(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023099207
(43)【公開日】2023-07-11
(54)【発明の名称】非水電解液及びそれを用いた蓄電デバイス
(51)【国際特許分類】
H01M 10/0568 20100101AFI20230704BHJP
H01M 10/0569 20100101ALI20230704BHJP
H01M 4/505 20100101ALI20230704BHJP
H01M 10/0525 20100101ALI20230704BHJP
H01M 4/485 20100101ALI20230704BHJP
【FI】
H01M10/0568
H01M10/0569
H01M4/505
H01M10/0525
H01M4/485
【審査請求】有
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2023078240
(22)【出願日】2023-05-11
(62)【分割の表示】P 2020531219の分割
【原出願日】2019-07-02
(31)【優先権主張番号】P 2018134203
(32)【優先日】2018-07-17
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019022001
(32)【優先日】2019-02-08
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】320011605
【氏名又は名称】MUアイオニックソリューションズ株式会社
(74)【代理人】
【識別番号】110002620
【氏名又は名称】弁理士法人大谷特許事務所
(72)【発明者】
【氏名】栗原 良規
(72)【発明者】
【氏名】木戸 大希
(72)【発明者】
【氏名】古藤 雄一
(72)【発明者】
【氏名】瀬戸口 宏行
(72)【発明者】
【氏名】藤村 整
(57)【要約】
【課題】蓄電デバイスの高温充電保存特性を大幅に向上させることが可能な非水電解液、及びそれを用いた蓄電デバイスを提供し、蓄電デバイスの高温充電保存特性を向上させることができ、加えて保存時の発生ガスを大幅に抑制することが可能な非水電解液、及びそれを用いた蓄電デバイスを提供すること。
【解決手段】(1)非水溶媒に電解質塩が溶解されている非水電解液であって、特定の双性イオンを含有することを特徴とする非水電解液、及び(2)正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が特定の双性イオンを含有することを特徴とする蓄電デバイスである。この蓄電デバイスは高温充電保存特性を大幅に向上させることができる。
【選択図】なし
【特許請求の範囲】
【請求項1】
非水溶媒に電解質塩が溶解されている非水電解液であって、
前記電解質塩として、LiPF
6及びLiPF
6以外のリチウム塩を含有し、
前記電解質塩の合計濃度は、非水電解液全量に対して4質量%以上28質量%以下であり、
LiPF
6以外のリチウム塩が非水電解液全量に対して0.01質量%以上15質量%以下であり、
下記一般式(I)で表される双性イオンを含有することを特徴とする非水電解液。
【化1】
(式(I)中、Q
+は、下記式(II)又は(III)で示されるカチオン性基である。
L
1は、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。
A
-で示されるアニオン性基は、スルホネート基又はカルボキシラト基である。)
【化2】
(式(II)中、R
1~R
3は、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。
式(III)中、R
4~R
6は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
*は、L
1との結合部位を示す。)
【請求項2】
双性イオンが、下記一般式(IV)で表される化合物、及び下記一般式(VII)で表される化合物から選ばれる一種以上である、請求項1に記載の非水電解液。
【化3】
(式(IV)中、Q
+は、下記式(V)又は(VI)で示されるカチオン性基である。
L
2は、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。)
【化4】
(式(V)中、R
7~R
9は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、炭素数2~5のフッ素化アルケニル基、炭素数3~5のアルキニル基、又は炭素数3~5のフッ素化アルキニル基を示す。
式(VI)中、R
10~R
12は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
*は、L
2との結合部位を示す。)
【化5】
(式(VII)中、L
3は炭素数1~5のアルキレン基を示す。
R
13~R
15は、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。但し、R
13~R
15の少なくとも1つは炭素数3~15のアルキル基である。)
【請求項3】
双性イオンが、下記一般式(VIII)で表される化合物である、請求項1又は2に記載の非水電解液。
【化6】
(式(VIII)中、Q
+は、下記式(IX)又は(X)で示されるカチオン性基である。
L
4は、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、又は炭素数2~5のフッ素化アルケニレン基を示す。)
【化7】
(式(IX)中、R
16~R
18は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、炭素数2~5のフッ素化アルケニル基、炭素数3~5のアルキニル基、又は炭素数3~5のフッ素化アルキニル基を示す。
式(X)中、R
19~R
21は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
*は、L
4との結合部位を示す。)
【請求項4】
双性イオンが、下記一般式(XI)で表される化合物、及び下記一般式(XII)で表される化合物から選ばれる一種以上である、請求項3に記載の非水電解液。
【化8】
(式(XI)中のL
5及び式(XII)中のL
6は、炭素数2又は3のアルキレン基を示す。
式(XI)中、R
16~R
18は、それぞれ独立して、炭素数1~3のアルキル基を示す。
式(XII)中、R
19~R
21は、それぞれ独立して、炭素数1~3のアルキル基又はジメチルアミノ基を示す。)
【請求項5】
双性イオンが、2-(トリメチルアンモニオ)エチルサルフェート、2-(トリエチルアンモニオ)エチルサルフェート、2-(トリプロピルアンモニオ)エチルサルフェート、3-(トリメチルアンモニオ)プロピルサルフェート、3-(トリエチルアンモニオ)プロピルサルフェート、3-(トリプロピルアンモニオ)プロピルサルフェート、2-(トリブチルホスホニオ)エチルサルフェート、2-(トリスジメチルアミノホスホニオ)エチルサルフェート、及び3-(トリブチルホスホニオ)プロピルサルフェートからなる群より選ばれる1種以上である、請求項3又は4に記載の非水電解液。
【請求項6】
双性イオンが、下記一般式(VII-1)で表される化合物である、請求項1又は2に記載の非水電解液。
【化9】
(式(VII-1)中、L
3はメチレン基であり、R
13~R
15が、それぞれ独立して炭素数1~15のアルキル基であり、R
13~R
15の少なくとも1つが炭素数3~15のアルキル基である。)
【請求項7】
前記一般式(VII-1)で表される双性イオンが、2-ブチルジメチル(カルボキシラトメチル)アンモニウム、2-ヘキシルジメチル(カルボキシラトメチル)アンモニウム、2-オクチルジメチル(カルボキシラトメチル)アンモニウム、2-デシルジメチル(カルボキシラトメチル)アンモニウム、及び2-ドデシルジメチル(カルボキシラトメチル)アンモニウムからなる群より選ばれる1種以上である、請求項6に記載の非水電解液。
【請求項8】
非水溶媒が、環状カーボネートと鎖状エステルを含む、請求項1~7のいずれかに記載の非水電解液。
【請求項9】
非水電解液が、無機リチウム塩、フッ化アルキル基を含有するリチウム塩、フッ素原子を有するリチウムイミド塩、及びシュウ酸構造を有するリチウム塩から選ばれる1種以上のリチウム塩を含む、請求項1~8のいずれかに記載の非水電解液。
【請求項10】
非水電解液が、無機リチウム塩及びフッ素原子を有するリチウムイミド塩を含む、請求項1~9のいずれかに記載の非水電解液。
【請求項11】
正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が請求項1~10のいずれかに記載の非水電解液であることを特徴とする蓄電デバイス。
【請求項12】
正極の活物質が、リチウム複合金属酸化物を含む、請求項11に記載の蓄電デバイス。
【請求項13】
正極の活物質が、マンガンを含有するリチウム複合金属酸化物であり、
負極の活物質が、リチウムを吸蔵及び放出することが可能な炭素材料、及びチタン複合金属酸化物から選ばれる1種以上である、請求項11又は12に記載の蓄電デバイス。
【請求項14】
正極の活物質が、スピネル型構造を有するマンガンリチウム複合金属酸化物であり、負極の活物質がチタン複合金属酸化物である、請求項13に記載の蓄電デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気化学特性、特に高温充電保存時における電池容量低下の抑制が可能な非水電解液及びそれを用いた蓄電デバイスに関する。
【背景技術】
【0002】
近年、蓄電デバイス、特にリチウム電池は、携帯電話やノート型パソコン等の小型電子機器の電源、電気自動車用や電力貯蔵用の電源として広く使用されている。なお、本明細書において、リチウム電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
【0003】
リチウム電池は、主にリチウムイオンを吸蔵及び放出可能な材料を含む正極及び負極、リチウム塩、並びに非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネート類が使用されている。
リチウム電池の負極としては、リチウム金属、リチウムイオンを吸蔵及び放出可能な金属化合物(金属単体、金属酸化物、リチウムとの合金等)、炭素材料等が知られている。特に、炭素材料のうち、例えばコークス、黒鉛(人造黒鉛、天然黒鉛)等のリチウムイオンを吸蔵及び放出することが可能な炭素材料を用いたリチウム電池が広く実用化されている。
コークスや黒鉛等の炭素材料はリチウム金属と同等の極めて卑な電位でリチウムイオンと電子を貯蔵及び放出するために、非水電解液中の多くの溶媒が還元分解を受ける可能性を有している。負極上で非水電解液中の溶媒が還元分解すると、負極表面への分解物の沈着や、ガス発生により、リチウムイオンのスムーズな移動が妨げられ、高温保存特性等の電池特性を低下させるという問題がある。
一方、リチウム電池の正極としては、リチウムイオンを吸蔵及び放出可能な、コバルト、マンガン、及びニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。ここで、正極活物質中の重金属は、高温充電保存時に非水電解液中に溶出する場合がある。溶出した金属が負極上に再析出すると、電池容量の低下や、非水電解液の分解による発生ガス量の増大及び電気抵抗の増大等の問題が生じる。
【0004】
特許文献1には、有機溶媒、リチウム塩、及び分子内に陽イオンと陰イオンとを有する分子内塩を含有する非水電解液が提案されており、負極にリチウムの溶解析出反応を利用する活物質を用いた場合のリチウム電池において、30サイクル試験で充放電サイクル特性を向上させることが開示されている。しかしながら、特許文献1の非水電解液を適用したリチウム電池では、低温サイクル試験における充放電サイクル特性を向上させることについての記載はあるが、高温での電池保存特性の改善効果については記載されていない。加えて、特許文献1に記載の、分子内に陽イオンと陰イオンとを有する分子内塩の中にはリチウム塩が溶解した有機溶媒中に少量しか溶解せず、効果を発揮できないものが含まれている。
特許文献2には、有機溶媒、リチウム塩、及びアニオン性のSO3又はSO4と、カチオン性のトリアジンを同一分子内に含む分子内塩を含有する非水電解液が提案されており、リチウム二次電池の高温保存特性と、過充電時の安定性が向上することが開示されている。
特許文献3には、エチレンカーボネート等の有機溶媒、リチウム塩、及び窒素原子又はリン原子を含む双性イオン化合物を含有する非水電解液が提案されており、電気化学的安定性に優れることが開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2003-346897号
【特許文献2】米国特許出願公開第2017/0125847号
【特許文献3】国際公開第2016/027788号
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、蓄電デバイスの高温充電保存特性を大幅に向上させることが可能な非水電解液、及びそれを用いた蓄電デバイスを提供することを目的とする。
本発明は、さらに、蓄電デバイスの高温充電保存特性を向上させることができ、加えて保存時の発生ガスを大幅に抑制することが可能な非水電解液、及びそれを用いた蓄電デバイスを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者らは、前記課題を解決するために研究を重ね、双性イオンを含む非水電解液が高温充電保存時の電池容量の低下を抑制する効果、及び発生ガスを抑制する効果を有することを見出し、更に鋭意研究を重ねた結果、双性イオンが有機溶媒に対しての溶解性を改善し、電池特性を更に向上させることを見出し、本発明を完成した。
さらに、双性イオンのカチオン性基がヘテロシクロアルケニル基を有しないリン原子又は窒素原子を含み、アニオン性基が-SO4
-であるものが、特に電池性能を向上させることを見出し、本発明を完成した。
すなわち、本発明は、下記(1)及び(2)を提供する。
【0008】
(1)非水溶媒に電解質塩が溶解されている非水電解液であって、下記一般式(I)で表される双性イオンを含有することを特徴とする非水電解液。
【0009】
【0010】
(式(I)中、Q+は、下記式(II)又は(III)で示されるカチオン性基である。
L1は、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。
A-で示されるアニオン性基は、スルホネート基又はカルボキシラト基である。)
【0011】
【0012】
(式(II)中、R1~R3は、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。
式(III)中、R4~R6は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
*は、L1との結合部位を示す。)
【0013】
(2)正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が前記(1)に記載の非水電解液であることを特徴とする蓄電デバイス。
【0014】
なお、本明細書において、「双性イオン」という用語は、一分子内に正電荷(カチオン性基)と負電荷(アニオン性基)とを有する分子内塩(inner salt)を意味する。
【発明の効果】
【0015】
本発明によれば、蓄電デバイスの高温充電保存時における電池容量低下を大幅に抑制できる非水電解液及び、それを用いたリチウム電池等の蓄電デバイスを提供することができる。
また、本発明によれば、蓄電デバイスの高温充電保存時における電池容量低下と、高温充電保存時に発生するガスを抑制できる非水電解液及び、それを用いたリチウム電池等の蓄電デバイスを提供することができる。
【発明を実施するための形態】
【0016】
<非水電解液>
本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、前記一般式(I)で表される双性イオンのうち少なくとも一種以上を非水電解液中に含有することを特徴とする。
【0017】
本発明の非水電解液が、蓄電デバイスの高温充電保存特性を向上させる理由は必ずしも明確ではないが、以下のように考えられる。
高温で蓄電デバイスを保存した場合の電池容量低下の要因のひとつとして、正極活物質からコバルト、ニッケル、マンガン等を代表とする金属が溶出し、負極上で還元され、不安定なSEI(Solid Electrolyte Interphase)被膜を形成することが挙げられる。本発明の一般式(I)の双性イオンは、溶出した金属に特異的に配位する。双性イオンが配位した金属は、負極上で還元された場合でも安定なSEI被膜を形成し、電池特性を改善させると考えられる。加えて、前記一般式(I)中のカチオン性基はトリアジンのようなヘテロシクロアルケニル基と比較して化学的に安定であるため、双性イオンの効果を向上させ、かつアニオン性基である-SO4
-基は効果的な電極の抵抗低減作用を示す。従って、前記一般式(I)のアニオン性基とカチオン性基との組合せの双性イオンが特に電池特性の改善を促すと考えられる。
【0018】
〔双性イオン〕
本発明に係る双性イオンは、下記一般式(I)で表される。
【0019】
【0020】
式(I)中、Q+は、下記式(II)又は(III)で示されるカチオン性基である。
L1は、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。これらの中では、L1は、炭素数1~3のアルキレン基、炭素数2~3のアルケニレン基、又は炭素数1~4のアルキレンオキシ基が好ましい。
A-で表されるアニオン性基は、スルホネート基(-SO3
-基)又はカルボキシラト基(-COO-基)である。
【0021】
【0022】
式(II)中、R1~R3は、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。これらの中では、R1~R3は、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、又は炭素数3~15のアルキニル基が好ましい。
式(III)中、R4~R6は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。これらの中では、R4~R6は、それぞれ独立して、炭素数1~5のアルキル基、炭素数2~15のアルケニル基、ジメチルアミノ基、又はジエチルアミノ基が好ましい。
*は、L1との結合部位を示す。すなわち、L1は、Q+の窒素原子又はリン原子と結合している。
【0023】
本発明において、双性イオンは、下記一般式(IV)で表される化合物、及び下記一般式(VII)で表される化合物から選ばれる一種以上であることが好ましい。
【0024】
【0025】
式(IV)中、Q+は、下記式(V)又は(VI)で示されるカチオン性基である。
L2は、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。
【0026】
【0027】
式(V)中、R7~R9は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、炭素数2~5のフッ素化アルケニル基、炭素数3~5のアルキニル基、又は炭素数3~5のフッ素化アルキニル基を示す。
式(VI)中、R10~R12は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
*は、L2との結合部位を示す。すなわち、L2は、Q+の窒素原子又はリン原子と結合している。
【0028】
【0029】
式(VII)中、L3は炭素数1~5のアルキレン基を示すが、炭素数1~3のアルキレン基が好ましく、炭素数1~2のアルキレン基がより好ましく、メチレン基が更に好ましい。
R13~R15は、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。これらの中では、R13~R15は、それぞれ独立して、炭素数1~15のアルキル基、又は炭素数2~15のアルケニル基が好ましい。
但し、R13~R15の少なくとも1つは炭素数3~15のアルキル基である。
【0030】
<一般式(IV)で表される双性イオン>
前記一般式(IV)で表される双性イオンは、下記一般式(VIII)で表される化合物であることがより好ましい。
【0031】
【0032】
式(VIII)中、Q+は、下記式(IX)又は(X)で示されるカチオン性基である。
L4は、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、又は炭素数2~5のフッ素化アルケニレン基を示す。これらの中では、L4は、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、又は炭素数2~5のアルケニレン基が好ましく、炭素数1~3のアルキレン基、又は炭素数2~3のアルケニレン基がより好ましく、炭素数2~3のアルキレン基が更に好ましい。
【0033】
【0034】
式(IX)中、R16~R18は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、炭素数2~5のフッ素化アルケニル基、炭素数3~5のアルキニル基、又は炭素数3~5のフッ素化アルキニル基を示す。これらの中では、R16~R18は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のフッ素化アルケニル基が好ましく、炭素数1~5のアルキル基、炭素数2~5のアルケニル基がより好ましく、炭素数1~3のアルキル基、又は炭素数2~3のアルケニル基が更に好ましい。
【0035】
式(X)中、R19~R21は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。これらの中では、R19~R21は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、ジメチルアミノ基、又はジエチルアミノ基が好ましく、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、ジメチルアミノ基、又はジエチルアミノ基がより好ましく、炭素数1~3のアルキル基、炭素数2~3のアルケニル基、ジメチルアミノ基、又はジエチルアミノ基が更に好ましく、炭素数1~3のアルキル基が最も好ましい。
*は、L4との結合部位を示す。すなわち、L4は、Q+の窒素原子又はリン原子と結合している。
【0036】
本発明において、前記一般式(IV)又は(VIII)で表される双性イオンは、下記一般式(XI)で表される化合物、及び下記一般式(XII)で表される化合物から選ばれる一種以上であることが更に好ましい。
【0037】
【0038】
式(XI)中のL5及び式(XII)中のL6は、炭素数2又は3のアルキレン基を示す。
式(XI)中、R16~R18は、それぞれ独立して、炭素数1~3のアルキル基を示す。
式(XII)中、R19~R21は、それぞれ独立して、炭素数1~3のアルキル基又はジメチルアミノ基を示す。)
【0039】
一般式(IV)、(VIII)、(XI)又は(XII)で表される双性イオンとしては、具体的に以下の化合物が好適に挙げられる。
【0040】
【0041】
【0042】
上記化合物の中でも、好ましくは2-(トリメチルアンモニオ)エチルサルフェート(構造式1)、2-(トリエチルアンモニオ)エチルサルフェート(構造式4)、2-(トリプロピルアンモニオ)エチルサルフェート(構造式5)、3-(トリメチルアンモニオ)プロピルサルフェート(構造式7)、3-(トリエチルアンモニオ)プロピルサルフェート(構造式10)、3-(トリプロピルアンモニオ)プロピルサルフェート(構造式11)、2-(トリブチルホスホニオ)エチルサルフェート(構造式15)、2-(トリスジメチルアミノホスホニオ)エチルサルフェート(構造式17)、及び3-(トリブチルホスホニオ)プロピルサルフェート(構造式20)からなる群より選ばれる一種以上である。
【0043】
上記化合物の中でも、より好ましくは2-(トリメチルアンモニオ)エチルサルフェート(構造式1)、2-(トリエチルアンモニオ)エチルサルフェート(構造式4)、2-(トリプロピルアンモニオ)エチルサルフェート(構造式5)、2-(トリブチルホスホニオ)エチルサルフェート(構造式15)、及び2-(トリスジメチルアミノホスホニオ)エチルサルフェート(構造式17)からなる群より選ばれる一種以上であり、更に好ましくは2-(トリメチルアンモニオ)エチルサルフェート(構造式1)、2-(トリエチルアンモニオ)エチルサルフェート(構造式4)、及び2-(トリプロピルアンモニオ)エチルサルフェート(構造式5)からなる群より選ばれる一種以上である。
【0044】
<一般式(VII)で表される双性イオン>
前記一般式(VII)で表される双性イオンは、下記一般式(VII-I)で表される化合物であることがより好ましい。
【0045】
【0046】
式(VII-1)中、L3はメチレン基であり、R13~R15が、それぞれ独立して炭素数1~15のアルキル基であり、R13~R15の少なくとも1つが炭素数3~15のアルキル基である。
【0047】
一般式(VII)又は(VII-1)で表される双性イオンとしては、具体的に以下の化合物が好適に挙げられる。
【0048】
【0049】
上記化合物の中でも、好ましくは2-ブチルジメチル(カルボキシラトメチル)アンモニウム(構造式1)、2-ブチルジメチル(カルボキシラトエチル)アンモニウム(構造式2)、2-ブチルジメチル(カルボキシラトプロピル)アンモニウム(構造式3)、2-ヘキシルジメチル(カルボキシラトメチル)アンモニウム(構造式7)、2-ヘキシルジメチル(カルボキシラトエチル)アンモニウム(構造式8)、2-ヘキシルジメチル(カルボキシラトプロピル)アンモニウム(構造式9)、2-オクチルジメチル(カルボキシラトメチル)アンモニウム(構造式10)、2-オクチルジメチル(カルボキシラトエチル)アンモニウム(構造式11)、2-オクチルジメチル(カルボキシラトプロピル)アンモニウム(構造式12)、2-デシルジメチル(カルボキシラトメチル)アンモニウム(構造式13)、2-デシルジメチル(カルボキシラトエチル)アンモニウム(構造式14)、2-デシルジメチル(カルボキシラトプロピル)アンモニウム(構造式15)、2-ドデシルジメチル(カルボキシラトメチル)アンモニウム(構造式16)、2-ドデシルジメチル(カルボキシラトエチル)アンモニウム(構造式17)及び2-ドデシルジメチル(カルボキシラトプロピル)アンモニウム(構造式18)からなる群より選ばれる一種以上である。
【0050】
上記化合物の中でも、より好ましくは2-ブチルジメチル(カルボキシラトメチル)アンモニウム(構造式1)、2-ヘキシルジメチル(カルボキシラトメチル)アンモニウム(構造式7)、2-オクチルジメチル(カルボキシラトメチル)アンモニウム(構造式10)、2-デシルジメチル(カルボキシラトメチル)アンモニウム(構造式13)及び2-ドデシルジメチル(カルボキシラトメチル)アンモニウム(構造式16)からなる群より選ばれる一種以上である。
【0051】
また、双性イオンとしてトリエチル(スルホプロピル)アンモニウムや(トリブチルホスホニオ)プロピルスルホネート等を用いることもできるが、この場合は、正極活物質としてマンガンを含有するリチウム複合金属酸化物を使用し、負極活物質として、リチウムを吸蔵及び放出することが可能な炭素材料、及びチタン複合金属酸化物から選ばれる1種以上を使用することが好ましく、正極活物質として、マンガンを含有するスピネル型のリチウム複合金属酸化物、特にスピネル型マンガン酸リチウム(LiMn2O4)を使用し、負極活物質として、チタン複合金属酸化物、特にLi4Ti5O12を使用することがより好ましい。
【0052】
一方、前記一般式(IV)、(VIII)、(XI)又は(XII)で表される化合物を用いる場合は、後述するように、正極活物質としては、マンガンを含有するリチウム複合金属酸化物が好ましく、スピネル型構造を有するマンガンリチウム複合金属酸化物がより好ましく、スピネル型マンガン酸リチウムが更に好ましい。また、負極活物質としては、リチウムを吸蔵及び放出することが可能な炭素材料、及びチタン複合金属酸化物から選ばれる1種以上を使用することが好ましい。
また、前記一般式(VII)又は(VII-1)で表される化合物を用いる場合は、後述するように、正極活物質としては、マンガンを含有するリチウム複合金属酸化物が好ましく、スピネル型構造を有するマンガンリチウム複合金属酸化物がより好ましく、スピネル型マンガン酸リチウムが更に好ましく、負極活物質としては、リチウムを吸蔵及び放出することが可能な炭素材料を使用することが好ましい。
【0053】
本発明の非水電解液において、前記一般式(I)、(IV)、(VII)、(VII-1)、(VIII)、(XI)又は(XII)で表される化合物のそれぞれの含有量は、効果を十分に発揮させるため非水電解液中に0.01質量%以上飽和量以下が好ましい。また、工業的な製造を考慮するとその下限は、0.03質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下が更に好ましく、2質量%以下が最も好ましい。
また、前記各一般式で表される化合物の合計含有量は、好ましくは0.01質量%以上10質量%以下、より好ましくは0.03質量%以上8質量%以下、更に好ましくは0.05質量%以上5質量%以下、最も好ましくは0.1質量%以上2質量%以下である。
【0054】
本発明の非水電解液において、前記一般式(I)で表される化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、高温充電保存時における電池容量の低下、及び高温充電保存時のガス発生を抑制できる効果が相乗的に向上するという特異な効果を発現する。
【0055】
〔非水溶媒〕
まず本明細書において、「溶媒」とは溶質を溶解するための物質を意味する。
本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、及びアミドから選ばれる1種又は2種以上が好適に挙げられる。高温での電気化学特性が相乗的に向上するため、鎖状エステルが含まれることが好ましく、鎖状カーボネートが含まれることがより好ましく、環状カーボネートと鎖状エステルの両方が含まれることが更に好ましい。
【0056】
なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
更に、「鎖状カーボネート」とは炭酸直鎖アルキル化合物であるものと定義する。
【0057】
(環状カーボネート)
環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)からなる群より選ばれる1種又は2種以上が好適に挙げられ、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)からなる群より選ばれる1種又は2種以上がより好適である。
【0058】
前記環状カーボネートの含有量は、非水電解液全量に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、また、その上限は、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下、更に好ましくは40質量%以下であり、その範囲であると、Liイオン透過性を損なうことなく一段と高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。
【0059】
また、炭素-炭素二重結合又は炭素-炭素三重結合の不飽和結合又はフッ素原子を有する環状カーボネートのうち少なくとも1種を使用すると高温充電保存特性をより向上させることができ、ガス発生をより抑制できるので好ましく、炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC、又はEECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC又はDFECが更に好ましい。
【0060】
炭素-炭素二重結合又は炭素-炭素三重結合の不飽和結合を有する環状カーボネートの含有量は、非水電解液全量に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上であり、また、その上限は、好ましくは8質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下であり、その範囲であると、Liイオン透過性を損なうことなく一段と高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。
【0061】
フッ素原子を有する環状カーボネートの含有量は、非水電解液全量に対して好ましくは0.05質量%以上、より好ましくは1質量%以上、更に好ましくは3質量%以上であり、また、その上限は、好ましくは40質量%以下、より好ましくは30質量%以下、更に20質量%以下であり、更に好ましくは15質量%以下であり、その範囲であると、Liイオン透過性を損なうことなく一段と高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。
【0062】
これらの溶媒は1種類で使用してもよく、また2種類以上を組み合わせて使用した場合は、高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましく、3種類以上を組み合わせて使用することが更に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPCの組合せ、ECとVCの組合せ、PCとVCの組合せ、VCとFECの組合せ、ECとFECの組合せ、PCとFECの組合せ、FECとDFECの組合せ、ECとDFECの組合せ、PCとDFECの組合せ、VCとDFECの組合せ、VECとDFECの組合せ、VCとEECの組合せ、ECとEECの組合せ、ECとPCとVCの組合せ、ECとPCとFECの組合せ、ECとVCとFECの組合せ、ECとVCとVECの組合せ、ECとVCとEECの組合せ、ECとEECとFECの組合せ、PCとVCとFECの組合せ、ECとVCとDFECの組合せ、PCとVCとDFECの組合せ、ECとPCとVCとFECの組合せ、及びECとPCとVCとDFECの組合せが好ましい。前記の組合せのうち、ECとVCの組合せ、ECとFECの組合せ、PCとFECの組合せ、ECとPCとVCの組合せ、ECとPCとFECの組合せ、ECとVCとFECの組合せ、ECとVCとEECの組合せ、ECとEECとFECの組合せ、PCとVCとFECの組合せ、及びECとPCとVCとFECの組合せからなる群より選ばれる1種以上がより好ましい。
【0063】
(鎖状エステル)
鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる1種又は2種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートからなる群より選ばれる1種又は2種以上の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酢酸メチル、及び酢酸エチルからなる群より選ばれる1種又は2種以上の鎖状カルボン酸エステルが好適に挙げられる。
【0064】
前記鎖状エステルの中でも、電気伝導度が高いことや、溶媒の分解による高温充電保存特性が低下するおそれが少ないため、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル、及び酢酸エチルからなる群より選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。
【0065】
本発明の非水電解液に用いる非水溶媒における鎖状エステルの含有量は、特に制限されないが、非水電解液全量に対して、5~90質量%の範囲で用いるのが好ましい。該含有量が5質量%以上であれば非水電解液の粘度が高くなりすぎず、より好ましくは10質量%以上であり、更に好ましくは30質量%以上であり、更に好ましくは50質量%以上である。また、90質量%以下であれば非水電解液の電気伝導度が低下して高温充電保存特性が低下するおそれが少ないので上記範囲であることが好ましい。
【0066】
環状カーボネートと鎖状エステルの割合は、高温下での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(質量比)が10:90~50:50が好ましく、30:70~40:60が更に好ましい。
【0067】
(その他の非水溶媒)
本発明の非水電解液においては、上記以外のその他の非水溶媒を用いることができる。
その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、及びγ-ブチロラクトン(GBL)、γ-バレロラクトン、α-アンゲリカラクトン等のラクトンからなる群より選ばれる1種又は2種以上が好適に挙げられる。
【0068】
上記その他の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状エステルとラクトンとの組合せ又は環状カーボネートと鎖状エステルとエーテルとの組合せ等が好適に挙げられ、環状カーボネートと鎖状エステルとラクトンとの組合せがより好ましく、ラクトンの中でもγ-ブチロラクトン(GBL)を用いると更に好ましい。
【0069】
その他の非水溶媒の含有量は、非水電解液全量に対して、通常1質量%以上が好ましく、より好ましくは2質量%以上であり、また通常40質量%以下が好ましく、より好ましくは30質量%以下、更に好ましくは20質量%以下である。当該濃度範囲中であれば電気伝導度が低下することや、溶媒の分解による高温充電保存特性が低下するおそれが少ない。
【0070】
(その他の添加剤)
一段と高温充電保存特性を向上させ、ガス発生を抑制する目的で、非水電解液中に更にその他の添加剤を加えることが好ましい。
その他の添加剤の具体例としては、以下の(A)~(J)の化合物が挙げられる。
【0071】
(A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリルから選ばれる1種又は2種以上のニトリル。
【0072】
(B)シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼン、又は1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、メチルフェニルカーボネート、エチルフェニルカーボネート、又はジフェニルカーボネート等の芳香族化合物。
【0073】
(C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上のイソシアネート化合物。
【0074】
(D)2-プロピニル メチル カーボネート、酢酸 2-プロピニル、ギ酸 2-プロピニル、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、2-ブチン-1,4-ジイル ジメタンスルホネート、及び2-ブチン-1,4-ジイル ジホルメートから選ばれる1種又は2種以上の三重結合含有化合物。
【0075】
(E)1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート等のスルトン、エチレンサルファイト等の環状サルファイト、エチレンサルフェート等の環状サルフェート、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、メチレンメタンジスルホネート等のスルホン酸エステル、及びジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、ビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物から選ばれる1種又は2種以上のS=O基含有化合物。
【0076】
(F)環状アセタール化合物としては、分子内に「アセタール基」を有する化合物であれば、その種類は特に限定されない。その具体例としては、1,3-ジオキソラン、1,3-ジオキサン、又は1,3,5-トリオキサン等の環状アセタール化合物。
【0077】
(G)リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、エチル 2-(ジエトキシホスホリル)アセテート、及び2-プロピニル 2-(ジエトキシホスホリル)アセテートから選ばれる1種又は2種以上のリン含有化合物。
【0078】
(H)カルボン酸無水物としては、分子内に「C(=O)-O-C(=O)基」を有する化合物であれば特にその種類は限定されない。その具体例としては、無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、又は3-スルホ-プロピオン酸無水物等の環状酸無水物。
【0079】
(J)ホスファゼン化合物としては、分子内に「N=P-N基」を有する化合物であれば、その種類は特に限定されない。その具体例としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、又はエトキシヘプタフルオロシクロテトラホスファゼン等の環状ホスファゼン化合物。
【0080】
上記の中でも、(A)ニトリル、(B)芳香族化合物、及び(C)イソシアネート化合物からなる群より選ばれる少なくとも1種以上を含むと一段と高温での電気化学特性が向上するので好ましい。
【0081】
(A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルからなる群より選ばれる1種又は2種以上がより好ましい。
【0082】
(B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン、及びtert-アミルベンゼンからなる群より選ばれる1種又は2種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン、及びtert-アミルベンゼンからなる群より選ばれる1種又は2種以上が更に好ましい。
【0083】
(C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートからなる群より選ばれる1種又は2種以上がより好ましい。
【0084】
前記(A)~(C)の化合物の含有量は、非水電解液全量に対して0.01~7質量%であることが好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、高温充電保存特性を向上させることができ、ガス発生を抑制できる。該含有量は、非水電解液全量に対して0.05質量%以上であることがより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下であることがより好ましく、3質量%以下が更に好ましい。
【0085】
また、(D)三重結合含有化合物、(E)スルトン、環状サルファイト、スルホン酸エステル、ビニルスルホンからなる群より選ばれる環状又は鎖状のS=O基含有化合物、(F)環状アセタール化合物、(G)リン含有化合物、(H)環状酸無水物、及び(J)環状ホスファゼン化合物を含むと高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。
【0086】
(D)三重結合含有化合物としては、2-プロピニル メチル カーボネート、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートからなる群より選ばれる1種又は2種以上が好ましく、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートからなる群より選ばれる1種又は2種以上がより好ましい。
【0087】
(E)スルトン、環状サルファイト、環状サルフェート、スルホン酸エステル、及びビニルスルホンからなる群より選ばれる環状又は鎖状のS=O基含有化合物(但し、三重結合含有化合物、及び前記一般式のいずれかで表される特定の化合物は含まない)を用いることが好ましい。
【0088】
前記環状のS=O基含有化合物としては、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、メチレン メタンジスルホネート、エチレンサルファイト、及びエチレンサルフェートからなる群より選ばれる1種又は2種以上が好適に挙げられる。
【0089】
また、鎖状のS=O基含有化合物としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホン、及びビス(2-ビニルスルホニルエチル)エーテルからなる群より選ばれる1種又は2種以上が好適に挙げられる。
【0090】
前記環状又は鎖状のS=O基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、エチレンサルフェート、ペンタフルオロフェニル メタンスルホネート、及びジビニルスルホンからなる群より選ばれる1種又は2種以上が更に好ましい。
【0091】
(F)環状アセタール化合物としては、1,3-ジオキソラン、及び1,3-ジオキサンから選ばれる1種以上が好ましく、1,3-ジオキサンがより好ましい。
【0092】
(G)リン含有化合物としては、エチル 2-(ジエトキシホスホリル)アセテート、及び2-プロピニル 2-(ジエトキシホスホリル)アセテートから選ばれる1種以上が好ましく、2-プロピニル 2-(ジエトキシホスホリル)アセテートがより好ましい。
【0093】
(H)環状酸無水物としては、無水コハク酸、無水マレイン酸、及び3-アリル無水コハク酸から選ばれる1種以上が好ましく、無水コハク酸及び3-アリル無水コハク酸から選ばれる1種以上がより好ましい。
【0094】
(J)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、及びフェノキシペンタフルオロシクロトリホスファゼンから選ばれる1種以上の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン及びエトキシペンタフルオロシクロトリホスファゼンから選ばれる1種以上が更に好ましい。
【0095】
前記(D)~(J)の化合物のそれぞれの含有量は、非水電解液全量に対して0.001~5質量%であることが好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と高温充電保存特性を向上させることができ、ガス発生を抑制できる。該含有量は、非水電解液全量に対して0.01質量%以上であることがより好ましく、0.1質量%以上が更に好ましく、その上限は、非水電解液全量に対して3質量%以下であることがより好ましく、2質量%以下が更に好ましい。
【0096】
また、一段と高温での電気化学特性を向上させる目的で、非水電解液中に更に、シュウ酸構造を有するリチウム塩(I)、リン酸構造を有するリチウム塩(II)及びS=O基を有するリチウム塩(III)の中から選ばれる1種以上のリチウム塩を含むことが好ましい。
前記リチウム塩の具体例としては、リチウム ビス(オキサラト)ボレート〔LiBOB〕、リチウム ジフルオロ(オキサラト)ボレート〔LiDFOB〕、リチウム テトラフルオロ(オキサラト)ホスフェート〔LiTFOP〕、及びリチウム ジフルオロビス(オキサラト)ホスフェート〔LiDFOP〕からなる群より選ばれる少なくとも1種のシュウ酸構造を有するリチウム塩(I)、LiPO2F2やLi2PO3F等のリン酸構造を有するリチウム塩(II)、リチウム トリフルオロ((メタンスルホニル)オキシ)ボレート〔LiTFMSB〕、リチウム ペンタフルオロ((メタンスルホニル)オキシ)ホスフェート〔LiPFMSP〕、リチウム メチルサルフェート〔LMS〕、リチウムエチルサルフェート〔LES〕、リチウム 2,2,2-トリフルオロエチルサルフェート〔LFES〕、及びFSO3Liからなる群より選ばれる1種以上のS=O基を有するリチウム塩(III)が好適に挙げられ、LiBOB、LiDFOB、LiTFOP、LiDFOP、LiPO2F2、LiTFMSB、LMS、LES、LFES、及びFSO3Liからなる群より選ばれるリチウム塩を含むことがより好ましい。
【0097】
前記リチウム塩が非水電解液中に占めるそれぞれの割合は、非水電解液全量に対して0.01質量%以上8質量%以下である場合が好ましい。この範囲にあると一段と高温充電保存特性を向上させることができ、ガス発生を抑制できる。好ましくは非水電解液全量に対して0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.4質量%以上である。その上限は、非水電解液全量に対して好ましくは6質量%以下、より好ましくは3質量%以下である。
【0098】
(電解質塩)
本発明に使用される電解質塩としては、無機リチウム塩、フッ化アルキル基を含有するリチウム塩、フッ素原子を有するリチウムイミド塩、及びシュウ酸構造を有するリチウム塩から選ばれる1種以上のリチウム塩が好適に挙げられる。
無機リチウム塩としては、LiPF6、LiBF4、LiClO4等が挙げられる。
フッ化アルキル基を含有するリチウム塩としては、LiCF3SO3、LiC(SO2CF3)3、LiPF4(CF3)2、LiPF3(C2F5)3、LiPF3(CF3)3、LiPF3(iso-C3F7)3、LiPF5(iso-C3F7)等の鎖状のフッ化アルキル基を含有するリチウム塩が挙げられる。
フッ素原子を有するリチウムイミド塩としては、LiN(SO2F)2〔LiFSI〕、LiN(SO2CF3)2〔LiTFSI〕、LiN(SO2C2F5)2等のフッ素原子を有する鎖状のリチウムイミド塩、及び(CF2)2(SO2)2NLi、(CF2)3(SO2)2NLi等の環状のフッ化アルキレン鎖を有するリチウムイミド塩等が挙げられる。
シュウ酸構造を有するリチウム塩としては、前記のLiBOB、LiDFOB、LiTFOP、及びLiDFOPからなる群より選ばれる1種以上が好ましく、リチウム ビス(オキサラト)ボレート〔LiBOB〕がより好ましい。
上記リチウム塩は1種単独で又は2種以上を混合して使用することができる。
【0099】
これらの中でも、LiPF6、LiBF4等から選ばれる1種又は2種以上の無機リチウム塩、LiN(SO2CF3)2、LiN(SO2C2F5)2、及びLiN(SO2F)2〔LiFSI〕から選ばれる1種又は2種以上のフッ素原子を有するリチウムイミド塩が好ましく、少なくともLiPF6を用いることが好ましい。
また、これらの電解質塩の好適な組み合わせとしては、LiPF6を含み、更にLiBF4、LiN(SO2CF3)2、及びLiN(SO2F)2〔LiFSI〕から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましく、LiPF6とLiFSIの両者を併用することがより好ましい。
【0100】
電解質塩のそれぞれの濃度及び合計濃度は、前記の非水電解液全量に対して、通常4質量%以上であることが好ましく、9質量%以上がより好ましく、13質量%以上が更に好ましい。またその上限は、非水電解液全量に対して28質量%以下であることが好ましく、23質量%以下がより好ましく、20質量%以下が更に好ましい。
LiPF6以外のリチウム塩が非水電解液全量に占めるそれぞれの濃度及び合計濃度は、0.01質量%以上であると、高温充電保存特性性を向上させると共に、ガス発生の抑制効果も高まり、非水電解液全量に対して15質量%以下、好ましくは10質量%以下であると高温充電保存特性が低下する懸念が少ないので好ましい。LiPF6以外のリチウム塩は、非水電解液全量に対して好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.46質量%以上、最も好ましくは0.6質量%以上であり、その上限は、好ましくは13質量%以下、より好ましくは11質量%以下、更に好ましくは9質量%以下、最も好ましくは6質量%以下である。
【0101】
〔非水電解液の製造〕
本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して前記一般式(I)で表される化合物を添加することにより得ることができる。
この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
【0102】
本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることが更に好ましく、リチウム二次電池用として用いることが最も適している。
【0103】
<蓄電デバイス>
本発明の蓄電デバイスは、正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が前記一般式(I)で表される双性イオンを含有することを特徴とする。
【0104】
〔第1の蓄電デバイス(リチウム電池)〕
本明細書においてリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
本発明に係る第1の蓄電デバイスであるリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
【0105】
(正極活物質)
例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiCo1-xMxO2(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuからなる群より選ばれる1種又は2種以上の元素、0.001≦x≦0.05)、LiMn2O4、LiMn1.5Ni0.5O4、LiNiO2、LiCo1-xNixO2(0.01<x<1)、LiCo1/3Ni1/3Mn1/3O2、LiNi0.5Mn0.3Co0.2O2、LiNi0.8Mn0.1Co0.1O2、LiNi0.8Co0.15Al0.05O2、Li2MnO3とLiMO2(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、及びLiNi1/2Mn3/2O4からなる群より選ばれる1種以上が好適に挙げられ、2種以上がより好適である。また、LiCoO2とLiMn2O4、LiCoO2とLiNiO2、LiMn2O4とLiNiO2のように併用してもよい。
【0106】
マンガンを含有するリチウム複合金属酸化物を正極活物質として使用すると、一般的に、充電時の金属溶出量が大きくなり、高温充電保存特性がより低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を特に抑制することができる。マンガンを含有するリチウム複合金属酸化物であれば特に限定はされないが、好ましくはスピネル型構造を有するマンガンリチウム複合金属酸化物、より好ましくはスピネル型マンガン酸リチウムであればより電気化学特性低下を抑制する。具体的なマンガンリチウム複合金属酸化物の正極活物質として例えばLiMn2O4、LiMn1.5Ni0.5O4、LiCo1/3Ni1/3Mn1/3O2、LiNi0.5Mn0.3Co0.2O2、及びLiNi0.8Mn0.1Co0.1O2等からなる群より選ばれる1種以上が好適に挙げられ、特にスピネル型構造のLiMn1.5Ni0.5O4、LiMn2O4を用いることが好ましい。
また、前記正極活物質のマンガンサイトの一部が多元素で置換されていてもよく、マンガンサイトを置換する他元素としては、例えばSn、Ni、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Co、Li等が挙げられる。
【0107】
更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる少なくとも1種以上含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられる。
これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等からなる群より選ばれる1種以上の元素での置換が可能であり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO4又はLiMnPO4が好ましく、LiMnPO4がより好ましい。
また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
【0108】
また、リチウム一次電池用正極活物質としては、CuO、Cu2O、Ag2O、Ag2CrO4、CuS、CuSO4、TiO2、TiS2、SiO2、SnO、V2O5、V6O12、VOx、Nb2O5、Bi2O3、Bi2Pb2O5、Sb2O3、CrO3、Cr2O3、MoO3、WO3、SeO2、MnO2、Mn2O3、Fe2O3、FeO、Fe3O4、Ni2O3、NiO、CoO3、CoO等からなる群より選ばれる1種又は2種以上の金属元素の酸化物又はカルコゲン化合物、SO2、SOCl2等の硫黄化合物、一般式(CFx)nで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。中でも、MnO2、V2O5、フッ化黒鉛等が好ましい。
【0109】
正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、2~5質量%がより好ましい。
【0110】
正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で、2時間程度真空下で加熱処理することにより作製することができる。
正極の集電体を除く部分の密度は、通常は1.5g/cm3以上であり、電池容量を更に高めるため、好ましくは2g/cm3以上、より好ましくは3g/cm3以上、更に好ましくは3.6g/cm3以上である。なお、上限は4g/cm3以下が好ましい。
【0111】
(負極活物質)
リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、及びリチウムイオンを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm(ナノメータ)以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物(SiOx:x<2)、ケイ素合金(Si-M合金:Mは、Al、Ni、Cu、Fe、Ti及びMnからなる群より選ばれる少なくとも1種)、金属化合物等を1種単独で又は2種以上を組み合わせて用いることができる。
これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料、金属化合物を使用することが好ましい。
【0112】
高結晶性の炭素材料としては、格子面(002)の面間隔(d002)が0.340nm以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料が好ましい。
複数の扁平状の黒鉛質微粒子が互いに非平行に集合或いは結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm3以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と正極活物質からの金属溶出量の改善と、充電保存特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、I(110)/I(004)の上限は0.5以下が好ましく、0.3以下がより好ましい。
また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、高温充電保存特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、透過電子顕微鏡(TEM)により確認することができる。
高結晶性の炭素材料を使用すると、一般的に、充電時において非水電解液と反応し、界面抵抗の増加によって高温充電保存特性を低下させる傾向があるが、本発明に係るリチウム二次電池では高温充電保存特性が良好となる。
【0113】
また、負極活物質としてのリチウムイオンを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金が電池をより高容量化できるので好ましい。これらの中でも、Si、Ge及びSnから選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池をより高容量化できるので特に好ましい。
【0114】
また、負極活物質としてのリチウムイオンを吸蔵及び放出可能なチタン原子を含有するチタン複合金属酸化物が挙げられる。これらのチタン複合金属酸化物は充放電時の膨張収縮が小さく、難燃性であるため、電池の安全性を高める面では好ましい。
チタン複合金属酸化物としては、リチウムチタン複合酸化物、及びニオブチタン複合酸化物から選ばれる1種以上が挙げられる。
リチウムチタン複合酸化物としては、一般式Li4Ti5-xMxO12で表されるスピネル型の結晶構造を有するリチウムチタン複合酸化物が好ましい。ここで、Mは、Tiサイトに置換される元素であり、Mn、Fe、V、及びNbから選ばれる少なくとも1つの元素である。
ニオブチタン複合酸化物としては、TiNb2O7、Ti2Nb10O29、TiNb14O37、TiNb24O62等が挙げられるが、TiNb2O7が好ましい。
チタン複合金属酸化物の中では、電池特性を向上させる観点から、チタン酸リチウム(Li4Ti5O12)が好ましい。
【0115】
負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下加熱処理することにより作製することができる。
負極の集電体を除く部分の密度は、通常は1.1g/cm3以上であり、電池容量を更に高めるため、好ましくは1.5g/cm3以上であり、より好ましくは1.7g/cm3以上である。なお、上限は2g/cm3以下が好ましい。
【0116】
以上を纏めると、双性イオンとしてトリエチル(スルホプロピル)アンモニウムや(トリブチルホスホニオ)プロピルスルホネート等を用いる場合は、正極活物質としてスピネル型マンガン酸リチウム(LiMn2O4)を使用し、負極活物質としてチタン複合金属酸化物、特にLi4Ti5O12を使用することが好ましい。
双性イオンとして、前記一般式(IV)、(VIII)、(XI)又は(XII)で表される化合物を用いる場合は、正極活物質としては、マンガンを含有するリチウム複合金属酸化物が好ましく、スピネル型構造を有するマンガンリチウム複合金属酸化物がより好ましく、スピネル型マンガン酸リチウム(LiMn2O4)が更に好ましく、負極活物質としては、リチウムを吸蔵及び放出することが可能な炭素材料、及びチタン複合金属酸化物から選ばれる1種以上を使用することが好ましい。
双性イオンとして、前記一般式(VII)又は(VII-1)で表される化合物を用いる場合は、正極活物質としては、スピネル型構造を有するマンガンリチウム複合金属酸化物が好ましく、スピネル型マンガン酸リチウムがより好ましく、負極活物質としては、リチウムを吸蔵及び放出することが可能な炭素材料を使用することが好ましい。
【0117】
また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
【0118】
リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
電池用セパレータとしては、特に制限はされないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
【0119】
本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも高温充電保存特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
【0120】
本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
【0121】
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
本発明に係る第2の蓄電デバイスは、本発明の非水電解液を含み、電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。電気二重層容量は概ね表面積に比例して増加する。
【0122】
〔第3の蓄電デバイス〕
本発明に係る第3の蓄電デバイスは、本発明の非水電解液を含み、電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
【0123】
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
本発明に係る第4の蓄電デバイスは、本発明の非水電解液を含み、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF6等のリチウム塩が含まれる。
【実施例0124】
〔リチウムイオン二次電池1の作製〕
(1)非水電解液1の調製
各溶媒と電解質塩を所定量で混合し、表1及び2に記載の基準電解液を調製した。表1及び2に記載の電解質塩の濃度の単位Mはmol/Lを示す。
基準電解液の組成はエチレンカーボネート(EC)が29.8質量%、メチルエチルカーボネート(MEC)が53.4質量%〔体積比でEC/MEC=3/7〕、ビニレンカーボネート(VC)が1.0質量%、LiPF6が8.4質量%(0.7M)、LiN(SO2F)2(LiFSI)が7.4質量%(0.5M)となる。
実施例1では、基準電解液に対して、双性イオンとして2-(トリエチルアンモニオ)エチルサルフェート(構造式4の化合物)0.5質量%を加え、12時間以上攪拌させた後、0.45μmのメンブレンフィルターを用いてろ過して、非水電解液を調製した。
実施例2では、基準電解液に対して、双性イオンとして2-ドデシルジメチル(カルボキシラトメチル)アンモニウム0.43質量%を加え、12時間以上攪拌させた後、0.45μmのメンブレンフィルターを用いてろ過して、非水電解液1を調製した。
表1及び2に記載の含有量は、前記調製した電解液を、高速液体クロマトグラフィーを用いて分析した値である。
【0125】
(2)電池1の作製
LiMn2O4(正極活物質)90質量%、アセチレンブラック6質量%を混合し、予めポリフッ化ビニリデン(結着剤)4質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、矩形の正極シートを作製した。
また、天然黒鉛(負極活物質)98質量%と、カルボキシメチルセルロース(増粘剤)1質量%、スチレンブタジエンゴム(結着剤)1質量%を水に溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製した。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、前記(1)で調製した非水電解液を加えて、表1及び2に示すラミネート型電池1を作製した。
【0126】
〔リチウムイオン二次電池2の作製〕
(1)非水電解液2の調製
各溶媒と電解質塩を一定量で混合し、表3に記載の基準電解液を調製した。
基準電解液の質量比で示した組成はプロピレンカーボネート(PC)が32.2質量%、ジエチルカーボネート(DEC)が52.0質量%〔体積比でPC/DEC=1/2〕、LiPF6が15.8質量%(1.3M)となる。
基準電解液に対して、双性イオンとしてトリエチル(スルホプロピル)アンモニウム0.5質量%を加え、12時間以上攪拌させた後、0.45μmのメンブレンフィルターを用いてろ過して、非水電解液2を調製した。
【0127】
(2)電池2の作製
LiMn2O4(正極活物質)90質量%、アセチレンブラック6質量%を混合し、予めポリフッ化ビニリデン(結着剤)4質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、矩形の正極シートを作製した。
また、チタン酸リチウム(Li4Ti5O12:負極活物質)95質量%と、炭素系導電剤2質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製した。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、前記(1)で調製した非水電解液を加えて、表3に示すラミネート型電池2を作製した。
【0128】
〔高温充電保存後の放電容量回復率、ガス発生量、交流抵抗の評価〕
上記の方法で作製した電池を用いて45℃の恒温槽中、0.2Cの定電流及び定電圧で充電終止電圧4.2V、放電終止電圧2.7Vで3サイクル充放電を行った。前記3サイクルの充放電までを当明細書では前処理と定義する。45℃の恒温槽中、0.2Cの定電流値で1時間充電を行い、60℃の恒温槽中で20日間静置した後、45℃の恒温槽中で0.2Cの定電流下終止電圧2.7Vまで放電した。前記45℃条件下での0.2C定電流1時間充電から60℃での静置、45℃条件の放電までを当明細書では高温保存試験と定義する。高温充電保存後の放電容量回復率、ガス発生量、交流抵抗値を表1~表2に示す。
放電容量回復率(%)は下記の式にて算出した。
放電容量回復率(%)=(高温保存試験後の放電容量/高温保存試験前の放電容量)×100
上記式での放電容量とは、高温保存試験前後に45℃の恒温槽中、0.2Cの定電流及び定電圧で充電終止電圧4.2V、放電終止電圧2.7Vで充放電を行なったときの放電容量である。放電容量回復率(%)は、高温保存時における電池容量低下の程度を示す指標となる。
ガス発生量は、高温保存試験後のガス量をアルキメデス法で測定し、比較例1で発生したガス量を100%としたときの相対値である。
交流抵抗値は、高温保存試験前後に充電率50%、0℃の恒温槽中で100mHzの交流インピーダンスの実部の抵抗値を測定し、比較例1で測定した値を100%としたときの相対値である。
【0129】
【0130】
表1から明らかなように、本発明の非水電解液を用いた実施例1では、比較例1に比べて、高温保存時において電池容量の低下が少なく、その結果、高温保存後の放電容量回復率が向上し、また、発生ガス量、交流抵抗を抑制することができることが分かる。
【0131】
【0132】
表2から明らかなように、本発明の非水電解液を用いた実施例2では、比較例1、比較例2に比べて、高温保存時において電池容量の低下が少なく、その結果、高温保存後の放電容量回復率を向上させることができることが分かる。
【0133】
【0134】
表3から明らかなように、本発明の非水電解液を用いた実施例3では、比較例3に比べて、高温保存時において電池容量の低下が少なく、その結果、高温保存後の放電容量回復率を向上させることができることが分かる。
本発明の非水電解液を用いた蓄電デバイスは、高温充電保存特性を大幅に向上させることができるため、電気化学特性に優れたリチウム二次電池等の蓄電デバイスとして有用である。