の整数であり、2~100が好ましく、2~50がより好ましく、2~25がさらに好ましい。mが上記下限値以上であると、導電性複合体の疎水性が充分に高くなる。mが前記上限値以下であると、疎水性が高くなりすぎたり、導電性が低下したりするのを抑制することができる。
【0065】
エポキシ化合物は、1分子中にエポキシ基を1つ以上有する化合物(エポキシ基含有化合物)である。凝集又はゲル化を防止する点では、エポキシ化合物は、1分子中にエポキシ基を1つ有する化合物が好ましい。
前記一部のアニオン基と反応するエポキシ化合物は1種類でもよいし、2種以上でもよい。
【0066】
1分子中にエポキシ基を1つ有する単官能エポキシ化合物としては、例えば、エチレンオキサイド、プロピレンオキサイド、2,3-ブチレンオキサイド、イソブチレンオキサイド、1,2-ブチレンオキサイド、1,2-エポキシヘキサン、1,2-エポキシヘプタン、1,2-エポキシペンタン、1,2-エポキシオクタン、1,2-エポキシデカン、1,3-ブタジエンモノオキサイド、1,2-エポキシテトラデカン、グリシジルメチルエーテル、1,2-エポキシオクタデカン、1,2-エポキシヘキサデカン、エチルグリシジルエーテル、グリシジルイソプロピルエーテル、tert-ブチルグリシジルエーテル、1,2-エポキシエイコサン、2-(クロロメチル)-1,2-エポキシプロパン、グリシドール、エピクロルヒドリン、エピブロモヒドリン、ブチルグリシジルエーテル、1,2-エポキシヘキサン、1,2-エポキシ-9-デカン、2-(クロロメチル)-1,2-エポキシブタン、2-エチルヘキシルグリシジルエーテル、1,2-エポキシ-1H,1H,2H,2H,3H,3H-トリフルオロブタン、アリルグリシジルエーテル、テトラシアノエチレンオキサイド、グリシジルブチレート、1,2-エポキシシクロオクタン、グリシジルメタクリレート、1,2-エポキシシクロドデカン、1-メチル-1,2-エポキシシクロヘキサン、1,2-エポキシシクロペンタデカン、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシ-1H,1H,2H,2H,3H,3H-ヘプタデカフルオロブタン、3,4-エポキシテトラヒドロフラン、グリシジルステアレート、3-グリシジルオキシプロピルトリメトキシシラン、エポキシコハク酸、グリシジルフェニルエーテル、イソホロンオキサイド、α-ピネンオキサイド、2,3-エポキシノルボルネン、ベンジルグリシジルエーテル、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-[2-(パーフルオロヘキシル)エトキシ]-1,2-エポキシプロパン、1,1,1,3,5,5,5-ヘプタメチル-3-(3-グリシジルオキシプロピル)トリシロキサン、9,10-エポキシ-1,5-シクロドデカジエン、4-tert-ブチル安息香酸グリシジル、2,2-ビス(4-グリシジルオキシフェニル)プロパン、2-tert-ブチル-2-[2-(4-クロロフェニル)]エチルオキシラン、スチレンオキサイド、グリシジルトリチルエーテル、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-フェニルプロピレンオキサイド、コレステロール-5α,6α-エポキシド、スチルベンオキサイド、p-トルエンスルホン酸グリシジル、3-メチル-3-フェニルグリシド酸エチル、N-プロピル-N-(2,3-エポキシプロピル)ペルフルオロ-n-オクチルスルホンアミド、(2S,3S)-1,2-エポキシ-3-(tert-ブトキシカルボニルアミノ)-4-フェニルブタン、3-ニトロベンゼンスルホン酸(R)-グリシジル、3-ニトロベンゼンスルホン酸-グリシジル、パルテノリド、N-グリシジルフタルイミド、エンドリン、デイルドリン、4-グリシジルオキシカルバゾール、7,7-ジメチルオクタン酸[オキシラニルメチル]、1,2-エポキシ-4-ビニルシクロヘキサン、炭素数10~16の高級アルコールグリシジルエーテル等が挙げられる。
【0067】
前記高級アルコールグリシジルエーテルとしては、炭素数10~16の高級アルコールグリシジルエーテルの1種以上が好ましく、炭素数12~14の高級アルコールグリシジルエーテルの1種以上がより好ましく、C12(炭素数12)高級アルコールグリシジルエーテル及びC13(炭素数13)高級アルコールグリシジルエーテルのうち少なくとも1種がさらに好ましい。
【0068】
1分子中にエポキシ基を2つ以上有する多官能エポキシ化合物としては、例えば、1,6-ヘキサンジオールジグリシジルエーテル、1,7-オクタジエンジエポキシド、ネオペンチルグリコールジグリシジルエーテル、4-ブタンジオールジグリシジルエーテル、1,2:3,4-ジエポキシブタン、1,2-シクロヘキサンジカルボン酸ジグリシジル、イソシアヌル酸トリグリシジル、ネオペンチルグリコールジグリシジルエーテル、1,2:3,4-ジエポキシブタン、ポリエチレングリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、グリセリンポリグリシジルエーテル、ジグリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテル、ソルビトール系ポリグリシジルエーテル、エチレンオキシドラウリルアルコールグリシジルエーテル等が挙げられる。
【0069】
エポキシ化合物は、有機溶剤への分散性が高くなることから、分子量が50以上2000以下であることが好ましい。また、低極性の炭化水素系溶剤、エステル系溶剤への分散性が高くなることから、エポキシ化合物は、炭素数が4以上120以下のものが好ましく、7以上100以下のものがより好ましく、10以上80以下のものがさらに好ましく、15以上50以下のものが特に好ましい。
【0070】
(置換基B)
前記置換基(B)は、下記式(B)で表される基であると推測される。
【0071】
-HN+R11R12R13 ・・・(B)
[式(B)中、R11~R13はそれぞれ独立に、水素原子、又は置換基を有してもよい炭化水素基であり、ただし、R11~R13のうち少なくとも1つは置換基を有してもよい炭化水素基である。]
【0072】
置換基(B)において、左端の結合手は、アニオン基の負電荷、例えばスルホン酸基の負電荷「-SO3
-」と、アミン化合物の正電荷とが結合していることを表す。
【0073】
化学式(B)におけるR11~R13は水素原子、又は置換基を有していてもよい炭化水素基である。化学式(B)におけるR11~R13は後述するアミン化合物に由来する置換基である。
化学式(B)における炭化水素基は、置換基を有していてもよい炭素数1~20の脂肪族炭化水素基、置換基を有していてもよい炭素数6~20の芳香族炭化水素基が挙げられる。
脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などが挙げられる。
脂肪族炭化水素基の置換基としては、フェニル基、水酸基等が挙げられる。
芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられる。
芳香族炭化水素基の置換基としては、炭素数1~5のアルキル基、水酸基等が挙げられる。
【0074】
前記アミン化合物は、第一級アミン、第二級アミン及び第三級アミンよりなる群から選ばれる少なくとも1種である。前記一部のアニオン基と反応するアミン化合物は1種類でもよいし、2種以上でもよい。
第一級アミンとしては、例えば、アニリン、トルイジン、ベンジルアミン、エタノールアミン等が挙げられる。
第二級アミンとしては、例えば、ジエタノールアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジフェニルアミン、ジベンジルアミン、ジナフチルアミン等が挙げられる。
第三級アミンとしては、例えば、トリエタノールアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリヘキシルアミン、トリオクチルアミン、トリフェニルアミン、トリベンジルアミン、トリナフチルアミン等が挙げられる。
前記アミン化合物のうち、本態様の導電性複合体の導電性を高められることから、第三級アミンが好ましく、トリオクチルアミン及びトリブチルアミンの少なくとも一方がより好ましい。
【0075】
有機溶剤への分散性、特に、低極性の炭化水素系溶剤、エステル系溶剤への分散性が高くなることから、アミン化合物は、窒素原子上に炭素数が4以上の置換基を有することが好ましく、6以上の置換基を有することがより好ましく、窒素原子上に炭素数が8以上の置換基を有することがさらに好ましい。この窒素原子上の置換基の炭素数の上限値は特に制限されず、溶剤への溶解性や反応性を考慮して、例えば、50以下が好ましく、40以下がより好ましく、30以下がさらに好ましい。
また、アミン化合物が有する前記R11~R13の合計の炭素数は、6~33が好ましく、9~30がより好ましく、12~27がさらに好ましい。
前記窒素原子上の各置換基の炭素数の数は同じでもよいし、異なっていてもよい。
【0076】
前記一部のアニオン基が、置換基(A)及び置換基(B)を有する場合、[置換基(A)]:[置換基(B)]で表される質量比(以下、A/B比ともいう)は、10:90~90:10が好ましく、20:80~80:20がより好ましく、25:75~75:25がさらに好ましい。A/B比が上記範囲内であると、分散性、導電性のバランスを取りやすくなる。なお、[置換基(A)]の質量は、[(エポキシ化合物を反応させて得られる反応生成物Aの質量)-(エポキシ化合物と反応させる前の導電性複合体]で算出することができる。また、[置換基(B)]の質量は、[(前記反応生成物Aとアミン化合物とを反応させて得られる反応生成物Bの質量)-(前記反応生成物Aの質量)]から算出することができる。
【0077】
(置換基C)
置換基(C)は下記式(C)で表される基であると推測される。
【0078】
-N+R11R12R13R14 ・・・(C)
[式(C)中、R11~R14はそれぞれ独立に、置換基を有してもよい炭化水素基である。]
【0079】
置換基(C)において、左端の結合手は、アニオン基の負電荷、例えばスルホン酸基の負電荷「-SO3
-」と、第四級アンモニウムカチオンの正電荷とが結合していることを表す。
【0080】
化学式(C)におけるR11~R14は置換基を有していてもよい炭化水素基である。化学式(C)におけるR11~R14は第四級アンモニウム化合物に由来する置換基である。
化学式(C)における炭化水素基は、置換基を有していてもよい炭素数1~20の脂肪族炭化水素基、置換基を有していてもよい炭素数6~20の芳香族炭化水素基が挙げられる。
脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などが挙げられる。
脂肪族炭化水素基の置換基としては、フェニル基、水酸基等が挙げられる。
芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられる。
芳香族炭化水素基の置換基としては、炭素数1~5のアルキル基、水酸基等が挙げられる。
【0081】
有機溶剤への分散性が高くなり、導電性が向上することから、第四級アンモニウム化合物は、窒素原子上に炭素数が3以上の置換基を有することが好ましく、5以上の置換基を有することがより好ましく、窒素原子上に炭素数が7以上の置換基を有することがさらに好ましい。この窒素原子上の各置換基の炭素数の上限値は特に制限されず、溶剤への溶解性や反応性を考慮して、例えば、40以下が好ましく、30以下がより好ましく、20以下がさらに好ましい。
また、第四級アンモニウム化合物が有する前記R11~R14の合計の炭素数は、8~44が好ましく、12~40がより好ましく、16~36がさらに好ましい。
前記窒素原子上の各置換基の炭素数の数は同じでもよいし、異なっていてもよい。
【0082】
第四級アンモニウム化合物の具体例としては、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラプロピルアンモニウム塩、テトラブチルアンモニウム塩、テトラ-n-オクチルアンモニウム塩、テトラフェニルアンモニウム塩、テトラベンジルアンモニウム塩、テトラナフチルアンモニウム塩等の第四級アンモニウム塩が挙げられる。
アンモニウムカチオンのカウンターアニオンとしては、例えば、臭素イオン、塩素イオン等のハロゲンイオンやヒドロキシイオンが挙げられる。
【0083】
前記導電性複合体が、置換基(A)及び置換基(C)を有する場合、[置換基(A)]:[置換基(C)]で表される質量比(以下、A/C比ともいう)は、10:90~90:10が好ましく、20:80~80:20がより好ましく、25:75~75:25がさらに好ましい。A/C比が上記範囲内であると、分散性、導電性のバランスを取りやすくなる。なお、[置換基(A)]の質量は、[(エポキシ化合物と反応させて得られる反応生成物Aの質量)-(エポキシ化合物と反応させる前の導電性複合体)]で算出することができる。また、[置換基(C)]の質量は、[(前記反応生成物Aと第四級アンモニウム化合物とを反応させて得られる反応生成物Cの質量)-(前記反応生成物Aの質量)]から算出することができる。
【0084】
導電性高分子分散液にエポキシ化合物の1種以上を添加する場合、エポキシ化合物の添加量は、導電性高分子分散液に含まれる、π共役系導電性高分子及び全ポリアニオン100質量部に対して、10質量部以上10000質量部以下が好ましく、100質量部以上5000質量部以下がより好ましく、500質量部以上3000質量部以下がさらに好ましい。
上記範囲の下限値以上であると、導電性複合体の疎水性が充分に高くなり、有機溶剤に対する分散性が向上する。
上記範囲の上限値以下であると、未反応のエポキシ化合物による導電性低下を防止できる。
エポキシ化合物の添加の際には反応促進のために加熱してよい。加熱温度は、40℃以上100℃以下とすることが好ましい。
【0085】
導電性高分子分散液にアミン化合物の1種以上を添加する場合、アミン化合物の添加量は、導電性高分子分散液に含まれる、π共役系導電性高分子及び全ポリアニオン100質量部に対して、1質量部以上10000質量部以下が好ましく、10質量部以上5000質量部以下がより好ましく、100質量部以上2000質量部以下がさらに好ましい。
上記範囲の下限値以上であると、導電性複合体の疎水性が充分に高くなり、有機溶剤に対する分散性が向上する。
上記範囲の上限値以下であると、未反応のアミン化合物による導電性低下を防止できる。
【0086】
導電性高分子分散液に第四級アンモニウム化合物の1種以上を添加する場合、第四級アンモニウム化合物の添加量は、導電性高分子分散液に含まれる、π共役系導電性高分子及び全ポリアニオン100質量部に対して、1質量部以上10000質量部以下が好ましく、10質量部以上5000質量部以下がより好ましく、50質量部以上2000質量部以下がさらに好ましい。
上記範囲の下限値以上であると、導電性複合体の疎水性が充分に高くなり、有機溶剤に対する分散性が向上する。
上記範囲の上限値以下であると、未反応の第四級アンモニウム化合物による導電性低下を防止できる。
第四級アンモニウム化合物は、アミン化合物と類似した反応機構で、アミン化合物よりも少ない添加量で良好な反応性を示す。第四級アンモニウム化合物によって修飾された導電性複合体を含む導電層の導電性は、アミン化合物によって修飾された場合よりも優れる傾向がある。
【0087】
導電性高分子分散液にエポキシ化合物、アミン化合物及び第四級アンモニウム化合物から選択される1種以上を添加する前、添加と同時又は添加した後には、有機溶剤を添加してもよい。有機溶剤としては、水溶性有機溶剤が好ましい。水溶性有機溶剤としては、アルコール系溶剤、ケトン系溶剤、エステル系溶剤が挙げられる。添加する有機溶剤は、1種類でもよいし、2種以上でもよい。
【0088】
前記導電性高分子分散液に、エポキシ化合物と、アミン化合物若しくは第四級アンモニウム化合物との両方を添加する場合、その添加順序は特に限定されない。合成中間体(反応中間体)の取り扱いが容易であることから、まずエポキシ化合物を添加して反応させた後、アミン化合物若しくは第四級アンモニウム化合物を添加して反応させることが好ましい。
【0089】
[回収工程]
析出した反応生成物を回収する方法は特に制限されず、例えば、ろ過処理、デカンテーション等によって回収することができる。
【0090】
回収した反応生成物に含まれる水分量はできるだけ少ないことが好ましく、水分を全く含まないことが最も好ましいが、実用の観点からは、水分を10質量%以下の範囲で含んでもよい。
水分量を少なくする方法としては、例えば、有機溶剤で反応生成物を洗い流す方法、反応生成物を乾燥する方法等が挙げられる。
【0091】
[洗浄工程]
回収工程で回収した反応生成物を洗浄する洗浄工程を有してもよい。この洗浄工程によって、残留する水、未反応のエポキシ化合物、未反応のアミン化合物若しくは第四級アンモニウム化合物、及びエポキシ化合物の加水分解物等を除去する。
洗浄用有機溶剤は、反応生成物の溶解を最低限に抑えつつ洗浄可能なものが好ましい。このため、洗浄用有機溶剤としては、アルコール系溶剤が好ましい。洗浄用有機溶剤に含まれる有機溶剤は1種類でもよいし、2種類以上でもよい。
洗浄方法としては特に制限はなく、例えば、反応生成物の上から洗浄用有機溶剤をかけ流して反応生成物を洗浄してもよいし、洗浄用有機溶剤中で攪拌して反応生成物を洗浄してもよい。
【0092】
[混合工程]
反応生成物を分散させる溶剤(分散媒)は、有機溶剤を含むことが好ましい。
導電性高分子含有液が疎水化された導電性複合体を含む場合の前記溶剤の総質量に対する前記有機溶剤の含有量は、70質量%以上100質量%以下が好ましく、80質量%以上100質量%以下がより好ましく、90質量%以上100質量%以下がさらに好ましい。
【0093】
本工程で得た導電性高分子含有液の総質量に対する、前記反応生成物の含有量は、例えば0.01質量%以上10.0質量%以下とすることができ、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上2.0質量%以下がより好ましく、0.5質量%以上1.0質量%以下がさらに好ましい。
上記範囲の下限値以上であると、導電性高分子含有液を塗布して形成する導電層の導電性をより向上させることができる。
上記範囲の上限値以下であると、導電性高分子含有液における前記反応生成物の分散性を高め、均一な導電層を形成することができる。
【0094】
<有機溶剤>
前記有機溶剤としては、例えば、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、エステル系溶剤、炭化水素系溶剤、窒素原子含有化合物系溶剤等が挙げられる。前記有機溶剤は1種類でもよいし、2種以上でもよい。
【0095】
前記有機溶剤は水溶性有機溶剤であってもよいし、非水溶性有機溶剤であってもよい。
水溶性有機溶剤は、20℃の水100gに対する溶解量が1g以上の有機溶剤であり、非水溶性有機溶剤は、20℃の水100gに対する溶解量が1g未満の有機溶剤である。水溶性有機溶剤としては、アルコール系溶剤から選択される1種以上が好ましい。
【0096】
アルコール系溶剤としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、2-メチル-2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、アリルアルコール、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル等の一価アルコール;エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール等の二価アルコールが挙げられる。
エーテル系溶剤としては、例えば、ジエチルエーテル、ジメチルエーテル、プロピレングリコールジアルキルエーテル等が挙げられる。
ケトン系溶剤としては、例えば、ジエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、ジイソプロピルケトン、メチルエチルケトン、アセトン、ジアセトンアルコール等が挙げられる。
エステル系溶剤及び炭化水素系溶剤の例は、後述する。
窒素原子含有化合物系溶剤としては、例えば、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド等が挙げられる。
上記に分類されない溶剤としては、例えば、ジメチルスルホキシドが挙げられる。
【0097】
(エステル系溶剤)
エステル系溶剤は、エステル基(-C(=O)-O-)を有するエステル基含有化合物である。
前記導電性複合体がエポキシ化合物及びアミン化合物若しくは第四級アンモニウム化合物との反応によって修飾されている場合、前記有機溶剤がエステル系溶剤を含むと、導電性複合体の分散性がより高まるので好ましい。
導電性複合体の分散性を高める観点から、下記式1zで表される1種類以上のエステル系溶剤を含むことが好ましい。
式1z:R21-C(=O)-O-R22
[式中、R21は水素原子、メチル基又はエチル基を表し、R22は炭素数1~6の直鎖状又は分岐鎖状のアルキル基を表す。]
【0098】
導電性複合体の分散性を高める観点から、R21はメチル基又はエチル基が好ましく、メチル基がより好ましい。また、R22の炭素数は2~5が好ましく、2~4がより好ましい。
【0099】
エステル系溶剤としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソプロピル、酢酸イソブチル等が挙げられる。
【0100】
前記有機溶剤に含まれるエステル系溶剤の含有量は、前記有機溶剤の総質量に対し、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましく、70質量%以上がより一層好ましく、80質量%以上が特に好ましく、90質量%以上が最も好ましく、100質量%であってもよい。エステル系溶剤の含有量が上記範囲内であると、導電性複合体の分散性を高めることができる。
【0101】
本態様の導電性高分子含有液がエステル系溶剤を含む場合、エステル系溶剤以外の有機溶剤がさらに1種類以上含まれていても構わない。
エステル系溶剤以外の有機溶剤としては、例えば、後述の炭化水素系溶剤、前述のケトン系溶剤、アルコール系溶剤、窒素原子含有化合物系溶剤等が挙げられる。
【0102】
(炭化水素系溶剤)
本態様の導電性高分子含有液に含まれる導電性複合体がエポキシ化合物及びアミン化合物若しくは第四級アンモニウム化合物との反応によって修飾されている場合、分散媒として炭化水素系溶剤が含まれると、プラスチックフィルム基材に対する濡れ性が高くなり、低極性のバインダ成分を容易に添加できるので好ましい。
【0103】
前記炭化水素系溶剤としては、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤が挙げられる。脂肪族炭化水素系溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、イソプロピルベンゼン等が挙げられる。なかでも、導電性複合体の分散性が高いことから、トルエンが好ましい。また、バインダ成分としてシリコーン化合物を添加した場合には、シリコーン化合物の溶解性に優れることから、ヘプタン及びトルエンの少なくとも一方が好ましい。
【0104】
炭化水素系溶剤に加えてさらにメチルエチルケトンを含有すると、導電性複合体の分散性がより高くなるので好ましい。例えば、炭化水素系溶剤100質量部に対して、メチルエチルケトンは20質量部以上120質量部以下が好ましく、30質量部以上100質量量部以下がより好ましく、40質量部以上80質量部以下がさらに好ましい。
【0105】
炭化水素系溶剤の含有量は、前記有機溶剤の総質量に対し、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましく、70質量%以上がより一層好ましく、80質量%以上が特に好ましく、90質量%以上が最も好ましく、100質量%であってもよい。炭化水素系溶剤の含有量が上記範囲内であると、導電性複合体の分散性を高めることができる。
【0106】
本態様の導電性高分子含有液が炭化水素系溶剤を含む場合、炭化水素系溶剤以外の有機溶剤がさらに1種類以上含まれていても構わない。
炭化水素系溶剤以外の有機溶剤としては、前述したケトン系溶剤、アルコール系溶剤、エステル系溶剤、窒素原子含有化合物系溶剤等が挙げられる。
【0107】
以上のなかでも有機溶剤は、アルコール系溶剤、ケトン系溶剤、及びエステル系溶剤から選択される1種類以上が好ましく、イソプロパノール、メチルエチルトン、及び酢酸エチルから選択される1種類以上がより好ましい。これらの好適な有機溶剤を用いることにより、導電性高分子含有液に含まれる導電性複合体の分散性をより一層高めることができる。
【0108】
(分散処理)
反応生成物に溶剤を添加した後には導電性高分子含有液を攪拌して分散処理を施してもよい。攪拌の方法は特に制限されず、スターラー等の剪断力が弱い攪拌であってもよいし、高圧ホモジナイザー等の高剪断力の分散機を用いて攪拌してもよいが、分散性を高める観点から高圧ホモジナイザー等を用いることが好ましい。
【0109】
以上の方法により、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、前記水系分散媒とを含む、導電性高分子含有液が得られる。
さらに、バインダ成分と、高導電化剤とを常法により添加し、混合することにより、目的の導電性高分子含有液が得られる。
【0110】
≪導電性積層体≫
本発明の第三態様は、基材と、前記基材の少なくとも一部の面に形成された、第一態様の導電性高分子含有液の硬化層からなる導電層とを備えた、導電性積層体である。
本態様の導電性積層体は、後述の第四態様の製造方法によって製造することができる。
【0111】
[導電層]
前記導電層の形成範囲は、基材が有する任意の面の全体でもよいし、一部でもよい。導電性フィルムにおいては、フィルム基材の一方の面又は他方の面のほぼ全体にほぼ均一な厚さの導電層が形成されていることが好ましい。基材が有する面の一部のみに導電層が形成されている場合、例えば、当該導電層は回路や電極などの微細な導電パターンであってもよいし、導電層が設けられた領域と設けられていない領域とが同じ面に存在して大まかに区分けされただけであってもよい。
【0112】
前記導電層の平均厚さとしては、例えば、10nm以上100μm以下が好ましく、20nm以上50μm以下がより好ましく、30nm以上30μm以下がさらに好ましい。
導電層の平均厚さが前記下限値以上であれば、高い導電性を発揮でき、前記上限値以下であれば、導電層の基材に対する密着性がより向上する。
導電層の平均厚さは、無作為に選択される10箇所について厚さを測定し、その測定値を平均した値である。
【0113】
[基材]
前記基材は、絶縁性材料からなる基材であってもよいし、導電性材料からなる基材であってもよい。基材の形状は特に制限されず、例えば、フィルム、基板等の平面を主体とする形状が挙げられる。
絶縁性材料としては、ガラス、合成樹脂、セラミックス等が挙げられる。
導電性材料としては、金属、導電性金属酸化物、カーボン等が挙げられる。
【0114】
(フィルム基材)
前記基材としてフィルム基材を用いると、導電性積層体は導電性フィルムとなる。
前記フィルム基材としては、例えば、合成樹脂からなるプラスチックフィルムが挙げられる。前記合成樹脂としては、例えば、エチレン-メチルメタクリレート共重合樹脂、エチレン-酢酸ビニル共重合樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアクリレート、ポリカーボネート、ポリフッ化ビニリデン、ポリアリレート、スチレン系エラストマー、ポリエステル系エラストマー、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリイミド、セルローストリアセテート、セルロースアセテートプロピオネートなどが挙げられる。
フィルム基材と導電層との密着性を高める観点から、フィルム基材用の合成樹脂はポリエステル樹脂であることが好ましく、なかでも、ポリエチレンテレフタレートが好ましい。
【0115】
フィルム基材用の合成樹脂は、非晶性でもよいし、結晶性でもよい。
フィルム基材は、未延伸のものでもよいし、延伸されたものでもよい。
フィルム基材には、前記導電層の密着性をさらに向上させるために、コロナ放電処理、プラズマ処理、火炎処理等の表面処理が施されてもよい。
【0116】
フィルム基材の平均厚みは、5μm以上500μm以下が好ましく、20μm以上200μm以下がより好ましい。フィルム基材の平均厚みが前記下限値以上であれば、破断しにくくなり、前記上限値以下であれば、フィルムとして充分な可撓性を確保できる。
フィルム基材の平均厚みは、無作為に選択される10箇所について厚さを測定し、その測定値を平均した値である。
【0117】
(ガラス基材)
ガラス基材としては、例えば、無アルカリガラス基材、ソーダ石灰ガラス基材、ホウケイ酸ガラス基材、石英ガラス基材等が挙げられる。基材にアルカリ成分が含まれると、導電層の導電性が低下する傾向にあるため、前記ガラス基材のなかでも、無アルカリガラスが好ましい。ここで、無アルカリガラスとは、アルカリ成分の含有量がガラス組成物の総質量に対し、0.1質量%以下のガラス組成物のことである。
【0118】
ガラス基材の平均厚みとしては、100μm以上3000μm以下が好ましく、100μm以上1000μm以下がより好ましい。ガラス基材の平均厚みが前記下限値以上であれば、破損しにくくなり、前記上限値以下であれば、導電性積層体の薄型化に寄与できる。
ガラス基材の平均厚みは、無作為に選択される10箇所について厚さを測定し、その測定値を平均した値である。
【0119】
≪導電性積層体の製造方法≫
本発明の第四態様は、第一態様の導電性高分子含有液を用い、下記の工程1~3を順に行うことにより、導電性積層体を製造する方法である。
【0120】
(工程1)
本工程は、基材の少なくとも一部の面に前記導電性高分子含有液を塗布して塗膜を形成し、塗膜を乾燥して導電層を形成することにより、導電性積層体Aを得る工程である。
【0121】
前記基材の説明は前述と同様であるので、ここで重複する説明は省略する。
【0122】
導電性高分子含有液を基材の任意の面に塗工(塗布)する方法としては、例えば、グラビアコーター、ロールコーター、カーテンフローコーター、スピンコーター、バーコーター、リバースコーター、キスコーター、ファウンテンコーター、ロッドコーター、エアドクターコーター、ナイフコーター、ブレードコーター、キャストコーター、スクリーンコーター等のコーターを用いた方法、エアスプレー、エアレススプレー、ローターダンプニング等の噴霧器を用いた方法、ディップ等の浸漬方法等を適用することができる。
【0123】
導電性高分子含有液の基材への塗布量は特に制限されないが、均一にムラなく塗工することと、導電性と膜強度を勘案して、固形分として、0.01g/m2以上10.0g/m2以下の範囲であることが好ましい。
【0124】
基材に導電性高分子含有液を塗布した直後の塗膜の厚さとしては、例えば、0.1μm以上500μm以下が好ましく、1μm以上100μm以下がより好ましく、5μm以上50μm以下がさらに好ましい。
上記の塗膜の厚さは、例えば、バーコーターの番手を変更することにより調整することができる。
【0125】
基材に塗布した導電性高分子含有液の塗膜を乾燥させ、分散媒の少なくとも一部を除去し、硬化させることにより、導電層を形成することができる。
塗膜を乾燥する方法としては、加熱乾燥、真空乾燥等が挙げられる。加熱乾燥としては、例えば、熱風加熱や、赤外線加熱などの方法を採用できる。
加熱乾燥を適用する場合、加熱温度は、使用する分散媒に応じて適宜設定されるが、通常は、50℃以上200℃以下の範囲内である。ここで、加熱温度は、乾燥装置の設定温度である。上記加熱温度の範囲における好適な乾燥時間としては、0.5分以上30分以下が好ましく、1分以上15分以下がより好ましい。
乾燥後にUV照射を行い、塗膜に含まれるバインダ成分を硬化させてもよい。
【0126】
塗膜の乾燥により、基材の任意の面に導電層が形成された導電性積層体Aが得られる。
導電性積層体Aが有する導電層の平均厚さとしては、例えば、10nm以上100μm以下が好ましく、20nm以上50μm以下がより好ましく、30nm以上30μm以下がさらに好ましい。
導電層の平均厚さが前記下限値以上であれば、高い導電性を発揮でき、前記上限値以下であれば、導電層の基材に対する密着性がより向上する。
導電層の平均厚さは、無作為に選択される10箇所について厚さを測定し、その測定値を平均した値である。
【0127】
導電性積層体Aの表面抵抗値Aは、例えば、1.0×106Ω/□以上10.0×1010Ω/□以下とすることができる。
【0128】
(工程2)
本工程では、前段の工程で得た導電性積層体Aを60℃以上85℃以下かつ60%RH以上85%RH以下の加熱加湿条件下で10日以上30日以下保持することにより、導電性積層体Bを得る工程である。
加熱温度の範囲は、60℃以上85℃以下が好ましく、70℃以上85℃以下がより好ましく、75℃以上85℃以下がさらに好ましい。
加熱時の相対湿度の範囲は、60%RH以上85%RH以下が好ましく、70%RH以上85%RH以下がより好ましく、75%RH以上85%RH以下がさらに好ましい。
上記の加熱加湿条件下に導電性積層体Aを置き、導電層が雰囲気中の湿度に曝される状態にして保持する期間としては、10日以上30日以下が好ましく、10日以上20日以下がより好ましく、10日以上15日以下がさらに好ましい。なお、1日は24時間を意味する。
【0129】
上記の加熱加湿条件下において導電層を湿度に曝すことにより、導電層の導電性を格段に向上させることができる。このメカニズムの詳細は未解明であるが、導電層が少量の水分を吸収し、加熱によって導電性複合体等の含有成分の分子運動が高まることによって、導電層中で分子のコンフォメーションや相対配置が改善される結果、導電性が高まることが推測される。
【0130】
導電性積層体Aを上記の加熱加湿条件下におき、導電性積層体Bを得る具体的な方法としては、例えば、温度および湿度を制御可能な試料室を備えた市販の恒温恒湿器を使用する方法が挙げられる。導電性積層体の上記保持時の加熱温度及び湿度は、試料室の設定温度及び湿度として制御することができる。
【0131】
導電性積層体Bの表面抵抗値Bは、表面抵抗値Aよりも低ければ特に制限されないが、例えば、1.0×103Ω/□以上10.0×108Ω/□以下とすることができる。
【0132】
表面抵抗値A/表面抵抗値Bで表される比の値は、例えば、3以上10000以下の範囲、10以上5000以下の範囲、20以上1000以下の範囲、又は30以上100以下の範囲等にすることができる。
【0133】
(工程3)
本工程では、前段の工程で得た導電性積層体Bを60℃以上85℃以下かつ非加湿の加熱条件下で10日以上30日以下保持し、前記導電層を乾燥することにより、導電性積層体Cを得る工程である。
加熱温度の範囲は、60℃以上85℃以下が好ましく、70℃以上85℃以下がより好ましく、80℃以上85℃以下がさらに好ましい。
本工程では非加湿で上記の加熱処理を行う。本工程を行う環境の25℃における湿度は、例えば、50%RH以上65%RH以下であることが好ましい。
上記の非加湿の加熱条件下に導電性積層体Bを置き、導電層が雰囲気中の温度に曝される状態にして保持する期間としては、10日以上30日以下が好ましく、10日以上20日以下がより好ましく、10日以上15日以下がさらに好ましい。なお、1日は24時間を意味する。
【0134】
上記の非加湿の加熱条件下において導電層を乾燥することにより、導電層の導電性が向上した状態で留めることができる。このメカニズムの詳細は未解明であるが、工程2において導電層が吸収した水分を本工程で乾燥除去することによって、工程2で形成された導電層中の分子の好ましいコンフォメーションや相対配置をなるべく維持した状態で乾燥硬化し、固定する結果、導電性が高い状態で維持できることが推測される。
【0135】
導電性積層体Bを上記の非加湿の加熱条件下におき、導電性積層体Cを得る具体的な方法としては、例えば、温度を制御可能な試料室を備えた市販の恒温器を使用する方法が挙げられる。導電性積層体の上記保持時の加熱温度は、試料室の設定温度として制御することができる。
【0136】
導電性積層体Cの表面抵抗値Cは、表面抵抗値Aよりも低ければ特に制限されないが、例えば、1.0×104Ω/□以上10.0×108Ω/□以下とすることができる。
【0137】
表面抵抗値A/表面抵抗値Cで表される比の値は、例えば、3以上10000以下の範囲、10以上5000以下の範囲、20以上1000以下の範囲、又は30以上100以下の範囲等にすることができる。
【0138】
表面抵抗値Cは、表面抵抗値Bよりも高くなる傾向がある。このメカニズムの詳細は未解明であるが、表面抵抗値Bは導電層が水分を含んでいるので、導電性が高くなっていると推測される。
表面抵抗値C/表面抵抗値Bで表される比の値は、例えば、1.1以上100以下の範囲、1.2以上50以下の範囲、1.3以上20以下の範囲、又は1.4以上10以下の範囲等になることがある。
【実施例0139】
(製造例1)ポリスチレンスルホン酸の製造
1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を12時間攪拌した。
得られたポリスチレンスルホン酸ナトリウム溶液に、10質量%に希釈した硫酸を1000ml添加し、得られたポリスチレンスルホン酸溶液の約1000mlの溶媒を限外ろ過法により除去した。次いで、残液に2000mlのイオン交換水を加え、限外ろ過法により約2000mlの溶媒を除去して、ポリスチレンスルホン酸を水洗した。この水洗操作を3回繰り返した。
得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。
【0140】
(製造例2)PEDOT-PSSの合成
0.5gの3,4-エチレンジオキシチオフェンと、1.5gのポリスチレンスルホン酸を15.0gのイオン交換水に溶かした溶液を20℃で混合した。次に、イオン交換水89.5gを添加した。
得られた混合溶液を20℃に保ち、掻き混ぜながら、0.03gの硫酸第二鉄を4.97gのイオン交換水に溶かした溶液と、1.1の過硫酸アンモニウムを8.9gのイオン交換水に溶かした溶液とをゆっくり添加し、得られた反応液を24時間攪拌して反応させた。
上記反応により、π共役系導電性高分子であるポリ(3,4-エチレンジオキシチオフェン)及びポリスチレンスルホン酸を含む導電性複合体(PEDOT-PSS)と、分散媒である水とを含む導電性高分子含有液を得た。
この導電性高分子含有液にデュオライトC255LFH(住化ケムテックス社製、陽イオン交換樹脂)13.2gとデュオライトA368S(住化ケムテックス社製、陰イオン交換樹脂)13.2gを加え、濾過してイオン交換樹脂を除き、前記酸化剤及び前記触媒が除去された導電性高分子含有液を得た。得られた導電性高分子含有液の固形分(不揮発成分)は1.3質量%であった。
【0141】
(製造例3)アミン化合物との反応
製造例2で得た導電性高分子含有液100gに、イソプロパノール50gとトリオクチルアミン10gを添加して1時間攪拌し、導電性複合体の一部のスルホン酸基にトリオクチルアミンを反応させた。その結果、反応生成物がすべて反応液上層に浮遊した。この反応液をろ過し、導電性複合体とトリオクチルアミンの反応生成物の粉体を得た。この粉体にイソプロパノールを加えて500gの混合液とし、高圧ホモジナイザーを用いて分散して500gの導電性高分子含有液(固形分0.6質量%)を得た。
【0142】
(製造例4)エポキシ化合物との反応
製造例2で得た導電性高分子含有液100gに、エポキシ化合物(共栄社化学株式会社製、エポライトM-1230、C12,13混合高級アルコールグリシジルエーテル)25gを加え、60℃で4時間加熱攪拌し、導電性複合体の一部のスルホン酸基にエポキシ化合物を反応させた。その結果、反応生成物が析出した。この析出物を濾過し、導電性複合体とエポキシ化合物との反応生成物を回収した。この反応生成物にメチルエチルケトンを加えて300gの混合液とし、高圧ホモジナイザーを用いて分散して300gの導電性高分子含有液(固形分0.5質量%)を得た。
【0143】
(製造例5)エポキシ化合物及びアミン化合物との反応
製造例2で得た導電性高分子含有液100gに、エポキシ化合物(共栄社化学株式会社製、エポライトM-1230、C12,13混合高級アルコールグリシジルエーテル)25gを加え、60℃で4時間加熱攪拌した。次に、イソプロパノール50gとトリオクチルアミン10gを添加して1時間攪拌することにより、導電性複合体の一部のスルホン酸基にエポキシ化合物及びトリオクチルアミンが反応した。その結果、反応生成物が析出した。この析出物を濾過し、導電性複合体とエポキシ化合物及びトリオクチルアミンとの反応生成物を得た。この反応生成物に酢酸エチルを加えて800gの混合液とし、高圧ホモジナイザーを用いて分散して800gの導電性高分子含有液(固形分0.3質量%)を得た。
【0144】
(実施例1)
製造例2で得た導電性高分子含有液60gにプラスコートRZ105(互応化学社製、水分散ポリエステル、固形分25質量%)40gと、ガリック酸メチル0.25gを添加した。この溶液にさらにメタノール900gを添加し、得られた導電性高分子含有液を#4のバーコーターを用いてPETフィルム上に塗布し、120℃で1分間乾燥して導電性フィルムを得た。この導電性フィルムの表面抵抗値Aを測定した結果を表1に示す。
次に、表面抵抗値Aを測定した導電性フィルムを、温度85℃、湿度85%RHの加湿条件下で、10日間放置した後、上記と同様にして表面抵抗値Bを測定した。
さらに、表面抵抗値Bを測定した導電性フィルムを、85℃の非加湿条件下で、10日間放置した後、上記と同様にして表面抵抗値Cを測定した。
表面抵抗値(単位:Ω/□)の各測定値を表1に示す。
【0145】
導電性フィルムの導電層の表面抵抗値は、抵抗率計(日東精工アナリテック株式会社製ハイレスタ)を用い、印加電圧10Vの条件で測定した。表中、「1.0E+05」は「1.0×105」を意味し、他も同様である。
【0146】
(実施例2)
実施例1においてガリック酸メチルの添加量を0.5gに変更したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0147】
(実施例3)
実施例1においてガリック酸メチルの添加量を1.0gに変更したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0148】
(実施例4)
実施例1においてガリック酸メチルの添加量を2.0gに変更したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0149】
(実施例5)
実施例1においてガリック酸メチル0.25gに代えて、チオジプロピオン酸1.0gを添加したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0150】
(実施例6)
実施例1においてガリック酸メチル0.25gに代えて、イミダゾール1.0gを添加したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0151】
(実施例7)
実施例1においてガリック酸メチル0.25gに代えて、チオジグリコール1.0gを添加したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0152】
(実施例8)
実施例1においてガリック酸メチル0.25gに代えて、ソルビトール1.0gを添加したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0153】
(実施例9)
実施例1においてガリック酸メチル0.25gに代えて、ヒドロキシエチルアクリルアミド1.0gを添加したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0154】
(実施例10)
実施例1においてプラスコートRZ105の40gに代えて、プラスコートRZ570(互応化学社製、水分散性ポリエステル、固形分25質量%)40gに変更したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0155】
(実施例11)
製造例2で得た導電性高分子含有液40gに対してプラスコートRZ105を60g添加したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0156】
(実施例12)
製造例2で得た導電性高分子含有液80gに対してプラスコートRZ105を20g添加したこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製し、各表面抵抗値を測定した。
【0157】
(実施例13)
実施例1において表面抵抗値Aを測定した導電性フィルムを、温度60℃、湿度60%RHの加湿条件下で、10日間放置した後、表面抵抗値Bを測定したこと以外は実施例1と同様にして導電性フィルムを作製し、各表面抵抗値を測定した。
【0158】
(実施例14)
実施例1において表面抵抗値Bを測定した導電性フィルムを、60℃の非加湿条件下で、10日間放置した後、上記と同様にして表面抵抗値Cを測定したこと以外は実施例1と同様にして導電性フィルムを作製し、各表面抵抗値を測定した。
【0159】
(実施例15)
実施例1において表面抵抗値Aを測定した導電性フィルムを、温度85℃、湿度85%RHの加湿条件下で、30日間放置した後、上記と同様にして表面抵抗値Bを測定した。こと以外は実施例1と同様にして導電性フィルムを作製し、各表面抵抗値を測定した。
【0160】
(実施例16)
実施例1において表面抵抗値Bを測定した導電性フィルムを、85℃の非加湿条件下で、30日間放置した後、上記と同様にして表面抵抗値Cを測定した。こと以外は実施例1と同様にして導電性フィルムを作製し、各表面抵抗値を測定した。
【0161】
(比較例1)
ガリック酸メチルを添加しなかったこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製してその表面抵抗値を測定した。
【0162】
(比較例2)
ガリック酸メチル及びプラスコートRZ105を添加しなかったこと以外は実施例1と同様にして導電性高分子含有液を得て、導電性フィルムを作製してその表面抵抗値を測定した。
【0163】
【0164】
(実施例17)
製造例3で得た導電性高分子含有液98gにペンタエリスリトールトリアクリレート2gと、イルガキュア184(光重合開始剤、BASF社製)0.08gと、ガリック酸メチル0.1gを添加した。得られた導電性高分子含有液を#8のバーコーターを用いてPETフィルム上に塗布し、100℃で1分間乾燥し、400mJの紫外線を照射して導電性フィルムを得た。この導電性フィルムについて実施例1と同様にして表面抵抗値A~Cを測定した結果を表2に示す。
【0165】
(比較例3)
ガリック酸メチルを添加しなかったこと以外は実施例17と同様にして導電性高分子含有液を得て、導電性フィルムを作製してその表面抵抗値を測定した。
【0166】
(比較例4)
ペンタエリスリトールトリアクリレートとイルガキュア184を添加しなかったこと以外は実施例17と同様にして導電性高分子含有液を得て、導電性フィルムを作製してその表面抵抗値を測定した。
【0167】
【0168】
(実施例18)
製造例4で得た導電性高分子含有液98gにペンタエリスリトールトリアクリレート2gと、イルガキュア184(光重合開始剤、BASF社製)0.08gと、ガリック酸メチル0.1gを添加した。得られた導電性高分子含有液を#8のバーコーターを用いてPETフィルム上に塗布し、100℃で1分間乾燥し、400mJの紫外線を照射して導電性フィルムを得た。この導電性フィルムについて実施例1と同様にして表面抵抗値A~Cを測定した結果を表3に示す。
【0169】
(比較例5)
ガリック酸メチルを添加しなかったこと以外は実施例18と同様にして導電性高分子含有液を得て、導電性フィルムを作製してその表面抵抗値を測定した。
【0170】
(比較例6)
ペンタエリスリトールトリアクリレートとイルガキュア184を添加しなかったこと以外は実施例18と同様にして導電性高分子含有液を得て、導電性フィルムを作製してその表面抵抗値を測定した。
【0171】
【0172】
(実施例19)
製造例5で得た導電性高分子含有液98gにペンタエリスリトールトリアクリレート2gと、イルガキュア184(光重合開始剤、BASF社製)0.08gと、ガリック酸メチル0.1gを添加した。得られた導電性高分子含有液を#8のバーコーターを用いてPETフィルム上に塗布し、100℃で1分間乾燥し、400mJの紫外線を照射して導電性フィルムを得た。この導電性フィルムについて実施例1と同様にして表面抵抗値A~Cを測定した結果を表4に示す。
【0173】
(比較例7)
ガリック酸メチルを添加しなかったこと以外は実施例19と同様にして導電性高分子含有液を得て、導電性フィルムを作製してその表面抵抗値を測定した。
【0174】
(比較例8)
ペンタエリスリトールトリアクリレートとイルガキュア184を添加しなかったこと以外は実施例19と同様にして導電性高分子含有液を得て、導電性フィルムを作製してその表面抵抗値を測定した。
【0175】