(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024105207
(43)【公開日】2024-08-06
(54)【発明の名称】電解液、並びに、それを用いた電気化学デバイス及び二次電池
(51)【国際特許分類】
H01M 10/0567 20100101AFI20240730BHJP
H01M 10/0569 20100101ALI20240730BHJP
H01M 10/054 20100101ALI20240730BHJP
H01M 10/052 20100101ALN20240730BHJP
【FI】
H01M10/0567
H01M10/0569
H01M10/054
H01M10/052
【審査請求】有
【請求項の数】13
【出願形態】OL
(21)【出願番号】P 2024008483
(22)【出願日】2024-01-24
(11)【特許番号】
(45)【特許公報発行日】2024-05-29
(31)【優先権主張番号】P 2023009153
(32)【優先日】2023-01-25
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000002853
【氏名又は名称】ダイキン工業株式会社
(74)【代理人】
【識別番号】110001531
【氏名又は名称】弁理士法人タス・マイスター
(72)【発明者】
【氏名】日高 知哉
(72)【発明者】
【氏名】寺田 純平
(72)【発明者】
【氏名】藤原 花英
(72)【発明者】
【氏名】山崎 穣輝
【テーマコード(参考)】
5H029
【Fターム(参考)】
5H029AJ05
5H029AJ07
5H029AK01
5H029AK03
5H029AL02
5H029AL03
5H029AL06
5H029AL07
5H029AL08
5H029AL11
5H029AL12
5H029AM03
5H029AM04
5H029AM07
5H029HJ01
5H029HJ02
(57)【要約】
【課題】 電気化学デバイスの耐久性の向上、ガス発生量の低減、および金属析出量の低減を可能とする電解液、並びに、それを用いた電気化学デバイス及び二次電池を提供する。
【解決手段】 下記一般式(1)で表される化合物を少なくとも1つ含有する電解液。
Rf1OR (1)
(Rf1は炭素数1~5のフッ素化アルキル基。RはKもしくはNa。)
【選択図】なし
【特許請求の範囲】
【請求項1】
下記一般式(1)で表される化合物を少なくとも1つ含有する電解液。
Rf1OR (1)
(Rf1は炭素数1~5のフッ素化アルキル基。RはKもしくはNa。)
【請求項2】
前記一般式(1)で表される化合物のRf1が、以下の式(1a)~(1e)のいずれかである請求項1記載の電解液。
(1a)CF2HCF2
(1b)CF2HCF2CH2
(1c)CF3CHFCF2
(1d)CF3CF2CH2
(1e)CF2HCF2CF2CF2CH2
【請求項3】
前記一般式(1)で表される化合物の含有量が、電解液全体に対して0.01ppm~10000ppmである請求項1又は2記載の電解液。
【請求項4】
さらに、下記一般式(2)で表される化合物を含む請求項1又は2記載の電解液。
Rf2ORf3 (2)
(Rf2,Rf3は独立して炭素数1~8のフッ素化アルキル基である。)
【請求項5】
前記一般式(2)で表される化合物が、CF2HCF2CH2OCF2CF2H、CF2HCF2CH2OCF2CHFCF3、及びCF3CF2CH2OCF2CF2Hからなる群から選択される少なくとも1種である請求項4に記載の電解液。
【請求項6】
前記一般式(2)で表される化合物の含有量が、電解液全体に対して0.1~90質量%である請求項4に記載の電解液。
【請求項7】
前記一般式(1)で表される化合物の含有量が、前記一般式(2)で表される化合物に対して0.0000001~10質量%である請求項4に記載の電解液。
【請求項8】
前記一般式(2)で表される化合物の含有量が、電解液全体に対して0.1~75質量%であって、前記一般式(1)で表される化合物の含有量が、前記一般式(2)で表される化合物に対して0.001~5質量%である請求項4に記載の電解液。
【請求項9】
前記一般式(1)で表される化合物が、CF2HCF2CH2ONaである請求項1又は2に記載の電解液。
【請求項10】
前記一般式(2)で表される化合物が、CF2HCF2CH2OCF2CF2Hである請求項4に記載の電解液。
【請求項11】
請求項1又は2に記載の電解液を備える電気化学デバイス。
【請求項12】
請求項1又は2に記載の電解液を備える二次電池。
【請求項13】
請求項1又は2に記載の電解液を備えるナトリウムイオン二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電解液、並びに、それを用いた電気化学デバイス及び二次電池に関する。
【背景技術】
【0002】
近年の電気製品の軽量化、小型化にともない、二次電池等の電気化学デバイスの需要が急速に増してきた。さらに電気製品が高性能化し、これまでなかった機能が付与されることで、より長時間、過酷な条件での使用に耐えうる電気化学デバイスへのニーズが高まってきている。
【0003】
特定の添加剤を含有させることで、高温でリチウムイオン二次電池等の電気化学デバイスを保存した場合でも、容量維持率が高く、正極からの溶出を抑制し、ガスを発生させにくい電解液を得ることが提案されている(特許文献1)。
【0004】
また、電荷担体にナトリウムイオンを用いるナトリウムイオン二次電池の研究が行われている。ナトリウムは、リチウムに比べて、豊富に存在し、また安価に入手できることから、低コストかつ大型化が可能な二次電池として注目されている。ナトリウムイオン二次電池に適した電解液として、例えば、特定の構造を有するホウ素化合物を含有するナトリウムイオン二次電池用非水電解液が提案されている(特許文献2)。また、特定の構造を有するジオキサチオランを含有するナトリウムイオン二次電池用非水電解液が提案されている(特許文献3)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2019/003780号
【特許文献2】特開2016-85890号公報
【特許文献3】特開2019-46614号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本開示は、電気化学デバイスの耐久性の向上、ガス発生量の低減、および金属析出量の低減を可能とする電解液、並びに、それを用いた電気化学デバイス及び二次電池を提供することを目的とする。
【課題を解決するための手段】
【0007】
本開示は、下記一般式(1)で表される化合物を少なくとも1つ含有する電解液である。
Rf1OR (1)
(Rf1は炭素数1~5のフッ素化アルキル基。RはNaもしくはK。)
【0008】
上記一般式(1)で表される化合物のRf1が、以下の式(1a)~(1e)のいずれかであることが好ましい。
(1a)CF2HCF2
(1b)CF2HCF2CH2
(1c)CF3CHFCF2
(1d)CF3CF2CH2
(1e)CF2HCF2CF2CF2CH2
上記一般式(1)で表される化合物の含有量が、電解液全体に対して0.01~10000ppmであることが好ましい。
【0009】
さらに、下記一般式(2)で表される化合物を含むことが好ましい。
Rf2ORf3 (2)
(Rf2,Rf3は独立して炭素数1~4のフッ素化アルキル基である。)
上記一般式(2)で表される化合物が、CF2HCF2CH2OCF2CF2H、CF2HCF2CH2OCF2CHFCF3、及びCF3CF2CH2OCF2CF2Hからなる群から選択される少なくとも1種であることが好ましい。
上記一般式(2)で表される化合物の含有量が、電解液全体に対して0.1~90質量%であることが好ましい。
【0010】
上記一般式(1)で表される化合物の含有量が、上記一般式(2)で表される化合物に対して0.0000001~10質量%であることが好ましい。
上記一般式(2)で表される化合物の含有量が、電解液全体に対して0.1~75質量%であって、上記一般式(1)で表される化合物の含有量が、上記一般式(2)で表される化合物に対して0.001~5質量%であることが好ましい。
上記一般式(1)で表される化合物が、CF2HCF2CH2ONaであることが好ましい。
上記一般式(2)で表される化合物が、CF2HCF2CH2OCF2CF2Hであることが好ましい。
【0011】
本開示は、上記電解液を備える電気化学デバイスでもある。
本開示は、上記電解液を備える二次電池でもある。
本開示は、上記電解液を備えるナトリウムイオン二次電池でもある。
【発明の効果】
【0012】
本開示は、電気化学デバイスの耐久性の向上、ガス発生量の低減、および金属析出量の低減を可能とする電解液を提供できる。また、本開示の電解液を使用した電気化学デバイス及び二次電池は、耐久性が向上し、また、ガス発生量が低減する。
【発明を実施するための形態】
【0013】
以下、本開示を詳細に説明する。
本開示の電解液は、下記一般式(1)で表される化合物を少なくとも1つ含有する。
Rf1OR (1)
(Rf1は炭素数1~5のフッ素化アルキル基。RはNaもしくはK。)
【0014】
本開示は、電気化学デバイス用の電解液に、上記特定のアルカリ金属フッ素化アルコキシドを含むことで、電気化学デバイスの耐久性、すなわち、サイクル特性(例えば、サイクル後の容量維持率)の向上、また、電気化学デバイスのサイクル時におけるガス発生量の低減、および金属析出量の低減を可能とする。
【0015】
(アルカリ金属フッ素化アルコキシド)
本開示の電解液は、下記一般式(1)で表される化合物を含む。
Rf1OR (1)
(Rf1は炭素数1~5のフッ素化アルキル基。RはNaもしくはK。)
【0016】
上記一般式(1)で表される化合物のRf1は、正極を保護する観点で有利なことから、以下の式(1a)~(1e)のいずれかであること好ましい。
(1a)CF2HCF2
(1b)CF2HCF2CH2
(1c)CF3CHFCF2
(1d)CF3CF2CH2
(1e)CF2HCF2CF2CF2CH2
【0017】
上記一般式(1)で表される化合物としては、特に、CF2HCF2CH2ONaが、サイクル特性、ガス発生量の抑制、金属析出量の抑制の点で好適である。
【0018】
上記一般式(1)で表される化合物の含有量は、電解液全体に対して、0.01~10000ppmであることが好ましい。この範囲の含有量を有するとき、サイクル特性、ガス発生量の抑制、金属析出量の抑制に特に優れたものになる。
上記一般式(1)で表される化合物の含有量の下限は、0.1ppmがより好ましく、1ppmが更に好ましく、10ppmが特に好ましい。上記一般式(1)で表される化合物の含有量の上限は1000ppmがより好ましく、100ppmが更に好ましい。
【0019】
上記一般式(1)で表される化合物は、公知の方法により製造すればよい。例えば、フッ素化アルコール(Rf1OH)と、Na又はKとを、触媒の存在下にて反応させることにより得られる。
【0020】
(フッ素化エーテル)
本開示の電解液は、更に、下記一般式(2)で表される化合物(以下、フッ素化エーテル(2)という場合がある。)を含むことが好適である。
Rf2ORf3 (2)
(Rf2,Rf3は独立して炭素数1~8のフッ素化アルキル基である。)
フッ素化エーテル(2)を含むことで、電解液の難燃性が向上するとともに、高温高電圧での安定性、安全性が向上する。また、電気化学デバイスの耐久性の向上、電気化学デバイスのサイクル時におけるガス発生量の抑制、および金属析出量の抑制を、より可能とする。
【0021】
上記フッ化アルキル基は、炭素数1~8のフッ素化アルキル基である。中でも、炭素数1~4のフッ素化アルキル基であることが好ましく、炭素数2~3のフッ素化アルキル基であることがより好ましい。
フッ化アルキル基の炭素数が少な過ぎると、沸点が低くなる傾向にあり、また、炭素数が多過ぎると、電解質塩の溶解性が低下し、他の溶媒との相溶性にも悪影響が出始め、また粘度が上昇するためレート特性が低減する傾向にある。Rf2の炭素数が3又は4、Rf3の炭素数が2又は3のとき、沸点及びレート特性に優れる点で有利である。
【0022】
フッ素化エーテル(2)は、フッ素含有率が40~75質量%であることが好ましい。この範囲のフッ素含有率を有するとき、不燃性と相溶性のバランスに特に優れたものになる。また、耐酸化性、安全性が良好な点からも好ましい。
上記フッ素含有率の下限は、45質量%がより好ましく、50質量%が更に好ましく、55質量%が特に好ましい。上限は70質量%がより好ましく、66質量%が更に好ましい。
なお、フッ素化エーテル(2)のフッ素含有率は、フッ素化エーテル(2)の構造式に基づいて、{(フッ素原子の個数×19)/フッ素化エーテル(2)の分子量}×100(%)により算出した値である。
【0023】
Rf2としては、例えば、CF3CF2CH2-、CF3CFHCF2-、HCF2CF2CF2-、HCF2CF2CH2-、CF3CF2CH2CH2-、CF3CFHCF2CH2-、HCF2CF2CF2CF2-、HCF2CF2CF2CH2-、HCF2CF2CH2CH2-、HCF2CF(CF3)CH2-等が挙げられる。
また、Rf3としては、例えば、-CH2CF2CF3、-CF2CFHCF3、-CF2CF2CF2H、-CH2CF2CF2H、-CH2CH2CF2CF3、-CH2CF2CFHCF3、-CF2CF2CF2CF2H、-CH2CF2CF2CF2H、-CH2CH2CF2CF2H、-CH2CF(CF3)CF2H、-CF2CF2H、-CH2CF2H、-CH2CF3、-CF2CH3等が挙げられる。
【0024】
上記フッ素化エーテル(2)の具体例としては、例えば、HCF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CF2H、HCF2CF2CH2OCF2CFHCF3、CF3CF2CH2OCF2CFHCF3、C6F13OCH3、C6F13OC2H5、C8F17OCH3、C8F17OC2H5、CF3CFHCF2CH(CH3)OCF2CFHCF3、HCF2CF2OCH(C2H5)2、HCF2CF2OC4H9、HCF2CF2OCH2CH(C2H5)2、HCF2CF2OCH2CH(CH3)2等が挙げられる。
【0025】
上記フッ素化エーテル(2)として、特に、難燃性の点で有利なことから、CF2HCF2CH2OCF2CF2H、HCF2CF2CH2OCF2CFHCF3、CF3CF2CH2OCF2CF2Hからなる群より選択される少なくとも1種であることが好ましい。
中でも、CF2HCF2CH2OCF2CF2Hであることがより好ましい。
【0026】
上記フッ素化エーテル(2)の含有量は、電解液全体に対して、0.1~90質量%であることが好ましい。当該範囲内とすることで、良好な電解液として使用することができる。すなわち、含有量が多くなると、活物質由来の金属析出量は低減されるようになるものの、電解液の粘度が高くなり、また、イオン伝導度は下がることから、電池の寿命が下がってしまう傾向にある。
上記下限は、0.5質量%であることがより好ましく、1質量%であることが更に好ましい。上記上限は、80質量%であることがより好ましく、75質量%であることが更に好ましく、50質量%であることが特に好ましい。
【0027】
上記一般式(1)で表される化合物の含有量は、上記一般式(2)で表される化合物に対して0.0000001~10質量%であることが好ましい。
上記下限は、0.001質量%であることがより好ましく、0.01質量%であることが更に好ましい。上記上限は、5質量%であることがより好ましく、1質量%であることが更に好ましく、0.5質量%であることが特に好ましい。
【0028】
本開示の電解液は、溶媒を含むことが好ましい。
【0029】
上記溶媒は、カーボネート及びカルボン酸エステルからなる群より選択される少なくとも1種を含むことが好ましい。
【0030】
上記カーボネートは、環状カーボネートであってもよいし、鎖状カーボネートであってもよい。
【0031】
上記環状カーボネートは、非フッ素化環状カーボネートであってもよいし、フッ素化環状カーボネートであってもよい。
【0032】
上記非フッ素化環状カーボネートとしては、非フッ素化飽和環状カーボネートが挙げられ、炭素数2~6のアルキレン基を有する非フッ素化飽和アルキレンカーボネートが好ましく、炭素数2~4のアルキレン基を有する非フッ素化飽和アルキレンカーボネートがより好ましい。
【0033】
なかでも、上記非フッ素化飽和環状カーボネートとしては、誘電率が高く、粘度が好適となる点で、エチレンカーボネート、プロピレンカーボネート、シス-2,3-ペンチレンカーボネート、シス-2,3-ブチレンカーボネート、2,3-ペンチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、1,2-ブチレンカーボネート及びブチレンカーボネートからなる群より選択される少なくとも1種が好ましい。
【0034】
上記非フッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0035】
上記非フッ素化飽和環状カーボネートが含まれる場合、上記非フッ素化飽和環状カーボネートの含有量は、上記溶媒に対して5~90体積%であることが好ましく、10~60体積%であることがより好ましく、15~50体積%であることが更に好ましい。
【0036】
上記フッ素化環状カーボネートは、フッ素原子を有する環状カーボネートである。フッ素化環状カーボネートを含む溶媒は、高電圧下でも好適に使用することができる。
なお、本明細書において「高電圧」とは、4.2V以上の電圧をいう。また、「高電圧」の上限は4.9Vが好ましい。
【0037】
上記フッ素化環状カーボネートは、フッ素化飽和環状カーボネートであってもよいし、フッ素化不飽和環状カーボネートであってもよい。
【0038】
上記フッ素化飽和環状カーボネートは、フッ素原子を有する飽和環状カーボネートであり、具体的には、下記一般式(A):
【0039】
【化1】
(式中、X
1~X
4は同じか又は異なり、それぞれ-H、-CH
3、-C
2H
5、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。ただし、X
1~X
4の少なくとも1つは、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基である。)で示される化合物が挙げられる。上記フッ素化アルキル基とは、-CF
3、-CF
2H、-CH
2F等である。
【0040】
上記フッ素化飽和環状カーボネートを含むと、本開示の電解液を高電圧リチウムイオン二次電池等に適用した場合電解液の耐酸化性が向上し、安定で優れた充放電特性が得られる。
なお、本明細書中で「エーテル結合」は、-O-で表される結合である。
【0041】
誘電率、耐酸化性が良好な点から、X1~X4の1つ又は2つが、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であることが好ましい。
【0042】
低温での粘性の低下、引火点の上昇、更には電解質塩の溶解性の向上が期待できることから、X1~X4は、-H、-F、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であることが好ましい。
【0043】
上記フッ素化アルキル基(a)は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。フッ素化アルキル基(a)の炭素数は、1~20が好ましく、1~17がより好ましく、1~7が更に好ましく、1~5が特に好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
【0044】
上記フッ素化アルキル基(a)のうち、炭素数が1のものとしては、CFH2-、CF2H-、CF3-が挙げられる。特に、CF2H-又はCF3-が高温保存特性上好ましく、CF3-が最も好ましい。
【0045】
上記フッ素化アルキル基(a)のうち、炭素数が2以上のものとしては、下記一般式(a-1):
R1-R2- (a-1)
(式中、R1はフッ素原子を有していてもよい炭素数1以上のアルキル基;R2はフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R1及びR2の少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R1及びR2は、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
【0046】
R1は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。R1としては、炭素数1~16の直鎖状又は分岐鎖状のアルキル基が好ましい。R1の炭素数としては、1~6がより好ましく、1~3が更に好ましい。
【0047】
R1として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH3-、CH3CH2-、CH3CH2CH2-、CH3CH2CH2CH2-、
【0048】
【0049】
等が挙げられる。
【0050】
また、R1がフッ素原子を有する直鎖状のアルキル基である場合、CF3-、CF3CH2-、CF3CF2-、CF3CH2CH2-、CF3CF2CH2-、CF3CF2CF2-、CF3CH2CF2-、CF3CH2CH2CH2-、CF3CF2CH2CH2-、CF3CH2CF2CH2-、CF3CF2CF2CH2-、CF3CF2CF2CF2-、CF3CF2CH2CF2-、CF3CH2CH2CH2CH2-、CF3CF2CH2CH2CH2-、CF3CH2CF2CH2CH2-、CF3CF2CF2CH2CH2-、CF3CF2CF2CF2CH2-、CF3CF2CH2CF2CH2-、CF3CF2CH2CH2CH2CH2-、CF3CF2CF2CF2CH2CH2-、CF3CF2CH2CF2CH2CH2-、HCF2-、HCF2CH2-、HCF2CF2-、HCF2CH2CH2-、HCF2CF2CH2-、HCF2CH2CF2-、HCF2CF2CH2CH2-、HCF2CH2CF2CH2-、HCF2CF2CF2CF2-、HCF2CF2CH2CH2CH2-、HCF2CH2CF2CH2CH2-、HCF2CF2CF2CF2CH2-、HCF2CF2CF2CF2CH2CH2-、FCH2-、FCH2CH2-、FCH2CF2-、FCH2CF2CH2-、FCH2CF2CF2-、CH3CF2CH2-、CH3CF2CF2-、CH3CF2CH2CF2-、CH3CF2CF2CF2-、CH3CH2CF2CF2-、CH3CF2CH2CF2CH2-、CH3CF2CF2CF2CH2-、CH3CF2CF2CH2CH2-、CH3CH2CF2CF2CH2-、CH3CF2CH2CF2CH2CH2-、CH3CF2CH2CF2CH2CH2-、HCFClCF2CH2-、HCF2CFClCH2-、HCF2CFClCF2CFClCH2-、HCFClCF2CFClCF2CH2-等が挙げられる。
【0051】
また、R1がフッ素原子を有する分岐鎖状のアルキル基である場合、
【0052】
【0053】
【0054】
等が好ましく挙げられる。ただし、CH3-やCF3-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
【0055】
R2はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。R2は、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。R2はこれらの単独又は組合せで構成される。
【0056】
(i)直鎖状の最小構造単位:
-CH2-、-CHF-、-CF2-、-CHCl-、-CFCl-、-CCl2-
【0057】
(ii)分岐鎖状の最小構造単位:
【0058】
【0059】
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
【0060】
R2は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH2-、-CH2CH2-又は-CF2-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH2-又は-CH2CH2-がより好ましい。
【0061】
R2は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式:-(CXaXb)-(XaはH、F、CH3又はCF3;XbはCH3又はCF3。ただし、XbがCF3の場合、XaはH又はCH3である)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
【0062】
好ましいフッ素化アルキル基(a)としては、例えばCF3CF2-、HCF2CF2-、H2CFCF2-、CH3CF2-、CF3CHF-、CH3CF2-、CF3CF2CF2-、HCF2CF2CF2-、H2CFCF2CF2-、CH3CF2CF2-、
【0063】
【0064】
【0065】
等が挙げられる。
【0066】
上記エーテル結合を有するフッ素化アルキル基(b)は、エーテル結合を有するアルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記エーテル結合を有するフッ素化アルキル基(b)は、炭素数が2~17であることが好ましい。炭素数が多過ぎると、上記フッ素化飽和環状カーボネートの粘性が高くなり、また、フッ素含有基が多くなることから、誘電率の低下による電解質塩の溶解性低下や、他の溶剤との相溶性の低下がみられることがある。この観点から上記エーテル結合を有するフッ素化アルキル基(b)の炭素数は2~10がより好ましく、2~7が更に好ましい。
【0067】
上記エーテル結合を有するフッ素化アルキル基(b)のエーテル部分を構成するアルキレン基は直鎖状又は分岐鎖状のアルキレン基でよい。そうした直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。
【0068】
(i)直鎖状の最小構造単位:
-CH2-、-CHF-、-CF2-、-CHCl-、-CFCl-、-CCl2-
【0069】
(ii)分岐鎖状の最小構造単位:
【0070】
【0071】
アルキレン基は、これらの最小構造単位単独で構成されてもよく、直鎖状(i)同士、分岐鎖状(ii)同士、又は、直鎖状(i)と分岐鎖状(ii)との組み合わせにより構成されてもよい。好ましい具体例は、後述する。
【0072】
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
【0073】
更に好ましいエーテル結合を有するフッ素化アルキル基(b)としては、一般式(b-1):
R3-(OR4)n1- (b-1)
(式中、R3はフッ素原子を有していてもよい、好ましくは炭素数1~6のアルキル基;R4はフッ素原子を有していてもよい、好ましくは炭素数1~4のアルキレン基;n1は1~3の整数;ただし、R3及びR4の少なくとも1つはフッ素原子を有している)で示されるものが挙げられる。
【0074】
R3及びR4としては以下のものが例示でき、これらを適宜組み合わせて、上記一般式(b-1)で表されるエーテル結合を有するフッ素化アルキル基(b)を構成することができるが、これらのみに限定されるものではない。
【0075】
(1)R3としては、一般式:Xc
3C-(R5)n2-(3つのXcは同じか又は異なりいずれもH又はF;R5は炭素数1~5のフッ素原子を有していてもよいアルキレン基;n2は0又は1)で表されるアルキル基が好ましい。
【0076】
n2が0の場合、R3としては、CH3-、CF3-、HCF2-及びH2CF-が挙げられる。
【0077】
n2が1の場合の具体例としては、R3が直鎖状のものとして、CF3CH2-、CF3CF2-、CF3CH2CH2-、CF3CF2CH2-、CF3CF2CF2-、CF3CH2CF2-、CF3CH2CH2CH2-、CF3CF2CH2CH2-、CF3CH2CF2CH2-、CF3CF2CF2CH2-、CF3CF2CF2CF2-、CF3CF2CH2CF2-、CF3CH2CH2CH2CH2-、CF3CF2CH2CH2CH2-、CF3CH2CF2CH2CH2-、CF3CF2CF2CH2CH2-、CF3CF2CF2CF2CH2-、CF3CF2CH2CF2CH2-、CF3CF2CH2CH2CH2CH2-、CF3CF2CF2CF2CH2CH2-、CF3CF2CH2CF2CH2CH2-、HCF2CH2-、HCF2CF2-、HCF2CH2CH2-、HCF2CF2CH2-、HCF2CH2CF2-、HCF2CF2CH2CH2-、HCF2CH2CF2CH2-、HCF2CF2CF2CF2-、HCF2CF2CH2CH2CH2-、HCF2CH2CF2CH2CH2-、HCF2CF2CF2CF2CH2-、HCF2CF2CF2CF2CH2CH2-、FCH2CH2-、FCH2CF2-、FCH2CF2CH2-、CH3CF2-、CH3CH2-、CH3CF2CH2-、CH3CF2CF2-、CH3CH2CH2-、CH3CF2CH2CF2-、CH3CF2CF2CF2-、CH3CH2CF2CF2-、CH3CH2CH2CH2-、CH3CF2CH2CF2CH2-、CH3CF2CF2CF2CH2-、CH3CF2CF2CH2CH2-、CH3CH2CF2CF2CH2-、CH3CF2CH2CF2CH2CH2-、CH3CH2CF2CF2CH2CH2-、CH3CF2CH2CF2CH2CH2-等が例示できる。
【0078】
n2が1であり、かつR3が分岐鎖状のものとしては、
【0079】
【0080】
等が挙げられる。
【0081】
ただし、CH3-やCF3-という分岐を有していると粘性が高くなりやすいため、R3が直鎖状のものがより好ましい。
【0082】
(2)上記一般式(b-1)の-(OR4)n1-において、n1は1~3の整数であり、好ましくは1又は2である。なお、n1=2又は3のとき、R4は同じでも異なっていてもよい。
【0083】
R4の好ましい具体例としては、次の直鎖状又は分岐鎖状のものが例示できる。
【0084】
直鎖状のものとしては、-CH2-、-CHF-、-CF2-、-CH2CH2-、-CF2CH2-、-CF2CF2-、-CH2CF2-、-CH2CH2CH2-、-CH2CH2CF2-、-CH2CF2CH2-、-CH2CF2CF2-、-CF2CH2CH2-、-CF2CF2CH2-、-CF2CH2CF2-、-CF2CF2CF2-等が例示できる。
【0085】
分岐鎖状のものとしては、
【0086】
【0087】
等が挙げられる。
【0088】
上記フッ素化アルコキシ基(c)は、アルコキシ基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記フッ素化アルコキシ基(c)は、炭素数が1~17であることが好ましい。より好ましくは、炭素数1~6である。
【0089】
上記フッ素化アルコキシ基(c)としては、一般式:Xd
3C-(R6)n3-O-(3つのXdは同じか又は異なりいずれもH又はF;R6は好ましくは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n3は0又は1;ただし3つのXdのいずれかはフッ素原子を含んでいる)で表されるフッ素化アルコキシ基が特に好ましい。
【0090】
上記フッ素化アルコキシ基(c)の具体例としては、上記一般式(a-1)におけるR1として例示したアルキル基の末端に酸素原子が結合したフッ素化アルコキシ基が挙げられる。
【0091】
上記フッ素化飽和環状カーボネートにおけるフッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は10質量%以上が好ましい。フッ素含有率が低過ぎると、低温での粘性低下効果や引火点の上昇効果が充分に得られないおそれがある。この観点から上記フッ素含有率は12質量%以上がより好ましく、15質量%以上が更に好ましい。上限は通常76質量%である。
フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は、各基の構造式に基づいて、{(フッ素原子の個数×19)/各基の式量}×100(%)により算出した値である。
【0092】
また、誘電率、耐酸化性が良好な点からは、上記フッ素化飽和環状カーボネート全体のフッ素含有率は10質量%以上が好ましく、15質量%以上がより好ましい。上限は通常76質量%である。
なお、上記フッ素化飽和環状カーボネートのフッ素含有率は、フッ素化飽和環状カーボネートの構造式に基づいて、{(フッ素原子の個数×19)/フッ素化飽和環状カーボネートの分子量}×100(%)により算出した値である。
【0093】
上記フッ素化飽和環状カーボネートとしては、具体的には、例えば、以下が挙げられる。
【0094】
X1~X4の少なくとも1つが-Fであるフッ素化飽和環状カーボネートの具体例として、
【0095】
【化11】
等が挙げられる。これらの化合物は、耐電圧が高く、電解質塩の溶解性も良好である。
【0096】
他に、
【0097】
【0098】
等も使用できる。
【0099】
X1~X4の少なくとも1つがフッ素化アルキル基(a)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
【0100】
【0101】
【0102】
【0103】
等が挙げられる。
【0104】
X1~X4の少なくとも1つが、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
【0105】
【0106】
【0107】
【0108】
【0109】
【0110】
【0111】
等が挙げられる。
【0112】
なかでも、上記フッ素化飽和環状カーボネートとしては、以下の化合物のいずれかであることが好ましい。
【0113】
【0114】
【0115】
上記フッ素化飽和環状カーボネートとしては、その他にも、trans-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、5-(1,1-ジフルオロエチル)-4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-メチレン-1,3-ジオキソラン-2-オン、4-メチル-5-トリフルオロメチル-1,3-ジオキソラン-2-オン、4-エチル-5-フルオロ-1,3-ジオキソラン-2-オン、4-エチル-5,5-ジフルオロ-1,3-ジオキソラン-2-オン、4-エチル-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4-エチル-4,5,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-5-メチル-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン、4-フルオロ-5-トリフルオロメチル-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン等が挙げられる。
【0116】
上記フッ素化飽和環状カーボネートとしては、なかでも、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネート(3,3,3-トリフルオロプロピレンカーボネート)、2,2,3,3,3-ペンタフルオロプロピルエチレンカーボネートがより好ましい。
【0117】
上記フッ素化不飽和環状カーボネートは、不飽和結合とフッ素原子とを有する環状カーボネートであり、芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体が好ましい。具体的には、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネート等が挙げられる。
【0118】
上記フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0119】
上記フッ素化環状カーボネートが含まれる場合、上記フッ素化環状カーボネートの含有量は、上記溶媒に対して5~90体積%であることが好ましく、10~60体積%であることがより好ましく、15~45体積%であることが更に好ましい。
【0120】
上記鎖状カーボネートは、非フッ素化鎖状カーボネートであってもよいし、フッ素化鎖状カーボネートであってもよい。
【0121】
上記非フッ素化鎖状カーボネートとしては、例えば、CH3OCOOCH3(ジメチルカーボネート:DMC)、CH3CH2OCOOCH2CH3(ジエチルカーボネート:DEC)、CH3CH2OCOOCH3(エチルメチルカーボネート:EMC)、CH3OCOOCH2CH2CH3(メチルプロピルカーボネート)、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、メチルイソプロピルカーボネート、メチル-2-フェニルフェニルカーボネート、フェニル-2-フェニルフェニルカーボネート、トランス-2,3-ペンチレンカーボネート、トランス-2,3-ブチレンカーボネート、エチルフェニルカーボネート等の炭化水素系鎖状カーボネートが挙げられる。なかでも、エチルメチルカーボネート、ジエチルカーボネート及びジメチルカーボネートからなる群より選択される少なくとも1種であることが好ましい。
【0122】
上記非フッ素化鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0123】
上記非フッ素化鎖状カーボネートが含まれる場合、上記非フッ素化鎖状カーボネートの含有量は、上記溶媒に対して10~90体積%であることが好ましく、20~85体積%であることがより好ましく、30~80体積%であることが更に好ましい。
【0124】
上記フッ素化鎖状カーボネートは、フッ素原子を有する鎖状カーボネートである。フッ素化鎖状カーボネートを含む溶媒は、高電圧下でも好適に使用することができる。
【0125】
上記フッ素化鎖状カーボネートとしては、一般式(B):
Rf4OCOOR7 (B)
(式中、Rf4は、炭素数1~7のフッ素化アルキル基であり、R7は、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。)で示される化合物を挙げることができる。
【0126】
Rf4は、炭素数1~7のフッ素化アルキル基であり、R7は、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。
上記フッ素化アルキル基は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。R7がフッ素原子を含むアルキル基である場合、フッ素化アルキル基となる。
Rf4及びR7は、低粘性である点で、炭素数が1~7であることが好ましく、1~2であることがより好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
【0127】
炭素数が1のフッ素化アルキル基としては、CFH2-、CF2H-、CF3-等が挙げられる。特に、CFH2-又はCF3-が高温保存特性上好ましい。
【0128】
炭素数が2以上のフッ素化アルキル基としては、下記一般式(d-1):
R1-R2- (d-1)
(式中、R1はフッ素原子を有していてもよい炭素数1以上のアルキル基;R2はフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R1及びR2の少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R1及びR2は、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
【0129】
R1は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。R1としては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましい。R1の炭素数としては、1~3がより好ましい。
【0130】
R1として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH3-、CF3-、CH3CH2-、CH3CH2CH2-、CH3CH2CH2CH2-、
【0131】
【0132】
等が挙げられる。
【0133】
また、R1がフッ素原子を有する直鎖状のアルキル基である場合、CF3-、CF3CH2-、CF3CF2-、CF3CH2CH2-、CF3CF2CH2-、CF3CF2CF2-、CF3CH2CF2-、CF3CH2CH2CH2-、CF3CF2CH2CH2-、CF3CH2CF2CH2-、CF3CF2CF2CH2-、CF3CF2CF2CF2-、CF3CF2CH2CF2-、CF3CH2CH2CH2CH2-、CF3CF2CH2CH2CH2-、CF3CH2CF2CH2CH2-、CF3CF2CF2CH2CH2-、CF3CF2CF2CF2CH2-、CF3CF2CH2CF2CH2-、CF3CF2CH2CH2CH2CH2-、CF3CF2CF2CF2CH2CH2-、CF3CF2CH2CF2CH2CH2-、HCF2-、HCF2CH2-、HCF2CF2-、HCF2CH2CH2-、HCF2CF2CH2-、HCF2CH2CF2-、HCF2CF2CH2CH2-、HCF2CH2CF2CH2-、HCF2CF2CF2CF2-、HCF2CF2CH2CH2CH2-、HCF2CH2CF2CH2CH2-、HCF2CF2CF2CF2CH2-、HCF2CF2CF2CF2CH2CH2-、FCH2-、FCH2CH2-、FCH2CF2-、FCH2CF2CH2-、FCH2CF2CF2-、CH3CF2CH2-、CH3CF2CF2-、CH3CF2CH2CF2-、CH3CF2CF2CF2-、CH3CH2CF2CF2-、CH3CF2CH2CF2CH2-、CH3CF2CF2CF2CH2-、CH3CF2CF2CH2CH2-、CH3CH2CF2CF2CH2-、CH3CF2CH2CF2CH2CH2-、CH3CF2CH2CF2CH2CH2-、HCFClCF2CH2-、HCF2CFClCH2-、HCF2CFClCF2CFClCH2-、HCFClCF2CFClCF2CH2-等が挙げられる。
【0134】
また、R1がフッ素原子を有する分岐鎖状のアルキル基である場合、
【0135】
【0136】
【0137】
等が好ましく挙げられる。ただし、CH3-やCF3-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
【0138】
R2はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。R2は、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。R2はこれらの単独又は組合せで構成される。
【0139】
(i)直鎖状の最小構造単位:
-CH2-、-CHF-、-CF2-、-CHCl-、-CFCl-、-CCl2-
【0140】
(ii)分岐鎖状の最小構造単位:
【0141】
【0142】
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
【0143】
R2は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH2-、-CH2CH2-又は-CF2-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH2-又は-CH2CH2-がより好ましい。
【0144】
R2は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CXaXb)-(XaはH、F、CH3又はCF3;XbはCH3又はCF3。ただし、XbがCF3の場合、XaはH又はCH3である)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
【0145】
好ましいフッ素化アルキル基としては、具体的には、例えば、CF3CF2-、HCF2CF2-、H2CFCF2-、CH3CF2-、CF3CH2-、CF3CF2CF2-、HCF2CF2CF2-、H2CFCF2CF2-、CH3CF2CF2-、
【0146】
【0147】
【0148】
等が挙げられる。
【0149】
なかでも、Rf4とR7のフッ素化アルキル基としては、CF3-、CF3CF2-、(CF3)2CH-、CF3CH2-、C2F5CH2-、CF3CF2CH2-、HCF2CF2CH2-、CF3CFHCF2CH2-、CFH2-、CF2H-が好ましく、難燃性が高く、レート特性や耐酸化性が良好な点から、CF3CH2-、CF3CF2CH2-、HCF2CF2CH2-、CFH2-、CF2H-がより好ましい。
【0150】
R7がフッ素原子を含まないアルキル基の場合は炭素数1~7のアルキル基である。R7は、低粘性である点で、炭素数が1~4であることが好ましく、1~3であることがより好ましい。
【0151】
上記フッ素原子を含まないアルキル基としては、例えば、CH3-、CH3CH2-、(CH3)2CH-、C3H7-等が挙げられる。なかでも、粘度が低く、レート特性が良好な点から、CH3-、CH3CH2-が好ましい。
【0152】
上記フッ素化鎖状カーボネートは、フッ素含有率が15~70質量%であることが好ましい。フッ素含有率が上述の範囲であると、溶剤との相溶性、塩の溶解性を維持することができる。上記フッ素含有率は、20質量%以上がより好ましく、30質量%以上が更に好ましく、35質量%以上が特に好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。
なお、本開示においてフッ素含有率は、上記フッ素化鎖状カーボネートの構造式に基づいて、
{(フッ素原子の個数×19)/フッ素化鎖状カーボネートの分子量}×100(%)
により算出した値である。
【0153】
上記フッ素化鎖状カーボネートとしては、低粘性である点で、以下の化合物のいずれかであることが好ましい。
【0154】
【0155】
上記フッ素化鎖状カーボネートとしては、メチル2,2,2-トリフルオロエチルカーボネート(F3CH2COC(=O)OCH3)が特に好ましい。
【0156】
上記フッ素化鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0157】
上記フッ素化鎖状カーボネートが含まれる場合、上記フッ素化鎖状カーボネートの含有量は、上記溶媒に対して10~90体積%であることが好ましく、20~85体積%であることがより好ましく、30~80体積%であることが更に好ましい。
【0158】
上記カルボン酸エステルは、環状カルボン酸エステルであってもよいし、鎖状カルボン酸エステルであってもよい。
【0159】
上記環状カルボン酸エステルは、非フッ素化環状カルボン酸エステルであってもよいし、フッ素化環状カルボン酸エステルであってもよい。
【0160】
上記非フッ素化環状カルボン酸エステルとしては、非フッ素化飽和環状カルボン酸エステルが挙げられ、炭素数2~4のアルキレン基を有する非フッ素化飽和環状カルボン酸エステルが好ましい。
【0161】
炭素数2~4のアルキレン基を有する非フッ素化飽和環状カルボン酸エステルの具体的な例としては、β-プロピオラクトン、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、αメチル-γ-ブチロラクトンが挙げられる。なかでも、γ-ブチロラクトン、δ-バレロラクトンがリチウムイオン解離度の向上及び負荷特性向上の点から特に好ましい。
【0162】
上記非フッ素化飽和環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0163】
上記非フッ素化飽和環状カルボン酸エステルが含まれる場合、上記非フッ素化飽和環状カルボン酸エステルの含有量は、上記溶媒に対して0~90体積%であることが好ましく、0.001~90体積%であることがより好ましく、1~60体積%であることが更に好ましく、5~40体積%であることが特に好ましい。
【0164】
上記鎖状カルボン酸エステルは、非フッ素化鎖状カルボン酸エステルであってもよいし、フッ素化鎖状カルボン酸エステルであってもよい。上記溶媒が上記鎖状カルボン酸エステルを含む場合、電解液の高温保存後の抵抗増加を一層抑制することができる。
【0165】
上記非フッ素化鎖状カルボン酸エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、tert-ブチルプロピオネート、tert-ブチルブチレート、sec-ブチルプロピオネート、sec-ブチルブチレート、n-ブチルブチレート、ピロリン酸メチル、ピロリン酸エチル、tert-ブチルホルメート、tert-ブチルアセテート、sec-ブチルホルメート、sec-ブチルアセテート、n-ヘキシルピバレート、n-プロピルホルメート、n-プロピルアセテート、n-ブチルホルメート、n-ブチルピバレート、n-オクチルピバレート、エチル2-(ジメトキシホスホリル)アセテート、エチル2-(ジメチルホスホリル)アセテート、エチル2-(ジエトキシホスホリル)アセテート、エチル2-(ジエチルホスホリル)アセテート、イソプロピルプロピオネート、イソプロピルアセテート、エチルホルメート、エチル2-プロピニルオギザレート、イソプロピルホルメート、イソプロピルブチレート、イソブチルホルメート、イソブチルプロピオネート、イソブチルブチレート、イソブチルアセテート等が挙げられる。
【0166】
なかでも、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチルが好ましく、特に好ましくはプロピオン酸エチル、プロピオン酸プロピルである。
【0167】
上記非フッ素化鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0168】
上記非フッ素化鎖状カルボン酸エステルが含まれる場合、上記非フッ素化鎖状カルボン酸エステルの含有量は、上記溶媒に対して0~90体積%であることが好ましく、0.001~90体積%であることがより好ましく、1~60体積%であることが更に好ましく、5~50体積%であることが特に好ましい。
【0169】
上記フッ素化鎖状カルボン酸エステルは、フッ素原子を有する鎖状カルボン酸エステルである。フッ素化鎖状カルボン酸エステルを含む溶媒は、高電圧下でも好適に使用することができる。
【0170】
上記フッ素化鎖状カルボン酸エステルとしては、下記一般式:
R31COOR32
(式中、R31及びR32は、互いに独立に、炭素数1~4のフッ素原子を含んでいてもよいアルキル基であり、R31及びR32の少なくとも一方はフッ素原子を含む。)で示されるフッ素化鎖状カルボン酸エステルが、他溶媒との相溶性や耐酸化性が良好な点から好ましい。
【0171】
R31及びR32としては、例えばメチル基(-CH3)、エチル基(-CH2CH3)、プロピル基(-CH2CH2CH3)、イソプロピル基(-CH(CH3)2)、ノルマルブチル基(-CH2CH2CH2CH3)、ターシャリーブチル基(-C(CH3)3)等の非フッ素化アルキル基;-CF3、-CF2H、-CFH2、-CF2CF3、-CF2CF2H、-CF2CFH2、-CH2CF3、-CH2CF2H、-CH2CFH2、-CF2CF2CF3、-CF2CF2CF2H、-CF2CF2CFH2、-CH2CF2CF3、-CH2CF2CF2H、-CH2CF2CFH2、-CH2CH2CF3、-CH2CH2CF2H、-CH2CH2CFH2、-CF(CF3)2、-CF(CF2H)2、-CF(CFH2)2、-CH(CF3)2、-CH(CF2H)2、-CH(CFH2)2、-CF(OCH3)CF3、-CF2CF2CF2CF3、-CF2CF2CF2CF2H、-CF2CF2CF2CFH2、-CH2CF2CF2CF3、-CH2CF2CF2CF2H、-CH2CF2CF2CFH2、-CH2CH2CF2CF3、-CH2CH2CF2CF2H、-CH2CH2CF2CFH2、-CH2CH2CH2CF3、-CH2CH2CH2CF2H、-CH2CH2CH2CFH2、-CF(CF3)CF2CF3、-CF(CF2H)CF2CF3、-CF(CFH2)CF2CF3、-CF(CF3)CF2CF2H、-CF(CF3)CF2CFH2、-CF(CF3)CH2CF3、-CF(CF3)CH2CF2H、-CF(CF3)CH2CFH2、-CH(CF3)CF2CF3、-CH(CF2H)CF2CF3、-CH(CFH2)CF2CF3、-CH(CF3)CF2CF2H、-CH(CF3)CF2CFH2、-CH(CF3)CH2CF3、-CH(CF3)CH2CF2H、-CH(CF3)CH2CFH2、-CF2CF(CF3)CF3、-CF2CF(CF2H)CF3、-CF2CF(CFH2)CF3、-CF2CF(CF3)CF2H、-CF2CF(CF3)CFH2、-CH2CF(CF3)CF3、-CH2CF(CF2H)CF3、-CH2CF(CFH2)CF3、-CH2CF(CF3)CF2H、-CH2CF(CF3)CFH2、-CH2CH(CF3)CF3、-CH2CH(CF2H)CF3、-CH2CH(CFH2)CF3、-CH2CH(CF3)CF2H、-CH2CH(CF3)CFH2、-CF2CH(CF3)CF3、-CF2CH(CF2H)CF3、-CF2CH(CFH2)CF3、-CF2CH(CF3)CF2H、-CF2CH(CF3)CFH2、-C(CF3)3、-C(CF2H)3、-C(CFH2)3等のフッ素化アルキル基等が挙げられる。なかでもメチル基、エチル基、-CF3、-CF2H、-CF2CF3、-CH2CF3、-CH2CF2H、-CH2CFH2、-CH2CH2CF3、-CH2CF2CF3、-CH2CF2CF2H、-CH2CF2CFH2が他溶媒との相溶性、粘度、耐酸化性が良好な点から特に好ましい。
【0172】
上記フッ素化鎖状カルボン酸エステルの具体例としては、例えばCF3CH2C(=O)OCH3(3,3,3-トリフルオロプロピオン酸メチル)、HCF2C(=O)OCH3(ジフルオロ酢酸メチル)、HCF2C(=O)OC2H5(ジフルオロ酢酸エチル)、CF3C(=O)OCH2CH2CF3、CF3C(=O)OCH2C2F5、CF3C(=O)OCH2CF2CF2H(トリフルオロ酢酸2,2,3,3-テトラフルオロプロピル)、CF3C(=O)OCH2CF3、CF3C(=O)OCH(CF3)2、ペンタフルオロ酪酸エチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ヘプタフルオロイソ酪酸メチル、トリフルオロ酪酸イソプロピル、トリフルオロ酢酸エチル、トリフルオロ酢酸tert-ブチル、トリフルオロ酢酸n-ブチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、酢酸2,2-ジフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピル、CH3C(=O)OCH2CF3(酢酸2,2,2-トリフルオロエチル)、酢酸1H,1H-ヘプタフルオロブチル、4,4,4-トリフルオロ酪酸メチル、4,4,4-トリフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸3,3,3トリフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、2,3,3,3-テトラフルオロプロピオン酸メチル、2,2-ジフルオロ酢酸ブチル、2,2,3,3-テトラフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸メチル等の1種又は2種以上が例示できる。
なかでもCF3CH2C(=O)OCH3、HCF2C(=O)OCH3、HCF2C(=O)OC2H5、CF3C(=O)OCH2C2F5、CF3C(=O)OCH2CF2CF2H、CF3C(=O)OCH2CF3、CF3C(=O)OCH(CF3)2、ペンタフルオロ酪酸エチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ヘプタフルオロイソ酪酸メチル、トリフルオロ酪酸イソプロピル、トリフルオロ酢酸エチル、トリフルオロ酢酸tert-ブチル、トリフルオロ酢酸n-ブチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、酢酸2,2-ジフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピル、CH3C(=O)OCH2CF3、酢酸1H,1H-ヘプタフルオロブチル、4,4,4-トリフルオロ酪酸メチル、4,4,4-トリフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸3,3,3-トリフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、2,3,3,3-テトラフルオロプロピオン酸メチル、2,2-ジフルオロ酢酸ブチル、2,2,3,3-テトラフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸メチルが、他溶媒との相溶性及びレート特性が良好な点から好ましく、CF3CH2C(=O)OCH3、HCF2C(=O)OCH3、HCF2C(=O)OC2H5、CH3C(=O)OCH2CF3がより好ましく、HCF2C(=O)OCH3、HCF2C(=O)OC2H5、CH3C(=O)OCH2CF3が特に好ましい。
【0173】
上記フッ素化鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0174】
上記フッ素化鎖状カルボン酸エステルが含まれる場合、上記フッ素化鎖状カルボン酸エステルの含有量は、上記溶媒に対して10~90体積%であることが好ましく、20~85体積%であることがより好ましく、30~80体積%であることが更に好ましい。
【0175】
上記溶媒は、上記環状カーボネート、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種を含むことが好ましい。上記環状カーボネートは、飽和環状カーボネートであることが好ましい。
上記の組成の溶媒を含有する電解液は、電気化学デバイスの高温保存特性やサイクル特性を一層向上させることができる。
【0176】
上記溶媒が上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを合計で、10~100体積%含むことが好ましく、30~100体積%含むことがより好ましく、50~100体積%含むことが更に好ましい。
【0177】
上記溶媒が上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種との体積比としては、5/95~95/5が好ましく、10/90以上がより好ましく、15/85以上が更に好ましく、20/80以上が特に好ましく、90/10以下がより好ましく、60/40以下が更に好ましく、50/50以下が特に好ましい。
【0178】
上記溶媒は、また、上記非フッ素化飽和環状カーボネート、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種を含むことも好ましい。上記の組成の溶媒を含有する電解液は、比較的低電圧で使用される電気化学デバイスに好適に利用できる。
【0179】
上記溶媒が上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを合計で、5~100体積%含むことが好ましく、20~100体積%含むことがより好ましく、30~100体積%含むことが更に好ましい。
【0180】
上記電解液が上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種との体積比としては、5/95~95/5が好ましく、10/90以上がより好ましく、15/85以上が更に好ましく、20/80以上が特に好ましく、90/10以下がより好ましく、60/40以下が更に好ましく、50/50以下が特に好ましい。
【0181】
上記溶媒は、また、上記フッ素化飽和環状カーボネート、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種を含むことも好ましい。上記の組成の溶媒を含有する電解液は、比較的低電圧で使用される電気化学デバイスだけでなく、比較的高電圧で使用される電気化学デバイスにも好適に利用できる。
【0182】
上記溶媒が上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを合計で、5~100体積%含むことが好ましく、10~100体積%含むことがより好ましく、30~100体積%含むことが更に好ましい。
【0183】
上記溶媒が上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種との体積比としては、5/95~95/5が好ましく、10/90以上がより好ましく、15/85以上が更に好ましく、20/80以上が特に好ましく、90/10以下がより好ましく、60/40以下が更に好ましく、50/50以下が特に好ましい。
【0184】
また、上記溶媒として、イオン液体を用いることもできる。「イオン液体」とは、有機カチオンとアニオンとを組み合わせたイオンからなる液体である。
【0185】
有機カチオンとしては、特に限定されないが、例えば、ジアルキルイミダゾリウムカチオン、トリアルキルイミダゾリウムカチオン等のイミダゾリウムイオン;テトラアルキルアンモニウムイオン;アルキルピリジニウムイオン;ジアルキルピロリジニウムイオン;及びジアルキルピペリジニウムイオンが挙げられる。
【0186】
これらの有機カチオンのカウンターとなるアニオンとしては、特に限定されないが、例えば、PF6アニオン、PF3(C2F5)3アニオン、PF3(CF3)3アニオン、BF4アニオン、BF2(CF3)2アニオン、BF3(CF3)アニオン、ビスオキサラトホウ酸アニオン、P(C2O4)F2アニオン、Tf(トリフルオロメタンスルホニル)アニオン、Nf(ノナフルオロブタンスルホニル)アニオン、ビス(フルオロスルホニル)イミドアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエタンスルホニル)イミドアニオン、ジシアノアミンアニオン、ハロゲン化物アニオンを用いることができる。
【0187】
上記溶媒は、非水溶媒であることが好ましく、本開示の電解液は、非水電解液であることが好ましい。
上記溶媒の含有量は、電解液中70~99.999質量%であることが好ましく、80質量%以上がより好ましく、92質量%以下がより好ましい。
【0188】
本開示の電解液は、更に、一般式(5)で示される化合物(5)を含んでもよい。
【0189】
一般式(5):
【化31】
(式中、A
a+は金属イオン、水素イオン又はオニウムイオン。aは1~3の整数、bは1~3の整数、pはb/a、n203は1~4の整数、n201は0~8の整数、n202は0又は1、Z
201は遷移金属、周期律表のIII族、IV族又はV族の元素。
X
201は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn202が1でn203が2~4のときにはn203個のX
201はそれぞれが結合していてもよい)。
L
201は、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn201が2~8のときにはn201個のL
201はそれぞれが結合して環を形成してもよい)又は-Z
203Y
203。
Y
201、Y
202及びZ
203は、それぞれ独立でO、S、NY
204、炭化水素基又はフッ素化炭化水素基。Y
203及びY
204は、それぞれ独立でH、F、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基又は炭素数6~20のハロゲン化アリール基(アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基はその構造中に置換基、ヘテロ原子を持っていてもよく、Y
203又はY
204が複数個存在する場合にはそれぞれが結合して環を形成してもよい)。
【0190】
Aa+としては、リチウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、バリウムイオン、セシウムイオン、銀イオン、亜鉛イオン、銅イオン、コバルトイオン、鉄イオン、ニッケルイオン、マンガンイオン、チタンイオン、鉛イオン、クロムイオン、バナジウムイオン、ルテニウムイオン、イットリウムイオン、ランタノイドイオン、アクチノイドイオン、テトラブチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラメチルアンモニウムイオン、トリエチルメチルアンモニウムイオン、トリエチルアンモニウムイオン、ピリジニウムイオン、イミダゾリウムイオン、水素イオン、テトラエチルホスホニウムイオン、テトラメチルホスホニウムイオン、テトラフェニルホスホニウムイオン、トリフェニルスルホニウムイオン、トリエチルスルホニウムイオン等が挙げられる。
【0191】
電気化学的なデバイス等の用途に使用する場合、Aa+は、リチウムイオン、ナトリウムイオン、マグネシウムイオン、テトラアルキルアンモニウムイオン、水素イオンが好ましく、リチウムイオン、ナトリウムイオンが特に好ましい。Aa+のカチオンの価数aは、1~3の整数である。3より大きい場合、結晶格子エネルギーが大きくなるため、溶媒に溶解することが困難になるという問題が起こる。そのため溶解度を必要とする場合は1がより好ましい。アニオンの価数bも同様に1~3の整数であり、特に1が好ましい。カチオンとアニオンの比を表す定数pは、両者の価数の比b/aで必然的に決まる。
【0192】
次に、一般式(5)の配位子の部分について説明する。本明細書において、一般式(5)におけるZ201に結合している有機又は無機の部分を配位子と呼ぶ。
【0193】
Z201は、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf又はSbであることが好ましく、Al、B又はPであることがより好ましい。
【0194】
X201は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基を表す。これらのアルキレン基及びアリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよい。具体的には、アルキレン基及びアリーレン基上の水素の代わりに、ハロゲン原子、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基を置換基として持っていてもよいし、アルキレン及びアリーレン上の炭素の代わりに、窒素、硫黄、酸素が導入された構造であってもよい。またn202が1でn203が2~4のときには、n203個のX201はそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。
【0195】
L201は、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基又は-Z203Y203(Z203、Y203については後述)を表す。ここでのアルキル基及びアリール基も、X201と同様に、その構造中に置換基、ヘテロ原子を持っていてもよく、またn201が2~8のときにはn201個のL201はそれぞれが結合して環を形成していてもよい。L201としては、フッ素原子又はシアノ基が好ましい。フッ素原子の場合には、アニオン化合物の塩の溶解度や解離度が向上し、これに伴ってイオン伝導度が向上するからである。また、耐酸化性が向上し、これにより副反応の発生を抑制することができるからである。
【0196】
Y201、Y202及びZ203は、それぞれ独立で、O、S、NY204、炭化水素基又はフッ素化炭化水素基を表す。Y201及びY202は、O、S又はNY204であることが好ましく、Oであることがより好ましい。化合物(5)の特徴として、同一の配位子内にY201及びY202によるZ201との結合があるため、これらの配位子がZ201とキレート構造を構成している。このキレートの効果により、この化合物の耐熱性、化学的安定性、耐加水分解性が向上している。この配位子中の定数n202は0又は1であるが、特に、0の場合はこのキレートリングが五員環になるため、キレート効果が最も強く発揮され安定性が増すため好ましい。
なお、本明細書において、フッ素化炭化水素基は、炭化水素基の水素原子の少なくとも1つがフッ素原子に置換された基である。
【0197】
Y203及びY204は、それぞれ独立で、H、F、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基又は炭素数6~20のハロゲン化アリール基であり、これらのアルキル基及びアリール基は、その構造中に置換基又はヘテロ原子を有してもよく、またY203又はY204が複数個存在する場合には、それぞれが結合して環を形成してもよい。
【0198】
また、上述した配位子の数に関係する定数n203は、1~4の整数であり、好ましくは1又は2であり、より好ましくは2である。また、上述した配位子の数に関係する定数n201は、0~8の整数であり、好ましくは0~4の整数であり、より好ましくは0、2又は4である。更に、n203が1のときn201は2、n203が2のときn201は0であることが好ましい。
【0199】
一般式(5)において、アルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基は、分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。
【0200】
化合物(5)としては、一般式:
【化32】
(式中、A
a+、a、b、p、n201、Z
201及びL
201は上述したとおり)で示される化合物、又は、一般式:
【化33】
(式中、A
a+、a、b、p、n201、Z
201及びL
201は上述したとおり)で示される化合物であることが好ましい。
【0201】
化合物(5)としては、リチウムオキサラトボレート塩類が挙げられ、下記式:
【化34】
で示されるリチウムビス(オキサラト)ボレート(LIBOB)、下記式:
【化35】
で示されるリチウムジフルオロオキサラトボレート(LIDFOB)、
【0202】
化合物(5)としては、また、下記式:
【化36】
で示されるリチウムジフルオロオキサラトホスファナイト(LIDFOP)、下記式:
【化37】
で示されるリチウムテトラフルオロオキサラトホスファナイト(LITFOP)、下記式:
【化38】
で示されるリチウムビス(オキサラト)ジフルオロホスファナイト等が挙げられる。
【0203】
その他、錯体中心元素がホウ素であるジカルボン酸錯体塩の具体例としては、リチウムビス(マロナト)ボレート、リチウムジフルオロ(マロナト)ボレート、リチウムビス(メチルマロナト)ボレート、リチウムジフルオロ(メチルマロナト)ボレート、リチウムビス(ジメチルマロナト)ボレート、リチウムジフルオロ(ジメチルマロナト)ボレート等が挙げられる。
【0204】
錯体中心元素がリンであるジカルボン酸錯体塩の具体例としては、リチウムトリス(オキサラト)ホスフェート、リチウムトリス(マロナト)ホスフェート、リチウムジフルオロビス(マロナト)ホスフェート、リチウムテトラフルオロ(マロナト)ホスフェート、リチウムトリス(メチルマロナト)ホスフェート、リチウムジフルオロビス(メチルマロナト)ホスフェート、リチウムテトラフルオロ(メチルマロナト)ホスフェート、リチウムトリス(ジメチルマロナト)ホスフェート、リチウムジフルオロビス(ジメチルマロナト)ホスフェート、リチウムテトラフルオロ(ジメチルマロナト)ホスフェート等が挙げられる。
【0205】
錯体中心元素がアルミニウムであるジカルボン酸錯体塩の具体例としては、LiAl(C2O4)2、LiAlF2(C2O4)等が挙げられる。
【0206】
中でも、リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェートが、入手の容易さや安定な被膜状の構造物の形成に寄与することができる点から、より好適に用いられる。
化合物(5)としては、リチウムビス(オキサラト)ボレートが特に好ましい。
【0207】
化合物(5)の含有量としては、より一層の優れたサイクル特性が得られることから、上記溶媒に対して、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、10質量%以下が好ましく、3質量%以下がより好ましい。
【0208】
本開示の電解液は、更に、電解質塩(但し、上記化合物(5)を除く)を含むことが好ましい。上記電解質塩としては、アルカリ金属塩、アンモニウム塩、アルカリ金属塩以外の他の金属塩(例えばアルカリ金属塩以外の軽金属塩)のほか、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩等、電解液に使用することができる任意のものを用いることができる。
【0209】
電気化学デバイス用電解液の電解質塩としては、例えば、以下の化合物が挙げられる。MPF6、MBF4、MClO4、MAsF6、MB(C6H5)4、MCH3SO3、MCF3SO3、MAlCl4、M2SiF6、MCl、MBr。(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、好ましくはLi、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaである。)これらのアルカリ金属塩を用いることにより、優れた電池容量、サイクル特性および保存特性などが得られる。中でも、MPF6、MBF4、MClO4およびMAsF6から選択される少なくとも1種が好ましく、MPF6がより好ましい。これらのアルカリ金属塩を用いることにより、内部抵抗がより低下し、より高い効果が得られる。
【0210】
ナトリウムイオン二次電池用電解液の電解質塩としては、ナトリウム塩が好ましい。
上記ナトリウム塩として任意のものを用いることができ、具体的には以下のものが挙げられる。例えば、NaPF6、NaBF4、NaClO4、NaAlF4、NaSbF6、NaTaF6、NaWF7、NaAsF6,NaAlCl4,NaI、NaBr、NaCl、NaB10Cl10、Na2SiF6、Na2PFO3、NaPO2F2等の無機ナトリウム塩;
NaWOF5等のタングステンナトリウム酸類;
HCO2Na、CH3CO2Na、CH2FCO2Na、CHF2CO2Na、CF3CO2Na、CF3CH2CO2Na、CF3CF2CO2Na、CF3CF2CF2CO2Na、CF3CF2CF2CF2CO2Na等のカルボン酸ナトリウム塩類;
FSO3Na、CH3SO3Na、CH2FSO3Na、CHF2SO3Na、CF3SO3Na、CF3CF2SO3Na、CF3CF2CF2SO3Na、CF3CF2CF2CF2SO3Na、ナトリウムメチルサルフェート、ナトリウムエチルサルフェート(C2H5OSO3Na)、ナトリウム2,2,2-トリフルオロエチルサルフェート等のS=O基を有するナトリウム塩類;
NaN(FCO)2、NaN(FCO)(FSO2)、NaN(FSO2)2、NaN(FSO2)(CF3SO2)、NaN(CF3SO2)2、NaN(C2F5SO2)2、ナトリウムビスパーフルオロエタンスルホニルイミド、ナトリウム環状1,2-パーフルオロエタンジスルホニルイミド、ナトリウム環状1,3-パーフルオロプロパンジスルホニルイミド、ナトリウム環状1,2-エタンジスルホニルイミド、ナトリウム環状1,3-プロパンジスルホニルイミド、ナトリウム環状1,4-パーフルオロブタンジスルホニルイミド、NaN(CF3SO2)(FSO2)、NaN(CF3SO2)(C3F7SO2)、NaN(CF3SO2)(C4F9SO2)、NaN(POF2)2等のナトリウムイミド塩類;
NaC(FSO2)3、NaC(CF3SO2)3、NaC(C2F5SO2)3等のナトリウムメチド塩類;
その他、式:NaPFa(CnF2n+1)6-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩(例えばNaPF3(C2F5)3、NaPF3(CF3)3、NaPF3(iso-C3F7)3、NaPF5(iso-C3F7)、NaPF4(CF3)2、NaPF4(C2F5)2)、NaPF4(CF3SO2)2、NaPF4(C2F5SO2)2、NaBF3CF3、NaBF3C2F5、NaBF3C3F7、NaBF2(CF3)2、NaBF2(C2F5)2、NaBF2(CF3SO2)2、NaBF2(C2F5SO2)2等の含フッ素有機ナトリウム塩類、NaSCN、LiB(CN)4、NaB(C6H5)4、Na2(C2O4)、NaP(C2O4)3、Na2B12FbH12-b(bは0~3の整数)等が挙げられる。
【0211】
中でも、NaPF6、NaBF4、NaSbF6、NaTaF6、NaPO2F2、FSO3Na、CF3SO3Na、NaN(FSO2)2、NaN(FSO2)(CF3SO2)、NaN(CF3SO2)2、NaN(C2F5SO2)2、ナトリウム環状1,2-パーフルオロエタンジスルホニルイミド、ナトリウム環状1,3-パーフルオロプロパンジスルホニルイミド、NaC(FSO2)3、NaC(CF3SO2)3、NaC(C2F5SO2)3、NaBF3CF3、NaBF3C2F5、NaPF3(CF3)3、NaPF3(C2F5)3等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましく、NaPF6、NaN(FSO2)2及びNaBF4からなる群より選択される少なくとも1種のナトリウム塩が最も好ましい。
【0212】
リチウムイオン二次電池用電解液の電解質塩としては、リチウム塩が好ましい。
上記リチウム塩として任意のものを用いることができ、具体的には以下のものが挙げられる。例えば、LiPF6、LiBF4、LiClO4、LiAlF4、LiSbF6、LiTaF6、LiWF7、LiAsF6,LiAlCl4,LiI、LiBr、LiCl、LiB10Cl10、Li2SiF6、Li2PFO3、LiPO2F2等の無機リチウム塩;
LiWOF5等のタングステン酸リチウム類;
HCO2Li、CH3CO2Li、CH2FCO2Li、CHF2CO2Li、CF3CO2Li、CF3CH2CO2Li、CF3CF2CO2Li、CF3CF2CF2CO2Li、CF3CF2CF2CF2CO2Li等のカルボン酸リチウム塩類;
FSO3Li、CH3SO3Li、CH2FSO3Li、CHF2SO3Li、CF3SO3Li、CF3CF2SO3Li、CF3CF2CF2SO3Li、CF3CF2CF2CF2SO3Li、リチウムメチルサルフェート、リチウムエチルサルフェート(C2H5OSO3Li)、リチウム2,2,2-トリフルオロエチルサルフェート等のS=O基を有するリチウム塩類;
LiN(FCO)2、LiN(FCO)(FSO2)、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウムビスパーフルオロエタンスルホニルイミド、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、リチウム環状1,2-エタンジスルホニルイミド、リチウム環状1,3-プロパンジスルホニルイミド、リチウム環状1,4-パーフルオロブタンジスルホニルイミド、LiN(CF3SO2)(FSO2)、LiN(CF3SO2)(C3F7SO2)、LiN(CF3SO2)(C4F9SO2)、LiN(POF2)2等のリチウムイミド塩類;
(CF3CH2)2NSO3Li、(CF3CH2)(CH3)NSO3Li、(CNCH2)2NSO3Li等のスルファミン酸リチウム化合物;
LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3等のリチウムメチド塩類;
その他、式:LiPFa(CnF2n+1)6-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩(例えばLiPF3(C2F5)3、LiPF3(CF3)3、LiPF3(iso-C3F7)3、LiPF5(iso-C3F7)、LiPF4(CF3)2、LiPF4(C2F5)2)、LiPF4(CF3SO2)2、LiPF4(C2F5SO2)2、LiBF3CF3、LiBF3C2F5、LiBF3C3F7、LiBF2(CF3)2、LiBF2(C2F5)2、LiBF2(CF3SO2)2、LiBF2(C2F5SO2)2等の含フッ素有機リチウム塩類、LiSCN、LiB(CN)4、LiB(C6H5)4、Li2(C2O4)、LiP(C2O4)3、Li2B12FbH12-b(bは0~3の整数)等が挙げられる。
【0213】
中でも、LiPF6、LiBF4、LiSbF6、LiTaF6、LiPO2F2、FSO3Li、CF3SO3Li、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiBF3CF3、LiBF3C2F5、LiPF3(CF3)3、LiPF3(C2F5)3等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましく、LiPF6、LiN(FSO2)2及びLiBF4からなる群より選択される少なくとも1種のリチウム塩が最も好ましい。
【0214】
これらの電解質塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPF6とLiBF4との併用や、LiPF6とLiPO2F2、C2H5OSO3Li又はFSO3Liとの併用であり、高温保存特性、負荷特性やサイクル特性を向上させる効果がある。
【0215】
この場合、電解液全体100質量%に対するLiBF4、LiPO2F2、C2H5OSO3Li又はFSO3Liの配合量に制限は無く、本開示の効果を著しく損なわない限り任意であるが、本開示の電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。
【0216】
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CF3SO3Li、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiBF3CF3、LiBF3C2F5、LiPF3(CF3)3、LiPF3(C2F5)3等であるのが好ましい。この場合には、電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは30質量%以下、特に好ましくは20質量%以下である。
【0217】
電解液中のこれらの電解質塩の濃度は、本開示の効果を損なわない限り特に制限されない。電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、更に好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、更に好ましくは2.0mol/L以下である。
【0218】
リチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
【0219】
本開示の電解液は、一般式(6):
【化39】
(式中、X
21は少なくともH又はCを含む基、n21は1~3の整数、Y
21及びZ
21は、同じか又は異なり、少なくともH、C、O又はFを含む基、n22は0又は1、Y
21及びZ
21はお互いに結合して環を形成してもよい。)で示される化合物(6)を更に含むものであってもよい。上記電解液が化合物(6)を含むと、高温で保管した場合でも、容量保持率が一層低下しにくく、ガスの発生量が更に増加しにくい。
【0220】
n21が2又は3の場合、2つ又は3つのX21は同じであっても異なっていてもよい。
Y21及びZ21が複数存在する場合、複数存在するY21及びZ21は同じであっても異なっていてもよい。
【0221】
X21としては、-CY21Z21-(式中、Y21及びZ21は上記のとおり)又は-CY21=CZ21-(式中、Y21及びZ21は上記のとおり)で示される基が好ましい。
【0222】
Y21としては、H-、F-、CH3-、CH3CH2-、CH3CH2CH2-、CF3-、CF3CF2-、CH2FCH2-及びCF3CF2CF2-からなる群より選択される少なくとも1種が好ましい。
Z21としては、H-、F-、CH3-、CH3CH2-、CH3CH2CH2-、CF3-、CF3CF2-、CH2FCH2-及びCF3CF2CF2-からなる群より選択される少なくとも1種が好ましい。
【0223】
又は、Y21及びZ21は、お互いに結合して、不飽和結合を含んでもよく、芳香族性を有していてもよい炭素環又は複素環を形成することができる。環の炭素数は3~20が好ましい。
【0224】
次いで、化合物(6)の具体例について説明する。なお、以下の例示において「類縁体」とは、例示される酸無水物の構造の一部を、本開示の趣旨に反しない範囲で、別の構造に置き換えることにより得られる酸無水物を指すもので、例えば複数の酸無水物からなる二量体、三量体及び四量体等、又は、置換基の炭素数が同じではあるが分岐鎖を有する等構造異性のもの、置換基が酸無水物に結合する部位が異なるもの等が挙げられる。
【0225】
5員環構造を形成している酸無水物の具体例としては、無水コハク酸、メチルコハク酸無水物(4-メチルコハク酸無水物)、ジメチルコハク酸無水物(4,4-ジメチルコハク酸無水物、4,5-ジメチルコハク酸無水物等)、4,4,5-トリメチルコハク酸無水物、4,4,5,5-テトラメチルコハク酸無水物、4-ビニルコハク酸無水物、4,5-ジビニルコハク酸無水物、フェニルコハク酸無水物(4-フェニルコハク酸無水物)、4,5-ジフェニルコハク酸無水物、4,4-ジフェニルコハク酸無水物、無水シトラコン酸、無水マレイン酸、メチルマレイン酸無水物(4-メチルマレイン酸無水物)、4,5-ジメチルマレイン酸無水物、フェニルマレイン酸無水物(4-フェニルマレイン酸無水物)、4,5-ジフェニルマレイン酸無水物、イタコン酸無水物、5-メチルイタコン酸無水物、5,5-ジメチルイタコン酸無水物、無水フタル酸、3,4,5,6-テトラヒドロフタル酸無水物等、及びそれらの類縁体等が挙げられる。
【0226】
6員環構造を形成している酸無水物の具体例としては、シクロヘキサンジカルボン酸無水物(シクロヘキサン-1,2-ジカルボン酸無水物等)、4-シクロヘキセン-1,2-ジカルボン酸無水物、無水グルタル酸、無水グルタコン酸、2-フェニルグルタル酸無水物等、及びそれらの類縁体等が挙げられる。
【0227】
その他の環状構造を形成している酸無水物の具体例としては、5-ノルボルネン-2,3-ジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、ピロメリット酸無水物、無水ジグリコール酸等、及びそれらの類縁体等が挙げられる。
【0228】
環状構造を形成するとともに、ハロゲン原子で置換された酸無水物の具体例としては、モノフルオロコハク酸無水物(4-フルオロコハク酸無水物等)、4,4-ジフルオロコハク酸無水物、4,5-ジフルオロコハク酸無水物、4,4,5-トリフルオロコハク酸無水物、トリフルオロメチルコハク酸無水物、テトラフルオロコハク酸無水物(4,4,5,5-テトラフルオロコハク酸無水物)、4-フルオロマレイン酸無水物、4,5-ジフルオロマレイン酸無水物、トリフルオロメチルマレイン酸無水物、5-フルオロイタコン酸無水物、5,5-ジフルオロイタコン酸無水物等、及びそれらの類縁体等が挙げられる。
【0229】
化合物(6)としては、なかでも、無水グルタル酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、フェニルコハク酸無水物、2-フェニルグルタル酸無水物、無水マレイン酸、メチルマレイン酸無水物、トリフルオロメチルマレイン酸無水物、フェニルマレイン酸無水物、無水コハク酸、メチルコハク酸無水物、ジメチルコハク酸無水物、トリフルオロメチルコハク酸無水物、モノフルオロコハク酸無水物、テトラフルオロコハク酸無水物等が好ましく、無水マレイン酸、メチルマレイン酸無水物、トリフルオロメチルマレイン酸無水物、無水コハク酸、メチルコハク酸無水物、トリフルオロメチルコハク酸無水物、テトラフルオロコハク酸無水物がより好ましく、無水マレイン酸、無水コハク酸が更に好ましい。
【0230】
化合物(6)は、一般式(7):
【0231】
【化40】
(式中、X
31~X
34は、同じか又は異なり、少なくともH、C、O又はFを含む基)で示される化合物(7)、及び、一般式(8):
【0232】
【化41】
(式中、X
41及びX
42は、同じか又は異なり、少なくともH、C、O又はFを含む基)で示される化合物(8)からなる群より選択される少なくとも1種であることが好ましい。
【0233】
X31~X34としては、同じか又は異なり、アルキル基、フッ素化アルキル基、アルケニル基及びフッ素化アルケニル基からなる群より選択される少なくとも1種が好ましい。X31~X34の炭素数は、1~10が好ましく、1~3がより好ましい。
【0234】
X31~X34としては、同じか又は異なり、H-、F-、CH3-、CH3CH2-、CH3CH2CH2-、CF3-、CF3CF2-、CH2FCH2-及びCF3CF2CF2-からなる群より選択される少なくとも1種がより好ましい。
【0235】
X41及びX42としては、同じか又は異なり、アルキル基、フッ素化アルキル基、アルケニル基及びフッ素化アルケニル基からなる群より選択される少なくとも1種が好ましい。X41及びX42の炭素数は、1~10が好ましく、1~3がより好ましい。
【0236】
X41及びX42としては、同じか又は異なり、H-、F-、CH3-、CH3CH2-、CH3CH2CH2-、CF3-、CF3CF2-、CH2FCH2-及びCF3CF2CF2-からなる群より選択される少なくとも1種がより好ましい。
【0237】
化合物(7)は、以下の化合物のいずれかであることが好ましい。
【0238】
【0239】
化合物(8)は、以下の化合物のいずれかであることが好ましい。
【0240】
【0241】
上記電解液は、高温で保管した場合でも、容量保持率が一層低下しにくく、ガスの発生量が更に増加しにくいことから、上記電解液に対して、0.0001~15質量%の化合物(6)を含むことが好ましい。化合物(6)の含有量としては、0.01~10質量%がより好ましく、0.1~5質量%が更に好ましく、0.1~3.0質量%が特に好ましい。
【0242】
上記電解液が化合物(7)及び(8)の両方を含む場合、高温で保管した場合でも、容量保持率が一層低下しにくく、ガスの発生量が更に増加しにくいことから、上記電解液は、上記電解液に対して、0.08~2.50質量%の化合物(7)及び0.02~1.50質量%の化合物(8)を含むことが好ましく、0.80~2.50質量%の化合物(7)及び0.08~1.50質量%の化合物(8)を含むことがより好ましい。
【0243】
本開示の電解液は、下記一般式(9a)、(9b)及び(9c)で表されるニトリル化合物からなる群より選択される少なくとも1種を含んでもよい。
【化44】
(式中、R
a及びR
bは、それぞれ独立して、水素原子、シアノ基(CN)、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基を表す。nは1~10の整数を表す。)
【化45】
(式中、R
cは、水素原子、ハロゲン原子、アルキル基、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基、又は、NC-R
c1-X
c1-(R
c1はアルキレン基、X
c1は酸素原子又は硫黄原子を表す。)で表される基を表す。R
d及びR
eは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基を表す。mは1~10の整数を表す。)
【化46】
(式中、R
f、R
g、R
h及びR
iは、それぞれ独立して、シアノ基(CN)を含む基、水素原子(H)、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基を表す。ただし、R
f、R
g、R
h及びR
iのうち少なくとも1つはシアノ基を含む基である。lは1~3の整数を表す。)
これにより、電気化学デバイスの高温保存特性を向上させることができる。上記ニトリル化合物を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0244】
上記一般式(9a)において、Ra及びRbは、それぞれ独立して、水素原子、シアノ基(CN)、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である。
ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。中でもフッ素原子が好ましい。
アルキル基としては、炭素数1~5のものが好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基等が挙げられる。
アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基としては、上述したアルキル基の少なくとも一部の水素原子を上述したハロゲン原子で置換した基が挙げられる。
Ra及びRbがアルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である場合は、RaとRbとが互いに結合して環構造(例えば、シクロヘキサン環)を形成していてもよい。
Ra及びRbは、水素原子又はアルキル基であることが好ましい。
【0245】
上記一般式(9a)において、nは1~10の整数である。nが2以上である場合、n個のRaは全て同じであってもよく、少なくとも一部が異なっていてもよい。Rbについても同様である。nは、1~7の整数が好ましく、2~5の整数がより好ましい。
【0246】
上記一般式(9a)で表されるニトリル化合物としては、ジニトリル及びトリカルボニトリルが好ましい。
ジニトリルの具体例としては、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert-ブチルマロノニトリル、メチルスクシノニトリル、2,2-ジメチルスクシノニトリル、2,3-ジメチルスクシノニトリル、2,3,3-トリメチルスクシノニトリル、2,2,3,3-テトラメチルスクシノニトリル、2,3-ジエチル-2,3-ジメチルスクシノニトリル、2,2-ジエチル-3,3-ジメチルスクシノニトリル、ビシクロヘキシル-1,1-ジカルボニトリル、ビシクロヘキシル-2,2-ジカルボニトリル、ビシクロヘキシル-3,3-ジカルボニトリル、2,5-ジメチル-2,5-ヘキサンジカルボニトリル、2,3-ジイソブチル-2,3-ジメチルスクシノニトリル、2,2-ジイソブチル-3,3-ジメチルスクシノニトリル、2-メチルグルタロニトリル、2,3-ジメチルグルタロニトリル、2,4-ジメチルグルタロニトリル、2,2,3,3-テトラメチルグルタロニトリル、2,2,4,4-テトラメチルグルタロニトリル、2,2,3,4-テトラメチルグルタロニトリル、2,3,3,4-テトラメチルグルタロニトリル、1,4-ジシアノペンタン、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン、1,2-ジジアノベンゼン、1,3-ジシアノベンゼン、1,4-ジシアノベンゼン、3,3’-(エチレンジオキシ)ジプロピオニトリル、3,3’-(エチレンジチオ)ジプロピオニトリル、3,9-ビス(2-シアノエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ブタンニトリル、フタロニトリル等を例示できる。これらのうち、特に好ましいのはスクシノニトリル、グルタロニトリル、アジポニトリルである。
また、トリカルボニトリルの具体例としては、ペンタントリカルボニトリル、プロパントリカルボニトリル、1,3,5-ヘキサントリカルボニトリル、1,3,6-ヘキサントリカルボニトリル、ヘプタントリカルボニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル、シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン、トリシアノエチレン、トリス(2-シアノエチル)アミン等が挙げられ特に好ましいものは、1,3,6-ヘキサントリカルボニトリル、シクロヘキサントリカルボニトリルであり、最も好ましいものはシクロヘキサントリカルボニトリルである。
【0247】
上記一般式(9b)において、Rcは、水素原子、ハロゲン原子、アルキル基、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基、又は、NC-Rc1-Xc1-(Rc1はアルキレン基、Xc1は酸素原子又は硫黄原子を表す。)で表される基であり、Rd及びReは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である。
ハロゲン原子、アルキル基、及び、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基については、上記一般式(9a)について例示したものが挙げられる。
上記NC-Rc1-Xc1-におけるRc1はアルキレン基である。アルキレン基としては、炭素数1~3のアルキレン基が好ましい。
Rc、Rd及びReは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基であることが好ましい。
Rc、Rd及びReの少なくとも1つは、ハロゲン原子、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基であることが好ましく、フッ素原子、又は、アルキル基の少なくとも一部の水素原子をフッ素原子で置換した基であることがより好ましい。
Rd及びReがアルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である場合は、RdとReとが互いに結合して環構造(例えば、シクロヘキサン環)を形成していてもよい。
【0248】
上記一般式(9b)において、mは1~10の整数である。mが2以上である場合、m個のRdは全て同じであってもよく、少なくとも一部が異なっていてもよい。Reについても同様である。mは、2~7の整数が好ましく、2~5の整数がより好ましい。
【0249】
上記一般式(9b)で表されるニトリル化合物としては、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、3-メトキシプロピオニトリル、2-メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2-フルオロプロピオニトリル、3-フルオロプロピオニトリル、2,2-ジフルオロプロピオニトリル、2,3-ジフルオロプロピオニトリル、3,3-ジフルオロプロピオニトリル、2,2,3-トリフルオロプロピオニトリル、3,3,3-トリフルオロプロピオニトリル、3,3’-オキシジプロピオニトリル、3,3’-チオジプロピオニトリル、ペンタフルオロプロピオニトリル、メトキシアセトニトリル、ベンゾニトリル等が例示できる。これらのうち、特に好ましいのは,3,3,3-トリフルオロプロピオニトリルである。
【0250】
上記一般式(9c)において、Rf、Rg、Rh及びRiは、それぞれ独立して、シアノ基(CN)を含む基、水素原子、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である。
ハロゲン原子、アルキル基、及び、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基については、上記一般式(9a)について例示したものが挙げられる。
シアノ基を含む基としては、シアノ基のほか、アルキル基の少なくとも一部の水素原子をシアノ基で置換した基が挙げられる。この場合のアルキル基としては、上記一般式(9a)について例示したものが挙げられる。
Rf、Rg、Rh及びRiのうち少なくとも1つはシアノ基を含む基である。好ましくは、Rf、Rg、Rh及びRiのうち少なくとも2つがシアノ基を含む基であることであり、より好ましくは、Rh及びRiがシアノ基を含む基であることである。Rh及びRiがシアノ基を含む基である場合、Rf及びRgは、水素原子であることが好ましい。
【0251】
上記一般式(9c)において、lは1~3の整数である。lが2以上である場合、l個のRfは全て同じであってもよく、少なくとも一部が異なっていてもよい。Rgについても同様である。lは、1~2の整数が好ましい。
【0252】
上記一般式(9c)で表されるニトリル化合物としては、3-ヘキセンジニトリル、ムコノニトリル、マレオニトリル、フマロニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3-メチルクロトノニトリル、2-メチル-2-ブテンニトリル、2-ペンテンニトリル、2-メチル-2-ペンテンニトリル、3-メチル-2-ペンテンニトリル、2-ヘキセンニトリル等が例示され、3-ヘキセンジニトリル、ムコノニトリルが好ましく、特に3-ヘキセンジニトリルが好ましい。
【0253】
上記ニトリル化合物の含有量は、電解液に対して0.2~7質量%であることが好ましい。これにより、電気化学デバイスの高電圧での高温保存特性、安全性を一層向上させることができる。上記ニトリル化合物の含有量の合計の下限は0.3質量%がより好ましく、0.5質量%が更に好ましい。上限は5質量%がより好ましく、2質量%が更に好ましく、1.0質量%が特に好ましい。
【0254】
本開示の電解液は、イソシアナト基を有する化合物(以下、「イソシアネート」と略記する場合がある)を含んでもよい。上記イソシアネートとしては、特に限定されず、任意のイソシアネートを用いることができる。イソシアネートの例としては、モノイソシアネート類、ジイソシアネート類、トリイソシアネート類等が挙げられる。
【0255】
モノイソシアネート類の具体例としては、イソシアナトメタン、イソシアナトエタン、1-イソシアナトプロパン、1-イソシアナトブタン、1-イソシアナトペンタン、1-イソシアナトヘキサン、1-イソシアナトヘプタン、1-イソシアナトオクタン、1-イソシアナトノナン、1-イソシアナトデカン、イソシアナトシクロヘキサン、メトキシカルボニルイソシアネート、エトキシカルボニルイソシアネート、プロポキシカルボニルイソシアネート、ブトキシカルボニルイソシアネート、メトキシスルホニルイソシアネート、エトキシスルホニルイソシアネート、プロポキシスルホニルイソシアネート、ブトキシスルホニルイソシアネート、フルオロスルホニルイソシアネート、メチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート、エチルイソシアネート等が挙げられる。
【0256】
ジイソシアネート類の具体例としては、1,4-ジイソシアナトブタン、1,5-ジイソシアナトペンタン、1,6-ジイソシアナトヘキサン、1,7-ジイソシアナトヘプタン、1,8-ジイソシアナトオクタン、1,9-ジイソシアナトノナン、1,10-ジイソシアナトデカン、1,3-ジイソシアナトプロペン、1,4-ジイソシアナト-2-ブテン、1,4-ジイソシアナト-2-フルオロブタン、1,4-ジイソシアナト-2,3-ジフルオロブタン、1,5-ジイソシアナト-2-ペンテン、1,5-ジイソシアナト-2-メチルペンタン、1,6-ジイソシアナト-2-ヘキセン、1,6-ジイソシアナト-3-ヘキセン、1,6-ジイソシアナト-3-フルオロヘキサン、1,6-ジイソシアナト-3,4-ジフルオロヘキサン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2-ビス(イソシアナトメチル)シクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、1,2-ジイソシアナトシクロヘキサン、1,3-ジイソシアナトシクロヘキサン、1,4-ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン-1,1’-ジイソシアネート、ジシクロヘキシルメタン-2,2’-ジイソシアネート、ジシクロヘキシルメタン-3,3’-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、イソホロンジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチル=イソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチル=イソシアネート)、2,4,4-トリメチルヘキサメチレンジイソシアナート、2,2,4-トリメチルヘキサメチレンジイソシアナート、ヘキサメチレンジイソシアネート、1,4-フェニレンジイソシアネート、オクタメチレンジイソシアネート、テトラメチレンジイソシアネート等が挙げられる。
【0257】
トリイソシアネート類の具体例としては、1,6,11-トリイソシアナトウンデカン、4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4-(イソシアナトメチル)オクタメチレン=ジイソシアネート等が挙げられる。
【0258】
中でも、1,6-ジイソシアナトヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,4,4-トリメチルヘキサメチレンジイソシアナート、2,2,4-トリメチルヘキサメチレンジイソシアナートが、工業的に入手し易いものであり、電解液の製造コストが低く抑えられる点で好ましく、また技術的な観点からも安定な被膜状の構造物の形成に寄与することができ、より好適に用いられる。
【0259】
イソシアネートの含有量は、特に限定されず、本開示の効果を著しく損なわない限り任意であるが、電解液に対して、好ましくは0.001質量%以上、1.0質量%以下である。イソシアネートの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の初期の抵抗増加を避けることができる。イソシアネートの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは0.8質量%以下、更に好ましくは0.7質量%以下、特に好ましくは0.6質量%以下である。
【0260】
本開示の電解液は、環状スルホン酸エステルを含んでもよい。環状スルホン酸エステルとしては、特に限定されず、任意の環状スルホン酸エステルを用いることができる。環状スルホン酸エステルの例としては、飽和環状スルホン酸エステル、不飽和環状スルホン酸エステル、飽和環状ジスルホン酸エステル、不飽和環状ジスルホン酸エステル等が挙げられる。
【0261】
飽和環状スルホン酸エステルの具体例としては、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-メチル-1,3-プロパンスルトン、2-メチル-1,3-プロパンスルトン、3-メチル-1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、1-フルオロ-1,4-ブタンスルトン、2-フルオロ-1,4-ブタンスルトン、3-フルオロ-1,4-ブタンスルトン、4-フルオロ-1,4-ブタンスルトン、1-メチル-1,4-ブタンスルトン、2-メチル-1,4-ブタンスルトン、3-メチル-1,4-ブタンスルトン、4-メチル-1,4-ブタンスルトン、2,4-ブタンスルトン等が挙げられる。
【0262】
不飽和環状スルホン酸エステルの具体例としては、1-プロペン-1,3-スルトン、2-プロペン-1,3-スルトン、1-フルオロ-1-プロペン-1,3-スルトン、2-フルオロ-1-プロペン-1,3-スルトン、3-フルオロ-1-プロペン-1,3-スルトン、1-フルオロ-2-プロペン-1,3-スルトン、2-フルオロ-2-プロペン-1,3-スルトン、3-フルオロ-2-プロペン-1,3-スルトン、1-メチル-1-プロペン-1,3-スルトン、2-メチル-1-プロペン-1,3-スルトン、3-メチル-1-プロペン-1,3-スルトン、1-メチル-2-プロペン-1,3-スルトン、2-メチル-2-プロペン-1,3-スルトン、3-メチル-2-プロペン-1,3-スルトン、1-ブテン-1,4-スルトン、2-ブテン-1,4-スルトン、3-ブテン-1,4-スルトン、1-フルオロ-1-ブテン-1,4-スルトン、2-フルオロ-1-ブテン-1,4-スルトン、3-フルオロ-1-ブテン-1,4-スルトン、4-フルオロ-1-ブテン-1,4-スルトン、1-フルオロ-2-ブテン-1,4-スルトン、2-フルオロ-2-ブテン-1,4-スルトン、3-フルオロ-2-ブテン-1,4-スルトン、4-フルオロ-2-ブテン-1,4-スルトン、1,3-プロペンスルトン、1-フルオロ-3-ブテン-1,4-スルトン、2-フルオロ-3-ブテン-1,4-スルトン、3-フルオロ-3-ブテン-1,4-スルトン、4-フルオロ-3-ブテン-1,4-スルトン、1-メチル-1-ブテン-1,4-スルトン、2-メチル-1-ブテン-1,4-スルトン、3-メチル-1-ブテン-1,4-スルトン、4-メチル-1-ブテン-1,4-スルトン、1-メチル-2-ブテン-1,4-スルトン、2-メチル-2-ブテン-1,4-スルトン、3-メチル-2-ブテン-1,4-スルトン、4-メチル-2-ブテン-1,4-スルトン、1-メチル-3-ブテン-1,4-スルトン、2-メチル-3-ブテン-1,4-スルトン、3-メチル-3-ブテン-1,4-スルトン、4-メチル-3-ブテン-14-スルトン等が挙げられる。
【0263】
中でも、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-プロペン-1,3-スルトンが、入手の容易さや安定な被膜状の構造物の形成に寄与することができる点から、より好適に用いられる。環状スルホン酸エステルの含有量は、特に限定されず、本開示の効果を著しく損なわない限り任意であるが、電解液に対して、好ましくは0.001質量%以上、3.0質量%以下である。
【0264】
環状スルホン酸エステルの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の製造コストの増加を避けることができる。環状スルホン酸エステルの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは2.5質量%以下、更に好ましくは2.0質量%以下、特に好ましくは1.8質量%以下である。
【0265】
本開示の電解液は、更に、重量平均分子量が2000~4000であり、末端に-OH、-OCOOH、又は、-COOHを有するポリエチレンオキシドを含有してもよい。
このような化合物を含有することにより、電極界面の安定性が向上し、電気化学デバイスの特性を向上させることができる。
上記ポリエチレンオキシドとしては、例えば、ポリエチレンオキシドモノオール、ポリエチレンオキシドカルボン酸、ポリエチレンオキシドジオール、ポリエチレンオキシドジカルボン酸、ポリエチレンオキシドトリオール、ポリエチレンオキシドトリカルボン酸等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
なかでも、電気化学デバイスの特性がより良好となる点で、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールの混合物、及び、ポリエチレンカルボン酸とポリエチレンジカルボン酸の混合物であることが好ましい。
【0266】
上記ポリエチレンオキシドの重量平均分子量が小さすぎると、酸化分解されやすくなるおそれがある。上記重量平均分子量は、3000~4000がより好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算により測定することができる。
【0267】
上記ポリエチレンオキシドの含有量は、電解液中1×10-6~1×10-2mol/kgであることが好ましい。上記ポリエチレンオキシドの含有量が多すぎると、電気化学デバイスの特性を損なうおそれがある。
上記ポリエチレンオキシドの含有量は、5×10-6mol/kg以上であることがより好ましい。
【0268】
本開示の電解液は、添加剤として、更に、フッ素化飽和環状カーボネート、不飽和環状カーボネート、過充電防止剤、その他の公知の助剤等を含有していてもよい。これにより、電気化学デバイスの特性の低下を抑制することができる。
【0269】
フッ素化飽和環状カーボネートとしては、上述した一般式(A)で示される化合物が挙げられる。なかでも、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、モノフルオロメチルエチレンカーボネート、トリフルオロメチルエチレンカーボネート、2,2,3,3,3-ペンタフルオロプロピルエチレンカーボネート(4-(2,2,3,3,3-ペンタフルオロ-プロピル)-[1,3]ジオキソラン-2-オン)が好ましい。フッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0270】
上記フッ素化飽和環状カーボネートの含有量は、上記電解液に対して、0.001~10質量%であることが好ましく、0.01~5質量%であることがより好ましく、0.1~3質量%であることが更に好ましい。
【0271】
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環又は炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
【0272】
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート等が挙げられる。
【0273】
芳香環又は炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネート、4-アリル-5-エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5-ジフェニルエチレンカーボネート、4-フェニル-5-ビニルエチレンカーボネート、4-アリル-5-フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート、4-メチレン-1,3-ジオキソラン-2-オン、4,5-ジメチレン-1,3-ジオキソラン-2-オン、4-メチル-5-アリルエチレンカーボネート等が挙げられる。
【0274】
なかでも、不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネートが好ましい。また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートは更に安定な界面保護被膜を形成するので、特に好ましく、ビニレンカーボネートが最も好ましい。
【0275】
不飽和環状カーボネートの分子量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本開示の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
【0276】
不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
【0277】
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0278】
上記不飽和環状カーボネートの含有量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。上記不飽和環状カーボネートの含有量は、電解液100質量%中0.001質量%以上が好ましく、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上である。また、上記含有量は、5質量%以下が好ましく、より好ましくは4質量%以下、更に好ましくは3質量%以下である。上記範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
【0279】
不飽和環状カーボネートとしては、上述のような非フッ素化不飽和環状カーボネートの他、フッ素化不飽和環状カーボネートも好適に用いることができる。
フッ素化不飽和環状カーボネートは、不飽和結合とフッ素原子とを有する環状カーボネートである。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
【0280】
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
【0281】
フッ素化ビニレンカーボネート誘導体としては、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート等が挙げられる。
【0282】
芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート等が挙げられる。
【0283】
なかでも、フッ素化不飽和環状カーボネートとしては、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
【0284】
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、500以下である。この範囲であれば、電解液に対するフッ素化不飽和環状カーボネートの溶解性を確保しやすい。
【0285】
フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
【0286】
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フッ素化不飽和環状カーボネートの含有量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートの含有量は、通常、電解液100質量%中、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。この範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
【0287】
本開示の電解液は、三重結合を有する化合物を含んでいてもよい。分子内に三重結合を1つ以上有している化合物であれば特にその種類は限定されない。
三重結合を有する化合物の具体例としては、例えば、以下の化合物が挙げられる。
1-ペンチン、2-ペンチン、1-ヘキシン、2-ヘキシン、3-ヘキシン、1-ヘプチン、2-ヘプチン、3-ヘプチン、1-オクチン、2-オクチン、3-オクチン、4-オクチン、1-ノニン、2-ノニン、3-ノニン、4-ノニン、1-ドデシン、2-ドデシン、3-ドデシン、4-ドデシン、5-ドデシン、フェニルアセチレン、1-フェニル-1-プロピン、1-フェニル-2-プロピン、1-フェニル-1-ブチン、4-フェニル-1-ブチン、4-フェニル-1-ブチン、1-フェニル-1-ペンチン、5-フェニル-1-ペンチン、1-フェニル-1-ヘキシン、6-フェニル-1-ヘキシン、ジフェニルアセチレン、4-エチニルトルエン、ジシクロヘキシルアセチレン等の炭化水素化合物;
【0288】
2-プロピニルメチルカーボネート、2-プロピニルエチルカーボネート、2-プロピニルプロピルカーボネート、2-プロピニルブチルカーボネート、2-プロピニルフェニルカーボネート、2-プロピニルシクロヘキシルカーボネート、ジ-2-プロピニルカーボネート、1-メチル-2-プロピニルメチルカーボネート、1、1-ジメチル-2-プロピニルメチルカーボネート、2-ブチニルメチルカーボネート、3-ブチニルメチルカーボネート、2-ペンチニルメチルカーボネート、3-ペンチニルメチルカーボネート、4-ペンチニルメチルカーボネート等のモノカーボネート;2-ブチン-1,4-ジオールジメチルジカーボネート、2-ブチン-1,4-ジオールジエチルジカーボネート、2-ブチン-1,4-ジオールジプロピルジカーボネート、2-ブチン-1,4-ジオールジブチルジカーボネート、2-ブチン-1,4-ジオールジフェニルジカーボネート、2-ブチン-1,4-ジオールジシクロヘキシルジカーボネート等のジカーボネート;
【0289】
酢酸2-プロピニル、プロピオン酸2-プロピニル、酪酸2-プロピニル、安息香酸2-プロピニル、シクロヘキシルカルボン酸2-プロピニル、酢酸1、1-ジメチル-2-プロピニル、プロピオン酸1、1-ジメチル-2-プロピニル、酪酸1、1-ジメチル-2-プロピニル、安息香酸1、1-ジメチル-2-プロピニル、シクロヘキシルカルボン酸1、1-ジメチル-2-プロピニル、酢酸2-ブチニル、酢酸3-ブチニル、酢酸2-ペンチニル、酢酸3-ペンチニル、酢酸4-ペンチニル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ビニル、アクリル酸2-プロペニル、アクリル酸2-ブテニル、アクリル酸3-ブテニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ビニル、メタクリル酸2-プロペニル、メタクリル酸2-ブテニル、メタクリル酸3-ブテニル、2-プロピン酸メチル、2-プロピン酸エチル、2-プロピン酸プロピル、2-プロピン酸ビニル、2-プロピン酸2-プロペニル、2-プロピン酸2-ブテニル、2-プロピン酸3-ブテニル、2-ブチン酸メチル、2-ブチン酸エチル、2-ブチン酸プロピル、2-ブチン酸ビニル、2-ブチン酸2-プロペニル、2-ブチン酸2-ブテニル、2-ブチン酸3-ブテニル、3-ブチン酸メチル、3-ブチン酸エチル、3-ブチン酸プロピル、3-ブチン酸ビニル、3-ブチン酸2-プロペニル、3-ブチン酸2-ブテニル、3-ブチン酸3-ブテニル、2-ペンチン酸メチル、2-ペンチン酸エチル、2-ペンチン酸プロピル、2-ペンチン酸ビニル、2-ペンチン酸2-プロペニル、2-ペンチン酸2-ブテニル、2-ペンチン酸3-ブテニル、3-ペンチン酸メチル、3-ペンチン酸エチル、3-ペンチン酸プロピル、3-ペンチン酸ビニル、3-ペンチン酸2-プロペニル、3-ペンチン酸2-ブテニル、3-ペンチン酸3-ブテニル、4-ペンチン酸メチル、4-ペンチン酸エチル、4-ペンチン酸プロピル、4-ペンチン酸ビニル、4-ペンチン酸2-プロペニル、4-ペンチン酸2-ブテニル、4-ペンチン酸3-ブテニル等のモノカルボン酸エステル、フマル酸エステル、トリメチル酢酸メチル、トリメチル酢酸エチル;
【0290】
2-ブチン-1,4-ジオールジアセテート、2-ブチン-1,4-ジオールジプロピオネート、2-ブチン-1,4-ジオールジブチレート、2-ブチン-1,4-ジオールジベンゾエート、2-ブチン-1,4-ジオールジシクロヘキサンカルボキシレート、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオール、2,2-ジオキシド-1,2-オキサチオラン-4-イルアセテート、2,2-ジオキシド-1,2-オキサチオラン-4-イルアセテート等のジカルボン酸エステル;
【0291】
シュウ酸メチル2-プロピニル、シュウ酸エチル2-プロピニル、シュウ酸プロピル2-プロピニル、シュウ酸2-プロピニルビニル、シュウ酸アリル2-プロピニル、シュウ酸ジ-2-プロピニル、シュウ酸2-ブチニルメチル、シュウ酸2-ブチニルエチル、シュウ酸2-ブチニルプロピル、シュウ酸2-ブチニルビニル、シュウ酸アリル2-ブチニル、シュウ酸ジ-2-ブチニル、シュウ酸3-ブチニルメチル、シュウ酸3-ブチニルエチル、シュウ酸3-ブチニルプロピル、シュウ酸3-ブチニルビニル、シュウ酸アリル3-ブチニル、シュウ酸ジ-3-ブチニル等のシュウ酸ジエステル;
【0292】
メチル(2-プロピニル)(ビニル)ホスフィンオキシド、ジビニル(2-プロピニル)ホスフィンオキシド、ジ(2-プロピニル)(ビニル)ホスフィンオキシド、ジ(2-プロペニル)2(-プロピニル)ホスフィンオキシド、ジ(2-プロピニル)(2-プロペニル)ホスフィンオキシド、ジ(3-ブテニル)(2-プロピニル)ホスフィンオキシド、及びジ(2-プロピニル)(3-ブテニル)ホスフィンオキシド等のホスフィンオキシド;
【0293】
メチル(2-プロペニル)ホスフィン酸2-プロピニル、2-ブテニル(メチル)ホスフィン酸2-プロピニル、ジ(2-プロペニル)ホスフィン酸2-プロピニル、ジ(3-ブテニル)ホスフィン酸2-プロピニル、メチル(2-プロペニル)ホスフィン酸1,1-ジメチル-2-プロピニル、2-ブテニル(メチル)ホスフィン酸1,1-ジメチル-2-プロピニル、ジ(2-プロペニル)ホスフィン酸1,1-ジメチル-2-プロピニル、及びジ(3-ブテニル)ホスフィン酸1,1-ジメチル-2-プロピニル、メチル(2-プロピニル)ホスフィン酸2-プロペニル、メチル(2-プロピニル)ホスフィン酸3-ブテニル、ジ(2-プロピニル)ホスフィン酸2-プロペニル、ジ(2-プロピニル)ホスフィン酸3-ブテニル、2-プロピニル(2-プロペニル)ホスフィン酸2-プロペニル、及び2-プロピニル(2-プロペニル)ホスフィン酸3-ブテニル等のホスフィン酸エステル;
【0294】
2-プロペニルホスホン酸メチル2-プロピニル、2-ブテニルホスホン酸メチル(2-プロピニル)、2-プロペニルホスホン酸(2-プロピニル)(2-プロペニル)、3-ブテニルホスホン酸(3-ブテニル)(2-プロピニル)、2-プロペニルホスホン酸(1,1-ジメチル-2-プロピニル)(メチル)、2-ブテニルホスホン酸(1,1-ジメチル-2-プロピニル)(メチル)、2-プロペニルホスホン酸(1,1-ジメチル-2-プロピニル)(2-プロペニル)、及び3-ブテニルホスホン酸(3-ブテニル)(1,1-ジメチル-2-プロピニル)、メチルホスホン酸(2-プロピニル)(2-プロペニル)、メチルホスホン酸(3-ブテニル)(2-プロピニル)、メチルホスホン酸(1,1-ジメチル-2-プロピニル)(2-プロペニル)、メチルホスホン酸(3-ブテニル)(1,1-ジメチル-2-プロピニル)、エチルホスホン酸(2-プロピニル)(2-プロペニル)、エチルホスホン酸(3-ブテニル)(2-プロピニル)、エチルホスホン酸(1,1-ジメチル-2-プロピニル)(2-プロペニル)、及びエチルホスホン酸(3-ブテニル)(1,1-ジメチル-2-プロピニル)等のホスホン酸エステル;
【0295】
リン酸(メチル)(2-プロペニル)(2-プロピニル)、リン酸(エチル)(2-プロペニル)(2-プロピニル)、リン酸(2-ブテニル)(メチル)(2-プロピニル)、リン酸(2-ブテニル)(エチル)(2-プロピニル)、リン酸(1,1-ジメチル-2-プロピニル)(メチル)(2-プロペニル)、リン酸(1,1-ジメチル-2-プロピニル)(エチル)(2-プロペニル)、リン酸(2-ブテニル)(1,1-ジメチル-2-プロピニル)(メチル)、及びリン酸(2-ブテニル)(エチル)(1,1-ジメチル-2-プロピニル)等のリン酸エステル;
【0296】
これらのうち、アルキニルオキシ基を有する化合物は、電解液中でより安定に負極被膜を形成するため好ましい。
【0297】
更に、2-プロピニルメチルカーボネート、ジ-2-プロピニルカーボネート、2-ブチン-1,4-ジオールジメチルジカーボネート、酢酸2-プロピニル、2-ブチン-1,4-ジオールジアセテート、シュウ酸メチル2-プロピニル、シュウ酸ジ-2-プロピニル等の化合物が保存特性向上の点から特に好ましい。
【0298】
上記三重結合を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本開示の電解液全体に対する三重結合を有する化合物の配合量に制限は無く、本開示の効果を著しく損なわない限り任意であるが、本開示の電解液に対して、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、サイクル特性、高温保存特性等の効果がより向上する。
【0299】
本開示の電解液においては、電解液を用いた電気化学デバイスが過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
【0300】
過充電防止剤としては、ビフェニル、o-ターフェニル、m-ターフェニル、p-ターフェニル等の無置換又はアルキル基で置換されたターフェニル誘導体、無置換又はアルキル基で置換されたターフェニル誘導体の部分水素化物、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン、ジフェニルシクロヘキサン、1,1,3-トリメチル-3-フェニルインダン、シクロペンチルベンゼン、シクロヘキシルベンゼン、クメン、1,3-ジイソプロピルベンゼン、1,4-ジイソプロピルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、t-ヘキシルベンゼン、アニソール等の芳香族化合物;2-フルオロビフェニル、4-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼンフルオロベンゼン、フルオロトルエン、ベンゾトリフルオリド等の上記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、1,6-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物;3-プロピルフェニルアセテート、2-エチルフェニルアセテート、ベンジルフェニルアセテート、メチルフェニルアセテート、ベンジルアセテート、フェネチルフェニルアセテート等の芳香族アセテート類;ジフェニルカーボネート、メチルフェニルカーボネート等の芳香族カーボネート類、トルエン、キシレン等のトルエン誘導体、2-メチルビフェニル、3-メチルビフェニル、4-メチルビフェニル、o-シクロヘキシルビフェニル等の無置換又はアルキル基で置換されたビフェニル誘導体等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物、ジフェニルシクロヘキサン、1,1,3-トリメチル-3-フェニルインダン、3-プロピルフェニルアセテート、2-エチルフェニルアセテート、ベンジルフェニルアセテート、メチルフェニルアセテート、ベンジルアセテート、ジフェニルカーボネート、メチルフェニルカーボネート等が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt-ブチルベンゼン又はt-アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
【0301】
本開示に使用する電解液には、カルボン酸無水物(但し、化合物(6)を除く)を用いてもよい。下記一般式(10)で表される化合物が好ましい。カルボン酸無水物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
【0302】
一般式(10):
【化47】
(一般式(10)中、R
61、R
62はそれぞれ独立に、置換基を有していてもよい、炭素数1以上15以下の炭化水素基を表す。)
【0303】
R61、R62は、一価の炭化水素基であれば、その種類は特に制限されない。例えば、脂肪族炭化水素基であっても芳香族炭化水素基であってもよく、脂肪族炭化水素基と芳香族炭化水素基とが結合したものであってもよい。脂肪族炭化水素基は、飽和炭化水素基であってもよく、不飽和結合(炭素-炭素二重結合又は炭素-炭素三重結合)を含んでいてもよい。また、脂肪族炭化水素基は、鎖状であっても環状であってもよく、鎖状の場合は、直鎖状であっても分岐鎖状であってもよい。更には、鎖状と環状とが結合したものであってもよい。なお、R61及びR62は互いに同一であってもよく、異なっていてもよい。
【0304】
また、R61、R62の炭化水素基が置換基を有する場合、その置換基の種類は、本開示の趣旨に反するものでない限り特に制限されないが、例としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子が挙げられ、好ましくはフッ素原子である。又はロゲン原子以外の置換基として、エステル基、シアノ基、カルボニル基、エーテル基等の官能基を有する置換基等も挙げられ、好ましくはシアノ基、カルボニル基である。R61、R62の炭化水素基は、これらの置換基を一つのみ有していてもよく、二つ以上有していてもよい。二つ以上の置換基を有する場合、それらの置換基は同じであってもよく、互いに異なっていてもよい。
【0305】
R61、R62の各々の炭化水素基の炭素数は、通常1以上であり、また通常15以下、好ましくは12以下、より好ましくは10以下、更に好ましくは9以下である。R1とR2とが互いに結合して二価の炭化水素基を形成している場合は、その二価の炭化水素基の炭素数が、通常1以上であり、また通常15以下、好ましくは13以下、より好ましくは10以下、更に好ましくは8以下である。尚、R61、R62の炭化水素基が炭素原子を含有する置換基を有する場合は、その置換基も含めたR61、R62全体の炭素数が上記範囲を満たしていることが好ましい。
【0306】
次いで、上記一般式(10)で表わされる酸無水物の具体例について説明する。なお、以下の例示において「類縁体」とは、例示される酸無水物の構造の一部を、本開示の趣旨に反しない範囲で、別の構造に置き換えることにより得られる酸無水物を指すもので、例えば複数の酸無水物からなる二量体、三量体及び四量体等、又は、置換基の炭素数が同じではあるが分岐鎖を有する等構造異性のもの、置換基が酸無水物に結合する部位が異なるもの等が挙げられる。
【0307】
まず、R61、R62が同一である酸無水物の具体例を以下に挙げる。
【0308】
R61、R62が鎖状アルキル基である酸無水物の具体例としては、無水酢酸、プロピオン酸無水物、ブタン酸無水物、2-メチルプロピオン酸無水物、2,2-ジメチルプロピオン酸無水物、2-メチルブタン酸無水物、3-メチルブタン酸無水物、2,2-ジメチルブタン酸無水物、2,3-ジメチルブタン酸無水物、3,3-ジメチルブタン酸無水物、2,2,3-トリメチルブタン酸無水物、2,3,3-トリメチルブタン酸無水物、2,2,3,3-テトラメチルブタン酸無水物、2-エチルブタン酸無水物等、及びそれらの類縁体等が挙げられる。
【0309】
R61、R62が環状アルキル基である酸無水物の具体例としては、シクロプロパンカルボン酸無水物、シクロペンタンカルボン酸無水物、シクロヘキサンカルボン酸無水物等、及びそれらの類縁体等が挙げられる。
【0310】
R61、R62がアルケニル基である酸無水物の具体例としては、アクリル酸無水物、2-メチルアクリル酸無水物、3-メチルアクリル酸無水物、2,3-ジメチルアクリル酸無水物、3,3-ジメチルアクリル酸無水物、2,3,3-トリメチルアクリル酸無水物、2-フェニルアクリル酸無水物、3-フェニルアクリル酸無水物、2,3-ジフェニルアクリル酸無水物、3,3-ジフェニルアクリル酸無水物、3-ブテン酸無水物、2-メチル-3-ブテン酸無水物、2,2-ジメチル-3-ブテン酸無水物、3-メチル-3-テン酸無水物、2-メチル-3-メチル-3-ブテン酸無水物、2,2-ジメチル-3-メチル-3-ブテン酸無水物、3-ペンテン酸無水物、4-ペンテン酸無水物、2-シクロペンテンカルボン酸無水物、3-シクロペンテンカルボン酸無水物、4-シクロペンテンカルボン酸無水物等、及びそれらの類縁体等が挙げられる。
【0311】
R61、R62がアルキニル基である酸無水物の具体例としては、プロピン酸無水物、3-フェニルプロピン酸無水物、2-ブチン酸無水物、2-ペンチン酸無水物、3-ブチン酸無水物、3-ペンチン酸無水物、4-ペンチン酸無水物等、及びそれらの類縁体等が挙げられる。
【0312】
R61、R62がアリール基である酸無水物の具体例としては、安息香酸無水物、4-メチル安息香酸無水物、4-エチル安息香酸無水物、4-tert-ブチル安息香酸無水物、2-メチル安息香酸無水物、2,4,6-トリメチル安息香酸無水物、1-ナフタレンカルボン酸無水物、2-ナフタレンカルボン酸無水物等、及びそれらの類縁体等が挙げられる。
【0313】
また、R61、R62がハロゲン原子で置換された酸無水物の例として、主にフッ素原子で置換された酸無水物の例を以下に挙げるが、これらのフッ素原子の一部又は全部を塩素原子、臭素原子、ヨウ素原子に置換して得られる酸無水物も、例示化合物に含まれるものとする。
【0314】
R61、R62がハロゲン原子で置換された鎖状アルキル基である酸無水物の例としては、フルオロ酢酸無水物、ジフルオロ酢酸無水物、トリフルオロ酢酸無水物、2-フルオロプロピオン酸無水物、2,2-ジフルオロプロピオン酸無水物、2,3-ジフルオロプロピオン酸無水物、2,2,3-トリフルオロプロピオン酸無水物、2,3,3-トリフルオロプロピオン酸無水物、2,2,3,3-テトラプロピオン酸無水物、2,3,3,3-テトラプロピオン酸無水物、3-フルオロプロピオン酸無水物、3,3-ジフルオロプロピオン酸無水物、3,3,3-トリフルオロプロピオン酸無水物、パーフルオロプロピオン酸無水物等、及びそれらの類縁体等が挙げられる。
【0315】
R61、R62がハロゲン原子で置換された環状アルキル基である酸無水物の例としては、2-フルオロシクロペンタンカルボン酸無水物、3-フルオロシクロペンタンカルボン酸無水物、4-フルオロシクロペンタンカルボン酸無水物等、及びそれらの類縁体等が挙げられる。
【0316】
R61、R62がハロゲン原子で置換されたアルケニル基である酸無水物の例としては、2-フルオロアクリル酸無水物、3-フルオロアクリル酸無水物、2,3-ジフルオロアクリル酸無水物、3,3-ジフルオロアクリル酸無水物、2,3,3-トリフルオロアクリル酸無水物、2-(トリフルオロメチル)アクリル酸無水物、3-(トリフルオロメチル)アクリル酸無水物、2,3-ビス(トリフルオロメチル)アクリル酸無水物、2,3,3-トリス(トリフルオロメチル)アクリル酸無水物、2-(4-フルオロフェニル)アクリル酸無水物、3-(4-フルオロフェニル)アクリル酸無水物、2,3-ビス(4-フルオロフェニル)アクリル酸無水物、3,3-ビス(4-フルオロフェニル)アクリル酸無水物、2-フルオロ-3-ブテン酸無水物、2,2-ジフルオロ-3-ブテン酸無水物、3-フルオロ-2-ブテン酸無水物、4-フルオロ-3-ブテン酸無水物、3,4-ジフルオロ-3-ブテン酸無水物、3,3,4-トリフルオロ-3-ブテン酸無水物等、及びそれらの類縁体等が挙げられる。
【0317】
R61、R62がハロゲン原子で置換されたアルキニル基である酸無水物の例としては、3-フルオロ-2-プロピン酸無水物、3-(4-フルオロフェニル)-2-プロピン酸無水物、3-(2,3,4,5,6-ペンタフルオロフェニル)-2-プロピン酸無水物、4-フルオロ-2-ブチン酸無水物、4,4-ジフルオロ-2-ブチン酸無水物、4,4,4-トリフルオロ-2-ブチン酸無水物等、及びそれらの類縁体等が挙げられる。
【0318】
R61、R62がハロゲン原子で置換されたアリール基である酸無水物の例としては、4-フルオロ安息香酸無水物、2,3,4,5,6-ペンタフルオロ安息香酸無水物、4-トリフルオロメチル安息香酸無水物等、及びそれらの類縁体等が挙げられる。
【0319】
R61、R62がエステル、ニトリル、ケトン、エーテル等の官能基を有する置換基を有している酸無水物の例としては、メトキシギ酸無水物、エトキシギ酸無水物、メチルシュウ酸無水物、エチルシュウ酸無水物、2-シアノ酢酸無水物、2-オキソプロピオン酸無水物、3-オキソブタン酸無水物、4-アセチル安息香酸無水物、メトキシ酢酸無水物、4-メトキシ安息香酸無水物等、及びそれらの類縁体等が挙げられる。
【0320】
続いて、R61、R62が互いに異なる酸無水物の具体例を以下に挙げる。
【0321】
R61、R62としては上に挙げた例、及びそれらの類縁体の全ての組み合わせが考えられるが、以下に代表的な例を挙げる。
【0322】
鎖状アルキル基同士の組み合わせの例としては、酢酸プロピオン酸無水物、酢酸ブタン酸無水物、ブタン酸プロピオン酸無水物、酢酸2-メチルプロピオン酸無水物、等が挙げられる。
【0323】
鎖状アルキル基と環状アルキル基の組み合わせの例としては、酢酸シクロペンタン酸無水物、酢酸シクロヘキサン酸無水物、シクロペンタン酸プロピオン酸無水物、等が挙げられる。
【0324】
鎖状アルキル基とアルケニル基の組み合わせの例としては、酢酸アクリル酸無水物、酢酸3-メチルアクリル酸無水物、酢酸3-ブテン酸無水物、アクリル酸プロピオン酸無水物、等が挙げられる。
【0325】
鎖状アルキル基とアルキニル基の組み合わせの例としては、酢酸プロピン酸無水物、酢酸2-ブチン酸無水物、酢酸3-ブチン酸無水物、酢酸3-フェニルプロピン酸無水物プロピオン酸プロピン酸無水物、等が挙げられる。
【0326】
鎖状アルキル基とアリール基の組み合わせの例としては、酢酸安息香酸無水物、酢酸4-メチル安息香酸無水物、酢酸1-ナフタレンカルボン酸無水物、安息香酸プロピオン酸無水物、等が挙げられる。
【0327】
鎖状アルキル基と官能基を有する炭化水素基の組み合わせの例としては、酢酸フルオロ酢酸無水物、酢酸トリフルオロ酢酸無水物、酢酸4-フルオロ安息香酸無水物、フルオロ酢酸プロピオン酸無水物、酢酸アルキルシュウ酸無水物、酢酸2-シアノ酢酸無水物、酢酸2-オキソプロピオン酸無水物、酢酸メトキシ酢酸無水物、メトキシ酢酸プロピオン酸無水物、等が挙げられる。
【0328】
環状アルキル基同士の組み合わせの例としては、シクロペンタン酸シクロヘキサン酸無水物、等が挙げられる。
【0329】
環状アルキル基とアルケニル基の組み合わせの例としては、アクリル酸シクロペンタン酸無水物、3-メチルアクリル酸シクロペンタン酸無水物、3-ブテン酸シクロペンタン酸無水物、アクリル酸シクロヘキサン酸無水物、等が挙げられる。
【0330】
環状アルキル基とアルキニル基の組み合わせの例としては、プロピン酸シクロペンタン酸無水物、2-ブチン酸シクロペンタン酸無水物、プロピン酸シクロヘキサン酸無水物、等が挙げられる。
【0331】
環状アルキル基とアリール基の組み合わせの例としては、安息香酸シクロペンタン酸無水物、4-メチル安息香酸シクロペンタン酸無水物、安息香酸シクロヘキサン酸無水物、等が挙げられる。
【0332】
環状アルキル基と官能基を有する炭化水素基の組み合わせの例としては、フルオロ酢酸シクロペンタン酸無水物、シクロペンタン酸トリフルオロ酢酸無水物、シクロペンタン酸2-シアノ酢酸無水物、シクロペンタン酸メトキシ酢酸無水物、シクロヘキサン酸フルオロ酢酸無水物、等が挙げられる。
【0333】
アルケニル基同士の組み合わせの例としては、アクリル酸2-メチルアクリル酸無水物、アクリル酸3-メチルアクリル酸無水物、アクリル酸3-ブテン酸無水物、2-メチルアクリル酸3-メチルアクリル酸無水物、等が挙げられる。
【0334】
アルケニル基とアルキニル基の組み合わせの例としては、アクリル酸プロピン酸無水物、アクリル酸2-ブチン酸無水物、2-メチルアクリル酸プロピン酸無水物、等が挙げられる。
【0335】
アルケニル基とアリール基の組み合わせの例としては、アクリル酸安息香酸無水物、アクリル酸4-メチル安息香酸無水物、2-メチルアクリル酸安息香酸無水物、等が挙げられる。
【0336】
アルケニル基と官能基を有する炭化水素基の組み合わせの例としては、アクリル酸フルオロ酢酸無水物、アクリル酸トリフルオロ酢酸無水物、アクリル酸2-シアノ酢酸無水物、アクリル酸メトキシ酢酸無水物、2-メチルアクリル酸フルオロ酢酸無水物、等が挙げられる。
【0337】
アルキニル基同士の組み合わせの例としては、プロピン酸2-ブチン酸無水物、プロピン酸3-ブチン酸無水物、2-ブチン酸3-ブチン酸無水物、等が挙げられる。
【0338】
アルキニル基とアリール基の組み合わせの例としては、安息香酸プロピン酸無水物、4-メチル安息香酸プロピン酸無水物、安息香酸2-ブチン酸無水物、等が挙げられる。
【0339】
アルキニル基と官能基を有する炭化水素基の組み合わせの例としては、プロピン酸フルオロ酢酸無水物、プロピン酸トリフルオロ酢酸無水物、プロピン酸2-シアノ酢酸無水物、プロピン酸メトキシ酢酸無水物、2-ブチン酸フルオロ酢酸無水物、等が挙げられる。
【0340】
アリール基同士の組み合わせの例としては、安息香酸4-メチル安息香酸無水物、安息香酸1-ナフタレンカルボン酸無水物、4-メチル安息香酸1-ナフタレンカルボン酸無水物、等が挙げられる。
【0341】
アリール基と官能基を有する炭化水素基の組み合わせの例としては、安息香酸フルオロ酢酸無水物、安息香酸トリフルオロ酢酸無水物、安息香酸2-シアノ酢酸無水物、安息香酸メトキシ酢酸無水物、4-メチル安息香酸フルオロ酢酸無水物、等が挙げられる。
【0342】
官能基を有する炭化水素基同士の組み合わせの例としては、フルオロ酢酸トリフルオロ酢酸無水物、フルオロ酢酸2-シアノ酢酸無水物、フルオロ酢酸メトキシ酢酸無水物、トリフルオロ酢酸2-シアノ酢酸無水物、等が挙げられる。
【0343】
上記の鎖状構造を形成している酸無水物のうち好ましくは、無水酢酸、プロピオン酸無水物、2-メチルプロピオン酸無水物、シクロペンタンカルボン酸無水物、シクロヘキサンカルボン酸無水物等、アクリル酸無水物、2-メチルアクリル酸無水物、3-メチルアクリル酸無水物、2,3-ジメチルアクリル酸無水物、3,3-ジメチルアクリル酸無水物、3-ブテン酸無水物、2-メチル-3-ブテン酸無水物、プロピン酸無水物、2-ブチン酸無水物、安息香酸無水物、2-メチル安息香酸無水物、4-メチル安息香酸無水物、4-tert-ブチル安息香酸無水物、トリフルオロ酢酸無水物、3,3,3-トリフルオロプロピオン酸無水物、2-(トリフルオロメチル)アクリル酸無水物、2-(4-フルオロフェニル)アクリル酸無水物、4-フルオロ安息香酸無水物、2,3,4,5,6-ペンタフルオロ安息香酸無水物、メトキシギ酸無水物、エトキシギ酸無水物、であり、より好ましくは、アクリル酸無水物、2-メチルアクリル酸無水物、3-メチルアクリル酸無水物、安息香酸無水物、2-メチル安息香酸無水物、4-メチル安息香酸無水物、4-tert-ブチル安息香酸無水物、4-フルオロ安息香酸無水物、2,3,4,5,6-ペンタフルオロ安息香酸無水物、メトキシギ酸無水物、エトキシギ酸無水物である。
【0344】
これらの化合物は、適切にリチウムオキサラート塩との結合を形成して耐久性に優れる皮膜を形成することで、特に耐久試験後の充放電レート特性、入出力特性、インピーダンス特性を向上させることができる観点で好ましい。
【0345】
なお、上記カルボン酸無水物の分子量に制限は無く、本開示の効果を著しく損なわない限り任意であるが、通常90以上、好ましくは95以上であり、一方、通常300以下、好ましくは200以下である。カルボン酸無水物の分子量が上記範囲内であると、電解液の粘度上昇を抑制でき、かつ皮膜密度が適正化されるために耐久性を適切に向上することができる。
【0346】
また、上記カルボン酸無水物の製造方法にも特に制限は無く、公知の方法を任意に選択して製造することが可能である。以上説明したカルボン酸無水物は、本開示の非水系電解液中に、何れか1種を単独で含有させてもよく、2種以上を任意の組み合わせ及び比率で併有させてもよい。
【0347】
また、本開示の電解液に対する上記カルボン酸無水物の含有量に特に制限は無く、本開示の効果を著しく損なわない限り任意であるが、本開示の電解液に対して、通常0.01質量%以上、好ましくは0.1質量%以上、また、通常5質量%以下、好ましくは3質量%以下の濃度で含有させることが望ましい。カルボン酸無水物の含有量が上記範囲内であると、サイクル特性向上効果が発現しやすくなり、また反応性が好適であるため電池特性が向上しやすくなる。
【0348】
本開示の電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、ペンタン、ヘプタン、オクタン、ノナン、デカン、シクロヘプタン、ベンゼン、フラン、ナフタレン、2-フェニルビシクロヘキシル、シクロヘキサン、2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ジビニル-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド、モノフルオロベンゼン、1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-4-tert-ブチルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-2-シクロヘキシルベンゼン、フッ素化ビフェニル等の含フッ素芳香族化合物;
エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート等のカーボネート化合物;
ジオキソラン、ジオキサン、2,5,8,11-テトラオキサドデカン、2,5,8,11,14-ペンタオキサペンタデカン、エトキシメトキシエタン、トリメトキシメタン、グライム、エチルモノグライム等のエーテル系化合物;
ジメチルケトン、ジエチルケトン、3-ペンタノン等のケトン系化合物;
2-アリル無水コハク酸等の酸無水物;
シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸エチルメチル、シュウ酸ジ(2-プロピニル)、シュウ酸メチル2-プロピニル、コハク酸ジメチル、グルタル酸ジ(2-プロピニル)、ギ酸メチル、ギ酸エチル、ギ酸2-プロピニル、2-ブチン-1,4-ジイルジホルメート、メタクリル酸2-プロピニル、マロン酸ジメチル等のエステル化合物;
アセトアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系化合物;
硫酸エチレン、硫酸ビニレン、亜硫酸エチレン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2-ビス(ビニルスルホニロキシ)エタン、無水プロパンジスルホン酸、無水スルホ酪酸、無水スルホ安息香酸、無水スルホプロピオン酸、無水エタンジスルホン酸、メチレンメタンジスルホネート、メタンスルホン酸2-プロピニル、ペンテンサルファイト、ペンタフルオロフェニルメタンスルホネート、プロピレンサルフェート、プロピレンサルファイト、プロパンサルトン、ブチレンサルファイト、ブタン-2,3-ジイルジメタンスルホネート、2-ブチン-1,4-ジイルジメタンスルホネート、ビニルスルホン酸2-プロピニル、ビス(2-ビニルスルホニルエチル)エーテル、5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、5,5-ジメチル-1,2-オキサチオラン-4-オン2,2-ジオキシド、3-スルホ-プロピオン酸無水物トリメチレンメタンジスルホネート2-メチルテトラヒドロフラン、トリメチレンメタンジスルホネート、テトラメチレンスルホキシド、ジメチレンメタンジスルホネート、ジフルオロエチルメチルスルホン、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、エチレンビススルホン酸メチル、エチレンビススルホン酸エチル、エチレンサルフェート、チオフェン1-オキシド等の含硫黄化合物;
1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド、ニトロメタン、ニトロエタン、エチレンジアミン等の含窒素化合物;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチルリン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸トリブチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、リン酸トリオクチル、リン酸2-フェニルフェニルジメチル、リン酸2-フェニルフェニルジエチル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、メチル2-(ジメトキシホスホリル)アセテート、メチル2-(ジメチルホスホリル)アセテート、メチル2-(ジエトキシホスホリル)アセテート、メチル2-(ジエチルホスホリル)アセテート、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、酢酸2-プロピニル2-(ジメトキシホスホリル)、酢酸2-プロピニル2-(ジメチルホスホリル)、酢酸2-プロピニル2-(ジエトキシホスホリル)、酢酸2-プロピニル2-(ジエチルホスホリル)、リン酸トリス(トリメチルシリル)、リン酸トリス(トリエチルシリル)、リン酸トリス(t-ブチルジメチルシリル)、リン酸トリス(トリメトキシシリル)、亜リン酸トリス(トリメチルシリル)、亜リン酸トリス(トリエチルシリル)、亜リン酸トリス(t-ブチルジメチルシリル)、亜リン酸トリス(トリメトキシシリル)、ポリリン酸トリメチルシリル等の含燐化合物;
ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(トリメトキシシリル)等の含ホウ素化合物;
ジメトキシアルミノキシトリメトキシシラン、ジエトキシアルミノキシトリエトキシシラン、ジプロポキシアルミノキシトリエトキシシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエトキシシラン、チタンテトラキス(トリメチルシロキシド)、チタンテトラキス(トリエチルシロキシド)、テトラメチルシラン等のシラン化合物;
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
上記その他の助剤としては、なかでも、含燐化合物が好ましく、リン酸トリス(トリメチルシリル)、亜リン酸(トリストリメチルシリル)が好ましい。
【0349】
その他の助剤の配合量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。その他の助剤は、電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
【0350】
本開示の電解液は、本開示の効果を損なわない範囲で、上記一般式(2)で表されるフッ素化エーテルに該当しないエーテル化合物、環状及び鎖状カルボン酸エステル、窒素含有化合物、ホウ素含有化合物、有機珪素含有化合物、不燃(難燃)化剤、界面活性剤、高誘電化添加剤、サイクル特性及びレート特性改善剤、スルホン系化合物等を添加剤として更に含有してもよい。
【0351】
上記エーテル化合物としては、炭素数2~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
炭素数2~10の鎖状エーテルとしては、ジメチルエーテル、ジエチルエーテル、ジ-n-ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、ジエトキシメタン、ジメトキシエタン、メトキシエトキシエタン、ジエトキシエタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコール、ジエチレングリコールジメチルエーテル、ペンタエチレングリコール、トリエチレングリコールジメチルエーテル、トリエチレングリコール、テトラエチレングリコール、テトラエチレングリコールジメチルエーテル、ジイソプロピルエーテル等が挙げられる。
【0352】
炭素数3~6の環状エーテルとしては、1,2-ジオキサン、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン、メタホルムアルデヒド、2-メチル-1,3-ジオキソラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、2-(トリフルオロエチル)ジオキソラン2,2,-ビス(トリフルオロメチル)-1,3-ジオキソラン等、及びこれらのフッ素化化合物が挙げられる。中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコール-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、クラウンエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離度を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
【0353】
上記環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3~12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン、3-メチル-γ-ブチロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電気化学デバイスの特性向上の点から特に好ましい。
【0354】
添加剤としての環状カルボン酸エステルの配合量は、通常、溶媒100質量%中、好ましくは0.1質量%以上、より好ましくは1質量%以上である。この範囲であると、電解液の電気伝導率を改善し、電気化学デバイスの大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは10質量%以下、より好ましくは5質量%以下である。このように上限を設定することにより、電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、電気化学デバイスの大電流放電特性を良好な範囲としやすくする。
【0355】
また、上記環状カルボン酸エステルとしては、フッ素化環状カルボン酸エステル(含フッ素ラクトン)も好適に用いることができる。含フッ素ラクトンとしては、としては、例えば、下記式(C):
【0356】
【0357】
(式中、X15~X20は同じか又は異なり、いずれも-H、-F、-Cl、-CH3又はフッ素化アルキル基;ただし、X15~X20の少なくとも1つはフッ素化アルキル基である)
で示される含フッ素ラクトンが挙げられる。
【0358】
X15~X20におけるフッ素化アルキル基としては、例えば、-CFH2、-CF2H、-CF3、-CH2CF3、-CF2CF3、-CH2CF2CF3、-CF(CF3)2等が挙げられ、耐酸化性が高く、安全性向上効果がある点から-CH2CF3、-CH2CF2CF3が好ましい。
【0359】
X15~X20の少なくとも1つがフッ素化アルキル基であれば、-H、-F、-Cl、-CH3又はフッ素化アルキル基は、X15~X20の1箇所のみに置換していてもよいし、複数の箇所に置換していてもよい。好ましくは、電解質塩の溶解性が良好な点から1~3箇所、更に好ましくは1~2箇所である。
【0360】
フッ素化アルキル基の置換位置は特に限定されないが、合成収率が良好なことから、X17及び/又はX18が、特にX17又はX18がフッ素化アルキル基、なかでも-CH2CF3、-CH2CF2CF3であることが好ましい。フッ素化アルキル基以外のX15~X20は、-H、-F、-Cl又はCH3であり、特に電解質塩の溶解性が良好な点から-Hが好ましい。
【0361】
含フッ素ラクトンとしては、上記式で示されるもの以外にも、例えば、下記式(D):
【0362】
【0363】
(式中、A及びBはいずれか一方がCX226X227(X226及びX227は同じか又は異なり、いずれも-H、-F、-Cl、-CF3、-CH3又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキレン基)であり、他方は酸素原子;Rf12はエーテル結合を有していてもよいフッ素化アルキル基又はフッ素化アルコキシ基;X221及びX222は同じか又は異なり、いずれも-H、-F、-Cl、-CF3又はCH3;X223~X225は同じか又は異なり、いずれも-H、-F、-Cl又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0又は1)
で示される含フッ素ラクトン等も挙げられる。
【0364】
式(D)で示される含フッ素ラクトンとしては、下記式(E):
【0365】
【0366】
(式中、A、B、Rf12、X221、X222及びX223は式(D)と同じである)
で示される5員環構造が、合成が容易である点、化学的安定性が良好な点から好ましく挙げられ、更には、AとBの組合せにより、下記式(F):
【0367】
【0368】
(式中、Rf12、X221、X222、X223、X226及びX227は式(D)と同じである)
で示される含フッ素ラクトンと、下記式(G):
【0369】
【0370】
(式中、Rf12、X221、X222、X223、X226及びX227は式(D)と同じである)
で示される含フッ素ラクトンがある。
【0371】
これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本開示における電解液としての特性が向上する点から、
【0372】
【化53】
等が挙げられる。
フッ素化環状カルボン酸エステルを含有させることにより、イオン伝導度の向上、安全性の向上、高温時の安定性向上といった効果が得られる。
【0373】
上記鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3~7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソブチル、プロピオン酸-n-ブチル、メチルブチレート、プロピオン酸イソブチル、プロピオン酸-t-ブチル、酪酸メチル、酪酸エチル、酪酸-n-プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸-n-プロピル、イソ酪酸イソプロピル等が挙げられる。
【0374】
中でも、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸-n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が粘度低下によるイオン伝導度の向上の点から好ましい。
【0375】
上記窒素含有化合物としては、ニトリル、含フッ素ニトリル、カルボン酸アミド、含フッ素カルボン酸アミド、スルホン酸アミド及び含フッ素スルホン酸アミド、アセトアミド、ホルムアミド等が挙げられる。また、1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサジリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド等も使用できる。ただし、上記一般式(1a)、(1b)及び(1c)で表されるニトリル化合物は上記窒素含有化合物に含めないものとする。
【0376】
上記ホウ素含有化合物としては、例えば、トリメチルボレート、トリエチルボレート等のホウ酸エステル、ホウ酸エーテル、及び、ホウ酸アルキル等が挙げられる。
【0377】
上記有機珪素含有化合物としては、例えば、(CH3)4-Si、(CH3)3-Si-Si(CH3)3、シリコンオイル等が挙げられる。
【0378】
上記不燃(難燃)化剤としては、リン酸エステルやホスファゼン系化合物が挙げられる。上記リン酸エステルとしては、例えば、含フッ素アルキルリン酸エステル、非フッ素系アルキルリン酸エステル、アリールリン酸エステル等が挙げられる。なかでも、少量で不燃効果を発揮できる点で、含フッ素アルキルリン酸エステルであることが好ましい。
【0379】
上記ホスファゼン系化合物は例えば、メトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、ジメチルアミノペンタフルオロシクロトリホスファゼン、ジエチルアミノペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、エトキシヘプタフルオロシクロテトラホスファゼン等が挙げられる。
【0380】
上記含フッ素アルキルリン酸エステルとしては、具体的には、特開平11-233141号公報に記載された含フッ素ジアルキルリン酸エステル、特開平11-283669号公報に記載された環状のアルキルリン酸エステル、又は、含フッ素トリアルキルリン酸エステル等が挙げられる。
【0381】
上記不燃(難燃)化剤としては、(CH3O)3P=O、(CF3CH2O)3P=O、(HCF2CH2O)3P=O、(CF3CF2CH2)3P=O、(HCF2CF2CH2)3P=O等が好ましい。
【0382】
上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、サイクル特性、レート特性が良好となる点から、フッ素原子を含むものであることが好ましい。
【0383】
このようなフッ素原子を含む界面活性剤としては、例えば、下記式(30):
Rf8COO-M+ (30)
(式中、Rf8は炭素数3~10のエーテル結合を含んでいてもよい含フッ素アルキル基;M+はLi+、Na+、K+又はNHR’3
+(R’は同じか又は異なり、いずれもH又は炭素数が1~3のアルキル基)である)
で表される含フッ素カルボン酸塩や、下記式(40):
Rf9SO3
-M+ (40)
(式中、Rf9は炭素数3~10のエーテル結合を含んでいてもよい含フッ素アルキル基;M+はLi+、Na+、K+又はNHR’3
+(R’は同じか又は異なり、いずれもH又は炭素数が1~3のアルキル基)である)
で表される含フッ素スルホン酸塩等が好ましい。
【0384】
上記界面活性剤の含有量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させることができる点から、電解液中0.01~2質量%であることが好ましい。
【0385】
上記高誘電化添加剤としては、例えば、スルホラン、メチルスルホラン、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。
【0386】
上記サイクル特性及びレート特性改善剤としては、例えば、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
【0387】
また、本開示の電解液は、更に高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。
【0388】
かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8-222270号公報、特開2002-100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ素樹脂(特表平4-506726号公報、特表平8-507407号公報、特開平10-294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11-35765号公報、特開平11-86630号公報)等が挙げられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体をゲル電解質用高分子材料として用いることが望ましい。
【0389】
そのほか、本開示の電解液は、特願2004-301934号明細書に記載されているイオン伝導性化合物も含んでいてもよい。
【0390】
このイオン伝導性化合物は、式(101):
A-(D)-B (101)
[式中、Dは式(201):
-(D1)n-(FAE)m-(AE)p-(Y)q- (201)
(式中、D1は、式(10a):
【0391】
【0392】
(式中、Rfは架橋性官能基を有していてもよい含フッ素エーテル基;R10はRfと主鎖を結合する基又は結合手)
で示される側鎖に含フッ素エーテル基を有するエーテル単位;
FAEは、式(10b):
【0393】
【0394】
(式中、Rfaは水素原子、架橋性官能基を有していてもよいフッ素化アルキル基;R11はRfaと主鎖を結合する基又は結合手)
で示される側鎖にフッ素化アルキル基を有するエーテル単位;
AEは、式(10c):
【0395】
【0396】
(式中、R13は水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基を有していてもよい脂肪族環式炭化水素基又は架橋性官能基を有していてもよい芳香族炭化水素基;R12はR13と主鎖を結合する基又は結合手)
で示されるエーテル単位;
Yは、式(10d-1)~(10d-3):
【0397】
【0398】
の少なくとも1種を含む単位;
nは0~200の整数;mは0~200の整数;pは0~10000の整数;qは1~100の整数;ただしn+mは0ではなく、D1、FAE、AE及びYの結合順序は特定されない);
A及びBは同じか又は異なり、水素原子、フッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基、フッ素原子及び/又は架橋性官能基を含んでいてもよいフェニル基、-COOH基、-OR(Rは水素原子又はフッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基)、エステル基又はカーボネート基(ただし、Dの末端が酸素原子の場合は-COOH基、-OR、エステル基及びカーボネート基ではない)]
で表される側鎖に含フッ素基を有する非晶性含フッ素ポリエーテル化合物である。
【0399】
本開示の電解液は、スルホン系化合物を含んでもよい。スルホン系化合物としては、炭素数3~6の環状スルホン、及び炭素数2~6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
【0400】
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
【0401】
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と略記する場合がある。)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
【0402】
中でも、2-メチルスルホラン、3-メチルスルホラン、2-フルオロスルホラン、3-フルオロスルホラン、2,2-ジフルオロスルホラン、2,3-ジフルオロスルホラン、2,4-ジフルオロスルホラン、2,5-ジフルオロスルホラン、3,4-ジフルオロスルホラン、2-フルオロ-3-メチルスルホラン、2-フルオロ-2-メチルスルホラン、3-フルオロ-3-メチルスルホラン、3-フルオロ-2-メチルスルホラン、4-フルオロ-3-メチルスルホラン、4-フルオロ-2-メチルスルホラン、5-フルオロ-3-メチルスルホラン、5-フルオロ-2-メチルスルホラン、2-フルオロメチルスルホラン、3-フルオロメチルスルホラン、2-ジフルオロメチルスルホラン、3-ジフルオロメチルスルホラン、2-トリフルオロメチルスルホラン、3-トリフルオロメチルスルホラン、2-フルオロ-3-(トリフルオロメチル)スルホラン、3-フルオロ-3-(トリフルオロメチル)スルホラン、4-フルオロ-3-(トリフルオロメチル)スルホラン、3-スルホレン、5-フルオロ-3-(トリフルオロメチル)スルホラン等が、イオン伝導度が高く入出力が高い点で好ましい。
【0403】
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n-プロピルメチルスルホン、n-プロピルエチルスルホン、ジ-n-プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n-ブチルメチルスルホン、n-ブチルエチルスルホン、t-ブチルメチルスルホン、t-ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル-n-プロピルスルホン、ジフルオロメチル-n-プロピルスルホン、トリフルオロメチル-n-プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル-n-プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル-n-プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル-n-ブチルスルホン、トリフルオロエチル-t-ブチルスルホン、ペンタフルオロエチル-n-ブチルスルホン、ペンタフルオロエチル-t-ブチルスルホン等が挙げられる。
【0404】
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n-プロピルメチルスルホン、イソプロピルメチルスルホン、n-ブチルメチルスルホン、t-ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル-n-プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル-n-ブチルスルホン、トリフルオロエチル-t-ブチルスルホン、トリフルオロメチル-n-ブチルスルホン、トリフルオロメチル-t-ブチルスルホン等が、イオン伝導度が高く入出力が高い点で好ましい。
【0405】
スルホン系化合物の含有量は、特に制限されず、本開示の効果を著しく損なわない限り任意であるが、上記溶媒100体積%中、通常0.3体積%以上、好ましくは0.5体積%以上、より好ましくは1体積%以上であり、また、通常40体積%以下、好ましくは35体積%以下、より好ましくは30体積%以下である。スルホン系化合物の含有量が上記範囲内であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液二次電池の入出力特性や充放電レート特性を適正な範囲とすることができる。
【0406】
本開示の電解液は、出力特性向上の観点から、添加剤として、フルオロリン酸リチウム塩類(但し、LiPF6を除く)及びS=O基を有するリチウム塩類からなる群より選択される少なくとも1種の化合物(11)を含むことも好ましい。
なお、添加剤として化合物(11)を使用する場合、上述した電解質塩としては、化合物(11)以外の化合物を使用することが好ましい。
【0407】
上記フルオロリン酸リチウム塩類としては、モノフルオロリン酸リチウム(LiPO3F)、ジフルオロリン酸リチウム(LiPO2F2)等が挙げられる。
上記S=O基を有するリチウム塩類としては、モノフルオロスルホン酸リチウム(FSO3Li)、メチル硫酸リチウム(CH3OSO3Li)、エチル硫酸リチウム(C2H5OSO3Li)、2,2,2-トリフルオロエチル硫酸リチウム等が挙げられる。
化合物(11)としては、中でも、LiPO2F2、FSO3Li、C2H5OSO3Liが好ましい。
【0408】
化合物(11)の含有量は、上記電解液に対し、0.001~20質量%であることが好ましく、0.01~15質量%であることがより好ましく、0.1~10質量%であることが更に好ましく、0.1~7質量%であることが特に好ましい。
【0409】
本開示の電解液には必要に応じて、更に他の添加剤を配合してもよい。他の添加剤としては、例えば、金属酸化物、ガラス等が挙げられる。
【0410】
本開示の電解液は、フッ化水素(HF)の含有量が5~200ppmであることが好ましい。HFを含有することにより、上述した添加剤の被膜形成を促進させることができる。HFの含有量が少なすぎると、負極上での被膜形成能力が下がり、電気化学デバイスの特性が低下する傾向がある。また、HF含有量が多すぎると、HFの影響により電解液の耐酸化性が低下する傾向がある。本開示の電解液は、上記範囲のHFを含有しても、電気化学デバイスの高温保存性回復容量率を低下させることがない。
HFの含有量は、10ppm以上がより好ましく、20ppm以上が更に好ましい。HFの含有量はまた、100ppm以下がより好ましく、80ppm以下が更に好ましく、50ppm以下が特に好ましい。
HFの含有量は、中和滴定法により測定することができる。
【0411】
本開示の電解液は、上述した成分を用いて、任意の方法で調製するとよい。
【0412】
本開示の電解液は、例えば、ナトリウムイオン二次電池、リチウムイオン二次電池、リチウムイオンキャパシタ、ハイブリッドキャパシタ、電気二重層キャパシタ等の電気化学デバイスに好適に適用することができる。本開示の電解液を備える電気化学デバイスもまた、本開示の一つである。
【0413】
(電気化学デバイス)
上記電気化学デバイスとしては特に限定されず、従来公知の電気化学デバイスに適用することができる。具体的には、ナトリウムイオン電池、リチウムイオン電池等の二次電池、リチウム電池等の一次電池、マグネシウムイオン電池、ラジカル電池、太陽電池(特に色素増感型太陽電池)、燃料電池;
リチウムイオンキャパシタ、ハイブリッドキャパシタ、電気化学キャパシタ、電気二重層キャパシタ等のキャパシタ;
アルミニウム電解コンデンサ、タンタル電解コンデンサ等の各種コンデンサ;
エレクトロミック素子、電気化学スイッチング素子、各種電気化学センサー等を挙げることができる。
【0414】
なかでも、高容量で出力が大きいために、多量の金属イオンの移動による体積変化が大きなものとなる二次電池にも好適に使用することができる。
上記二次電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン、ナトリウムイオン等)を吸蔵・放出可能な正極及び負極と、上記本開示の電解液とを備える。本開示の電解液を備える二次電池もまた、本開示の一つである。
以下、本開示の電解液を備える二次電池について説明する。
【0415】
本開示はまた、本開示の電解液を備えるリチウムイオン二次電池又はナトリウムイオン二次電池にも関する。上記二次電池は、正極、負極、及び、上述の電解液を備えることが好ましい。本開示の電解液を備えるナトリウムイオン二次電池もまた、本開示の一つである。
【0416】
<正極>
正極は、正極活物質を含む正極活物質層と、集電体とから構成されることが好ましい。
【0417】
上記正極活物質としては、電気化学的にアルカリ金属イオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、アルカリ金属と少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、アルカリ金属含有遷移金属複合酸化物、アルカリ金属含有遷移金属リン酸化合物が挙げられる。なかでも、正極活物質としては、特に、高電圧を産み出すアルカリ金属含有遷移金属複合酸化物が好ましい。上記アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。好ましい態様において、アルカリ金属イオンは、リチウムイオン又はナトリウムイオンであり得る。即ち、この態様において、アルカリ金属イオン二次電池は、リチウムイオン二次電池又はナトリウムイオン二次電池である。
【0418】
上記アルカリ金属含有遷移金属複合酸化物としては、例えば、
式(3-1):MaMn2-bM1
bO4
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0.9≦a;0≦b≦1.5;M1はFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、
式(3-2):MNi1-cM2
cO2
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦c≦0.5;M2はFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、または、
式(3-3):MCo1-dM3
dO2
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦d≦0.5;M3はFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)
で表されるリチウム・コバルト複合酸化物が挙げられる。上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaである。
【0419】
なかでも、エネルギー密度が高く、高出力な二次電池を提供できる点から、MCoO2、MMnO2、MNiO2、MMn2O4、MNi0.8Co0.15Al0.05O2、またはMNi1/3Co1/3Mn1/3O2等が好ましく、下記式(3-4)で表される化合物であることが好ましい。
MNihCoiMnjM5
kO2 (3-4)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、M5はFe、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeからなる群より選択される少なくとも1種を示し、(h+i+j+k)=1.0、0≦h≦1.0、0≦i≦1.0、0≦j≦1.5、0≦k≦0.2である。)
【0420】
上記アルカリ金属含有遷移金属リン酸化合物としては、例えば、下記式(70)
MeM4
f(PO4)g
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、M4はV、Ti、Cr、Mn、Fe、Co、Ni及びCuからなる群より選択される少なくとも1種を示し、0.5≦e≦3、1≦f≦2、1≦g≦3)で表される化合物が挙げられる。上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaである。
【0421】
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO4、Li3Fe2(PO4)3、LiFeP2O7等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。
上記リチウム含有遷移金属リン酸化合物としては、オリビン型構造を有するものが好ましい。
【0422】
その他の正極活物質としては、MFePO4、MNi0.8Co0.2O2、M1.2Fe0.4Mn0.4O2、MNi0.5Mn1.5O4、MV3O6、M2MnO3等が挙げられる。特に、MNi0.5Mn1.5O4等の正極活物質は、4.4Vを超える電圧や、4.6V以上の電圧で二次電池を作動させた場合であって、結晶構造が崩壊しない点で好ましい。従って、上記に例示した正極活物質を含む正極材を用いた二次電池等の電気化学デバイスは、高温で保管した場合でも、残存容量が低下しにくく、抵抗増加率も変化しにくい上、高電圧で作動させても電池性能が劣化しないことから、好ましい。
【0423】
その他の正極活物質として、M2MnO3とMM6O2(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、M6は、Co、Ni、Mn、Fe等の遷移金属)との固溶体材料等も挙げられる。
【0424】
上記固溶体材料としては、例えば、一般式Mx[Mn(1-y)M7y]Ozで表わされるアルカリ金属マンガン酸化物である。ここで式中のMは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、M7は、M及びMn以外の少なくとも一種の金属元素からなり、例えば、Co,Ni,Fe,Ti,Mo,W,Cr,ZrおよびSnからなる群から選択される一種または二種以上の元素を含んでいる。また、式中のx、y、zの値は、1<x<2、0≦y<1、1.5<z<3の範囲である。中でも、Li1.2Mn0.5Co0.14Ni0.14O2のようなLi2MnO3をベースにLiNiO2やLiCoO2を固溶したマンガン含有固溶体材料は、高エネルギー密度を有するアルカリ金属イオン二次電池を提供できる点から好ましい。
【0425】
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
【0426】
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化珪素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
【0427】
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
【0428】
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
【0429】
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
【0430】
正極活物質のタップ密度は、好ましくは0.5g/cm3以上、より好ましくは0.8g/cm3以上、更に好ましくは1.0g/cm3以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm3以下、より好ましくは3.7g/cm3以下、更に好ましくは3.5g/cm3以下である。
なお、本開示では、タップ密度は、正極活物質粉体5~10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/cm3として求める。
【0431】
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、更に好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、更に好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生じたりする場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることができる。
【0432】
なお、本開示では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
【0433】
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、更に好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなったりする場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
【0434】
なお、本開示では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
【0435】
正極活物質のBET比表面積は、好ましくは0.1m2/g以上、より好ましくは0.2m2/g以上、更に好ましくは0.3m2/g以上であり、上限は好ましくは50m2/g以下、より好ましくは40m2/g以下、更に好ましくは30m2/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
【0436】
なお、本開示では、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
【0437】
本開示の二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解液との接触面積が大きくなり、電極と電解液との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
【0438】
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、Li2CO3、LiNO3等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
【0439】
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の2種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoO2とLiNi0.33Co0.33Mn0.33O2等のLiMn2O4若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO2若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
【0440】
上記正極活物質の含有量は、電池容量が高い点で、正極合剤の50~99.5質量%が好ましく、80~99質量%がより好ましい。また、正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
【0441】
上記正極活物質層は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、キトサン、アルギン酸、ポリアクリル酸、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン共重合体、テトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオンおよびナトリウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0442】
結着剤の含有量は、正極活物質層中の結着剤の割合として、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは1.5質量%以上であり、また、通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
【0443】
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、ポリビニルピロリドン及びこれらの塩等が挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0444】
活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
【0445】
上記導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、ニードルコークス、カーボンナノチューブ、フラーレン、VGCF等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
【0446】
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
【0447】
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
【0448】
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
【0449】
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
【0450】
正極の製造は、常法によればよい。例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
【0451】
上記高密度化は、ハンドプレス、ローラープレス等により行うことができる。正極活物質層の密度は、好ましくは1.5g/cm3以上、より好ましくは2g/cm3以上、更に好ましくは2.2g/cm3以上であり、また、好ましくは5g/cm3以下、より好ましくは4.5g/cm3以下、更に好ましくは4g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
【0452】
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系溶媒としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
【0453】
有機溶剤としては、また、一般式(60)で表される溶剤を用いることもできる。
【0454】
一般式(60):
【化58】
(式中、R
1、R
2およびR
3は、独立に、Hまたは1価の置換基であり、ただし、R
1、R
2およびR
3の合計炭素数は6以上であり、R
1、R
2およびR
3の少なくとも1つはカルボニル基を有する有機基である。R
1、R
2およびR
3は、いずれか2つが結合して環を形成してもよい。)
【0455】
一般式(60)で表される溶剤としては、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドン(NEP)、N-ブチル-2-ピロリドン(NBP)、アクリロイルモルフォリン、N-シクロヘキシル-2-ピロリドン、N-ビニル-2-ピロリドン、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N,N’,N’-テトラエチルウレア、N,N-ジメチルアセトアセタミド、N-オクチル-2-ピロリドンおよびN,N-ジエチルアセタミドからなる群より選択される少なくとも1種が好ましい。
【0456】
溶媒としては、なかでも、塗布性に優れている点から、水、または、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、および、一般式(60)で表される溶媒からなる群より選択される少なくとも1種が好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドン(NEP)、N-ブチル-2-ピロリドン(NBP)、アクリロイルモルフォリン、N-シクロヘキシル-2-ピロリドン、N-ビニル-2-ピロリドン、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N,N’,N’-テトラエチルウレア、N,N-ジメチルアセトアセタミド、N-オクチル-2-ピロリドンおよびN,N-ジエチルアセタミドからなる群より選択される少なくとも1種がより好ましく、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドンおよびN-ブチル-2-ピロリドンらなる群より選択される少なくとも1種がさらに好ましく、N-メチル-2-ピロリドンおよびN,N-ジメチルアセトアミドからなる群より選択される少なくとも1種が特に好ましい。
【0457】
本開示の電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。電池外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合剤層に対向する正極合剤層の幾何表面積であり、集電体箔を介して両面に正極合剤層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
【0458】
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合剤層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
【0459】
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化珪素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
【0460】
<負極>
負極は、負極活物質層と、集電体とから構成されることが好ましい。
【0461】
(負極活物質)
負極活物質としては特に限定されず、例えば、リチウム金属、人造黒鉛、黒鉛炭素繊維、ハードカーボン、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び、難黒鉛化性炭素等の炭素質材料を含むもの、ケイ素及びケイ素合金等のシリコン含有化合物、Li4Ti5O12等から選択されるいずれか、又は2種類以上の混合物等を挙げることができる。なかでも、炭素質材料を少なくとも一部に含むものや、シリコン含有化合物を特に好適に使用することができる。
【0462】
本開示において用いる負極活物質は、ケイ素を構成元素に含むことが好適である。ケイ素を構成元素に含むものとすることで、高容量な電池を作製することができる。
【0463】
ケイ素を含む材料としては、ケイ素粒子、ケイ素の微粒子がケイ素系化合物に分散した構造を有する粒子、一般式SiOx(0.5≦x≦1.6)で表される酸化ケイ素粒子、又はこれらの混合物が好ましい。これらを使用することで、より初回充放電効率が高く、高容量でかつサイクル特性に優れたリチウムイオン二次電池用負極合剤が得られる。
【0464】
本開示における酸化ケイ素とは、非晶質のケイ素酸化物の総称であり、不均化前の酸化ケイ素は、一般式SiOx(0.5≦x≦1.6)で表される。xは0.8≦x<1.6が好ましく、0.8≦x<1.3がより好ましい。この酸化ケイ素は、例えば、二酸化ケイ素と金属ケイ素との混合物を加熱して生成した一酸化ケイ素ガスを冷却・析出して得ることができる。
【0465】
ケイ素の微粒子がケイ素系化合物に分散した構造を有する粒子は、例えば、ケイ素の微粒子をケイ素系化合物と混合したものを焼成する方法や、一般式SiOxで表される不均化前の酸化ケイ素粒子を、アルゴン等不活性な非酸化性雰囲気中、400℃以上、好適には800~1,100℃の温度で熱処理し、不均化反応を行うことで得ることができる。特に後者の方法で得た材料は、ケイ素の微結晶が均一に分散されるため好適である。上記のような不均化反応により、ケイ素ナノ粒子のサイズを1~100nmとすることができる。なお、ケイ素ナノ粒子が酸化ケイ素中に分散した構造を有する粒子中の酸化ケイ素については、二酸化ケイ素であることが望ましい。なお、透過電子顕微鏡によってシリコンのナノ粒子(結晶)が無定形の酸化ケイ素に分散していることを確認することができる。
【0466】
ケイ素を含む粒子の物性は、目的とする複合粒子により適宜選定することができる。例えば、平均粒径は0.1~50μmが好ましく、下限は0.2μm以上がより好ましく、0.5μm以上がさらに好ましい。上限は30μm以下がより好ましく、20μm以下がさらに好ましい。なお、本開示における平均粒径とは、レーザー回折法による粒度分布測定における重量平均粒径で表すものである。
【0467】
BET比表面積は、0.5~100m2/gが好ましく、1~20m2/gがより好ましい。BET比表面積が0.5m2/g以上であれば、電極に塗布した際の接着性が低下して電池特性が低下するおそれがない。また100m2/g以下であれば、粒子表面の二酸化ケイ素の割合が大きくなり、二次電池用負極材として用いた際に電池容量が低下するおそれがない。
【0468】
上記ケイ素を含む粒子を炭素被覆することで導電性を付与し、電池特性の向上が見られる。導電性を付与するための方法として、黒鉛等の導電性のある粒子と混合する方法、上記ケイ素を含む粒子の表面を炭素被膜で被覆する方法、及びその両方を組み合わせる方法が挙げられるが、炭素被膜で被覆する方法が好ましく、化学蒸着(CVD)する方法がより好ましい。
【0469】
上記負極活物質の含有量は、得られる電極合剤の容量を増やすために、電極合剤中40質量%以上が好ましく、より好ましくは50質量%以上、特に好ましくは60質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。
【0470】
(導電助剤)
上記導電助剤としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、ニードルコークス、カーボンナノチューブ、フラーレン、VGCF等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0471】
導電助剤は、電極合剤中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
【0472】
負極活物質層は、更に、熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂としては、フッ化ビニリデンや、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリエチレンオキシドなどが挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0473】
負極活物質に対する熱可塑性樹脂の割合は、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、また、通常3.0質量%以下、好ましくは2.5質量%以下、より好ましくは2.0質量%以下の範囲である。熱可塑性樹脂を添加することで、電極の機械的強度を向上させることができる。また、この範囲を上回ると、負極活物質層に占める電極活物質の割合が低下し、電池の容量が低下する問題や活物質間の抵抗が増大する問題が生じる場合がある。
【0474】
(結着剤)
負極活物質層は、結着剤を含むことが好適である。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。負極活物質に対する結着剤の割合は、0.1質量%以上が好ましく、0.5質量% 以上が更に好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好まし く、15質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。負極活物質に対する結着剤の割合が、上記範囲を上回ると、結着剤量が電池 容量に寄与しない結着剤割合が増加して、電池容量の低下を招く場合がある。また、上記 範囲を下回ると、負極電極の強度低下を招く場合がある。
【0475】
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対する結着剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
【0476】
負極活物質層は、増粘剤を含んでいてもよい。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
【0477】
(その他の成分)
本開示の負極合剤は、さらに、レベリング剤、補強材などの他の成分を含有してもよい。
【0478】
上記負極活物質層は、たとえば、結着剤および溶媒を混合した後、得られた混合物に、負極活物質などを添加してさらに混合することによりスラリー状の負極合剤を調製することができる。そして、得られた負極合剤を、金属箔、金属網等の集電体に均一に塗布、乾燥、必要に応じてプレスして集電体上へ薄い負極活物質層を形成し薄膜状電極とする。そのほか、負極活物質および結着剤などを先に混合した後、溶媒を添加し負極合剤を調製してもよい。
【0479】
(溶媒)
上記溶媒としては、水または有機溶剤が挙げられ、負極合剤を用いて負極活物質層を形成した場合に、負極活物質層に水分が残留する可能性を大きく低下させられることから、有機溶剤が好ましい。
【0480】
有機溶剤としては、たとえば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミド等の含窒素系有機溶剤;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;β-メトキシ-N,N-ジメチルプロピオンアミド、β-n-ブトキシ-N,N-ジメチルプロピオンアミド、β-n-ヘキシルオキシ-N,N-ジメチルプロピオンアミド等のβ-アルコキシプロピオンアミド類;さらに、それらの混合溶剤等の低沸点の汎用有機溶剤を挙げることができる。
【0481】
有機溶剤としては、また、一般式(60)で表される溶剤を用いることもできる。
【0482】
一般式(60):
【化59】
(式中、R
1、R
2およびR
3は、独立に、Hまたは1価の置換基であり、ただし、R
1、R
2およびR
3の合計炭素数は6以上であり、R
1、R
2およびR
3の少なくとも1つはカルボニル基を有する有機基である。R
1、R
2およびR
3は、いずれか2つが結合して環を形成してもよい。)
【0483】
一般式(60)で表される溶剤としては、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドン(NEP)、N-ブチル-2-ピロリドン(NBP)、アクリロイルモルフォリン、N-シクロヘキシル-2-ピロリドン、N-ビニル-2-ピロリドン、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N,N’,N’-テトラエチルウレア、N,N-ジメチルアセトアセタミド、N-オクチル-2-ピロリドンおよびN,N-ジエチルアセタミドからなる群より選択される少なくとも1種が好ましい。
【0484】
溶媒としては、なかでも、塗布性に優れている点から、水、または、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、および、一般式(1)で表される溶媒からなる群より選択される少なくとも1種が好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドン(NEP)、N-ブチル-2-ピロリドン(NBP)、アクリロイルモルフォリン、N-シクロヘキシル-2-ピロリドン、N-ビニル-2-ピロリドン、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N,N’,N’-テトラエチルウレア、N,N-ジメチルアセトアセタミド、N-オクチル-2-ピロリドンおよびN,N-ジエチルアセタミドからなる群より選択される少なくとも1種がより好ましく、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、N-エチル-2-ピロリドンおよびN-ブチル-2-ピロリドンらなる群より選択される少なくとも1種がさらに好ましく、N-メチル-2-ピロリドンおよびN,N-ジメチルアセトアミドからなる群より選択される少なくとも1種が特に好ましい。
【0485】
負極合剤中の溶媒の量は、集電体への塗布性、乾燥後の薄膜形成性等を考慮して決定される。通常、結着剤と溶媒との割合は、質量比で0.5:99.5~20:80である。
【0486】
負極は、負極活物質層と集電体とを備えている。負極活物質層は、上記負極合剤を用いて形成され、集電体の片面に設けられていてもよいし、両面に設けられていてもよい。
【0487】
本開示の負極が備える集電体としては、たとえば、鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網、カーボンクロス、カーボンペーパー等の炭素材料等が挙げられ、なかでも、銅箔が好ましい。
【0488】
負極は、上記負極合剤を集電体に塗布する製造方法により、好適に製造することができる。負極合剤を塗布した後、さらに、塗膜を乾燥させ、任意で熱処理をし、得られた乾燥塗膜をプレスしてもよい。
【0489】
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
【0490】
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合剤層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
【0491】
<セパレータ>
本開示の二次電池は、更に、セパレータを備えることが好ましい。
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。なかでも、本開示の電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
【0492】
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
【0493】
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電解液電池全体としてのエネルギー密度が低下する場合がある。
【0494】
更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
【0495】
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
【0496】
一方、無機物の材料としては、例えば、アルミナや二酸化珪素等の酸化物、窒化アルミや窒化珪素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状若しくは繊維形状のものが用いられる。
【0497】
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
【0498】
<電池設計>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
【0499】
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
【0500】
集電構造は、特に制限されないが、本開示の電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本開示の電解液を使用した効果は特に良好に発揮される。
【0501】
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
【0502】
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
【0503】
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
【0504】
本開示の二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
【実施例0505】
次に本開示を、実施例を挙げて説明するが、本開示はかかる実施例のみに限定されるものではない。
以下の実施例においては特に言及しない場合は、「部」「%」はそれぞれ「質量部」「質量%」を表す。
【0506】
使用した化合物(1-1)~(1-10)を以下に示す。
(1-1) CF2HCF2CH2ONa
(1-2) CF2HCF2CH2OK
(1-3) CF2HCF2CF2CF2CH2ONa
(1-4) CF2HCF2CF2CF2CH2OK
(1-5) CF2HCF2ONa
(1-6) CF2HCF2OK
(1-7) CF3CHFCF2ONa
(1-8) CF3CHFCF2OK
(1-9) CF3CF2CH2ONa
(1-10) CF3CF2CH2OK
【0507】
使用した化合物(2-1)~(2-3)を以下に示す。
(2-1) CF2HCF2CH2OCF2CF2H
(2-2) CF2HCF2CH2OCF2CHFCF3
(2-3) CF3CF2CH2OCF2CF2H
【0508】
(実施例1)
[電解液の調製]
エチレンカーボネート(EC)、ジエチルカーボネート(DEC)及びフルオロエチレンカーボネート(FEC)を体積比が30/68/2となるように混合し、この混合物にNaPF6を1.0モル/リットルの濃度となるように添加して基本電解液とした。
前記基本電解液に、化合物(1-1)を0.1ppm添加し、混合することで、非水電解液を調製した。
【0509】
[正極の作製]
正極活物質としてNaCoO297質量部と、導電助剤としてアセチレンブラックを1.5質量部と、結着剤としてポリフッ化ビニリデン(8質量%NMP溶液)1.5質量部とを加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ20μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、幅50mm、長さ30mmの塗工部(正極材料層)、および、幅5mm、長さ9mmの未塗工部を有する形状に切り出して正極とした。
【0510】
[負極の作製]
負極活物質としてハードカーボンを94質量%および結着剤としてのポリフッ化ビニリデン(PVdF)6質量%を混合し、さらにN-メチル-2-ピロリドン(NMP)を加えて混合し、スラリー化した。得られたスラリーを、厚さ15μmの銅箔からなる負極集電体に塗布し、これを乾燥した。これを所定の電極サイズに切り取り、ロールプレスを用いて圧延することにより、負極集電体に負極材料層が形成された負極を作製した。
【0511】
[電池の作製]
作製した片面に負極材料層を備える負極を、幅52mm、長さ32mmの塗工部(負極材料層)、および、幅5mm、長さ9mmの未塗工部を有する形状に切り出して負極とした。
【0512】
上記の正極と負極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して正極と負極を対向させ、上記で得られた非水電解液を注入し、上記非水電解液がセパレータ等に充分に浸透した後、封止し予備充電、エージングを行い、アルミラミネートセル(ナトリウムイオン二次電池)を作製した。
【0513】
(電池特性の測定)
[サイクル特性]
得られたアルミラミネートセルを、25℃において、0.2Cに相当する電流で3.8Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.2Cの定電流で1.5Vまで放電し、これを1サイクルとして、3サイクル実施した。その後45℃において、1.0Cに相当する電流で3.8VまでCC/CV充電(0.1Cカット)した後、1.0Cの定電流で1.5Vまで放電し、これを1サイクルとし放電容量から初期放電容量を求めた。再度サイクルを行い、300サイクル後の放電容量を測定した。初期放電容量に対する300サイクル後の放電容量の割合を求め、これを容量維持率(%)とした。
容量維持率(%)=(300サイクル後の放電容量)÷(1.0Cの初期放電容量)×100
結果は、比較例1、2、3、又は4の結果を1としたときの相対値として示した。
【0514】
[ガス発生量]
サイクル実施前後の電池の体積をアルキメデス法により測定し、次式によりガス発生量を求めた。
(300サイクル後の体積)-(初期の体積)=ガス発生量(mL)
比較例1、2、3、又は4の値を1として算出した。
【0515】
(金属析出量の測定)
[Co量]
300サイクル後のアルミラミネートセルを解体し、負極を取りだし、5wt%の硝酸水溶液に24時間浸した。24時間後に濾過を行い、濾過液をICP発光分光によりCo量(ppm)を算出した。
【0516】
(実施例2~35)
電解液の添加剤の種類及び添加量を、表1に示すように変更した以外は実施例1と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表1に示す。
【0517】
(比較例1)
添加剤を使用しなかったこと以外は実施例1と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表1に示す。
【0518】
【0519】
(実施例36~39)
1,2-ジメトキシエタン(DME)、及び1,3-ジオキソラン(DOL)を体積比が1/1となるように混合し、この混合物にナトリウムビス(トリフルオロメタンスルホニル)イミド(NaTFSI)を1.0モル/リットルの濃度となるように添加して基本電解液とした。
電解液の添加剤の種類及び添加量を、表2に示すように変更した以外は実施例1と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表2に示す。
【0520】
(比較例2)
添加剤を使用しなかったこと以外は実施例36と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表2に示す。
【0521】
【0522】
(実施例40~43)
プロピレンカーボネート(PC)にNaPF6を1.0モル/リットルの濃度となるように添加して基本電解液とした。
電解液の添加剤の種類及び添加量を、表3に示すように変更した以外は実施例1と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表3に示す。
【0523】
(比較例3)
添加剤を使用しなかったこと以外は実施例40と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表3に示す。
【0524】
【0525】
(実施例44~47)
エチレンカーボネート(EC)、及びジメチルカーボネート(DMC)を体積比が2/98となるように混合し、この混合物にナトリウムビス(フルオロメタンスルホニル)イミド(NaFSI)を1.0モル/リットルの濃度となるように添加して基本電解液とした。
電解液の添加剤の種類及び添加量を、表4に示すように変更した以外は実施例1と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表4に示す。
【0526】
(比較例4)
添加剤を使用しなかったこと以外は実施例44と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表4に示す。
【0527】
【0528】
(実施例48)
[電解液の調製]
エチレンカーボネート(EC)、及びエチルメチルカーボネート(EMC)を体積比が3/7となるように混合し、この混合物にLiPF6を1.0モル/リットルの濃度となるように添加して基本電解液とした。
前記基本電解液に、化合物(1-1)を0.1ppm添加し、混合することで、非水電解液を調製した。
【0529】
[正極の作製]
正極活物質としてLiNi0.8Mn0.1Co0.1O2(NMC811) 97質量部、導電助剤としてアセチレンブラックを1.5質量部、結着剤としてポリフッ化ビニリデン(8質量%NMP溶液)1.5質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ20μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、幅50mm、長さ30mmの塗工部(正極材料層)、および、幅5mm、長さ9mmの未塗工部を有する形状に切り出して正極とした。
【0530】
[負極の作製]
負極活物質としての酸化珪素粉末(SiO)とグラファイト(質量比10/90)を94質量%および結着剤としてのポリフッ化ビニリデン(PVdF)6質量%を混合し、さらにN-メチル-2-ピロリドン(NMP)を加えて混合し、スラリー化した。得られたスラリーを、厚さ15μmの銅箔からなる負極集電体に塗布し、これを乾燥した。これを所定の電極サイズに切り取り、ロールプレスを用いて圧延することにより、負極集電体に負極材料層が形成された負極を作製した。
【0531】
[電池の作製]
作製した片面に負極材料層を備える負極を、幅52mm、長さ32mmの塗工部(負極材料層)、および、幅5mm、長さ9mmの未塗工部を有する形状に切り出して負極とした。
【0532】
上記の正極と負極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して正極と負極を対向させ、上記で得られた非水電解液を注入し、上記非水電解液がセパレータ等に充分に浸透した後、封止し予備充電、エージングを行い、アルミラミネートセル(リチウムイオン二次電池)を作製した。
得られた電池について、上記電池特性および下記金属析出量の評価をおこなった。
結果を表5に示す。
【0533】
[サイクル特性]
得られたアルミラミネートセルを、25℃において、0.2Cに相当する電流で4.2Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.2Cの定電流で2.5Vまで放電し、これを1サイクルとして、3サイクル実施した。その後45℃において、1.0Cに相当する電流で4.2VまでCC/CV充電(0.1Cカット)した後、1.0Cの定電流で2.5Vまで放電し、これを1サイクルとし放電容量から初期放電容量を求めた。再度サイクルを行い、500サイクル後の放電容量を測定した。初期放電容量に対する500サイクル後の放電容量の割合を求め、これを容量維持率(%)とした。
容量維持率(%)=(500サイクル後の放電容量)÷(1.0Cの初期放電容量)×100
結果は、比較例5、又は比較例6の結果を1としたときの相対値として示した。
【0534】
[ガス量]
サイクル実施前後の電池の体積をアルキメデス法により測定し、次式によりガス発生量を求めた。
(500サイクル後の体積)-(初期の体積)=ガス発生量(mL)
比較例5、又は比較例6の値を1として算出した。
【0535】
(金属析出量の測定)
[Mn量]
500サイクル後のアルミラミネートセルを解体し、負極を取りだし、5wt%の硝酸水溶液に24時間浸した。24時間後に濾過を行い、濾過液をICP発光分光によりMn量(ppm)を算出した。
【0536】
(実施例49~82)
電解液の添加剤の種類及び添加量を、表5に示すように変更した以外は実施例48と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表5に示す。
【0537】
(比較例5)
添加剤を使用しなかったこと以外は実施例48と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表5に示す。
【0538】
【0539】
(実施例83~86)
エチレンカーボネート(EC)、及びジメチルカーボート(DMC)を体積比が2/98となるように混合し、この混合物にLiN(FSO2)2(LiFSI)を1.0モル/リットルの濃度となるように添加して基本電解液とした。
電解液の添加剤の種類及び添加量を、表6に示すように変更した以外は実施例48と同様にして非水電解液を調製し、また、正極活物質として、LiNi0.6Mn0.2Co0.2O2(NMC622)を使用する他は実施例48と同様にして電池を作製して、各評価をおこなった。
結果を表6に示す。
【0540】
(比較例6)
添加剤を使用しなかったこと以外は実施例83と同様にして非水電解液を調製し、更に、電池を作製して、各評価をおこなった。
結果を表6に示す。
【0541】
【0542】
表1~6の実施例より、実施例で得られた電解液を使用することで、二次電池のサイクル特性が向上すること、およびサイクル時におけるガス発生量と金属析出量が低減されたことが示された。