(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024105617
(43)【公開日】2024-08-06
(54)【発明の名称】滲出型加齢性黄斑変性の治療のための組成物
(51)【国際特許分類】
C12N 15/864 20060101AFI20240730BHJP
C12N 7/01 20060101ALI20240730BHJP
C12N 15/35 20060101ALI20240730BHJP
C12N 15/13 20060101ALI20240730BHJP
A61K 35/76 20150101ALI20240730BHJP
A61K 9/10 20060101ALI20240730BHJP
A61K 48/00 20060101ALI20240730BHJP
A61K 31/7088 20060101ALI20240730BHJP
A61K 39/395 20060101ALI20240730BHJP
A61P 27/02 20060101ALI20240730BHJP
【FI】
C12N15/864 100Z
C12N7/01 ZNA
C12N15/35
C12N15/13
A61K35/76
A61K9/10
A61K48/00
A61K31/7088
A61K39/395 V
A61P27/02
A61K39/395 N
C12N7/01
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024080598
(22)【出願日】2024-05-17
(62)【分割の表示】P 2022116098の分割
【原出願日】2017-04-14
(31)【優先権主張番号】62/323,184
(32)【優先日】2016-04-15
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/331,100
(32)【優先日】2016-05-03
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/442,946
(32)【優先日】2017-01-05
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/460,515
(32)【優先日】2017-02-17
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/466,721
(32)【優先日】2017-03-03
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.LABRASOL
2.TWEEN
3.PLURONIC
(71)【出願人】
【識別番号】502409813
【氏名又は名称】ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア
(74)【代理人】
【識別番号】110000741
【氏名又は名称】弁理士法人小田島特許事務所
(72)【発明者】
【氏名】トレティアコバ,アナ・ピー
(72)【発明者】
【氏名】ウイルソン,ジェームス・エム
(57)【要約】 (修正有)
【課題】滲出型加齢性黄斑変性の治療のための組成物を提供する。
【解決手段】網膜内注射に好適であるAAV8カプシドを有する組換えアデノ随伴ウイルス(rAAV)が本明細書において提供される。rAAVは、カプシドにパッケージングされたベクターゲノムを含み、それは、抗ヒト血管内皮増殖因子(VEGF)抗原結合抗体フラグメント(aVEGF)の発現を誘導する制御因子に作動可能に連結され、aVEGFのコード配列を含み、コード配列は、眼内で抗VEGF Fabの発現を誘導する制御因子に作動可能に連結される。これらのrAAV8.aVEGFを含む液体懸濁液、ならびに滲出型AMD及び他の眼の障害の治療のためのそれの使用方法もまた本明細書において提供される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
AAV8カプシドを有し、網膜下及び/または網膜内注射に好適である、組換えアデノ随伴ウイルス(rAAV)であって、前記rAAVが前記カプシド内にパッケージングされたベクターゲノムを含み、前記ベクターゲノムが、
(a)AAVの末端逆位配列(ITR)と;
(b)抗ヒト血管内皮増殖因子(VEGF)抗原結合抗体フラグメント(Fab)のためのコード配列であって、外来性リーダー配列、免疫グロブリン重鎖、リンカー、及び外来性リーダー配列を有する免疫グロブリン軽鎖を有し、前記コード配列が、眼内における前記抗VEGF Fabの発現を誘導する制御因子へと作動可能に連結されている、前記コード配列と;
(c)前記抗VEGF Fabの前記免疫グロブリン重鎖及び軽鎖の発現を誘導し、トリβアクチンプロモーターまたはユビキチンCプロモーターより選択されるプロモーターを含む、制御因子と;
(d) AAVのITRと、
を含む、前記組換えアデノ随伴ウイルス(rAAV)。
【請求項2】
前記リンカーがF2Aリンカーである、請求項1に記載のrAAV。
【請求項3】
前記異種性リーダー配列がIL2のリーダーである、請求項1または請求項2に記載のrAAV。
【請求項4】
前記制御因子が、UTR配列をさらに含む、請求項1~3のいずれか1項に記載のrAAV。
【請求項5】
前記制御因子が、エンハンサー及びイントロンをさらに含む、請求項1~4のいずれか1項に記載のrAAV。
【請求項6】
前記制御因子が、サイトメガロウイルス最初期エンハンサー、CB7プロモーター、及びトリβアクチンイントロンを含む、請求項5に記載のrAAV。
【請求項7】
前記抗VEGF Fab重鎖及び軽鎖の可変領域の前記コード配列が、
(a) aVEGFv3(配列番号24);
(b) aVEGFv2(配列番号3);または
(c) aVEGFv1(配列番号19);
(d) aVEGFv4(配列番号35);
(e) aVEGFv5(配列番号36);
(f) aVEGFv6(配列番号37);
(g) aVEGFv7(配列番号38);
(h) aVEGFv8(配列番号39);
(i) aVEGFv9(配列番号40);
(j) aVEGFv10(配列番号41);
(k) aVEGFv11(配列番号42);
(l) aVEGFv12(配列番号43);または
(m) aVEGFv13(配列番号44)からなる群より選択される、請求項1~6のいずれか1項に記載のrAAV。
【請求項8】
AAV8カプシドを有し、網膜下及び/または網膜内注射に好適である、組換えアデノ随伴ウイルス(rAAV)であって、前記rAAVが前記カプシド内にパッケージングされたベクターゲノムを含み、前記ベクターゲノムが、
(a) ITR-CB7-CI-aVEGFv3-rBG-ITR(配列番号14);
(b) ITR-CB7-CI-aVEGFv2-rBG-ITR(配列番号3);
(c) ITR-UbC-CI-aVEGFv2-SV40-ITR(配列番号9):
(d) ITR-UbC-PI-aVEGFv3-SV40-ITR(配列番号19);
(e) ITR-UbC-PI-aVEGFv1-SV40-ITR(配列番号24);
(f) ITR-CB7.CI.aVEGFv4.rBG-ITR(配列番号35);
(g) ITR-CB7.CI.aVEGFv5.rBG-ITR(配列番号36);
(h) ITR-CB7.CI.aVEGFv6.rBG-ITR(配列番号37);
(i) ITR-CB7.CI.aVEGFv7.rBG-ITR(配列番号38);
(j) ITR-CB7.CI.aVEGFv8.rBG-ITR(配列番号39);
(k) ITR-CB7.CI.aVEGFv9.rBG-ITR(配列番号40);
(l) ITR-CB7.CI.aVEGFv10.rBG-ITR(配列番号41);
(m) ITR-CB7.CI.aVEGFv11.rBG-ITR(配列番号42);
(n) ITR-CB7.CI.aVEGFv13.rBG-ITR(配列番号43);
(o) ITR-CB7.CI.aVEGFv14.rBG-ITR(配列番号44);
(p) 配列番号45;
(q) 配列番号46;または
(r) 配列番号47
からなる群より選択される、前記組換えアデノ随伴ウイルス(rAAV)。
【請求項9】
網膜下及び/または網膜内注射に好適な液体懸濁液であって、前記組成物が、水性液体及び請求項1~8のいずれか1項に記載の組換えアデノ随伴ウイルス(rAAV)を含み、任意選択で1種以上の賦形剤、保存剤、及び/または界面活性剤を含む、前記液体懸濁液。
【請求項10】
患者に網膜下投与することのできる、請求項1~8のいずれか1項に記載の組換えアデノ随伴ウイルス(rAAV)または請求項9に記載の液体懸濁液。
【請求項11】
前記患者が滲出型加齢性黄斑変性を有する、請求項10に記載のrAAV。
【請求項12】
患者に網膜下投与するための医薬の調製における、請求項1~8のいずれか1項に記載のrAAVまたは請求項9に記載の液体懸濁液の使用。
【請求項13】
前記患者が滲出型加齢性黄斑変性を有する、請求項12に記載の使用。
【請求項14】
滲出型加齢性黄斑変性を有する患者に抗VEGF Fabを投与する方法であって、前
記方法が、請求項9に記載の液体懸濁液を患者の眼に網膜下注射することを含む、前記方法。
【請求項15】
前記注射が、約1×108ゲノムコピー(GC)/眼~約1.5×1012GC/眼を含み、GCがデジタル液滴PCRを用いて測定される、請求項10に記載の方法、請求項10に記載のrAAV、または請求項12に記載の使用。
【請求項16】
前記用量が約5×108GC/眼~約2×1011GC/眼である、請求項15に記載の方法、rAAV、または使用。
【請求項17】
前記用量が約7×109GC/眼~約2×1010GC/眼である、請求項15に記載の方法、rAAV、または使用。
【請求項18】
前記rAAVが約75μL~約150μLの懸濁液の容量で送達される、請求項15~17のいずれか1項に記載の方法、rAAV、または使用。
【請求項19】
前記rAAVが約100μLの懸濁液の容量で送達される、請求項15~18のいずれか1項に記載の方法、rAAV、または使用。
【請求項20】
(a)請求項1~8のいずれか1項に記載のrAAV及び水性液体を含む第1の容器と、(b)希釈剤を含む任意選択の第2の容器と、(c)注射のための針とを含む製品。
【発明の詳細な説明】
【技術分野】
【0001】
電子形態で提出される資料への参照による組み込み
出願人は、本明細書に添付する電子形態での配列表資料を、参照により本明細書に組み込む。このファイルは「UPN-16-7683PCT_ST25.txt」とラベルされる。
【背景技術】
【0002】
加齢性黄斑変性(AMD)は、最も高い視力(VA)の領域、すなわち黄斑を攻撃する進行性に変性する黄斑疾患であり、60歳以上の米国人における失明の主な原因である(NIH Medline Plus (2008), Leading cause of blindness, NIH Medline Plus 3(2)14-15、www.nlm.nih.gov/medlineplus/magazine/issues/summer08/articles/summer08pg14-15.html)。新生血管の「滲出」型の疾患(nAMDまたはwet AMD)は、網膜色素上皮(RPE)のものを含む血管及び細胞の増殖が顕著である、脈絡膜血管新生を特徴とする(Carmeliet (2005) Nature 438: 932-936)。最終的に、光受容体の死滅及び瘢痕形成が、中心視力の重篤な喪失をもたらし、かつ、読むこと、書くこと、及び顔を認識すること、または運転することが不可能になる。多くの患者は、もはや有給の雇用を維持できなくなり、日常活動を行えなくなり、結果として、減衰した生活の質を申告する(Mitchell and Bradley (2006), Health Qual Life Outcomes 4: 97)。予防的治療法はほとんど効果を示さず、治療戦略は主に血管新生病変の治療に焦点を当ててきている。
【0003】
いくつかの現在使用可能な滲出型AMDの治療は、レーザー光凝固術、ベルテポルフィンによる光線力学的治療、ペガプタニブ、ラニビズマブ、ベバシズマブ、またはアフリベルセプトなどの血管内皮増殖因子(VEGF)阻害剤の硝子体内(IVT)注射を含む(Schmidt-Erfurth, (2014) Guidelines for the management of neovascular age-related
macular degeneration by the European Society of Retina Specialists (EURETINA) Br J Ophthalmol 98:1144-1167)。これらの治療は、最良矯正視力(BCVA)に対していくらかの効果を有するが、それらの効果は、視力の回復及び期間において限定的である(Schmidt-Erfurth、上に引用される、2014, AAO PPP (2015) Preferred Practice Patterns: Age Related Macular Degeneration. American Academy of Ophthalmology)。市場における、滲出型AMDを治療するのに使用されるいくつかの薬物は、VEGFを阻害するメカニズムに依存し、硝子体内注射する必要がある。これらの治療は、疾患の進行を防ぐ点において成功することが報告されるが、それらは、薬物の頻繁な注射を必要とする。
【0004】
具体的には、組換えヒト化モノクローナルIgG1抗原結合フラグメント(Fab)であるラニビズマブは、ヒト(VEGF)の全ての活性型に結合し阻害するよう設計されている。ラニビズマブは、組換えDNA技術によってEscherichia coli中で産生されるヒト化モノクローナル抗体フラグメントである。ラニビズマブのVEGF-Aに対する結合は、VEGF-Aと、その受容体である内皮細胞表面上のVEGFR-1及びVEGFR-2との相互作用を阻止する。この結合は、その全てが新生血管の「滲出
」型の加齢性黄斑変性(Wet AMD)の進行に寄与すると考えられている、内皮細胞増殖及び血管新生、ならびに血管漏出を阻害する。ラニビズマブ(Lucentis(登録商標))の安全性及び有効性は、確立されてきており、ラニビズマブは、血管新生AMD、及び他の網膜疾患を有する患者におけるIVT注射治療について米国(US)食品医薬品局(FDA)が承認するものである(2006年に最初にFDAが承認する)。毎月のラニビズマブまたは毎月/8週ごとのアフリベルセプトのいずれかによる長期間の治療は、視力喪失の進行を遅らせ、かつ視力を改善する場合があるが、これらの治療のいずれも血管新生の再帰を阻止しない(Brown et al (2006)N Engl J Med,355:1432-44;Rosenfeld et al.,(2006)N Engl J Med 355:1419 31;Schmidt-Erfurth,2014,上に引用される)。疾患の悪化を阻止するために、各々は再度投与する必要がある。繰り返し治療への必要性は、患者に追加リスクが発生する可能性があり、患者と臨床医との両方にとって不便である。
【発明の概要】
【0005】
一態様において、本発明は、網膜下及び/または網膜内の注射に好適なAAV8カプシドを有する組換えアデノ随伴ウイルス(rAVV)を提供する。AAV8カプシドは、ヒト血管内皮増殖因子(hVEGF)に結合し、阻害するヒトモノクローナル抗体(MAb)の可溶性抗原結合フラグメント(Fab)の産生を提供するベクターゲノムをパッケージングし、発現産物は、しばしば「抗hVEGF Fab」または「aVEGF」と本明細書において呼ばれる。
【0006】
rAAV8カプシド中にパッケージングされるベクターゲノムは以下を含む:
(a)抗VEGF Fabの発現コンストラクトに隣接する、AAVの末端逆位配列(ITR(複数可));(b)抗hVEGF Fabをコードする導入遺伝子の眼における発現を導くトリβアクチンプロモーターまたはユビキチンCプロモーターを含む制御性因子を有する発現コンストラクト;ならびに(c)抗hVEGF Fabの重鎖及び軽鎖をコードする導入遺伝子であって、各々の鎖がそのアミノ末端へと付加された異種性リーダー配列を有し、ここで重鎖及び軽鎖のコード配列が、重鎖及び軽鎖のポリペプチドの別個の産生を確かにするために、「切断可能」なペプチドリンカーのコード配列またはIRES(配列内リボソーム進入部位)によって分離されており、ポリアデニル化シグナルを有する、導入遺伝子。生じる導入遺伝子発現産物は、Fab重鎖に通常見出されるものに加えて、アミノ酸残基を含んでもよい
【0007】
特定の実施形態において、ヒト細胞における発現に最適化される、重鎖及び軽鎖のコドン配列が使用される。例に示すように、これらは、AAV2/8.CB7.CI.aVEGFv1.rBG;AAV2/8.CB7.CI.aVEGFv2.rBG;AAV2/8.CB7.CI.aVEGFv3.rBG;AAV2/8.CB7.CI.aVEGFv4.rBG;AAV2/8.CB7.CI.aVEGFv5.rBG;AAV2/8.CB7.CI.aVEGFv6.rBG;AAV2/8.CB7.CI.aVEGFv7.rBG;AAV2/8.CB7.CI.aVEGFv8.rBG;AAV2/8.CB7.CI.VEGFv9.rBG;AAV2/8.CB7.CI.aVEGFv10.rBG;AAV2/8.CB7.CI.aVEGFv11.rBG;AAV2/8.CB7.CI.aVEGFv12.rBG;AAV2/8.CB7.CI.aVEGFv13.rBGを含み得るが、これらに限定されない。
【0008】
本明細書において使用されるとき、「AAV2/8」及び「AAV8」は、AAV8カプシド及びAAV2のITRに隣接されるベクターゲノムを有する組換えAAVを指すのに交換可能に使用される。
【0009】
さらに別の態様において、網膜下及び/または網膜内の注射のための上述のrAAV8.aVEGFの任意の液体懸濁液が提供される。組成物は、水性液体及び本明細書において記載されるようなrAAV8.aVEGF、ならびに任意選択で1種以上の賦形剤、保存剤、及び/または界面活性剤を含む。
【0010】
なおもさらなる態様において、滲出型加齢性黄斑変性を有する患者に対して抗hVEGF Fabを送達するための方法が提供される。方法は、抗hVEGF Fabの発現コンストラクトを担持するrAAV8ベクターを含む液体懸濁液を患者の眼に網膜下注射することを含む。
【0011】
ある実施形態において、本発明は、患者に網膜下投与することのできる本明細書に記載されるようなrAAV、または液体懸濁液を提供する。ある実施形態において、患者への網膜下投与のためのrAAVまたは液体懸濁液の使用が提供される。患者は、滲出型加齢性黄斑変性または本明細書で定義されるような他の眼の状態を有すると以前に診断されていてもよい。
【0012】
なおもさらなる実施形態において、製品は以下を含む:(a)rAAV8.抗hVEGF Fab及び水性液体を含む第1の容器、(b)希釈剤を含む任意選択の第2の容器、ならびに(c)注射のための針。ある実施形態において、製品は注射キットである。
【0013】
本発明は、rAAV8.aVEGFベクターの網膜下投与が、網膜全体にわたる遺伝子導入をもたらし、かつ網膜全体にわたる、ならびに硝子体及び前房液中における抗VEGF Fabの発現をもたらすことを実証する以下の例によって示される。遺伝子導入が元の注射ブレブの外側を水平方向に拡散するが、それらの拡張された境界に閉じ込められたままであり、この注射の拡張領域(網膜中の注射部位において形成される「ブレブ」)の外側における遺伝子導入及び導入遺伝子発現を達成しなかったということを実証する従来技術の遺伝子療法の研究を考慮すると、この結果は驚くべきであり、rAAV8.aVEGFベクターの単一投与が(i)結果として、経時的に消散するVEGF阻害剤の高用量ボーラスの繰り返されるIVT投与と比較して性能が向上し得るような網膜全体にわたるVEGF阻害剤の有効量の連続送達、ならびに(ii)患者に追加のリスク及び不便さを提示する繰り返される眼内注射の回避をもたらす点において、nAMR治療のための標準治療を超える利点をもたらす。各々の態様は、治療成績を改善し得る。
【0014】
さらに他の態様及び本発明の利点は、以下の本発明の詳細な説明から明らかであろう。
【図面の簡単な説明】
【0015】
【
図1】AAV2の末端逆位配列(ITR)に隣接され、かつヒト抗血管内皮増殖因子(抗VEGF)抗原結合抗体フラグメント(Fab)を発現する遺伝子カセットを含むAAV8ベクターゲノムの略図を提示する。制御因子はトリβアクチンプロモーター及びCMVエンハンサーからなるCB7プロモーター、トリβアクチン及びウサギβグロブリンのpoly Aシグナルを含む。抗VEGF Fabの重鎖及び軽鎖をコードする核酸配列は、自己切断フリン(F)/F2Aリンカーによって分離されている。アルギニン-リジン-アルギニン-アルギニンのアミノ酸配列からなるフリン認識部位が使用された。さらに、軽鎖及び重鎖の各々は、宿主細胞の機構によって成熟タンパク質からリーダーペプチドを処理して除去する適切な細胞分画へと新生ペプチドを誘導する、異種性リーダーペプチドを含む。これら及び他の合成抗VEGFコンストラクトは、本明細書においてAAV.aVEGFと名付けられる。
【
図2】左眼(os)または右眼(od)の投与後の様々な時点におけるAAV8.CB7.aVEGFv1またはrAAV8.UbC.aVEGFv1の発現のレベル及び動態を提示する。AAV8.CB7.aVEGF-Rv1は、閉じた円を伴う頂上の線である。AAV8.UBC.aVEGF-Rv1は、閉じた円を伴う底部の線である。開いた円を伴う中間の線はAAV8.UBC.aVEGF-Rv1である。
【
図3】A~Dは、カニクイザルが、各々の眼の網膜下に1.00×10
11GC/眼の単一用量のAAV2/8ベクターが投与された、実施例3に記載されるような群2及び群3の動物についての前房液及び血液における抗VEGF Fabの発現を示す。前房液及び血液を事前に設定された時点で採取した。抗VEGF Fabの発現は、酵素結合免疫吸着検査法を用いて測定された。A及びBは、群2の動物についての結果である。C及びDは、群3の動物についての結果を提示する。B及びDにおいて、血清中の結果を示すパネル中の灰色の領域は、ベースラインレベルを示す。円はメスを示し、正方形はオスを示す。試料は二重に分析された。結果は平均±標準偏差として表される。略称:Fab=フラグメント抗原結合;GC=ゲノムコピー;OD=右眼;OS=左眼;VEGF=血管内皮増殖因子。
【
図4】A~Dは、カニクイザルが、各々の眼の網膜下に1.00×10
11GC/眼の単一用量のAAV2/8ベクターが投与された、実施例3に記載されるような群5及び群6の動物についての前房液及び血液における抗VEGF Fabの発現を示す。前房液及び血液を事前に設定された時点で採取した。抗VEGF Fabの発現は、酵素結合免疫吸着検査法を用いて測定された。群5についての結果はA及びBに示し、群6についての結果はC及びDに示す。B及びDにおいて、血清中の結果を示すパネル中の灰色の領域は、ベースラインレベルを示す。円はメスを示し、正方形はオスを示す。試料は二重に分析された。結果は平均±標準偏差として表される。略称:Fab=フラグメント抗原結合;GC=ゲノムコピー;OD=右眼;OS=左眼;VEGF=血管内皮増殖因子。
【
図5】RT-qPCRによって測定される網膜中のAAV8.aVEGF試験ベクターについてのmRNAレベルを提示する。カニクイザルは、右眼の網膜下に1.00×10
12GC/眼の単一用量のAAV8.aVEGF試験ベクターまたはFFB-314が投与された。AAV8.aVEGF試験ベクターについてのmRNAレベルは、解剖した網膜の異なる部分において、定量的逆転写ポリメラーゼ連鎖反応(RT-qPCR)によって定量された。左のパネルにおいて、注射部位の概要が描写される。真ん中のパネルにおいて、網膜の解剖体が提示される。右のパネルにおいて、網膜の4つの切片におけるAAV8.aVEGF試験ベクターのmRNA(100ngのRNA当たりのGC)についてのmRNAレベルが描写される。略称:BV=主要血管;F=中心窩;GC=ゲノムコピー;IB=注射ブレブ;ID=識別;O=視神経円板;UD=検出されない
【
図6】A~Dは、前房液、硝子体、及び網膜(群2、実施例6)における抗VEGF Fabの発現結果を提示する。カニクイザルは、網膜下に1.00×10
11GC/眼の単一用量のAAV2/8ベクターが投与された。これらのデータは、
図5A~5Dに示されるものと異なるAAV8.aVEGFベクターの結果を表す。抗VEGF Fabの濃度は、前房液、硝子体、及び網膜の4つの異なる部分において測定された。眼は
図5A~5Dに記されるように解剖された。A及びCにおいて、注射部位の境界と共に網膜の赤外線スペクトル領域光干渉断層撮影画像が示される。B及びDにおいて、抗VEGF Fabの濃度のグラフが提示される。この図において、実施例6の群2の動物の結果が提示される。略称:ACF=前房液;BV=主要血管;F=中心窩;Fab=フラグメント抗原結合;FOV=中心窩を含む中間部;GC=ゲノムコピー;IB=注射ブレブ;ID=識別;INF=下網膜切片;O=視神経円板;ODI=視神経円板を含む中間部;SUP=上網膜切片;VEGF=血管内皮増殖因子;VT=硝子体。
【
図7】A~Dは、前房液、硝子体、及び網膜における抗VEGF Fabの発現結果を提示する(群3、実施例6)。カニクイザルは、網膜下に1.00×10
11GC/眼の単一用量のAAV2/8ベクターが投与された。これらのデータは、
図5A~5Dに示されるものと異なるAAV8.aVEGFベクターの結果を表す。抗VEGF Fabの濃度は、前房液、硝子体、及び網膜の4つの異なる部分において測定された。眼は
図5A~5Dに記されるように解剖された。A及びCにおいて、注射部位の境界と共に網膜の赤外線スペクトル領域光干渉断層撮影画像が描写される。B及びDのグラフにおいて、抗VEGF Fabの濃度が提示される。この図において、実施例6の群3の動物の結果が提示される。略称:ACF=前房液;BV=主要血管;F=中心窩;Fab=フラグメント抗原結合;FOV=中心窩を含む中間部;GC=ゲノムコピー;IB=注射ブレブ;ID=識別;INF=下網膜切片;O=視神経円板;ODI=視神経円板を含む中間部;SUP=上網膜切片;VEGF=血管内皮増殖因子;VT=硝子体。
【
図8】A~Dは、前房液、硝子体、及び網膜における抗VEGF Fabの発現結果を提示する(群5、実施例6)。カニクイザルは、網膜下に1.00×10
11GC/眼の単一用量のAAV2/8ベクターが投与された。これらのデータは、
図5A~5Dに示されるものと異なるAAV8.aVEGFベクターの結果を表す。抗VEGF Fabの濃度は、前房液、硝子体、及び網膜の4つの異なる部分において測定された。眼は
図5A~5Dに記されるように解剖された。A及びCにおいて、注射部位の境界と共に網膜の赤外線スペクトル領域光干渉断層撮影画像が描写される。B及びDのグラフにおいて、抗VEGF Fabの濃度が提示される。この図において、実施例6の群5の動物の結果が提示される。略称:ACF=前房液;BV=主要血管;F=中心窩;Fab=フラグメント抗原結合;FOV=中心窩を含む中間部;GC=ゲノムコピー;IB=注射ブレブ;ID=識別;INF=下網膜切片;O=視神経円板;ODI=視神経円板を含む中間部;SUP=上網膜切片;VEGF=血管内皮増殖因子;VT=硝子体。
【
図10】A~Dは、AAV8についてのrcAAVアッセイの結果を示す。wtAAV8が異なるGC数のAAVベクター中にスパイクされ、細胞溶解物の新しい細胞に対する3代の連続的な継代の後に1μgの293細胞のDNA当たりのcap遺伝子コピー数が測定される。wtAAV8の3つの異なるスパイクレベル[パネル当たり1つのレベル:1×10
2GC、1×10
3GC、及び1×10
4GC]、4つの異なるベクター量[0GC(暗い正方形)、1×10
9GC(灰色の正方形)、1×10
10GC(三角形)、及び1×10
11GC(Xによって示す)]が示され、バックグランドレベルが示される(コントロール)。
【発明を実施するための形態】
【0016】
AAV8カプシドを有する組換えの、複製欠損アデノ随伴ウイルス(rAAV)ベクター及びそれを含む組成物は、抗VEGF抗体結合フラグメント(Fab)を送達するための網膜下注射に好適である。それ、及び特に液体水性懸濁液を含む組成物もまた提供される。それらの組成物の使用もまた提供される。
【0017】
rAAV8ベクターは、哺乳動物において、より詳細にヒト細胞において、抗VEGF抗体結合フラグメント(Fab)を発現するよう設計される。これらの抗VEGF Fabは、加齢性黄斑変性(AMD)の治療に特によく適している。便宜上、これらのベクターをrAAV8.AMDと呼ぶ。本明細書において記載されるように、高い収量、発現レベル、及び/または活性を実証している一連の新規のAAV8.aVEGFコンストラクトが開発されてきている。
【0018】
本発明は、rAAV8.aVEGFベクターの網膜下投与が、網膜全体にわたる遺伝子導入をもたらし、かつ網膜全体にわたる、ならびに硝子体及び前房液中における抗VEGF Fabの発現をもたらすことを実証する以下の例によって示される。遺伝子導入が元の注射ブレブの外側を水平方向に拡散するが、それらの拡張された境界に閉じ込められたままであり、この注射の拡張領域(網膜中の注射部位において形成される「ブレブ」)の外側における遺伝子導入及び導入遺伝子発現を達成しなかったということを実証する従来技術の遺伝子療法の研究を考慮すると、この結果は驚くべきであり、rAAV8.aVEGFベクターの単一投与が(i)結果として、経時的に消散するVEGF阻害剤の高用量ボーラスの繰り返されるIVT投与と比較して性能が向上し得るような網膜全体にわたるVEGF阻害剤の有効量の連続送達、ならびに(ii)患者に追加のリスク及び不便さを
提示する繰り返される眼内注射の回避をもたらす点において、nAMR治療のための標準治療を超える利点をもたらす。各々の態様は、治療成績を改善し得る。
【0019】
本発明は、少なくとも配列番号1の重鎖アミノ酸配列及び配列番号2の軽鎖アミノ酸配列を有し、その各々が、重鎖及び軽鎖の各々に対する外来性リーダー配列を有するよう改変されている、新規の抗VEGF Fabをコードするコンストラクトを提供する。本明細書において示されるあるコンストラクトにおいて、リーダー配列は、ヒトIL2のリーダー由来である。さらに、実施例において示されるあるコンストラクトにおいて、重鎖及び軽鎖は、フリン/F2aリンカーによって分離され、これは、重鎖[配列番号1]に対して付加される1つ以上の追加のアミノ酸をもたらす可能性がある。一実施形態において、単一のアルギニン[R]が重鎖に付加される。しかしながら、ある実施形態において、別のリンカーが選択されるか、及び/または異なるシステムが追加のアミノ酸をまったくもたらさないか、もしくは1つ以上の追加のアミノ酸をもたらす[例えば、とりわけ、R、Lys(K)、RK、RKR、RKRR]。以前の仮出願において、生じるコンストラクトが明細書においてaVEGF-Rと名付けられた。しかしながら、明確性のために、本明細書に記載される抗VEGF Fab導入遺伝子産物をコードするこれらのコンストラクトを、抗VEGF Fab、aVEGF、抗hVEGF、抗ヒトVEGF、または抗VEGF Fab導入遺伝子産物と呼ぶ。この導入遺伝子産物をコードするコンストラクトにおいて、用語aVEGFに続く数字表示、例えばaVEGFv1、aVEGFv2、aVEGFv3からaVEGFv13までは、免疫グロブリン重鎖及び軽鎖のオープンリーディングフレームのための配列をコードする異なる核酸を指す。
【0020】
ある実施形態において、抗VEGF Fabのアミノ酸配列は、513アミノ酸を有し、抗VEGFは、リンカーの結果として追加のアミノ酸によって分離された重鎖及び軽鎖を含む。例えば、以下の発現カセットの各々は、同一の抗VEGFの重鎖及び軽鎖をコードするが、一実施形態において重鎖の最後の位置に付加される1つのアミノ酸が存在し得る。さらに他の実施形態において、重鎖に結合する2つ、3つ、4つ、またはそれ以上の追加のアミノ酸が存在し得る。例えば、ある実施形態において、抗VEGF Fabの重鎖及び軽鎖をコードする核酸配列は、自己切断フリン(F)/F2Aリンカーによって分離されている。アルギニン-リジン-アルギニン-アルギニンのアミノ酸配列からなるフリン認識部位が使用されてもよい。フリン媒介性切断のメカニズムのために、ベクターが発現する抗VEGF Fabは、重鎖[配列番号1]の最後の位置に付加される追加のアルギニン(R)残基を含み得る。他の実施形態において、ベクターが発現する抗VEGF
Fabは、重鎖の終端にジペプチド、アルギニン-リジン、重鎖の終端にトリペプチド、アルギニン-リジン-アルギニン、または重鎖の終端にポリペプチド、アルギニン-リジン-アルギニン-アルギニンを含み得る。ある実施形態において、ベクターが発現する抗VEGF Fabは、2つ以上のこれらのFab産物の異種性の混合物である。他のフリン切断部位(アルギニン-X-X-アルギニン、またはアルギニン-X-リジン、またはアルギニン-アルギニン)もまた使用でき、これはまたC末端の不均一性を生じ得る。換言すると、他のベクターが発現する抗VEGF Fabは、リンカー処理の結果として、重鎖がそのC末端に0、1つ、2つ、3つ、または4つのアミノ酸を有する、Fabの異質性の集合であり得る。さらに、軽鎖及び重鎖の各々は、宿主細胞の機構によって成熟タンパク質からリーダーペプチドを処理して除去する適切な細胞分画へと新生ペプチドを誘導する、異種性リーダーペプチドを含む。ある実施形態において、抗VEGF Fabは、HCまたはLCのリーダー配列をまったく含まない。例えば配列番号33を参照。
【0021】
ある実施形態において、抗VEGF Fabの重鎖は、リーダー配列と共に配列番号33の残基21~252のアミノ酸配列を有する。他の実施形態において、抗VEGF Fabの軽鎖は、リーダー配列と共に配列番号33の残基300~513のアミノ酸配列を有する。例えば、リーダー配列は、約15~約25のアミノ酸、好ましくは約20のアミ
ノ酸であってよい。ある実施形態において、リーダーは、配列番号33のアミノ酸1~20の配列を有する。
【0022】
一実施形態において、抗VEGFv1の重鎖及び軽鎖のコード配列は、配列番号24に提示される。より詳細には、配列番号24を参照して、重鎖可変領域のオープンリーディングフレーム(ORF)がヌクレオチド(nt)1843~2211に提示され、重鎖定常領域(CH1)のORFがnt2212~2532に提示される。したがって、リーダーを含まないaVEGFv1の重鎖は、nt1843~2532の核酸配列を有する。軽鎖可変領域(VL)のORFが配列番号24のnt2680~3000に提示され、軽鎖定常領域(CL)が配列番号24のnt3001~3321に提示される。したがって、リーダーを含まないaVEGFv2の軽鎖は、配列番号24のnt2680~3321の核酸配列を有する。
【0023】
別の実施形態において、抗VEGFv2の重鎖及び軽鎖のコード配列は、配列番号3に提示される。より詳細には、VHのORFが配列番号3のnt2059~2427に提示され、CH1が配列番号3のnt2428~2748に提示され、リーダーを含まない重鎖が配列番号3のnt2059~2748の核酸配列を有する。VLのORFが配列番号3のnt2896~3216に提示されCLが配列番号3のnt3217~3536に提示され、リーダーを含まない軽鎖が配列番号3のnt2896~3536の核酸配列を有する。
【0024】
さらに別の実施形態において、aVEGFv3の重鎖及び軽鎖のコード配列は、配列番号19に提示される。VHのORFが配列番号19のnt1842~2210に提示され、CH1が配列番号19のnt2211~2531に提示され、リーダーを含まない重鎖が配列番号19のnt1842~2531の核酸配列を有する。VLのORFが配列番号19のnt2679~2999に提示され、CLが配列番号19のnt3000~3320に提示され、リーダーを含まない軽鎖が配列番号19のnt2670~3320の核酸配列を有する。
【0025】
さらなる実施形態において、aVEGFv4の重鎖及び軽鎖のコード配列は、配列番号35に提示される。重鎖のリーダー配列が配列番号35のnt1993~2052にコードされ、VHのORFが配列番号35のnt2053~2421にあり、CH1が配列番号35のnt2422~2742にある。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のアミノ酸をコードする配列がVH鎖に残り得る。軽鎖のリーダー配列が配列番号35のnt2830~2889にコードされ、VLのORFが配列番号35のnt2890~3210に提示され、CLのORFが配列番号35のnt3211~3531に位置する。
【0026】
さらなる実施形態において、aVEGFv5の重鎖及び軽鎖のコード配列は、配列番号36に提示される。重鎖のリーダー配列が配列番号36のnt1993~2052にコードされ、VHのORFが配列番号36のnt2053~2421にコードされ、CH1が配列番号36のnt2422~2742にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のアミノ酸をコードする配列がVH鎖に残り得る。軽鎖のリーダー配列が配列番号36のnt2830~2889にコードされ、VLのORFが配列番号36のnt2890~3210に提示され、CLのORFが配列番号36のnt3211~3531に位置する。
【0027】
さらなる実施形態において、aVEGFv6の重鎖及び軽鎖のコード配列は、配列番号37に提示される。重鎖のリーダー配列が配列番号37のnt1993~2051にコードされ、VHのORFが配列番号37のnt2053~2421にコードされ、CH1が
配列番号37のnt2422~2742にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のアミノ酸をコードする配列がVH鎖に残り得る。軽鎖のリーダー配列が配列番号37のnt2830~2889にコードされ、VLのORFが配列番号37のnt2890~3210に提示され、CLのORFが配列番号37のnt3211~3531に位置する。
【0028】
さらなる実施形態において、aVEGFv7の重鎖及び軽鎖のコード配列は、配列番号38に提示される。重鎖のリーダー配列が配列番号38のnt1993~2052にコードされ、VHのORFが配列番号38のnt2053~2421にコードされ、CH1が配列番号38のnt2422~2742にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のArgのコドンがVH鎖に残る。軽鎖のリーダー配列が配列番号38のnt2830~2889にコードされ、VLのORFが配列番号38のnt2890~3210に提示され、CLのORFが配列番号38のnt3211~3531に位置する。
【0029】
さらなる実施形態において、aVEGFv8の重鎖及び軽鎖のコード配列は、配列番号39に提示される。重鎖のリーダー配列が配列番号39のnt1993~2052にコードされ、VHのORFが配列番号39のnt205~2421にコードされ、CH1が配列番号39のnt2422~2742にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のArgのコドンがVH鎖に残る。軽鎖のリーダー配列が配列番号39のnt2830~2889にコードされ、VLのORFが配列番号39のnt2890~3210に提示され、CLのORFが配列番号39のnt3211~3531に位置する。
【0030】
さらなる実施形態において、aVEGFv9の重鎖及び軽鎖のコード配列は、配列番号40に提示される。重鎖のリーダー配列が配列番号40のnt1999~2058にコードされ、VHのORFが配列番号40のnt2059~2427にコードされ、CH1が配列番号40のnt2428~2748にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のArgのコドンがVH鎖に残る。軽鎖のリーダー配列が配列番号40のnt2836~2895にコードされ、VLのORFが配列番号40のnt2896~3216に提示され、CLのORFが配列番号40のnt3217~3637に位置する。
【0031】
さらなる実施形態において、aVEGFv10の重鎖及び軽鎖のコード配列は、配列番号41に提示される。重鎖のリーダー配列が配列番号41のnt1993~2052にコードされ、VHのORFが配列番号41のnt2053~2421にコードされ、CH1が配列番号41のnt2422~2742にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のArgのコドンがVH鎖に残る。軽鎖のリーダー配列が配列番号41のnt2830~2889にコードされ、VLのORFが配列番号41のnt2890~3210に提示され、CLのORFが配列番号41のnt3211~3231に位置する。
【0032】
さらなる実施形態において、aVEGFv11の重鎖及び軽鎖のコード配列は、配列番号42に提示される。重鎖のリーダー配列が配列番号42のnt1993~2052にコードされ、VHのORFが配列番号42のnt2053~2421にコードされ、CH1が配列番号42のnt2422~2742にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位が重鎖の終端と軽鎖の先頭の間に配置される。軽鎖のリーダー配列が配列番号42のnt2830~2889にコードされ、VLのORFが配列番号42のnt2890~3210に提示され、CLのORFが配列番号42のnt3211~3531に位置する。
【0033】
さらなる実施形態において、aVEGFv12の重鎖及び軽鎖のコード配列は、配列番号43に提示される。重鎖のリーダー配列が配列番号43のnt1993~2052にコードされ、VHのORFが配列番号43のnt2053~2421にコードされ、CH1が配列番号43のnt2422~2742にコードされる。軽鎖のリーダー配列が配列番号43のnt2830~2889にコードされ、VLのORFが配列番号43のnt2890~3210に提示され、CLのORFが配列番号43のnt3211~3531に位置する。
【0034】
さらなる実施形態において、aVEGFv13の重鎖及び軽鎖のコード配列は、配列番号44に提示される。重鎖のリーダー配列が配列番号44のnt1993~2052にコードされ、VHのORFが配列番号44のnt2053~2421にコードされ、CH1が配列番号44のnt2422~2742にコードされる。軽鎖のリーダー配列が配列番号44のnt2830~2889にコードされ、VLのORFが配列番号44のnt2890~3210であり、CLのORFが配列番号44のnt3211~3531に位置する。
【0035】
ラニビズマブは、本明細書において陽性コントロールとして記載され、現在、Lucentis(登録商標)の商品名で市販されている。それは、組換えヒト化モノクローナル抗体rhuMAb血管内皮増殖因子(VEGF)の高親和性バージョンのFab部分として記載されている。それは、そのC末端において、231残基の重鎖のN末端部分へとジスルフィド結合により連結している214残基の軽鎖からなる。重鎖及び軽鎖の予測されるアミノ酸配列は、配列番号1及び2に提示される。CAS番号347396-82-1。
【0036】
本明細書において使用されるとき、「免疫グロブリンドメイン」は、通常の全長の抗体を参照して定義されるような抗体の重鎖または軽鎖のドメインを指す。より詳細には、全長の抗体は、4つのドメイン:1つのN末端可変(VH)領域、及び3つのC末端定常(CH1、CH2、及びCH3)領域を含む重(H)鎖ポリペプチド、ならびに2つのドメイン:1つのN末端可変(VL)領域、及び1つのC末端定常(CL)領域を含む軽(L)鎖ポリペプチドを含む。Fc領域は2つのドメイン(CH2-CH3)を含み得る。Fab領域は、重鎖と軽鎖の各々についての1つの定常ドメイン及び1つの可変ドメインを含む。
【0037】
一実施形態において、rAAV.aVEGFベクターは、AAV8カプシドと、AAV8に対して異種性の少なくとも1つの要素を含むそこにパッケージングされるベクターゲノムとを有する。一実施形態において、ベクターゲノムは、5’から3’に、(a)AAVの5’ITR、(b)エンハンサー、(c)プロモーター、(d)イントロン、(e)リーダー配列及び抗VEGF重鎖コード配列、(f)フリン-F2aリンカー、(g)リーダー配列及び抗VEGF軽鎖コード配列、(h)ポリAシグナル、ならびに(i)AAVの3’ITRを含む。
【0038】
ある実施形態において、抗VEGF Fabの重鎖及び軽鎖の処理は、ヒトIL2タンパク質由来のリーダーペプチドによって誘導される。一実施形態において、リーダー配列はインターロイキン(IL)IL-2のリーダー配列であり、それは野生型ヒトIL2MYRMQLLSCIALSLALVTNS[配列番号29]、またはMYRMQLLLLIALSLALVTNS[配列番号30]もしくはMRMQLLLLIALSLALVTNS[配列番号31]のような変異したリーダーであってよい。別の実施形態において、ヒトセルピンF1の分泌シグナルがリーダーペプチドとして使用され得る。他のリーダー配列、または重鎖及び軽鎖にとって外来性である他のリーダーを使用することができる。
【0039】
ベクターゲノムの以下の記載において使用されるとき、軽鎖または重鎖として他が指定されていない限り、コード配列(例えばaVEGFv2)に対する言及は、抗VEGFの重鎖-フリン/F2aリンカー-抗VEGFの軽鎖を包含する。一実施形態において、フリン認識部位、アルギニン-リジン-アルギニン-アルギニンをコードする核酸配列が選択される。ある実施形態において、FMDV(GenBank番号CAA2436.1)に由来する24アミノ酸ペプチドであるF2Aリンカーをコードする核酸が選択される。しかしながら、所望なら、例えば脳心筋炎ウイルス(EMCV)に由来するようなIRES配列:配列番号32:[TATGCTAGTACGTCTCTCAAGGATAAGTAAGTAATATTAAGGTACGGGAGGTATTGGACAGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGATAGTACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTGGCCTAACTGGCCGGTACCTGAGCTCTAGTTTCACTTTCCCTAGTTTCACTTTCCCTAGTTTCACTTTCCCTAGTTTCACTTTCCCTAGTTTCACTTTCCCCTCGAGGATATCAAGATCTGGCCTCGGCGGCCAG]、cMyc[Nanbru C, et al (1997). J.
Biol. Chem. 272, 32061-32066;Stoneley M, et al., (1998). Oncogene 16, 423-428.]、または口蹄疫(FMD)に由来するものが選択され得る。
【0040】
AAV2に由来する末端逆位配列(ITR)が選択され得る。そのカプシドとは異なる源由来のITRを有するベクターは、「偽型」と呼ばれる。ある実施形態において、AAV2とは異なる源由来のITRを、別の偽型AAVを生成するためにこのコンストラクトについて選択され得る。代替的に、カプシドと同一の源由来のITRが選択され得る。ある実施形態において、以下に定義されるような自己相補型AAVを生成するようにITRが選択され得る。
【0041】
ある実施形態において、プロモーターはCB7、すなわち、サイトメガロウイルス(CMV)最初期エンハンサー(C4)とトリβアクチンプロモーターとのハイブリッドである。他の実施形態において、プロモーターはユビキチンC(UbC)プロモーターである。例えばWO2001/091800を参照。例えば、GenBank(登録商標)アクセッション番号AF232305(ラット)及びD63791(ヒト)をそれぞれ参照。さらに他のプロモーター及び/またはエンハンサーが選択され得る。例えば、サイトメガロウイルス(CMV)最初期エンハンサー(260bp、C4、GenBank番号K03104.1)、トリβアクチンプロモーター(281bp、CB、GenBank番号X00182.1)を参照。さらに他の実施形態において、多重エンハンサー及び/またはプロモーターが含まれ得る。
【0042】
ある実施形態において、イントロンが含まれる。1つの好適なイントロンはトリβアクチンのイントロンである。一実施形態において、イントロンは875bp(GenBank番号X00182.1)である。別の実施形態において、Promegaより入手可能なキメライントロンが使用される。しかしながら、他の好適なイントロンも選択され得る。
【0043】
本明細書において記載されるベクターゲノムは、ポリアデニル化シグナル(polyA)を含む。様々な好適なpolyAが公知である。一例において、polyAは、127bpのウサギβグロビンポリアデニル化シグナル(GenBank番号V00882.1)のようなウサギβグロビンである。他の実施形態において、SV40polyAシグナ
ルが選択される。さらに他の好適なpolyA配列も選択され得る。
【0044】
任意選択で、例えばUTR配列またはコザック配列を含み得る他の好適なベクター因子が選択され得る。
【0045】
一実施形態において、ベクターゲノムはITR-CB7-CI-aVEGFv2-rBG-ITR[配列番号3]を含む。別の実施形態において、ベクターゲノムは、ITR-UbC-CI-aVEGFv2-SV40-ITR[配列番号9]を含む。一実施形態においてベクターゲノムはITR-CB7-CI-aVEGFv3-rBG-ITR[配列番号14]を含む。別の実施形態において、ベクターゲノムは、ITR-UbC-PI-aVEGFv3-SV40-ITR[配列番号19]を含む。別の実施形態において、ベクターゲノムは、ITR-UbC-PI-aVEGFv1-SV40-ITR[配列番号24]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv4.rBG-AAV2 ITR[配列番号35]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv5.rBG-AAV2 ITR[配列番号36]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv6.rBG-AAV2 ITR[配列番号37]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv7.rBG-AAV2 ITR[配列番号38]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv8.rBG-AAV2 ITR[配列番号39]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv9.rBG-AAV2 ITR[配列番号40]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv10.rBG-AAV2 ITR[配列番号41]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv11.rBG-AAV2 ITR[配列番号42]を含む。さらなる実施形態において、ベクターゲノムはAAV2-ITR-CB7.CI.aVEGFv12.rBG-AAV2 ITR[配列番号43]を含む。さらなる実施形態において、ベクターゲノムはAAV2 ITR-CB7.CI.aVEGFv13.rBG-AAV2 ITR[配列番号44を参照]を含む。さらなる実施形態において、ベクターゲノムはAAV2 ITR-CMV.PI.aVEGFv7.eCMVIres.aVEGF.SV40-AAV2 ITR[配列番号45]を含む。別の施形態において、ベクターゲノムはAAV2 ITR.CMV.PI.aVEGF.FMDV1IRES.SV40-ITR[配列番号46]を含む。なおもさらなる実施形態において、ベクターゲノムはAAV2 ITR.CMV.PI.aVEGF.cMycIRES.Fab.SV40-ITR[配列番号47]を含む。
【0046】
AAVウイルスベクター(例えば、組換え(r)AAV)の作製における使用のために、発現カセットを、パッケージング宿主細胞へと送達される任意の好適なベクター、例えば、プラスミド上に担持し得る。本発明において有用なプラスミドは、原核細胞、哺乳動物細胞、またはその両方において複製及びパッケージングするのに好適なように改変し得る。好適なトランスフェクション技術及びパッケージング宿主細胞は、当業者に公知であり、及び/または当業者によって容易に設計できる。
【0047】
ベクターとしての使用に好適なAAVの生成及び単離のための方法は、当該技術分野において公知である。概して、例えばGrieger & Samulski, 2005,”Adeno-associated virus as a gene therapy vector:Vector development,production and clinical applications,”Adv.Biochem.Engin/Biotechnol.99:119-145;Buning et al.
,2008,”Recent developments in adeno-associated virus vector technology,”J.Gene Med.10:717-733;及びいかに引用される参考文献を参照でき、その各々は、参照によりその全てが本明細書に組み込まれる。導入遺伝子のビリオンへのパッケージングのために、ITRは、発現カセットを含む核酸分子と同一のコンストラクトにおいて、シスで必要とされる唯一のAAVの構成要素である。cap遺伝子及びrep遺伝子は、トランスで供給できる。
【0048】
一実施形態において、本明細書において記載される発現カセットは、ウイルスベクター産生のためにそこに担持する免疫グロブリンコンストラクト配列をパッケージング宿主細胞へと導入する遺伝因子(例えばシャトルプラスミド)に入るよう操作される。一実施形態において、選択される遺伝因子は、トランスフェクション、エレクトロポレーション、リポソーム送達、膜融合技術、高速DNA被覆ペレット、ウイルス感染、及びプロトプラスト融合を含む任意の好適な方法によってAAVパッケージング細胞へと送達され得る。安定的なAAVパッケージング細胞もまた作製できる。代替的に、AAV以外のウイルスベクターを作製するために、またはインビトロにおいて抗体の混合物を作製するために、発現カセットを使用することもできる。そのようなコンストラクトを作製するのに使用される方法は、核酸操作における当業者に公知であり、遺伝子操作、組換え技術、及び合成技術を含む。例えば、Molecular Cloning:A Laboratory
Manual,ed.Green and Sambrook,Cold Spring Harbor Press,Cold Spring Harbor,NY(2012)を参照。
【0049】
本明細書において使用されるとき、「AAV8カプシド」は、NCBI参照配列:NC_006261.1(配列番号49)の核酸配列にコードされるGenBankアクセッション番号:YP_077180(配列番号48)のアミノ酸配列を有するAAV8カプシドを指し、その両方は参照により本明細書に組み込まれる。このコードされた配列のいくらかの変異は本発明によって包含され、これは、GenBankアクセッション:YP_077180、米国特許第7,282,199号、同第7,790,449号、同第8,319,480号、同第8,962,330号、US8,962,332における参照アミノ酸配列に対して約99%の同一性を有する配列(すなわち、参照配列から約1%未満の変異)を含み得る。別の実施形態において、AAV8カプシドは、参照により本明細書に組み込まれるWO2014/124282に記載されるAAV8バリアントのVP1配列を有し得る。カプシド、コード配列の生成方法、したがって、rAAVウイルスベクターの作製方法は、記載されてきている。例えば、Gao,et al,Proc.Natl.Acad.Sci.U.S.A.100(10),6081-6086(2003)、US2013/0045186A1、及びWO2014/124282を参照。ある実施形態において、所望の標的細胞、例えば光受容体、RPE、または他の眼細胞に対する指向性を示すAAV8バリアントが選択される。例えば、AAV8カプシドは、参照により本明細書に組み込まれるKay et al,Targeting Photoreceptors via Intravitreal Delivery Using Novel,Capsid-Mutated AAV Vectors,PLoS One.2013;8(4):e62097.Published online 2013
Apr 26に記載されるような、Y447F、Y733F、及びT494V変異(「AAV8(C&G+T494V)」及び「rep2-cap8(Y447F+733F+T494V)」とも呼ばれる)を有し得る。例えば、参照により本明細書に組み込まれるMowat et al,Tyrosine capsid-mutant AAV vectors for gene delivery to the canine retina from a subretinal or intravitreal approach,Gene Therapy 21,96-105(January
2014)を参照。別の実施形態において、AAVカプシドは、AAV8カプシドであり、優先的に双極細胞を標的とする。参照により本明細書に組み込まれるWO2014/024282を参照。
【0050】
本明細書において使用されるとき、用語「NAb力価」は、その標的のエピトープ(例えばAAV)の生理学的効果を中和する中和抗体(例えば抗AAV Nab)がどれだけ産生されたかを測定するものである。抗AAV NAb力価は、例えば、参照により本明細書に組み込まれるCalcedo,R.,et al.,Worldwide Epidemiology of Neutralizing Antibodies to Adeno-Associated Viruses.Journal of Infectious Diseases,2009.199(3):p.381-390において記載されるように測定され得る。
【0051】
アミノ酸配列の文脈における用語「パーセント(%)同一性」、「配列同一性」、「パーセント配列同一性」、または「パーセント同一」は、一致についてアラインメントするときに同一である2つの配列中の残基を指す。タンパク質、ポリペプチド、約32アミノ酸、約330アミノ酸の全長、もしくはそれらのペプチドフラグメントのアミノ酸配列、または配列をコードする対応する核酸配列について、パーセント同一性は容易に決定できる。好適なアミノ酸フラグメントは、少なくとも8アミノ酸の長さであり得、約700アミノ酸までであり得る。一般的に、2つの異なる配列間の「同一性」、「相同性」、または「類似性」を指すとき、「同一性」、「相同性」、または「類似性」は、アラインメントされた配列を参照にして決定される。「アラインメントされた」配列または「アラインメント」は、参照配列と比較して、欠損または追加の塩基またはアミノ酸の修正をしばしば含む多重の核酸配列またはタンパク質(アミノ酸)配列を指す。アラインメントは、任意の様々な公的または商業的に利用可能な多重配列アラインメントプログラムを用いて実施する。例えば、「Clustal Omega」、「Clustal X」、「MAP」、「PIMA」、「MSA」、「BLOCKMAKER」、「MEME」、及び「Match-Box」のプログラムのような配列アラインメントプログラムが、アミノ酸配列について利用可能である。一般的に、任意のこれらのプログラムが、デフォールトの設定で利用されるが、当業者は必要に応じてこれらの設定を変えることができる。代替的に、当業者は、参照されるアルゴリズム及びプログラムによって提供されるもののレベルの同一性またはアラインメントを少なくとも提供する、別のアルゴリズムまたはコンピュータープログラムを使用することができる。例えば、J.D.Thomson et al,Nucl.Acids.Res.,“A comprehensive comparison of multiple sequence alignments”,27(13):2682-2690(1999)を参照。本明細書において使用されるとき、用語「作動可能に連結」は、対象の遺伝子と隣接する発現制御配列と、トランスまたは遠位において対象の遺伝子を制御するように作用する発現制御配列との両方を指す。
【0052】
「複製欠損ウイルス」または「ウイルスベクター」は、対象の遺伝子を含む発現カセットがウイルスカプシドまたはエンベロープにパッケージングされている合成または人工のウイルス粒子であって、ここで同様にウイルスカプシドまたはエンベロープにパッケージングされている任意のウイルスゲノム配列が複製欠損である、すなわちそれらが子孫ビリオンを生成することができないが、標的細胞に感染する能力を残しているものを指す。一実施形態において、ウイルスベクターのゲノムは、複製に必要な酵素をコードする遺伝子を含まないが(ゲノムは、人工ゲノムの増幅及びパッケージングに必要なシグナルに隣接された対象の導入遺伝子のみを含む「弱いもの」であるように改変され得る)、これらの遺伝子は作製の間供給され得る。したがって、子孫ビリオンによる複製及び感染が、複製に必要なウイルス酵素の存在下を除いて起こらないので、それは遺伝子療法における使用について安全であるとみなされる。
【0053】
略語「sc」は、自己相補型を指す。「自己相補型AAV」は、組換えAAV核酸配列によって担持されるコード領域が、分子内二重鎖DNAテンプレートを形成するように設計されている発現カセットを有するプラスミドまたはベクターを指す。感染の際、第2の鎖の細胞媒介性合成を待つよりもむしろ、scAAVの2つの相補的な半分は、直接の複製及び転写の準備ができるまで、1つの二重鎖DNA(dsDNA)を形成するよう会合する。例えば、D M McCarty et al,“Self-complementary recombinant adeno-associated virus(scAAV)vectors promote efficient transduction independently of DNA synthesis”,Gene Therapy,(August 2001),Vol 8,Number 16,Pages 1248-1254を参照。自己相補型AAVは、例えば米国特許第6,596,535号、同第7,125,717号、及び同第7,456,683号に記載され、その各々は参照によりその全てが本明細書に組み込まれる。
【0054】
タンパク質または核酸を参照して使用されるとき、用語「異種性」は、タンパク質または核酸が、自然において、互いに対して同一の関係が見出されない2つ以上の配列または亜配列を含むことを示す。例えば、新規の機能の核酸を作製するよう配置される無関係の遺伝子からの2つ以上の配列を有する核酸が、典型的に組換えて作製される。例えば、一実施形態において、核酸が、他の遺伝子からのコード配列の発現を誘導するよう配置される1つの遺伝子からのプロモーターを有する。したがって、コード配列を基準にして、プロモーターは異種性である。
【0055】
タンパク質または核酸配列を参照して使用するとき、用語「外来性」は、異なる源、例えばAAV及びヒトタンパク質に由来する2つ以上の配列または亜配列を指す。
【0056】
用語「a」または「an」は1つ以上を指すことは注意されたい。そのようなとき、用語「a」(または「an」)、「1つ以上」、及び「少なくとも1つ」は、本明細書において交換可能に使用される。
【0057】
単語「含む(comprise)」、「含む(comprises)」、及び「含んでいる(comprising)」は、排他的ではなく包包含的に解釈されるべきである。単語「からなる(consist)」、「からなる(consisting)」及びその変形は、包含的ではなく排他的に解釈されるべきである。本明細書における様々な実施形態が、他の状況において「含む(comprising)」という言葉を用いて提示されるが、関連する実施形態はまた、「からなる(consisting of)」または「本質的に~からなる(consisting essentially of)」という言葉を用いて解釈され、記載される。
【0058】
本明細書において使用されるとき、用語「約」は、他が特定されない限り、与えられる基準からの10%の可変性を意味する。
【0059】
本明細書において他が特定されない限り、本明細書において使用される技術的及び科学的な用語は、当業者によって、及び本願において使用される用語の多くについての一般的な解説を当業者に提供する出版された文献を参照することによって、通常理解されるのと同一の意味を有する
【0060】
rAAV8.aVEGF製剤
rAAV8.aVEGF製剤は、水性溶液に懸濁された有効量のrAAV8.aVEGFベクターを含む懸濁液である。ある実施形態において、懸濁液は、任意選択の界面活性
剤及び/または他の賦形剤と共に、緩衝食塩水を含む。緩衝食塩水は、典型的には、生理学的に適合可能な塩または塩の混合物を含み、例えばリン酸緩衝生理食塩水、塩化ナトリウム、またはそれらの混合物である。
【0061】
一実施形態において、製剤は、例えば、参照により本明細書に組み込まれるM.Lock et al,Hu Gene Therapy Methods,Hum Gene
Ther Methods 2014 Apr;25(2):115-25.doi:10.1089/hgtb.2013.131.Epub 2014 Feb 14に記載されるように、oqPCRまたはデジタル液滴PCR(ddPCR)によって測定されるとき、例えば、約1×108GC/眼~約7×1012GC/眼、または約5×109GC/眼~約1×1011GC/眼、または約1010GC/眼または約を含み得る。
【0062】
例えば、本明細書において提供されるとき、懸濁液はNaClとKClとの両方を含み得る。pHは、6.5~8または7.2~7.6の範囲であり得る。pHは、任意の好適な方法、例えば、USP<791>[米国薬局方協会、参照標準]を用いて評価できる。好適な界面活性剤、または界面活性剤の組み合わせは、ポロキサマー、すなわち、2つのポリオキシエチレン(ポリ(酸化エチレン)の親水性鎖に隣接されるポリオキシプロピレン(ポリ(酸化プロピレン))の中心疎水性鎖からなる非イオン性トリブロックコポリマー、SOLUTOL HS 15(マクロゴール-15ヒドロキシステアラート)、LABRASOL(ポリオキシカプリル酸グリセリド)、ポリオキシ10オレイルエーテル、TWEEN(ポリオキシエチレンソルビタン脂肪酸エステル)、エタノール、及びポリエチレングリコールの中から選択できる。一実施形態において、製剤はポロキサマーを含む。これらのコポリマーは、3桁の数字が後に続く字「P」(ポロキサマーに対して)によって一般的に名付けられ、最初の2桁×100は、ポリオキシプロピレンコアのおよその分子量をもたらし、最後の1桁×10は、ポリオキシエチレン含量のパーセンテージをもたらす。一実施形態において、ポロキサマー188が選択される。界面活性剤は、懸濁液の約0.0005%~約0.001%までの量で存在し得る。一実施形態において、rAAV8.aVEGF製剤は、例えば、参照により本明細書に組み込まれるM.Lock et al,Hu Gene Therapy Methods,Hum Gene Ther Methods 2014 Apr;25(2):115-25.doi:10.1089/hgtb.2013.131.Epub 2014 Feb 14に記載されるように、oqPCRまたはデジタル液滴PCR(ddPCR)によって測定されるとき、少なくとも1×1011またはそれ以上のゲノムコピー(GC)/mL、例えば約1×1013GC/mLを含む懸濁液である。一実施形態において、ベクターは、180mMの塩化ナトリウム、10mMのリン酸ナトリウム、0.001%のポリオキサマー188を含むpH7.3の水性溶液中に懸濁される。製剤は、ヒト対象における使用に好適であり、網膜下に投与される。
【0063】
空のカプシドが、患者に投与されるAAV8.aVEGFの用量から除去されることを確実にするために、ベクター精製プロセスの間に、空のカプシドをベクター粒子から分離する。一実施形態において、パッケージングされたゲノムを含むベクター粒子は、参照により本明細書に組み込まれる、2016年12月9日に出願された国際特許出願第PCT/US16/65976、及びその優先権書類である2016年4月13日に出願された米国特許出願第62/322,098号及び、2015年12月11日に出願され、「Scalable Purification Method for AAV8」と題する同第62/266,341号に記載されるプロセスを用いて空のカプシドから精製される。手短に、rAAV作製細胞培養の清澄にし、濃縮された上清から、ゲノム含有rAAVベクター粒子を選択的に捕捉及び単離する2ステップの精製スキームが記載される。プロセスは、高塩濃度で実施する親和性捕捉法、続いて高pHで実施するアニオン交換樹脂法を用い、rAAV中間体を実質的に含まないrAAVベクター粒子をもたらす。
【0064】
一実施形態において、使用されるpHは、10~10.4(約10.2)であり、rAAV粒子がAAV8の中間体から、少なくとも約50%~約90%精製されるか、または10.2のpHであり、AAV8の中間体から約90%~約99%精製される。一実施形態において、これはゲノムコピーによって測定される。ストック中のrAAV8粒子は、ストック中のrAAV8の少なくとも約75%~約100%、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも95%、または少なくとも99%であるとき、かつ「空のカプシド」が、ストックまたは製剤中のrAAV8の約1%未満、約5%未満、約10%未満、約15%未満であるとき、rAAV8粒子(パッケージングされたゲノム)のストックまたは製剤は、AAVの空のカプシド(及び他の中間体)を「実質的に含まない」ものである。一実施形態において、製剤は、1未満、好ましくは0.75未満、より好ましくは0.5未満、より好ましくは0.3未満の「空」の「完全」に対する比を有するrAAVストックを特徴とする。
【0065】
さらなる実施形態において、rAAV粒子の平均収率は少なくとも約70%である。これは、カラムに充填された混合物中の力価(ゲノムコピー)と最終的な溶離液中に存在する量とを測定することによって計算できる。さらに、これらは、本明細書において記載されるもの、または当該技術分野において記載されてきているもののような、q-PCR解析及び/またはSDS-PAGE技術に基づいて測定できる。
【0066】
例えば、空及び完全な粒子の含量を計算するために、選択された試料に関するVP3バンドの容量(例えば、イオジキサノール勾配精製調製物、ここでGCの数=粒子の数である)が、充填されたGC粒子に対してプロットされる。生じる線形方程式(y=mx+c)は、試験試料のピークのバンドの容量における粒子の数を計算するのに使用される。次いで、充填された20μL当たりの粒子(pt)の数は、50倍されて粒子(pt)/mLをもたらす。pt/mLをGC/mLによって割ると、粒子のゲノムコピーに対する比(pt/GC)をもたらす。pt/mL-GC/mLは空のpt/mLをもたらす。空のpt/mLをpt/mLで割って×100すると、空の粒子のパーセンテージをもたらす。
【0067】
一般的に、空のカプシド及びパッケージングされたゲノムを有するAAVベクター粒子を分析する方法は、当該技術分野において公知である。例えば、Grimm et al.,Gene Therapy(1999)6:1322-1330;Sommer et al.,Molec.Ther.(2003)7:122-128を参照。変性カプシドについて試験するために、方法は、処理したAAVストックを、3つのカプシドタンパク質を分離することのできる任意のゲルからなるSDS-ポリアクリルアミドゲル電気泳動、例えば、緩衝液中に3~8%のトリス酢酸塩を含む勾配ゲルに供することと、次いで試料物質が分離するまでゲルを泳動することと、ゲルをナイロンまたはニトロセルロースの膜上、好ましくはナイロンにブロットすることとを含む。次いで、変性カプシドタンパク質に結合する抗AAVカプシド抗体、好ましくは抗AAVカプシドモノクローナル抗体、最も好ましくはB1抗AAV-2モノクローナル抗体が、一次抗体として使用される(Wobus et al.,J.Viral.(2000)74:9281-9293)。次いで、一次抗体に結合し、一次抗体との結合を検出するための手段を含む二次抗体、より好ましくは、それに共有結合した検出分子を含む抗IgG抗体、最も好ましくは、西洋ワサビペルオキシダーゼに共有結合したヤギ抗ウサギIgG抗体が使用される。結合を検出する方法は、一次抗体と二次抗体との間の結合を半定量的に測定するために使用され、好ましくは、放射性同位体放出、電磁放射、または比色変化を検出することのできる検出方法であり、最も好ましくは、化学発光検出キットである。例えば、SDS-PAGEのために、カラム画分からの試料を採取でき、還元剤(例えばDTT)を含むSDS-PAGEローディング緩衝液中で加熱でき、カプシドタンパク質は、プレキャストの勾配
ポリアクリルアミドゲル(例えばNovex)上で分析される。製造者の取扱説明書に従ってSilverXpress(Invitrogen、CA)を用いる銀染色を実施してもよい。一実施形態において、カラム画分におけるAAVベクターゲノム(vg)の濃度は、定量的リアルタイムPCR(Q-PCR)によって測定することができる。試料を希釈してDNase I(または別の好適なヌクレアーゼ)によって切断して外来性DNAを除去する。ヌクレアーゼの不活化後、試料をさらに希釈して、プライマーとプライマー間のDNA配列に特異的なTaqMan(商標)蛍光発生プローブを用いて増幅する。所定のレベルの蛍光に到達するのに必要とされるサイクル数(閾値サイクル、Ct)は、Applied Biosystems Prism 7700 Sequence Detection Systemにおいて各々の試料について測定される。AAVベクターに含まれるものと同一の配列を含むプラスミドDNAは、Q-PCR反応において標準曲線を作成するのに利用される。試料から得られるサイクル閾値(Ct)の値は、それをプラスミド標準曲線のCt値に対して標準化することによって、ベクターゲノムの力価を測定するのに使用される。デジタルPCRに基づくエンドポイントアッセイもまた使用できる。
【0068】
一態様において、広域スペクトラムのセリンプロテアーゼ、例えばプロテイナーゼK(Qiagenから市販されているものなど)を用いる最適化されたq-PCR法が本明細書において提供される。より詳細には、最適化されたqPCRゲノム力価アッセイは、DNase I消化の後に、試料をプロテイナーゼK緩衝液で希釈してプロテイナーゼKによって処理し、続けて熱不活化することを除いて標準的なアッセイと同様である。好適な試料は、試料サイズと同量のプロテイナーゼK緩衝液で希釈する。プロテイナーゼK緩衝液は、2倍以上に濃縮されていてもよい。典型的には、プロテイナーゼK処理は、約0.2mg/mLであり、0.1mg/mL~約1mg/mLで変動し得る。処理ステップは、一般的に約55℃において15分間で実施されるが、より低い温度(例えば約37℃~約50℃)でより長い時間(例えば約20分間~約30分間)を超えて実施してもよく、またはより高い温度(例えば約60℃まで)でより短い時間(例えば約5~10分間)で実施してもよい。同様に、熱不活化は一般的に約95℃で約15分間であるが、温度はより低く(例えば約70~約90℃)てもよく、延長した時間(例えば約20分間~約30分間)である。次いで、試料は希釈され(例えば1000倍)、標準アッセイに記載されるようなTaqMan解析に供される。
【0069】
さらに、または代替的に、液滴デジタルPCR(ddPCR)を使用できる。例えば、一本鎖及び自己相補型のAAVベクターゲノム力価をddPCRによって測定する方法は記載されてきている。例えば、M.Lock et al,Hu Gene Therapy Methods,Hum Gene Ther Methods.2014 Apr;25(2):115-25.doi:10.1089/hgtb.2013.131.Epub 2014 Feb 14を参照。
【0070】
製造
rAAV8.aVEGFベクターは、
図9に示されるフローチャートに示されるように製造できる。手短に、細胞(例えばHEK293細胞)は、好適な細胞培養系において増殖され、ベクター生成のためにトランスフェクトされる。次いで、rAAV8.aVEGFベクターは、採取され、濃縮され、精製され、バルクベクターを調製することができ、次いでこれは、下流のプロセスにおいて充填され、完成される。本明細書において記載される遺伝子療法ベクターを製造する方法は、遺伝子療法ベクターの作製に使用されるプラスミドDNAの生成、ベクターの生成、及びベクターの精製などの当該技術分野において周知の方法を含む。いくつかの実施形態において、遺伝子療法ベクターはAAVベクターであり、生成されるベクターは、AAVゲノム及び対象の遺伝子をコードするAAVシスプラスミド、AAVのrep及びcap遺伝子を含むAAVトランスプラスミド、ならび
にアデノウイルスヘルパープラスミドである。ベクター生成プロセスは、細胞培養の開始、細胞の継代、細胞の播種、プラスミドDNAの細胞へのトランスフェクション、トランスフェクション後の無血清培地への培地交換、ならびにベクター含有細胞及び培地の採取などの方法のステップを含み得る。採取されたベクター含有細胞及び培地は、粗細胞採取物として本明細書において言及される。
【0071】
その後、粗細胞採取物は、ベクター採取物の濃縮、ベクター採取物の透析ろ過、ベクター採取物の顕微溶液化、ベクター採取物のヌクレアーゼ消化、顕微溶液化中間体のろ過、クロマトグラフィーによる精製、超遠心分離法による精製、タンジェント流ろ過による緩衝液交換、ならびにバルクベクター調製のための製剤化及びろ過のような方法のステップに供し得る。
【0072】
特定の実施形態において、遺伝子療法ベクターを製造するのに使用される方法は、本明細書の実施例に記載される。
【0073】
患者集団
治療の候補である患者は、血管新生加齢性黄斑変性、網膜静脈閉塞後の黄斑浮腫(RVO)、糖尿病性黄斑浮腫(DME)、糖尿病性網膜症(非増殖性糖尿病性網膜症(NPDR)、DMEを有する患者における増殖性糖尿病性網膜症(PDR)、糖尿病性黄斑浮腫を有する患者における糖尿病性網膜症を有するものを含む。これらの患者は、本明細書において記載されるようなAAV8.aVEGF組成物による網膜下治療に特によく適している。
【0074】
本明細書において記載されるようなAAV8.aVEGFの、例えば網膜下及び/または硝子体内投与を含む眼内投与のための候補である患者は、黄斑変性、血管新生/滲出型/滲出性加齢性黄斑変性、網膜静脈閉塞後の黄斑浮腫(RVO)(網膜中心静脈閉塞(CRVO)及び網膜静脈分枝閉塞(BRVO)を含む)、網膜中心静脈/半側網膜静脈/網膜静脈分枝閉塞、網膜動脈閉塞、網膜血管新生、糖尿病性黄斑浮腫(DME)、糖尿病性網膜症(非増殖性糖尿病性網膜症(NPDR)、DMEを有する患者における増殖性糖尿病性網膜症(PDR))、黄斑浮腫を伴わない糖尿病性網膜症(増殖性糖尿病性網膜症のための硝子体切除の前治療を含む)、活動性の高い光凝固化糖尿病性網膜症、脈絡膜血管新生、脈絡膜血管新生のまれな原因(色素線条、脈絡膜炎[眼のヒストプラスマ症に続発する脈絡膜炎を含む]、特発性変性近視、網膜ジストロフィー、虹彩血管新生、及び外傷)、特発性脈絡膜炎、角膜血管新生、未熟児網膜症、視神経乳頭灌流、後水晶体線維形成、網膜変性、硝子体黄斑牽引症候群、網膜剥離、糖尿病性牽引性網膜剥離、黄斑下血管新生色素上皮剥離、Vogt-Koyanagi-Harada症候群、色素上皮剥離、色素上皮裂孔、増殖性硝子体網膜症、糖尿病性牽引性網膜剥離における硝子体網膜手術、ポリープ状脈絡膜血管症、点状脈絡膜内層症(PIC)、多病巣性脈絡膜炎、中心性漿液性網脈絡膜症(CSC)、匍行性脈絡膜炎、硝子体出血、硝子体出血に対する経毛様体扁平部硝子体切除術、活動性の高い血管結合組織増殖を伴う黄斑前出血、脈絡膜出血弱視、近視、近視性脈絡膜血管新生、高度近視における脈絡中心窩下/傍中心窩血管新生、脈絡膜悪性黒色腫、眼ヒストプラスマ症候群、テカルシトラント(tecalcitrant)眼新血管新生(新生血管形成、結核、多巣性匍行性脈絡膜炎、haradaトキソプラズマ症)、弾性線維性仮性黄色腫、遺伝性眼疾患、角膜内皮細胞減少、Vogt-Koyanagi-Harada症候群、前部虚血性視神経症、嚢胞様黄斑浮腫、難治性嚢胞様黄斑浮腫、特発性嚢胞様黄斑浮腫、特発性黄斑毛細血管拡張症、コーツ病(滲出性網膜炎もしくは網膜毛細血管拡張症としても知られるコーツ病)、緑内障、血管新生緑内障、ステロイド誘発緑内障、高眼圧症、緑内障手術、創傷治癒の制御、ブドウ膜黒色腫、ブドウ膜炎、放射線黄斑障害、模様ジストロフィー、放射線網膜症、放射線壊死、ヒッペル病、フォンヒッペル‐リンダウ症候群、眼内炎、視神経脊髄炎スペクトル障害、翼状片、原発性
翼状片(原発性翼状片手術のための補助的治療法を含む)、再発性翼状片、網膜ドルーゼン、眼腫瘍、眼球内黒色腫、白内障、角膜移植不全、線維柱帯切除術、脂肪性角膜症、全層角膜移植術、疱疹性角膜症、酒さ、網膜血管腫、腎血管性疾患、視覚障害、増殖性硝子体網膜症、虹彩血管新生(NV)、角膜NV、パンヌスを含む、毛様体扁平部炎サルコイド、またはイールズ病を有するものを含む。
【0075】
AAV8.aVEGF(抗VEGF導入遺伝子産物)による治療の候補である患者は、24GyEプロトン、16GyE、キシロカイン、プロパラカイン、ヒドロクロリド、Tetravisc、Acuvail、Zimura、トリアムシノロンアセトニド、ラニビズマブ、またはOzurdexとの組み合わせを含むが、これらに限定されないレジメンにおける治療の候補である。好適な適応症の例は、先行する段落にあるものを含む。例えば、1種以上の上に列挙される薬物を伴うAAV8.aVEGFを含む組み合わせレジメンは、滲出性加齢性黄斑変性、網膜中心静脈閉塞、特発性ポリープ状脈絡膜血管症、及び/または糖尿病性黄斑浮腫の治療に使用され得る。
【0076】
本明細書に記載されるAAV8.aVEGF組成物はまた、多くのがん、新生物、及びVEGFに関連する他の疾患における血管新生を阻止するのに有用である。そのような組成物は、例えばとりわけ、静脈内、病巣内、腫瘍または器官への直接的な送達を含む、任意の好適な経路で投与できる。そのような患者は、急性リンパ性白血病(ALL)、急性骨髄性白血病(AML)、副腎皮質癌、副腎皮質癌、エイズ関連癌、カポジ肉腫、エイズ関連リンパ腫、原発性CNSリンパ腫、肛門癌、虫垂癌、星状細胞腫、非定型奇形腫様/横紋筋肉腫様腫瘍、皮膚の基底細胞癌、膀胱癌、骨癌(ユーイング肉腫及び骨肉腫ならびに悪性線維性組織球腫を含む)、脳腫瘍、乳癌、気管支腫瘍、バーキットリンパ腫、非ホジキンリンパ腫、カルチノイド腫瘍、原発不明癌、心臓腫瘍、中枢神経系非定型奇形腫様/横紋筋肉腫様腫瘍、胚芽腫、胚細胞腫瘍、原発性CNSリンパ腫、子宮頸癌、小児にはまれながん、胆管細胞癌、胆管癌、脊索腫、慢性リンパ性白血病(CLL)、慢性骨髄性白血病(CML)、慢性骨髄増殖性新生物、結腸直腸癌、頭蓋咽頭腫、皮膚T細胞リンパ腫、腺管上皮内癌(DCIS)、中枢神経系胚芽腫、子宮内膜癌、上衣腫、食道癌、感覚神経芽腫、ユーイング肉腫、頭蓋外胚細胞腫瘍、性腺外胚細胞腫瘍、眼癌、眼球内黒色腫、網膜芽細胞腫、卵管癌、骨の線維性組織球腫、悪性骨肉腫、胆嚢癌、胃癌、小児胃癌、消化管間質腫瘍(GIST)、胚細胞腫瘍、小児中枢神経系胚細胞腫瘍、小児頭蓋外胚細胞腫瘍、性腺外胚細胞腫瘍、卵巣胚細胞腫瘍、精巣癌、妊娠性絨毛性疾患、有毛状細胞性白血病、頭頚部癌、心臓腫瘍、肝細胞癌、組織球症、ランゲルハンス細胞、ホジキンリンパ腫、下咽頭癌、眼球内黒色腫、膵島腫瘍、膵内分泌腫瘍、カポジ肉腫、腎癌、ランゲルハンス細胞組織球症、喉頭癌、小児喉頭癌及び乳頭腫、白血病、口唇及び口腔癌、肝癌、肺癌(非小細胞及び小細胞)、小児肺癌、リンパ腫、男性乳癌、骨の悪性線維性組織球腫及び骨肉腫、黒色腫、眼球内黒色腫、メルケル細胞癌、悪性中皮腫、転移性癌、原発不明転移性扁平上皮性頸部癌、NUT遺伝子が関与する正中線癌、口こう癌、多発性内分泌腫瘍症候群、多発性骨髄腫/形質細胞腫瘍、菌状息肉腫、骨髄異形成症候群、骨髄異形成、骨髄増殖性腫瘍、骨髄性白血病、慢性(CML)、急性骨髄性白血病(AML)、慢性骨髄増殖性腫瘍、副鼻腔癌及び鼻腔癌、上咽頭癌、神経芽細胞腫、非ホジキンリンパ腫、口腔癌、口唇及び口腔癌ならびに中咽頭癌、骨肉腫及び骨の悪性線維性組織球腫、卵巣癌、膵癌、膵内分泌腫瘍、乳頭腫、傍神経節腫、副鼻腔癌及び鼻腔癌、副甲状腺癌、陰茎癌、咽頭癌、褐色細胞腫、形質細胞腫瘍/多発性骨髄腫、胸膜肺芽腫、妊娠及び乳癌、原発性中枢神経系(CNS)リンパ腫、原発性腹膜癌、前立腺癌、直腸癌、再発癌、腎細胞癌、網膜芽細胞腫、唾液腺癌、肉腫、小児横紋筋肉腫、小児血管腫瘍、ユーイング肉腫、骨肉腫、子宮肉腫、セザリー症候群、皮膚癌、小細胞肺癌、小腸癌、軟部肉腫、皮膚の扁平上皮癌、原発不明扁平上皮性頸部癌、転移性、胃癌、皮膚T細胞リンパ腫、精巣癌、咽頭癌、上咽頭癌、中咽頭癌、下咽頭癌、胸腺腫及び胸腺癌、甲状腺癌、腎盂及び尿管の移行上皮癌(腎臓(腎細胞)癌)、原発不明癌、小児原発不明癌、小児にはまれながん、尿管及
び腎盂、尿道癌、子宮内膜子宮癌、子宮肉腫、子宮平滑筋肉腫、腟癌、血管腫瘍、外陰癌、ウィルムス腫瘍及びその他の小児腎腫瘍、腹部腫瘍(腺癌、肝細胞、乳頭状漿液ミュラー、ラパチニブ、結腸直腸、卵巣、卵管、腹膜の癌/新生物/癌腫/腫瘍)、リンパ増殖性疾患、小腸癌、聴神経腫瘍(例えば、前庭神経鞘腫、神経線維腫症2型)、急性骨髄性白血病、急性呼吸促迫症候群(ARDS)、頭頚部癌、扁平上皮癌、多発性骨髄腫、非ホジキンリンパ腫、B細胞リンパ腫、肉腫、神経芽細胞腫、進行癌、女性性器の悪性新生物、転移性または切除不能な固形腫瘍、悪性星状細胞腫、結腸癌、転移性黒色腫、悪性腹水、腎細胞癌、神経膠芽腫、神経膠肉腫、結腸直腸癌の肝転移、進行性悪性腫瘍、骨髄腫、妊娠性トロホブラスト腫瘍、絨毛癌、胎盤部トロホブラスト腫瘍、類上皮性トロホブラスト腫瘍、胆道癌、悪性神経膠腫、子宮頸癌、子宮癌、中皮腫を有するものを含んでもよい。その候補は、前記組成物単独によって、または例えば、パクリタキセル、カルボプラチン、オキサリプラチン、放射線、カペシタビン、イリノテカン、フルオロウラシル、塩酸ドキソルビシンリポソーム、塩酸エルロチニブ、塩酸イリノテカン、塩酸イリノテカン水和物(CPT-11)、塩酸ゲムシタビン、塩酸パゾパニブ、塩酸トポテカン、トリフルリジン/塩酸チピラシル、ペグ化リポソーム封入塩酸ドキソルビシン、塩酸エンザスタウリン、塩酸ミトキサントロン、塩酸エピルビシン、ドセタキセル、ゲムシタビン、エルロチニブ、シスプラチン、化学療法、セツキシマブ、FOLFIRI-セツキシマブ、5-フルオロウラシル(5-FU)、LV5FU2、シクロホスファミド、テモゾロミド、ペメトレキセド、レボホリナートカルシウム(l-LV)、ロイコボリンカルシウム、FOLFOX、FOLFOX6、mFOLFOX、FOLFOXIRI、FOLFIRI、ドキソルビシン、リポソーム封入ドキソルビシン、塩酸ドキソルビシンリポソーム、トシル酸ソラフェニブ、ソラフェニブ、トリアムシノロン、トリアムシノロンアセトニド、トラスツズマブ、エベロリムス、スニチニブ、デキサメタゾン、従来の手術、ゼローダ、放射線療法、テムシロリムス、パゾパニブ、ロイコボリン(LV)、l-LV、アニツムマブ(anitumumab)、エピルビシン、ベルテポルフィン、AMG 655、Amgen 386、AMG 479、AMG 706、AMG 951、AMG 102、ホリン酸、レボ-ホリン酸、エトポシド、BAY 43-9006、アテゾリズマブ、インターフェロンアルファ2b、インターフェロンアルファ2a、インターフェロンアルファ、γ-インターフェロン-1b、光力学的治療、酒石酸ビノレルビン、ビノレルビン、トポテカン、タルセバ、ペメトレキセド二ナトリウム、エストラムスチンリン酸エステルナトリウム、イメテルスタットナトリウム、XELOX、RAD001、ペグフィルグラスチム、パクリタキセルアルブミン安定化小粒子製剤、イピリムマブ、定位放射線手術(SRS)、定位放射線、オザルデックス、レトロゾール、AG-013736(アキシチニブ)、フィルグラスチム、クリゾチニブ、セジラニブマレイン酸塩、セジラニブ、ボルテゾミブ、アブラキサン、ボリノスタット、ビンクリスチン、TRC105、リツキシマブ、レゴラフェニブ、ペンブロリズマブ、メトトレキサート、イマチニブ、ハーセプチン、テセントリク、オキサリプラチン(OXA)、ロムスチン、イクサベピロン、CPT-11、CGC-11047、酒石酸ビノレルビン、酒石酸塩、プレドニゾン、ニボルマブ、フルベストラント、エンザスタウリン、ドキシル、AZD2014、AZD2281、AZD2171、AZD4547、AZD5363、AZD8931、ビタミンB12、ビタミンC、ビタミンD、バルプロ酸、マイトマイシンC、セジラニブマレイン酸塩、レナリドマイド、ラパチニブ、HAIアブラキサン、HAIイリノテカン、GDC-0941、GDC-0449、GDC-0980、ビカルタミド、XELIRI、バンデタニブ、サリドマイド、ラパマイシン、オラパリブ、NovoTTF100A、ナベルビン、MetMAb、メシル酸イマチニブ(グリベック)、イホスファミド、ヒドロキシクロロキン、及びGM-CSFであるが、これらに限定されない抗がん治療と組み合わせて治療される。
【0077】
治療のためのさらに他の好適な状態は、例えば、血友病、滑膜炎、高血圧、ケロイド、炎症、放射線壊死、及び腫瘍性髄膜炎を含み得る。これら及び上述の状態は、網膜下また
は眼への投与のための別の型の投与が特定されている場合を除いて、任意の好適な経路によって送達され得る。
【0078】
ある実施形態において、患者は、網膜下に投与される単一用量のrAAV8.aVEGFを投薬される。例えば、これは、血管新生加齢性黄斑変性、網膜静脈閉塞後の黄斑浮腫(RVO)、糖尿病性黄斑浮腫(DME)、糖尿病性網膜症(非増殖性糖尿病性網膜症(NPDR)、DMEを有する患者における増殖性糖尿病性網膜症(PDR)、糖尿病性黄斑浮腫を有する患者における糖尿病性網膜症の治療において特によく適している。
【0079】
患者に投与されるrAAV8.aVEGFの用量は、(oqPCRまたはddPCRによって測定されるとき)少なくとも1×109GC/眼~1×1013GC/眼、または少なくとも1×1010GC/眼~7.5×1012GC/眼である。しかしながら、他の用量も選択され得る。例えば、患者に対して治療的に有効なrAAV8.aVEGFの網膜下の用量は、約0.1mL~約0.5mL、好ましくは0.1~0.15mL(100~150μl)の範囲の注射容量において、約6.6×109GC/眼~約6.6×1011GC/眼の範囲であり得、より好ましくは6.6×1010GC/眼である。さらに他の実施形態において、治療的に有効な濃度は、約1×105であってよく、濃度は1×105GC/μL~1×109GC/μLであり得、その範囲の任意のGC濃度に対する注射容量は、10μL~300μLであり得る。
【0080】
ある実施形態において、患者は、局所麻酔下で、網膜外科医による網膜下投与によってrAAV8.aVEGFを投薬され得る。処置は、中心部硝子体切除術を伴う標準的な3ポートの経毛様体扁平部硝子体切除術を含み得、網膜下カニューレ(36~41ゲージ)による網膜下腔への網膜下送達が後に続く。ある実施形態において、100~150ミリリットルのrAAV8.aVEGFが送達されるであろう。
【0081】
いくつかの実施形態において、rAAV8.aVEGFは、滲出型AMDまたは別の選択された障害の治療のための1種以上の療法と組み合わせて投与される。いくつかの実施形態において、rAAV.aVEGFは、レーザー凝固法、ベルテポルフィンを伴う光線力学的治療、及び、硝子体内へのペガプタニブ、ラニビズマブ、アフリベルセプト、またはベバシズマブを含むがこれらに限定されない抗VEGF剤と組み合わせて投与される。
【0082】
ある実施形態において、rAAV8.aVEGF療法のための患者は、従来の抗VEGF抗体(Fab)治療に以前に反応しているものを含み得る。
【0083】
本発明の遺伝子療法治療の目的は、網膜変性の進行を遅らせるか、または阻止すること、及び最小限の介入/侵襲的処置によって視力喪失を遅らせるか、または阻止することである。ある実施形態において、遺伝子療法治療の有効性は、標準治療、例えば、ペガプタニブ、ラニビズマブ、アフリベルセプト、またはベバシズマブを含むがこれらに限定されない抗VEGF剤の硝子体内注射を用いる救援治療の排除またはその数の低減によって示され得る。
【0084】
ある実施形態において、有効性は以下の1つ以上によって測定され得る:視覚変化、(BCVA)スコアによって測定される最良矯正視力、スネレンチャートまたは早期治療糖尿病性網膜症(ETDRS)視力スコア、ETDRSによって測定される対象が喪失または獲得するパーセンテージ、遠方最良矯正視力、リーディング最良矯正視力、NEI視覚機能アンケート-25(VFQ-25)スコアにおける変化、視覚関連の生活の質のアンケート、ペリーロブソンチャートによって測定されたコントラスト感度を含む視力、電子視力計における低コントラスト視力、ゴールドマン視野によって測定されるような周辺視野、ハイデルベルグスリットランプ光干渉断層写真術によって測定される角膜と虹彩の距
離及び線維柱帯と虹彩の距離、中心部及び中心傍の変視症、網膜感度(mfERG、Nidek MP-1マイクロ視野計測)を分析することによる加齢性黄斑変性(AMD)の優先的超解像力視野計(Preferential Hyperacuity Perimeter)(PHP)試験、視覚的アナログスケール(VAS)、黄斑マッピング検査、網膜電図(ERG)、パターン網膜電図(PERG)及び全視野(またはフラッシュ)網膜電図(ffERG)、多局所網膜電図(mfERG)、mfERG中心環振幅濃度を含む電気生理学的変化、3つの同心円状の輪(4°、8°、及び12°)における平均網膜感度(dB)、視覚誘発電位(VEP):ECGパラメーターは、PRインターバル、QRSインターバル、及びFridericiaの公式を用いる補正QTインターバル(QTcF)を含む。NVE(網膜血管新生)、CNVM(脈絡膜血管新生膜)の退縮、黄斑の容積、黄斑の厚さ、中心部黄斑亜領域の厚さ、網膜の容積(内部網膜容積及び外部網膜容積)、網膜の厚さ、中心部網膜の厚さ、中心部亜領域の網膜の厚さ(CSRT)、中心窩下網膜の厚さ(SRT)、中心窩の厚さ、中心窩無血管域最大径、網膜層の完全性、外境界膜(ELM)の完全性、楕円体線/バンドの完全性、レンズの状態、レンズの不透明度を含む光干渉断層写真術(OCT)を用いて測定される変化、光干渉断層血管撮影(OCTA)によって測定される新血管膜の退縮パーセンテージ、中心窩を中心とする1mmにおける内部/外部セグメント層の光受容体の完全性の度合いを含む解剖学的変化。任意選択で、治験の間、AMD損傷サイズ及び漏出が蛍光眼底造影によるものであり得、蛍光眼底造影(FA)及びインドシアニングリーン眼底造影(ICG)による全損傷サイズ及びCNV(脈絡膜血管新生)サイズ、網膜下液または出血を含み得る活性CNV漏出、漏出の面積、黄斑漏出の面積、損傷出血のパーセンテージの変化、ドルーゼンサイズの変化、液体の量、網膜内嚢胞様変化(IRC)容積、血管密度、網膜内/網膜下液の存在、網膜下液(SRF)の高さ及び径、網膜内液の容積、前眼房反応、脈絡網膜還流(ICG)、眼底撮影法(FP)及び/または眼底自発蛍光(AF)によって検出されるような地図状萎縮(GA)の進行、毛細管閉塞の存在及び拡張、周辺部網膜虚血、マイクロ視野測定を用いる黄斑感度、虹彩の血管新生、角の血管新生、糖尿病性網膜症であり得る。
【0085】
ある実施形態において、AAV8.aVEGFの網膜下及び/または網膜内注射は、aVEGFを含まない血漿及び血清のレベルをもたらす。
【0086】
ある実施形態において、有効性は、BCVA(最良矯正視力)、眼圧、スリットランプ生体顕微鏡検査法、間接検眼鏡検査、SD-OCT(SD-光干渉断層写真術)を測定することによって観察され得る。視力喪失、感染、炎症、及び網膜剥離を含む他の安全性に関わる現象の徴候もまた観察され得る。
【0087】
SD-OCTは有用な非侵襲的インビボ断面網膜顕微鏡技術である。好適な装置は市販される。例えば、Spectralis OCT,Heidelberg Engineering,Carlsbad,CAを参照。手短に、この技術は、瞳孔を散大することによって実施され得る。このイメージングシステムの走査型レーザー検眼鏡を使用して、近赤外(NIR)反射率(REF)及び/またはNIR眼底自発蛍光(FAF)によって、正面網膜イメージングを実施することができる。スペクトル領域光干渉断層写真術スキャンは、中心窩を通る9mmの長さの水平及び垂直断面、ならびにほぼ中間の領域に延びる30×25mmのラスタースキャンを重ね合わせて実施することができる。パラメーターは必要により変更することができ、または同等であると判定された他の好適なパラメーターであってもよい。
【0088】
網膜機能は、全視野網膜電図(ERG)によって評価することができる。ERGは、光刺激に応答する網膜によって生成される集合電位である。通常、それは、角膜表面と接触する電極によって記録される。網膜電図は、国際臨床視覚電気生理学会(ISCEV;McCulloch,Doc Ophthalmol.2015 Feb;130(1):
1-12.2015)が設定した推奨に従って実施できる。まとめると、網膜電図(ERG)は、通常、全網膜細胞がフラッシュ刺激(暗順応の動物、中程度から強烈な閃光)に能動的に応答するときに生成する。2つの構成要素は以下のものである:・a波:フラッシュ後の最初の角膜陰性シグナル。起源:光受容体光電流、光受容体機能の最も直接的な特徴。・b波:大部分がオン型双極細胞(光受容体下流の二次ニューロン)によって生成されるa波の後に続く角膜陽性シグナル。以下に記載される実施例において、国際臨床視覚電気生理学会(ISCEV)に従う標準及び追加プロトコールが使用された。しかしながら、これらのパラメーターは、必要により、または要求により、調整され得る。暗順応桿状体のERG:刺激強度:0.01~0.02cd s m-2応答:b波のみ、a波はなし。源:桿状体「オン型」双極細胞(桿状体からの入力に駆動される二次ニューロン)。意味:桿状体機能の測定。暗順応標準的なフラッシュERG:刺激強度:3cd s
m-2応答:桿体錐体のa波とb波の混合;60%~70%のシグナルは、桿状体駆動経路によって生成される。源:光受容体、桿状体と錐体の両方(a波);桿状体と錐体の両方によって駆動される高次ニューロン。意味:大部分の桿状体の機能の測定、暗順応の状態に対して感度が低く、「薄暗いフラッシュ」応答よりも低い可変性である。暗順応明るいフラッシュERG:刺激強度:10cd s m-2。応答及び意味:「標準的なフラッシュ」の応答についてと同一であるが、明るいフラッシュへの応答は、規模がより大きく、より可変性が低くあり得る。明順応標準的なフラッシュ錐体ERG:刺激強度:5分間の明順応の後、30cd m-2のバックグランド光の存在下で送達される3cd s m-2。応答:錐体駆動経路によって生成されるa波及びb波。意味:錐体を完全に非感光性にするバックグランド光の存在下で、ERGが錐体及び錐体駆動二次網膜ニューロンによって排他的に作成され、錐体の機能を測定する。明順応明るいフラッシュ錐体ERG(ISCEV標準に対して追加して)刺激強度:5分間の明順応の後、30cd m-2のバックグランド光の存在下で送達される10cd s m-2。応答及び意味:錐体駆動ERGは「標準的な錐体ERG」の場合のようであったが、より大きな規模であり、潜在的により低い可変性である。ERG測定(a波振幅、a波潜時、b波振幅、b波潜時)が、処理した眼及びコントロールの眼について平均及び標準偏差(SD)を用いてまとめられた。
【0089】
有効性の別の測定は、網膜厚の喪失を含み得る。
【0090】
以下の実施例に示されるように、1×1010GC/眼のAAV8.aVEFGベクターの投与は、網膜機能の障害をまったく引き起こさない。この用量は投与することのできる治療的な有効量についての限定ではない。
【0091】
治療目的の測定
投与後の遺伝子療法ベクターの安全性は、ベクター投与の後36ヶ月までの複数の時点において評価される、有害事象の数、身体診察において注目された変化、及び/または臨床検査パラメーターによって評価することができる。生理学的効果は、例えば約1日~1週間で早く観察され得るが、一実施形態において、定常状態レベルの発現レベルは約12週間までに到達する。
【0092】
rAAV.aVEGF投与によって生じる改善/有効性は、約12週、12ヶ月、24ヶ月、36ヶ月または他の所望の時点での視力のベースラインにおける所定の平均変化として評価することができる。他の改善/有効性は、12、24、及び36ヶ月で、スペクトル領域光干渉断層写真術(SD-OCT)によって測定されるときの中心網膜厚のベースラインからの平均変化として評価することができる。いくつかの実施形態において、rAAV.aVEGFによる治療は、視力のベースラインからの5%、10%、15%、20%、30%、40%、50%またはそれ以上の増加をもたらす。いくつかの実施形態において、rAAV.aVEGFによる治療は、例えば、中心網膜厚の約5%、約10%、
約15%、約20%、約30%、約40%、約50%またはそれ以上の減少をもたらす。他の実施形態において、中心網膜厚は安定であり、すなわち中心網膜厚における増加がまったくない。ある実施形態において、有効性の測定は、網膜厚の安定化、及び/または、滲出液及び/またはドルーゼンの安定化/減少を含む。
【0093】
一実施形態において、発現は、投与後約8時間~24時間という早期に観察され得る。上述の1つまたはそれ以上の所望の臨床効果は、投与後数日間から数週間以内で観察され得る。
【0094】
.
本発明は、rAAV8.aVEGFベクターの網膜下投与が、網膜全体にわたる遺伝子導入をもたらし、かつ網膜全体にわたる、ならびに硝子体及び前房液中における抗VEGF Fabの発現をもたらすことを実証する以下の例によって示される。遺伝子導入が元の注射ブレブの外側を水平方向に拡散するが、それらの拡張された境界に閉じ込められたままであり、この注射の拡張領域(網膜中の注射部位において形成される「ブレブ」)の外側における遺伝子導入及び導入遺伝子発現を達成しなかったということを実証する従来技術の遺伝子療法の研究の観点から、この結果は驚くべきであり、rAAV8.aVEGFベクターの単一投与が(i)結果として、経時的に消散するVEGF阻害剤の高用量ボーラスの繰り返されるIVT投与と比較して性能が向上し得るような網膜全体にわたるVEGF阻害剤の有効量の連続送達、ならびに(ii)患者に追加のリスク及び不便さを提示する繰り返される眼内注射の回避をもたらす点において、nAMR治療のための標準治療を超える利点をもたらす。各々の態様は、治療成績を改善し得る。
【実施例0095】
以下の略語は本明細書において使用される。AAVはアデノ随伴ウイルスを指す。ACFは前房液を指す。Ad5はアデノウイルス5型を指す。AEは有害事象を指す。AMDは加齢性黄斑変性を指す。BCAはビシンコニン酸を指す。BCVAは最良矯正視力を指す。BHはバルク採取物を指す。BIはバルク原薬中間体を指す。BPは塩基対を指す。CBはトリβアクチンプロモーターを指す。CB7はCMVエンハンサー(C4)とトリβアクチンプロモーターとのハイブリッドを指す。CBCは全血球計算を指す。CIはトリβアクチンイントロンを指す。CMCは、化学、製造及び品質管理を指す。CMOは、医薬品製造受託機関を指す。CMVはサイトメガロウイルスを指す。CNVは脈絡膜血管新生を指す。CS-10はCorning10層CellSTACKs(登録商標)プレートを指す。ddPCRは液滴デジタルポリメラーゼ連鎖反応を指す。DLSは動的光散乱を指す。DMEMはダルベッコ改変イーグル培地を指す。DNAはデオキシリボ核酸を指す。DPは製剤を指す。ELISAは酵素結合免疫吸着検査法を指す。ERGは網膜電図を指す。ELISPOTは酵素結合免疫スポットアッセイを指す。Fabは抗原結合フラグメントを指す。FBSはウシ胎仔血清を指す。GCはゲノムコピーを指す。gはグラムを指す。GLPは医薬品安全性試験実施基準を指す。GMPは医薬品製造管理及び品質管理基準を指す。HEK293はヒト胚腎臓細胞を指す。HCPは宿主細胞タンパク質を指す。HS-36はCorning36層HYPERStacks(登録商標)を指す。ICHは、調和国際会議を指す。INDは治験薬を指す。IPは工程内を指す。ITRは末端逆位配列を指す。IUは感染単位を指す。IVは静脈内を指す。IVTは硝子体内を指す。KDaはキロダルトンを指す。Kgはキログラムを指す。LOQは定量下限を指す。Lucentis(登録商標)は、ラニビズマブの商品名である。MCBはマスター細胞バンクを指す。MEDは最小有効用量を指す。μlはマイクロリットルを指す。mLはミリリットルを指す。Mmはミリメートルを指す。mRNAはメッセンジャーRNAを指す。MSは質量分析を指す。Ngはナノグラムを指す。NHPは非ヒト霊長類を指す。OCTは光干渉断層写真術を指す。oqPCRは最適化定量性ポリメラーゼ連鎖反応を指す。PCRはポリメラーゼ連鎖反応を指す。PDは薬力学を指す。popPKは母集団薬物
動態を指す。PEIはポリエチレンイミンを指す。PKは薬物動態を指す。POCは概念実証を指す。PRNは必要に応じて(必要に応じて)を指す。QAは品質保証を指す。qPCRは定量的ポリメラーゼ連鎖反応を指す。rAAVは組換えアデノ随伴ウイルスを指す。RBGはウサギβグロビンを指す。PREは網膜色素上皮を指す。S-36はHYPERstack(登録商標)36層を指す。SENDは非臨床試験データ交換のための標準を指す。SOCは標準治療を指す。SOPは標準操作手順を指す。TCID50は50%組織培養感染価を指す。TTFはタンジェント流ろ過を指す。μLはマイクロリットルを指す。VAは視力を指す。VEGFは血管内皮増殖因子を指す。WAMDは滲出型加齢性黄斑変性を指す。YAGはイットリウム・アルミニウム・ガーネットを指す。
【0096】
実施例1:ヒト対象を治療する
この実施例は、血管新生(滲出型)加齢性黄斑変性(nAMD)を有する患者の遺伝子療法治療に関する。この実施例において、可溶性抗VEGF Fabタンパク質のコード配列を担持する複製欠損アデノ随伴ウイルスベクター8(AAV8)である遺伝子療法ベクター、rAAV8.aVEGFがnAMDを有する患者に投与される。遺伝子療法治療の目的は、網膜変性の進行を遅らせるか、または阻止すること、及び最小限の介入/侵襲的処置によって視力喪失を遅らせるか、または阻止することである。
【0097】
A.遺伝子療法ベクター
いくつかのrAAV8.aVEGF遺伝子療法ベクターの生成は、本明細書において実施例2に記載される。さらに、rAAV8.aVEGFベクターゲノムの略図は
図1に示される。rAAV8.aVEGFは、ヒト抗血管内皮増殖因子(抗VEGF)抗原結合抗体フラグメント(Fab)の産生をもたらす導入遺伝子を含む非複製組換えAAV8ウイルスベクターである。遺伝子カセットは、AAV2末端逆位配列(ITR)に隣接される。カセットからの発現は、サイトメガロウイルス最初期エンハンサーとトリβアクチンプロモーターとのハイブリッドであるCB7プロモーターに駆動される。このプロモーターからの転写はトリβアクチンイントロンの存在により増強される。発現カセットのためのポリアデニル化シグナルはウサギβグロビン遺伝子に由来する。抗VEGF Fabの重鎖及び軽鎖をコードする核酸配列は、自己切断フリン(F)/F2Aリンカーによって分離されている。フリン-F2Aリンカーの組み込みは、およそ等量の重鎖と軽鎖とのポリペプチドの発現を確かなものとする。
【0098】
最終産物は、ラテックスを含まないゴムストッパー及びアルミニウムフィリップオフ(flip-off)シールによって封入されるCrystarl Zenith(登録商標)バイアル中の製剤緩衝液中のAAVベクター活性成分の凍結溶液として供給される。バイアルは-60℃以下で保存される。
【0099】
B.投薬及び投与経路
250μLの容量のrAAV8.aVEGFが治療の必要のある対象の眼内に網膜下送達を介して単一用量として投与される。対象は、3×109GC/眼、1×1010GC/眼、または6×1010GC/眼の用量を投薬される。
【0100】
rAAV8.aVEGFは、局所麻酔下で網膜外科医による単一の網膜下送達によって対象に投与される。処置は、中心部硝子体切除術を伴う標準的な3ポートの経毛様体扁平部硝子体切除術を含み、網膜下カニューレ(38ゲージ)による網膜下腔へのrAAV8.aVEGFの網膜下送達が後に続く。送達は、硝子体切除装置によって自動化され、250μLを網膜下腔に送達する。
【0101】
rAAV8.aVEGFは、滲出型AMDの治療のための1つ以上の治療法と組み合わせて投与することができる。例えば、rAAV8.aVEGFは、レーザー凝固法、ベル
テポルフィンを伴う光線力学的治療、及び、硝子体内へのペガプタニブ、ラニビズマブ、アフリベルセプト、またはベバシズマブを含むがこれらに限定されない抗VEGF剤と組み合わせて投与される。
【0102】
rAAV8.aVEGFの投与後約4週間から開始して、患者は罹患した眼において、硝子体内ラニビズマブ救援治療を投薬され得る。
【0103】
C.患者亜集団
好適な患者は以下のものを含み得る:
nAMDの診断を有するもの;
抗VEGF療法に応答性のもの;
抗VEGF療法の頻繁な注射を必要とするもの;
50歳以上の男性もしくは女性;
罹患した眼において20/100以下かつ20/400以上のBCVA(65以下かつ35以上のETDRS文字)を有するもの;
20/63以下かつ20/400以上の間のBCVA(75以下かつ35以上のETDRS文字)を有するもの;
罹患した眼においてAMDに続発する中心窩下CNVの確定診断を有するもの;
以下の:10ディスク領域未満の損傷サイズ(典型的なディスク領域は2.54mm2)、損傷サイズの50%未満の血液、及び/または瘢痕のようなCNVの損傷特性を有するもの;
治療の前に8ヶ月(またな未満)の間、罹患した眼においてnAMDの治療のための抗VEGF剤の少なくとも4回の硝子体内注射を投薬され、SD-OCT上において確認された解剖学上の応答を有しているもの;及び/または
罹患した眼においてSD-OCT上において実証された網膜下もしくは網膜内液の存在を有するもの。
治療前に、患者は、スクリーニングされ、以下の基準の1つ以上がこの治療法が患者に好適でないことを示し得る:
・AMD以外の任意の要因に続発する罹患した眼におけるCNVまたは黄斑浮腫;
・罹患した眼において、血液がAMD損傷の50%以上を占めるか、または血液が1.0mm2を超えて中心窩の下に存在する;
・罹患した眼におけるVAの改善を阻止する任意の状態、例えば、線維症、萎縮、または中心窩の中心における網膜上皮裂孔;
・罹患した眼における活動性の高い網膜剥離または網膜剥離の病歴;
・罹患した眼における進行した緑内障;
・罹患した眼における対象のリスクを増加させる可能性があるか、視力喪失を阻止または治療する医学的または外科的介入のいずれかを必要とする可能性があるか、または処置または評価の試験と干渉する可能性のある任意の状態;
・スクリーニング前の12週間以内に罹患した眼における眼内手術の履歴(スクリーニング来院の前の10週間を超えて実施される場合、イットリウム・アルミニウム・ガーネットの嚢切開は容認され得る);
・スクリーニング前の6ヶ月以内に罹患した眼における硝子体内療法、例えば硝子体内ステロイド注射、または抗VEGF療法以外の治験薬の履歴;
・スクリーニング時の罹患した眼におけるインプラントの存在(眼内レンズを除外する)
・スクリーニング前の5年以内に化学療法及び/または放射線を必要とする悪性腫瘍の病歴(局在する基底細胞癌は容認され得る);
・網膜毒性を引き起こすことの知られている治療法、または視力に影響を及ぼし得るかもしくは既知の網膜毒性を有する任意の薬物との併用療法、例えばクロロキンまたはヒドロキシクロロキンの履歴;
・罹患した眼における外科手技と干渉し得る眼または眼周囲の感染;
・過去6ヶ月間の治療における心筋梗塞、脳血管障害、または一過性虚血発作;
・最大限の治療にもかかわらず制御不能の高血圧(180mmHgを超える収縮期血圧[BP]、100mmHgを超える拡張期血圧);
・眼の外科手術または治癒過程を妨げ得る任意の付随する治療;
・ラニビズマブもしくはその任意の成分に対する既知の過敏性またはrAAV8.aVEGFに類似する剤に対する過去の過敏性;
・研究者の意見における、被験者の安全性または試験への成功裏の参加を損なうであろう任意の重篤なまたは不安定な医学的または心理的状態;
・正常上限(ULN)の2.5倍を超えるアスパラギン酸アミノトランスフェラーゼ(AST)/アラニンアミノトランスフェラーゼ(ALT);
・対象が以前に知られているギルバート症候群の病歴を有していない限りULNの1.5倍を超える総ビリルビン、及び結合ビリルビンが総ビリルビンの35%未満であることを示す分画したビリルビン;
・ULNの1.5倍を超えるプロトロンビン時間(PT);
・男性の対象について10g/dL未満のヘモグロビン、女性の対象について9g/dL未満のヘモグロビン;
・100×103/μL未満の血小板;
・30mL/分/1.73m2未満の推定糸球体ろ過率(GFR)。
疾患活動性について以下の1以上の救援基準が適用される場合、rAAV8.aVEGFの投与後約4週間から開始して、患者は罹患した眼において、硝子体内ラニビズマブ救援治療を投薬され得る:
・スペクトル領域光干渉断層写真術(SD-OCT)上での網膜液の蓄積と関連する(最良矯正視力[BCVA]当たり)5文字以上の視力喪失;
・SD-OCT上での新規または持続する、網膜下または網膜内液の、脈絡膜血管新生(CNV)と関連した上昇;
・新規の眼の出血;
以下の所見セットの1つが発生する場合、研究者の裁量によりさらなる救援注射を延期することができる:
・SD-OCTによって評価されるとき、視力が20/20もしくはそれより良好であり、中心網膜厚が「正常」である、または
・2回の連続した注射の後で視力及びSD-OCTが安定である。
・注射が延期される場合、視力またはSD-OCTが上記の基準に従って悪化する場合、それらは再開される。
【0104】
D.治療目的の測定
主な治療目的は、網膜変性の進行を遅らせるかまたは阻止こと、及び視力喪失を遅らせるかまたは阻止することを含む。治療目的は、標準治療、例えば、ペガプタニブ、ラニビズマブ、アフリベルセプト、またはベバシズマブを含むがこれらに限定されない抗VEGF剤の硝子体内注射を用いる救援治療の排除及びその数の低減によって示される。治療目的はまた、視力喪失の減少もしくは阻止及び/または網膜剥離の減少もしくは阻止によって示される。
【0105】
治療目的は、BCVA(最良矯正視力)、眼圧、スリットランプ生体顕微鏡検査法、間接検眼鏡検査、及び/またはSD-OCT(SD-光干渉断層写真術)を測定することによって決定される。特に、治療目的は、BCVAの経時的なベースラインからの平均変化を測定することによって、BCVAに基づいたベースラインと比較して15文字以上の獲得もしくは喪失を測定することによって、経時的にSD-OCTによって測定されるときのCRTのベースラインからの平均変化を測定することによって、経時的なラニビズマブ救援注射の平均数を測定することによって、1回目の救援ラニビズマブ注射までの時間を
測定することによって、経時的にCNVにおけるベースラインからの平均変化ならびにFAに基づいた損傷サイズ及び漏出領域を測定することによって、経時的に水性aVEGFタンパク質のベースラインからの平均変化を測定することによって、血清及び尿中のベクター脱落分析を実施することによって、及び/またはrAAV.aVEGFの免疫原性を測定することによって、すなわちAAVに対するNabを測定することによって、AAVに対する結合抗体を測定することによって、aVEGFに対する抗体を測定することによって、及び/またはELISpotを実施することによって、決定される。
【0106】
治療目的はまた、眼底自発蛍光(FAF)に基づく地図状萎縮の面積の経時的なベースラインからの平均変化を測定することによって、FAFによって地図状萎縮の新規領域の発生(ベースラインにおいて地図状萎縮のまったくない対象で)を測定することによって、BCVAによるベースラインと比較して、それぞれ、5以上及び10以上の文字の獲得または喪失をした対象の割合を測定することによって、前の年と比較して、救援注射における50%の低減を有する対象の割合を測定することによって、SD-OCT上での液体を含まない対象の割合を測定することによって、決定される。
【0107】
rAAV.aVEGF投与によって生じる改善/有効性は、約4週、12週、6ヶ月、12ヶ月、24ヶ月、36ヶ月または他の所望の時点での視力のベースラインにおける所定の平均変化として評価することができる。rAAV.aVEGFによる治療は、視力のベースラインからの5%、10%、15%、20%、30%、40%、50%またはそれ以上の増加をもたらし得る。改善/有効性は、4週、12週、6ヶ月、12ヶ月、24ヶ月、及び36ヶ月で、スペクトル領域光干渉断層写真術(SD-OCT)によって測定されるときの中心網膜厚(CRT)のベースラインからの平均変化として評価することができる。rAAV.aVEGFによる治療は、中心網膜厚のベースラインからの5%、10%、15%、20%、30%、40%、50%またはそれ以上の増加をもたらし得る。
【0108】
実施例2 AAV8.CMV.aVEGFの生成
本明細書において記載されるavEGFベクターの各々は、各々がIL2のリーダー配列を有する抗VEGF Fab重鎖及び軽鎖の発現を駆動するプロモーターを含む発現カセットを含む。試験組成物(懸濁液)中のrAAVに担持されるベクターゲノム中のFabコード配列は、同一であるように設計された。発現カセットは、5’のAAV2のITR及び3’のAAV2のITRに隣接される。試験されるベクターゲノムの各々は、同一の抗VEGF Fab(以前はaVEGF-ArgまたはaVEGF-Rと呼ばれた)のコード配列バリアントを含む。ある実施形態において、発現するaVEGF Fabは均一集団である。ある実施形態において、発現するaVEGF Fabは、重鎖のカルボキシル末端における不均一性を有する。IL2-aVEGFの重鎖及びIL2-aVEGFの軽鎖のオープンリーディングフレームは、重鎖と軽鎖の両方の等モル発現を促進するためにコードされたフリン切断部位/F2Aリンカーによって分離された。これは、任意選択で0、1、2、3または4個のアミノ酸をそのカルボキシル末端に含むaVEGF重鎖の発現をもたらす。そのカルボキシル末端におけるアルギニン、アルギニン-リジン、アルギニン-リジン-アルギニン、またはアルギニン-リジン-アルギニン-アルギニン。
【0109】
様々なコード配列は、aVEGFv1、v2などと呼ばれる。これらのベクターゲノムは、参照により組み込まれる配列表示に提示される。
【0110】
マウスにおける抗VEGF Fabの発現のためのAAV2/8ベクター中の導入遺伝子カセットに含まれる以下の要素が評価された。
・7個の異なるプロモーター(98匹のオスC57BL/6マウス、Jackson Laboratories)が、AA2/8から発現される従来の抗体(F16)を用いて評価された。F16mAbの発現はヘマグルチニン(HA)タンパク質に対するELIS
Aによって測定された。
・2個の異なるリーダーペプチド(28匹のオスC57BL/6マウス、Jackson
Laboratories)。抗VEGF Fabの発現がVEGFに対するELISAによって測定された。
・3個の異なる軽-重鎖分離因子(42匹のオスC57BL/6マウス、Jackson
Laboratories)が以下のベクターを用いて評価された。
【0111】
【0112】
・13個の異なるコード配列(182匹のオスC57BL/6マウス、Jackson Laboratories)。抗VEGF Fabの発現がVEGFに対するELISAによって測定された。
【0113】
ベクターがマウスの眼の網膜下腔に送達された。レポーター遺伝子の発現は酵素結合免疫吸着検査法(ELISA)によって測定された。
【0114】
7個の異なるプロモーターが別の試験において評価された:3個のウイルス(サイトメガロウイルス[CMV]、チミジンキナーゼ[TK]、シミアンウイルス[SV40])、3個の非ウイルス(ホスホグリセリン酸キナーゼ[PGK]、ヒト伸長因子-1α[EF1a]、ユビキチンC[UbC」)、及び1個のハイブリッド(チキンβアクチン[CB7])のプロモーター。
【0115】
2個の異なるリーダーペプチドはまた、リーダー配列(インターロイキン対セルピンのリーダー)を除いて、同一のベクター因子及び同一のコード配列、すなわちv3、を有するrAAV8ベクターを用いて評価された。AAV2/8=導入遺伝子に隣接するAAV末端逆位配列を有するアデノ随伴ウイルス(AAV)カプシド8型;amd201Lead=IL2のリーダー配列と軽-重鎖の分離因子としてのフリンF2Aとを有する抗VEGF Fab;amd201altLead=SF1のリーダー配列と軽-重鎖の分離因子としてのフリンF2Aとを有する抗VEGF Fab;CB7=トリβアクチンプロモ
ーター;CI=キメライントロン;rBG=ウサギβグロビンポリアデニル化配列。
【0116】
3個の異なる抗VEGF Fabの重鎖と軽鎖を分離する配列内リボソーム進入部位(IRES)配列が別の試験において評価された。これらのIRES配列は、脳心筋炎ウイルス(EMCV)、cMyc、及び口蹄疫ウイルス1(FMDV1)に由来した。この試験において、ベクターは、軽鎖と重鎖の分離因子(EMC、FMDV1、及びcMyc)を除いて同一であった。AAV2/8=導入遺伝子に隣接するAAV末端逆位配列を有するアデノ随伴ウイルス(AAV)カプシド8型;amd201=IL2のリーダー配列を有する抗VEGF Fabのコドンバリアント:CMV=サイトメガロウイルスプロモーター;EMCV=脳心筋炎ウイルス;Fab=フラグメント抗原結合領域;FMDV1=口蹄疫ウイルス1;IRES=配列内リボソーム進入部位;PI=Promegaイントロン;SV40=シミアンウイルスポリアデニル化配列。
【0117】
別の試験において、抗VEGF Fabの13個の異なるコード配列が評価された。全体のコード配列の分散は約20%~30%の間であった。ベクターは以下の表に記載される。
【0118】
使用された異なるコード配列を有するベクター。発現カセットの配列番号は以下の表に提示される。
【0119】
【表2】
全ての試験においてベクターはダルベッコリン酸緩衝生理食塩水(DPBS)で希釈された。
【0120】
動物は処理群に割り当てられ、右眼に1.00×109または5.00×109ゲノムコピー(GC)/眼のAAV2/8ベクターを投与された。左眼は未処理コントロールとして使用された。ベクターは、全量1μLで網膜下投与された。
【0121】
A.網膜下注射
網膜下注射は無菌技術及び滅菌した解剖器具を用いて実施された。動物をケタミン/キシラジンまたは3~5%イソフルランで麻酔し、メロキシカムを投与した。動物を、注射する眼を視野下にして解剖顕微鏡下に置いた(15倍の倍率を使用する)。耳側結膜をジュエラー鑷子でつかみ、ヴァナス虹彩切開剪刀の先端を用いて慎重に強膜まで切った。結膜の角膜周囲切開術を、剪刀の下側のへりを、切開を通じて導入し、結膜の上方と下方の両方に円周方向に延ばすことによって実施した。全ての結膜の破片を強膜の表面から注意深く除去した。角膜に隣接する結膜を鉗子でつかみ、眼球を回転させるよう牽引力をもたらし、最適な外科的露出を可能にした。30 1/2ゲージの針を用いて、鈍端針が通過できるのに十分な大きさの小切開をもたらした。
【0122】
Hamilton自動注射シリンジに設置した33ゲージ鈍端針の先端が、眼球表面の接戦方向で切開に導入された。先端を約1mm進入させて、針を強膜の内部表面に沿って通過させた。33ゲージの針は、強膜及び脈絡膜を通過し、次いで、網膜下腔で終了した。1μLまでのベクターを送達した。処置が完了すると、抗生物質眼軟膏を眼に適用した。
【0123】
B.アッセイ方法
採取した眼を、ステンレス鋼ビーズならびに200μLのタンパク質溶解及び抽出緩衝液(RIPA)及びcOmplete(商標)、Mini Protease Inhibitor Cocktail錠剤(1錠剤/10mLのRIPA緩衝液)を含むカクテルを有する円錐管に眼球全体を入れることによってホモジナイズした。眼は、TissueLyser(Qiagen,USA)中で、少なくとも2分間、または完全にホモジナイズされるまでホモジナイズした。ホモジネートは、低温室内で4℃において12000RPMで20分間遠心した。上清を新しいチューブに移し、分析アッセイで使用した。
【0124】
眼のホモジネート中のタンパク質濃度の測定
眼のホモジネート中のタンパク質濃度は、製造者の指示書に従ってPierce(商標)BCA Protein Assay Kit(Thermo Fisher Scientific)を用いて測定した。全ての試料の等量のタンパク質をELISAで使用した。
【0125】
酵素結合免疫吸着検査法
96ウェル丸底プレートを、2μg/mLのHA A-北京または1μg/mLのVEGFで4℃において一晩でコーティングした。コーティングの後、プレートを、405 TS Washer (BioTek Instruments,Winooski,VT)を用いて、200μLの0.05%Tween-20を含むリン酸緩衝生理食塩水(PBS)(PBS-T)で5回洗浄した。プレートを、200μL/ウェルの1%ウシ血清アルブミン(BSA)で、室温(RT)において1時間ブロッキングした。洗浄(記載したように)後、100μL/ウェルのサンプルを二重のウェルに充填し、37℃において1時間インキュベートした。インキュベーションの後、プレートを洗浄(記載したように)し、次いで1%BSAで、RTにおいて1時間ブロッキングした。洗浄(記載したように)後、100μL/ウェルの一次抗体を添加し、RTにおいて1時間インキュベート
した。次いでウェルを洗浄(記載したように)し、100μL/ウェルの二次抗体で、RTにおいて1時間インキュベートした。最終的な洗浄(記載したように)に続いて、150μL/ウェルの検出基質である3,3’,5,5’-テトラメチルベンジジを添加し、遮光してRTにおいて30分間インキュベートした。反応を50μL/ウェルの2NのH2SO4で停止した。次いでプレートを、分光光度計であるSpectraMax(登録商標)M3(Molecular Devices,Sunnyvale,CA)を用いて450nm/540nmの励起/発光で読んだ。
【0126】
以下の一次抗体を使用した:PBS中で1:10000希釈、予め吸着させた1.0mg/mLのヤギ抗ヒトIgG H&L(ビオチン)(Abcam 0.5mg/mL);PBS中で1:5000希釈、予め吸着させた0.5mg/mLのヤギ抗ヒトIgG H&L(ビオチン)(Abcam, 1mg/mL)。以下の二次抗体を使用した:PBS中で1:30000希釈、1mg/mLストレプトアビジン(HRP)。
【0127】
統計学的分析
ELISAのためのレポーター遺伝子の濃度の平均及び標準偏差の値は、Microsoft Office Excel 2010を用いて計算された。
【0128】
C.結果
7個の異なるプロモーターを有するAAV2/8ベクターは、FI6 mAbの発現について評価された。プロモーターEF 1-αを使用したとき、FI6 mAbの発現は、いずれの動物においても観察されなかった。プロモーターSV40.PI、PGK.PI、及びTK.PIを使用したとき、FI6 mAbの発現は低かった。プロモーターCMV.PI、CB7.CI、及びUbC.PIは、FI6 mAbの最も高い発現を実証した。いずれの動物においても、未処理の左眼においては発現が観察されなかった(データはファイル上にあり)。2個の異なるリーダーペプチドを有するAAV2/8ベクターは、抗VEGF Fabの発現について評価された。SF2リーダーを有するリーダーペプチドaVEGFv7を使用したとき、低用量での抗VEGF Fabの発現が、IL2リーダーを有するaVEGFv7と比較して、より高かかった。高用量において、抗VEGF Fabの発現は両方のリーダーペプチドについて同様であった。いずれの動物においても、未処理の左眼においては発現が観察されなかった(データはファイル上にあり)。3個の異なる軽-重鎖分離因子を有するAAV2/8ベクターは、抗VEGF Fabの発現について評価された。cMyc軽-重鎖分離因子が使用されたとき、抗VEGF Fabの発現はいずれの動物においても観察されなかた。EMCVとFMDV1の軽-重鎖分離因子を有するとき、抗VEGF Fabは低レベルで発現した。いずれの動物においても、未処理の左眼においては発現が観察されなかった(データはファイル上にあり)。
【0129】
13個の異なるコード配列を有するAAV2/8ベクターは、抗VEGF Fabの導入遺伝子産物の発現について評価された。コード配列、aVEGFv4、aVEGFv5、aVEGFv6、aVEGFv7、aVEGFv8、及びaVEGFv9が使用されたとき、抗VEGF Fabの発現は低かった。コード配列、aVEGFv13、aVEGFv10、aVEGFv11、及びaVEGFv12を有するとき、発現はより高かった。コード配列、aVEGFv1、aVEGFv2、及びaVEGFv3が使用されたとき、抗VEGF Fabの発現は最も高かった。いずれの動物においても、未処理の左眼においては発現が観察されなかった(データはファイル上にあり)。
【0130】
各々のベクターは、同一の抗VEGFの導入遺伝子産物をコードする。部分的にこれらの結果に基づいて、単一の複製欠損組換えAAV8.aVEGFがさらなる開発のために選択された。この試験ベクターは、AAV8カプシド、ならびにAAV2のITRがCB
7プロモーター、イントロン、上述されたようなコード配列から選択された抗VEGFコード配列、及びrBGのpolyA配列に隣接するベクターゲノムを有する。これは、他を具体的に特定した場合を除き、以下の実施例において試験ベクター(代替的に、AAV2/8.aVEGF試験ベクターまたはAAV8.aVEGF試験ベクター)と呼ぶ。
【0131】
実施例3:非ヒト霊長類における薬物動態(PK)試験
マカクは、網膜疾患を研究することに関してヒトに最も近い種であるため、この試験においてはマカクを使用した。カニクイザル及びヒトは、中心窩を含む眼の同様の解剖学的構造を有する。眼の寸法は同等であり、相対的な網膜領域に基づいてヒトの用量を決定することが可能である。
【0132】
この試験は、臨床開発のためにAAV2/8ベクターを選択するため、ならびに、カニクイザルにおいてAAV2/8ベクター及び抗VEGF Fabの毒性及び免疫原性を評価するために実施された。試験は進行中である。提示される結果は、10ヶ月時点で集められたデータに基づく。AAV2/8ベクター及び抗VEGF Fabの毒性の評価が記載される。動物はAAV2/8ベクターを網膜下投与された。毒性は、臨床観察、体重、間接眼底検査、スペクトル領域光干渉断層写真術、血液学、凝固、臨床化学、及び肉眼病理所見に基づいて評価された。AAV2/8ベクターまたは抗VEGF Fabに関連した唯一の有害な所見は、1.00×1011GC/眼のAAV2/8ベクターを投与された動物のいくつかの眼においてスペクトル領域光干渉断層写真術によって観察された注射部位に局在する外顆粒層におけるいくらかの菲薄化であった。
【0133】
動物は4つの処理群に割り当てられた。動物は、1.00×1011ゲノムコピー(GC)/眼の単一用量のAAV2/8ベクターを全量100μLで各々の眼に投与された。ベクターは、両方の眼に網膜下(顕微鏡下でドーム型の網膜剥離/網膜ブレブの外観によって肉眼で確認された)に投与された。以下の表は試験ベクターを列挙する。
【0134】
【0135】
網膜下注射
網膜下注射のために、2時または10時の位置で、硬膜切開によって導入された外套針を通して針を挿入した。硝子体を通して針を進め、後極において網膜を貫通した。顕微鏡での制御下で、100μLの試験試料を網膜下腔に注射した。これは、ドーム型の網膜剥
離/網膜ブレブの外観によって確認された。最初の注射の試みが網膜剥離をもたらさなかった場合、カニューレを網膜内の別の部位に移動させた。注射部位は、一時的な盲点をもたらしている可能性がある。注射した溶液は、網膜によって数時間以内で再吸収された。網膜剥離は周辺部網膜で生じ、永続的な失明をもたらさなかった。硬膜切開の部位は、吸収性縫合糸で縫合し、PredG軟膏または同等物によって眼を手当した。結膜下ケナログまたは同等物を投与した。動物は毎日観察され、必要に応じて鎮痛剤を非経口投与した。硝子体の炎症が現れた場合、症状が解消するまで、動物を、局所アトロピン及びPredG軟膏または同等物によって処理した。
【0136】
前房液の採取
動物を麻酔し、それらの頭部を固定した。ベタジン5%消毒液とプロパラカインまたは同等物を各々の眼に適用した。前房へのアクセスを可能にするために、開瞼器を配置した。処置は、27~30ゲージ皮下針を取り付けたツベルクリンシリンジによって実施した。眼は、鼻側結膜上の鉗子または綿棒で安定して保持された。針を、虹彩面の前方にあるパラリンバル(paralimbal)周辺の透明角膜を通って斜角上方に挿入した。眼に進入したら、サンプラーは注射器のプランジャーをゆっくりと引き戻して房水を吸引する。最大で100μLの前房液を採取した。前房液を抜くと、針を眼から引き戻した。前房液は、使用または貯蔵するまで湿潤氷上に置いた。処置の後、局所フルルビプロフェン、PredG軟膏、及び抗生物質点滴薬を各々の眼に適用した。前房液を以下の試験日(時折、週末、祝日、またはスケジュールの問題のために調整された)において採取した。0、15、29、43、57、71、85、120、149、183、212、247、274、及び302。
【0137】
スペクトル領域光干渉断層写真術
網膜の構造(ミクロンレベルの分解能で)をSD-OCT(Spectralis OCT,Heidelberg Engineering,Carlsbad,CA)を用いるインビボで非侵襲的な断面網膜顕微鏡により評価した。瞳孔は、フェニレフリン2.5%及びトロピカミド1%で散大された。このイメージングシステムの走査型レーザー検眼鏡を使用して、近赤外(NIR)反射率(REF)、及び動物の部分集合においてNIR眼底自発蛍光(FAF)によって、正面網膜イメージングを実施した。スペクトル領域光干渉断層写真術スキャンは、中心窩を通る9mmの長さの水平及び垂直断面、ならびにほぼ中間の領域に延びる30×25mmのラスタースキャンを重ね合わせて実施した。Aleman, Invest Ophthalmol Vis Sci.2007 Oct;48(10):4759-65を参照。
【0138】
酵素結合免疫吸着検査法(ELISA)
ELISAは、本質的に、上でマウス試験について記載したように実施した。抗VEGF Fabの発現のために、96ウェル丸底プレートを、1μg/mLのVEGFでコーティングした。プレートを4℃において一晩コーティングした。コーティングの後、プレートを、405 TS Washer(BioTek Instruments,Winooski,VT)を用いて、200μLの0.05%Tween-20を含むリン酸緩衝生理食塩水(PBS)(PBS-T)で5回洗浄した。プレートを、200μL/ウェルの1%ウシ血清アルブミン(BSA)で、室温(RT)において1時間ブロッキングした。洗浄(記載したように)後、100μL/ウェルのサンプルを二重のウェルに充填し、37℃において1時間インキュベートした。インキュベーションの後、プレートを洗浄(記載したように)し、次いで1%BSAで、RTにおいて1時間ブロッキングした。洗浄(記載したように)後、100μL/ウェルの一次抗体を添加し、RTにおいて1時間インキュベートした。次いでウェルを洗浄(記載したように)し、100μL/ウェルの二次抗体で、RTにおいて1時間インキュベートした。
【0139】
最終的な洗浄(記載したように)に続いて、150μL/ウェルの検出基質である3,3’,5,5’-テトラメチルベンジジを添加し、遮光してRTにおいて30分間インキュベートした。反応を50μL/ウェルの2NのH2SO4で停止した。次いでプレートを、分光光度計であるSpectraMax(登録商標)M3(Molecular Devices,Sunnyvale,CA)を用いて450nm/540nmの励起/発光で読んだ。以下の一次抗体を使用した:PBS中で1:10000希釈、予め吸着させた1.0mg/mLのヤギ抗ヒトIgG H&L(ビオチン);PBS中で1:5000希釈、予め吸着させた0.5mg/mLのヤギ抗ヒトIgG H&L(ビオチン)。以下の二次抗体を使用した:PBS中で1:30000希釈、1mg/mLストレプトアビジン(HRP)。
【0140】
前房液及び血液中の抗VEGF Fabの濃度の平均及び標準偏差の値は、Microsoft Office Excel 2010を用いて計算された。
【0141】
A 薬理学的結果
この実施例において、異なるプロモーター及びコード配列を有する4個のAAVベクターが、上述のように評価された。ベクターは網膜下に投与された。抗VEGF Fabの発現は、酵素結合免疫吸着検査法によって測定された。
【0142】
前房液における抗VEGF Fabの発現
全ての群の動物の前房液において、同様の発現動態が観察された(
図3A~3D、
図4A~4D)。抗VEGF Fabの発現の始まりは迅速であり、概して7日以内であった。定常発現レベルは1ヶ月以内に達成された。最後に評価された時点まで、2匹の動物を除いて全てが定常レベルで抗VEGF Fabを発現し続けた。
【0143】
群2(
図3B)の1匹の動物及び群5(
図4A)の1匹の動物が抗VEGF Fabの発現を喪失した。発現の喪失は、抗VEGF Fabに対する抗体の出現と一致した。オスとメスとの間で、及び右眼と左眼との間で、抗VEGF Fabの発現の差異はまったく観察されなかった。
【0144】
概して、CB7.CIプロモーターに制御されるベクター(
図4A~4D)は、UbC.PIプロモーターで制御されるベクター(
図3)よりも高いレベルで抗VEGF Fabを発現した。ベクターAAV2/8.CB7.CI.aVEGFv3aVEGFv3.rBGは、臨床開発のための最重要なベクターとして選択された。この選択は、導入遺伝子の発現レベル、aVEGFv3コード配列についての相対発現レベルのマウスからカニクイザルへのより良好な移行可能性、及びCB7.CIプロモーターによって経験するより優れたレベルに基づいた。
【0145】
血液における抗VEGF Fabの発現
Lucentisの単一のIVT注射を投与されたいくらかの患者において、ラニビズマブが血清で観察された(Xu,2013)。AAV2/8ベクターの網膜下投与が抗VEGF Fabの全身曝露をもたらすかどうかを見極めるために、その血清における濃度を測定した。
【0146】
抗VEGF Fabの発現は、全ての動物の血液においてベースラインレベル近辺であった(
図3A~3D、
図4A~4D)。
【0147】
B.毒性学
AAV2/8ベクター及び抗VEGF Fabの毒性の評価はこのサブパートBに記載される。動物はAAV2/8ベクターを網膜下投与された。毒性は、臨床観察、体重、間
接眼底検査、スペクトル領域光干渉断層写真術(SD-OCT)、血液学、凝固、臨床化学、及び肉眼病理所見に基づいて評価された。
【0148】
各々の処理群における各々の変数について、ウィルコクソンの順位和検定を用いて各々の時点での測定が、対応するベースライン値と比較された。ウィルコクソンの順位和検定は、2標本t検定のノンパラメトリックな代替法であり、これは2標本からの観測が含まれる順位にのみ基づいている。それは小さな試料サイズを有するデータセットに好ましい検定である。統計学的有意性は、複数の検定について調整なしに0.05レベルで宣言された。分析は「wilcox.test」の機能でRプログラム(version 3.3.1;cran.r-project.org/)を用いて実施された。
【0149】
試験は進行中である。提示される結果は、10ヶ月までに集められたデータに基づく。この試験において死亡はまったくなかった。AAV2/8ベクターまたは抗VEGF Fabに関連する有害な臨床観察は、いずれの動物においてもまったく注目されなかった。いずれの動物についても試験中の体重の臨床的に意味のある変化が観察されなかった。間接眼底検査の間に、AAV2/8ベクターまたは抗VEGF Fabに関連する有害所見は、いずれの動物においてもまったく注目されなかった。
【0150】
スペクトル領域光干渉断層写真術
群6の全部で4匹の動物(8個の眼)がSD OCTで撮像された。中間用量レベルのAAV8.aVEGF試験ベクター(1.00×1011GC/眼)を投薬された眼の注射された領域は、実施例7(特にサブパートB)に記載される、1.00×1010及び1.00×1012用量レベルと比較して中間の結果を示した。2匹の動物(動物C71896及び動物C65936)において、ONLのいくらかの菲薄化が観察された(データはファイル上にあり)。さらに、2匹の動物(動物C74422及び動物C74414)において、最小限の変化が観察された(データはファイル上にあり)。血液学的、凝固または臨床化学的パラメーターにおいて臨床的に意味のある変化は、いずれの動物においても観察されなかった。
【0151】
AAV2/8ベクターまたは抗VEGF Fabに関連する所見は10ヶ月で犠牲にした2匹の動物においてまったく観察されなかった。動物C65936において、肝重量が観察され、それは顕微鏡的に局所性慢性グレード3の炎症であった。動物C74414において、両側性のグレード3リンパ組織過形成が観察された。これらの所見はAAV2/8ベクターまたは抗VEGF Fabと関連していなかった。1.00×1011GC/眼のAAV2/8ベクターの用量レベルにおいて、AAV2/8ベクターまたは抗VEGF Fabに関連した唯一の所見は、動物C65926の右眼のレンズの最小限の空胞化であった。動物C74414において、血管周囲の単核性細胞が右の視神経の脈管構造の周辺に最小限浸潤することが観察された。同一の動物で、左眼において最小限の単核性細胞の結膜下の浸潤、及び右眼において最小限の血管周囲眼球外の単核性細胞の浸潤が注目された。
【0152】
AAV2/8ベクターまたは抗VEGF Fabに関連した唯一の有害な所見は、1.00×1011GC/眼のAAV2/8ベクターを投与された動物のいくつかの眼においてSD-OCTによって観察された注射部位に局在するONLにおけるいくらかの菲薄化であった。
【0153】
C.免疫学
この節において、AAV2/8ベクター及び抗VEGF Fabの免疫原性の評価が記載される。ベクターは、この実施例において上記されたように、網膜下に投与された。免疫原性は、抗VEGF Fabに対するIgM及びIgG抗体、AAV8カプシドに対す
る中和抗体、ならびにAAV2/8ベクター及び抗VEGF Fabに対する細胞免疫応答の存在によって評価された。
【0154】
要約すると、群2及び群5の各々における1匹の動物が、抗VEGF Fabに対する抗体、AAV8カプシドに対する高レベルのNab、及びT細胞応答を有した。両方の動物は抗VEGF Fabの発現を喪失していた。予め存在したAAV8カプシドに対するNAbを有する動物は概して、予め存在したNabを有さない動物と比べたとき、AAV2/8ベクターの投与後に増加した応答を有した。約300日の試験日で犠牲にしたいくらかの動物において、AAV8カプシドに対するNAbは、硝子体液に観察された。抗VEGF Fabに対する抗体及びT細胞応答は群6の動物においてまったく観察されなかった。群6の動物において、AAV2/8ベクターの投与後に、NAbレベルの緩やかな変動のみが観察された。
【0155】
抗VEGF Fabは、AAV2/8ベクターを投与された全ての動物において発現した(この実施例のパートA)。2匹の動物(動物C74440及び動物C68127)は、抗VEGF Fabの発現を喪失していた。発現の喪失は、抗VEGF Fabに対する抗体の出現と一致した。
【0156】
全体として、抗VEGF Fabに対するIgM及びIgGのレベルは、前房液及び血清のベースラインレベル未満であった。いくらかの動物でいくつかの時点において、ベースラインレベルを超える増加が観察された。群2(動物C74440)及び群5(動物C68127)の各々における1匹の動物において、前房液の抗VEGF Fabに対するIgGのレベルが、約6ヶ月においてベースラインレベルを超えて増加した。その後、レベルは概して増加した。両方の動物において、抗VEGF Fabに対するIgGが、血清のベースラインレベルを超えて増加した。これらのIgGにおける増加は、抗VEGF
Fabの発現の喪失と一致した。重要なことに、群6の動物における抗VEGF Fabに対するIgM及びIgGは、試験の期間中、検出されなかったか、またはベースラインレベル未満であった。
【0157】
手短に、動物の免疫系は、導入遺伝子産物がヒト抗体であるという事実にもかかわらず、抗VEGF導入遺伝子産物の局所的な発現の継続を許容した。
【0158】
AAV8カプシドに対する中和抗体の存在
AAV8カプシドに対するNAbのベースラインレベルは、0日の試験日で採取した血液試料由来の血清中で測定された。検出限界は1:5希釈であり、5未満の力価を検出不能とみなした。16匹の動物のうちの2匹(動物C63116及び動物C66122)において、血清中に予め存在するNAbが観察されなかった。AAV2/8ベクターの投与に続いてこれら2匹の動物におけるNAbのレベルは、検出限界未満に維持されたか、または低かった。16匹の動物のうちの14匹において、予め存在するNAbが観察された。これらの動物のうちの11匹において、NAbのレベルは、試験を通して変動した。群2(動物C74440)及び群5(動物C68127)の各々の1匹の動物において、AAV2/8ベクターの投与に続いてNAbのレベルは、2か月において、それぞれ256及び128まで、2倍希釈で増加した。これらのNAbにおける増加は、抗VEGF Fabの発現の喪失と一致した。群2、3、及び5からの6匹の犠牲にした動物において、硝子体液におけるNAbの存在が評価された。犠牲時に血清中のNAbが検出不能であった2匹の動物(動物C63116及び動物C66122)において、NAbは犠牲時に硝子体液中に存在しなかった。残りの動物において、犠牲時のNAbのレベルは、犠牲時の血清中のレベルと相関しなかった。群6における全ての動物において、予め存在するNAbが観察された。これらの動物におけるNAbのレベルは、試験を通じて緩やかに変動した。
【0159】
AAV2/8ベクター及び抗VEGF Fabに対するT細胞応答
群2の1匹の動物(動物C74440)において、単一の時点において上昇したT細胞応答が観察された。この動物において、抗VEGF Fabに対する抗体、及びAAV8カプシドに対する中和抗体もまた観察された。この動物は抗VEGF Fabの発現を喪失していた。群5の1匹の動物(動物C65873)において、AAV8カプシドのプールBペプチドに対する提示された持続したT細胞応答は、あらかじめ注射されたベースライン試料を含んで観察された。同一の動物は、AAV2/8ベクターの投与後、最も高いレベルのNAbを有した。同一の群の別の動物(動物C68127)は、AAV8カプシドの全てのペプチドプールに対するT細胞を生じたが経時的に持続されなかった。この動物は抗VEGF Fabに対する抗体及び2番目に高いレベルのNAbを有した。動物は抗VEGF Fabの発現を喪失していた。
【0160】
この他の導入遺伝子産物に対する持続したT細胞応答は観察されなかった。群6の動物において、持続したT細胞応答はまったく観察されなかった。
【0161】
実施例4 AAV2/8.aVEGF及び抗VEGF導入遺伝子産物を評価するために有用な動物モデル
VEGFトランスジェニックマウスは、滲出型AMDの動物モデルとして使用した。2種のそのようなモデルは、Rho/VEGFマウスモデル及びTet/オプシン/VEGFモデルを含む。
【0162】
A.Rho/VEGFマウスモデル
Rho/VEGFマウスは、ロドプシンプロモーターが光受容体におけるヒト血管内皮増殖因子(VEGF165)の発現を駆動し、出生後10日目から新しい血管が網膜の深い毛細血管床から発芽し、網膜下腔に向けて成長する、トランスジェニックマウスである。VEGFの産生は、持続し、したがって新しい血管は成長し続け、拡張し、加齢性黄斑変性を有するヒトにおいてみられるものと同様の網膜下腔における大きな網を形成する。Tobe,Takao,et al.”Evolution of neovascularization in mice with overexpression of
vascular endothelial growth factor in photoreceptors.”Investigative ophthalmology & visual science 39.1(1998):180-188を参照。
【0163】
酵素結合免疫吸着検査法(ELISA)を以下のように実施できる。手短に、プレートを1μg/mLのVEGFで4℃において一晩コーティングする。1%BSAをブロッキング緩衝液として使用し、ウェル当たり200μLで室温において1時間インキュベートする。試料を、ウェル当たり100μLで二重で充填し、37℃で1時間インキュベートし、二次ブロッキング緩衝液のインキュベーションが後に続く。一次抗体は、ビオチン結合したヤギ抗ヒトIgG H&Lであり、ウェル当たり100μLで室温において1時間インキュベートするよう放置される。二次抗体は、1:30,000希釈のストレプトアビジンであり、ウェル当たり100μLで充填し、室温において1時間インキュベートする。TMB溶液を検出基質(0.1MのNaOAcクエン酸緩衝液(pH6.0)、過酸化水素、100×TMBストック)として使用し、ウェル当たり150μLで充填し、遮光して室温において30分間インキュベートする。50μLの停止溶液(2NのH2SO4)を各々のウェルに添加し、次いで、各々のプレートを450nm-540nmで読んだ。
【0164】
このモデルと先行する実施例に記載されるような試験AAV8.aVEGFとを用いて
実施した1つの試験において、ELISAの結果は以下のとおりであった:
【0165】
【0166】
【表5】
抗VEGF Fabレベルはng/眼で示される。
【0167】
B.Tet/オプシン/VEGFマウスモデル
Tet/オプシン/VEGFマウスは、飲料水中のドキシサイクリンを与えるまでは正常であるトランスジェニックマウスである。ドキシサイクリンは、非常に高い血管内皮増殖因子(VEGF)の光受容体における発現を誘導し、大規模な血管漏出をもたらし、誘導の4日以内にマウスの80~90%において、全滲出性網膜剥離を現出させる。Ohno-Matsui,Kyoko,et al.”Inducible expression of vascular endothelial growth factor
in adult mice causes severe proliferative retinopathy and retinal detachment.”The American journal of pathology 160.2(2002):711-719を参照。
【0168】
ELISAは、この実施例のパートAに記載されるように実施できる。このモデルと先行する実施例に記載されるような試験AAV8.aVEGFとを用いて実施した1つの試験において、ELISAの結果は以下のとおりであった:結果は以下の表に平均±標準偏差(Std)として示される。
【0169】
【0170】
【0171】
C.他の動物モデル
滲出型AMDの他の動物モデルを使用した。レーザー外傷モデルにおいて、ブルッフ膜において損傷を誘導するために高出力、集束レーザーエネルギーが使用される。マトリゲル、VEGF、マクロファージ、脂質ヒドロペルオキシド、及び/またはポリエチレングリコールの網膜下注射は、滲出型AMDの病態である脈絡膜血管新生(CNV)を誘導する。Pennesi,Mark E.,Martha Neuringer,and R
obert J.Courtney.”Animal models of age related macular degeneration.”Molecular aspects of medicine 33.4(2012):487-509を参照。
【0172】
最適化されたrAAV.aVEGFベクターが生成され、希釈され、トランスジェニックマウスの眼の網膜下腔に先行する実施例に記載される用量で送達される。眼及び/または血漿におけるレポーター遺伝子、VEGF、及び抗VEGF抗体の発現は、先行する実施例に記載されるように、PCR、qPCR、ddPCR、oqPCR、ウェスタンブロット、及びELISAによって測定された。網膜血管新生を評価するために電子顕微鏡及び免疫組織化学解析もまた実施された。網膜当たりの損傷の数、損傷当たりの面積、網膜当たりの血管新生面積、及び牽引網膜剥離の網膜の組織病理学的評価が定量化される。
【0173】
実施例5 カニクイザルにおける抗VEGF Fab(導入遺伝子産物)の発現の評価
この試験は、カニクイザルにおける投与に続いて、抗VEGF Fab(導入遺伝子産物)の発現を評価し、かつ抗VEGF Fabを発現するAAV8ベクターの毒性、免疫原性、及び生体内分布を評価するために実施された。この報告において、導入遺伝子産物の発現及びベクターの免疫原性が記載される。動物は、これらの実施例において記載されるようなAAV2/8.aVEGFベクターまたはFFB-314(コントロール試料)を網膜下に投与された。前房液及び血液における導入遺伝子産物の発現は、酵素結合免疫吸着検査法(ELISA)によって測定された。免疫原性は、投与の前後で、AAV8カプシドに対する中和抗体(NAb)の存在によって評価された。導入遺伝子産物は、ベクターを投与された全ての動物の前房液において発現している。導入遺伝子産物は、血液において発現していない。NAbのレベルにおける増加は、1匹のAAV8.aVEGFを投与された動物(C73723)において観察され、この動物は予め存在するNAbを有した。
【0174】
この試験における動物は、1.00×1012ゲノムコピー(GC)/眼の単一用量のAAV8.CB7.CI.aVEGFv3.rBGまたは製剤緩衝液、FFB-314を投与された。
【0175】
AAV8.CB7.CI.aVEGFv3.RBG及びFFB-314は、100μLの全量で右眼において網膜下に投与された(顕微鏡下でドーム型の網膜剥離/網膜ブレブの外観によって肉眼で確認された)。
【0176】
動物はwww.jamestease.co.uk/team-generatorを用いてランダム化された。www.randomizer.org/を用いて4匹の動物のうち1匹がランダムで選択され、群2に割り得てられた。残りの3匹の動物は群1に割り当てられた。この試験のための群の設計及び用量レベルは、以下の表に提示される。
【0177】
【0178】
動物は7日の試験日で安楽死させた。抗VEGF Fab導入遺伝子産物の発現及び/またはAAV8カプシドに対するNAbの存在を決定するために、前房液及び血液の試料を採取した。
【0179】
先行する実施例に記載されるように網膜下注射は実施された。前房液の採取は先行する実施例に記載されるようであった。ELISAのために、96ウェル丸底プレートが、抗VEGF Fab導入遺伝子産物の発現のために1μg/mLのVEGFで、または抗VEGF Fab導入遺伝子産物に対するIgM及びIgGの発現のために0.5μg/mLの市販の抗VEGF Fabでコーティングされた。ELISAの方法は、先行する実施例に記載されるとおりであった。
【0180】
以下の一次抗体を使用した:PBS中で1:10000希釈、予め吸着させた1.0mg/mLのヤギ抗ヒトIgG H&L(ビオチン);PBS中で1:5000希釈、予め吸着させた0.5mg/mLのヤギ抗ヒトIgG H&L(ビオチン)。以下の二次抗体を使用した:PBS中で1:30000希釈、1mg/mLストレプトアビジン(HRP)。
【0181】
中和抗体アッセイ
AAV8カプシドに応答する中和抗体は以下のように分析された。ポリDリシンコーティングされた96ウェル黒色壁/透明底プレートは、1×105細胞/ウェルでヒト胚腎臓293(HEK293)細胞を播種され(細胞プレートと呼ぶ)、プレートを37℃で一晩インキュベートした。次の日に、血清試料を56℃で30分間熱不活化した。熱不活化した試料及び組換えベクター(1×109GC/ウェルの、Penn Vector Core at the University of Pennsylvaniaによって提供されたAAV8.CMV.LacZ)を血清-ベクタープレートを構成するために使用した。組換えベクターを無血清ダルベッコ改変イーグル培地(DMEM)で希釈し、2倍系列希釈(1:5で開始)の熱不活化試料と共に37℃で1時間インキュベートした。血清ベクタープレートと細胞プレートとを組み合せる前に、HEK293細胞(ここで2×105細胞/ウェル)を野生型HAdV5(90粒子/細胞)によって感染させ、37℃で2時間インキュベートした。インキュベーションの後、血清-ベクタープレート及び細胞プレートを組み合せて37℃で1時間インキュベートした。インキュベーションの後、等量の20%ウシ胎仔血清(FBS)とDMEMを各々のウェルに添加し、組み合わせたプレートを37℃でさらなる18~22時間培養した。次の日に、組み合わせたプレートをPBSで洗浄し、HEK293細胞を溶解し、製造者の取扱説明書に従って溶解物を、哺乳動物βガラクトシダーゼ生物発光アッセイキットを用いて発色させた。コントロールとして、血清試料の代わりにマウス血清を使用した。生じる発光は、SpectraMax(登録商標)M3マイクロプレートルミノメーターを用いて測定した。生じるNAbの力価は、マウス血清と比較して少なくとも50%ベクターの形質導入を阻害する血清希釈として報告された。
【0182】
統計学的分析
前房液及び血液中の抗VEGF Fab導入遺伝子産物の濃度の平均及び標準偏差の値は、Microsoft Office Excel 2010を用いて計算された。
【0183】
結果
前房液における抗VEGF Fab導入遺伝子産物の発現
抗VEGF Fab導入遺伝子産物は、FFB-314を投与された動物の前房液において発現していなかった。抗VEGF Fab導入遺伝子産物は、AAV8.aVEGF試験ベクターを投与された全ての動物の右眼から採取した前房液において発現していた。左眼において発現はまったく観察されなかった。オスとメスの間で抗VEGF Fab導
入遺伝子産物の発現の差異はまったく観察されなかった。
【0184】
血液における抗VEGF Fab導入遺伝子産物の発現
Lucentisの単一のIVT注射を投与されたいくらかの患者において、ラニビズマブが血清で観察された(Xu, Invest Ophthalmol Vis Sci,54:1616-24(2013))。AAV8.aVEGF試験ベクターの網膜下投与が抗VEGF Fab導入遺伝子産物の全身曝露をもたらすかどうかを見極めるために、その血清における濃度を測定した。
【0185】
抗VEGF Fab導入遺伝子産物の発現は、FFB-314を投与された動物及びAAV8.aVEGFベクターを投与された全ての動物の血液において、対応する注射前のレベルと比較して、非特異的なバックグランドレベル未満であった。
【0186】
AAV8カプシドに対する中和抗体の存在
AAV8カプシドに対するNAbのベースラインレベルは、0日の試験日で採取した血液試料由来の血清中で測定された。検出限界は1:5希釈であり、5未満の力価を検出不能とみなした。
【0187】
【表9】
注意:報告されるNAb力価の値は、相対発光単位(RLU)がコントロールウェル(試料を含まない)と比べて50%低減した血清の逆の希釈度である。検出限界は、試料の1:5希釈であった。
【0188】
FFB-314を投与された動物は、AAV8カプシドに対す予め存在するNAbを有した(先行する表を参照)。AAV8.aVEGF試験ベクターを投与された1匹の動物(C74431)は検出可能なAAV8カプシドに対するNAbを有さなかった。AAV8.aVEGF試験ベクターを投与された2匹の動物(C73723、C65027)は、予め存在するAAV8カプシドに対するNAbが観察され、7日目に持続した(先行する表を参照)。
【0189】
毒性は、臨床観察、体重、間接眼底検査、血液学、凝固、臨床化学、及び肉眼病理所見に基づいて評価された。この試験において死亡またはスケジュール外の犠牲はまったくなかった。AAV8.aVEGF試験ベクターまたは抗VEGF Fab導入遺伝子産物に関連する有害な臨床観察は、いずれの動物に対してまったく注目されなかった。いくらかの動物は、体重が安定したままであったために動物の福祉に影響を与えないで、間欠性の一過性の下痢を示した。いずれの動物についても試験中の体重の臨床的に意味のある変化が観察されなかった。間接眼底検査の間に、AAV8.aVEGF試験ベクターまたは抗VEGF Fab導入遺伝子産物に関連する有害所見は、いずれの動物においてもまったく注目されなかった。血液学的、凝固または臨床化学的パラメーターにおいて臨床的に意味のある変化は、いずれの動物においても観察されなかった。全ての動物において、全て
の臨床病理学的パラメーターが正常範囲にあった。動物C64956及びC74431において肉眼的な所見はまったく存在しなかった。C73723の右腎及び左腎の表面は青白かった。C65027の肝臓において巣状病変が存在した。結論として、主要な毒物学的所見は存在しなかった。
【0190】
実施例6~11における試験ベクターは、rAAV8.CB7.CI.aVEGFrv3.rBGである。
【0191】
実施例6 カニクイザルにおけるAAV2/8.aVEGFベクターの発現
この試験は、カニクイザルにおいて、抗VEGF導入遺伝子産物の発現を評価するため、ならびにAAV2/8.aVEGF及び抗VEGF導入遺伝子産物、及びAAV8.aVEGFの脱落の、毒性、免疫原性、及び正常な網膜機能に対する影響を評価するために実施された。試験は進行中である。
【0192】
実施例において上述されるAAV2/8.aVEGFをこの試験において使用した。ベクターを0.001%Pluronic F-68を含むダルベッコリン酸緩衝生理食塩水(DPBS)に希釈する。コントロール試料として、FFB-314(0.001%Pluronic F-68を含むDPBS)を使用した。試験は進行中である。提示される結果は、3ヶ月時点で集められたデータに基づく。
【0193】
マカクは、網膜疾患を研究することに関してヒトに最も近い種であるため、マカクを使用した。これらのサル及びヒトは、中心窩を含む眼の同様の解剖学的構造を有する。眼の寸法は匹敵するものであり、相対的な網膜領域に基づいてヒトの用量を決定することが可能である。
【0194】
この実施例における動物は、1.00×1010ゲノムコピー(GC)/眼の単一用量のAAV8.aVEGF、または1.00×1012GC/眼のAAV8.aVEGFもしくはFFB-314を投与された。AAV8.aVEGF及びFFB-314は、100μLの全量で右眼において網膜下に投与された(顕微鏡下でドーム型の網膜剥離/網膜ブレブの外観によって肉眼で確認された)。
【0195】
動物は、www.jamestease.co.uk/team-generatorを用いてセット当たり4匹の動物の6セットにランダムに割り当てられた。セットに割り当てられた後、6セットの各々から4匹の動物のうちの1匹をwww.randomizer.org/を用いてランダムに選択し、それぞれの所与の投与日に、FFB-314を投与される群に割り当てた(群2、4、6、8、10、及び12)。残りの3匹の動物を、1×1012GC/眼または1×1010GC/眼のAAV8.aVEGFを投与される群に割り当てた(群1、3、5、7、9、及び11)。実施例6及び7に対する群の称号及び用量レベルは、以下に提示される。
【0196】
【表10】
抗VEGF Fab導入遺伝子産物の発現を決定するために、前房液及び血液の試料を採取した。先行する実施例に記載されるように網膜下注射は実施された。
【0197】
A.薬理学
提示される結果は、3ヶ月時点で集められたデータに基づく。この報告において、抗VEGF Fab導入遺伝子産物の発現が記載される。
【0198】
1.方法
動物は、AAV8.aVEGF試験ベクターまたはFFB-314(コントロール試料)を網膜下に投与された。前房液及び血液における抗VEGF導入遺伝子産物の発現は、酵素結合免疫吸着検査法(ELISA)によって測定され、これは上述の実施例に記載されるように実施された。
【0199】
2.薬理学的結果
(a)前房液における導入遺伝子産物の発現
導入遺伝子産物は、FFB-314を投与されたいずれの動物の前房液においても発現していなかった。導入遺伝子産物は、AAV8.aVEGF試験ベクターを投与された全
ての動物の前房液において発現していた。発現の始まりは迅速であり、概して7日以内であった。定常発現レベルは1ヶ月以内に達成された。最後に評価された時点まで、全ての動物が定常レベルで導入遺伝子産物を発現し続けた。しかしながら、抗導入遺伝子産物の全体の発現レベルは、1.00×1012GC/眼のAAV8.aVEGF試験ベクターを投与された動物においてより高かった。オスとメスの間で導入遺伝子産物の発現の差異はまったく観察されなかった。
【0200】
(b)血液における導入遺伝子産物の発現
Lucentisの単一のIVT注射を投与されたいくらかの患者において。ラニビズマブが血清で観察された(Xu,Invest Ophthalmol Vis Sci.2013 Mar 5,54(3):1616-24)。これらの実施例において記載されるAAV2/8.aVEGF試験ベクターの網膜下投与が抗VEGF Fab導入遺伝子産物の全身曝露をもたらすかどうかを見極めるために、その血清における濃度を測定した。抗VEGF Fab導入遺伝子産物の発現は、AAV8.aVEGF試験ベクターを投与された全ての動物の血液において、対応する注射前のレベルと比較して、非特異的なバックグランドレベル未満であった。
【0201】
3.結論
抗VEGF Fab導入遺伝子産物は、AAV8.aVEGF試験ベクターを投与された全ての動物の前房液において発現していた。
【0202】
抗VEGF Fab導入遺伝子産物は、AAV8.aVEGF試験ベクターを投与された全ての動物の血液において発現していない。
【0203】
B.毒性学
この報告において、AAV2/8.aVEGF試験ベクターの毒性の評価が記載される。動物は、AAV8.aVEGF試験ベクターまたはFFB-314(コントロール試料)を網膜下に投与された。毒性は、臨床観察、体重、眼圧、間接眼底検査、スペクトル領域光干渉断層写真術、血液学、凝固、臨床化学、及び肉眼病理所見、及び病理組織学的所見に基づいて評価された。
【0204】
眼圧はリバウンド眼圧測定(TonoVet)を介して評価した。この方法は、使用が簡単であり局所麻酔を必要としない。リバウンド眼圧測定は、角膜に対して発射される小さなプラスチックの先端の金属プローブを磁化するための誘導コイルを用いることによってOPを推定する。プローブが装置にリバウンドして戻るとき、誘導電流を生成し、そこからOPを計算する。2回までのデータ読み取りを実施し、そこから平均OPを決定し、結果の正確さが示された。装置の適用は、製造者の取扱説明書に従って実施した。
【0205】
網膜の構造(ミクロンレベルの分解能で)をSD-OCT(Spectralis OCT,Heidelberg Engineering,Carlsbad,CA)を用いるインビボで非侵襲的な断面網膜顕微鏡により評価した。瞳孔は、フェニレフリン2.5%及びトロピカミド1%で散大された。このイメージングシステムの走査型レーザー検眼鏡を使用して、近赤外(NIR)反射率(REF)、及び動物の部分集合においてNIR眼底自発蛍光(FAF)によって、正面網膜イメージングを実施した。スペクトル領域光干渉断層写真術スキャンは、中心窩を通る9mmの長さの水平及び垂直断面、ならびにほぼ中間の領域に延びる30×25mmのラスタースキャンを重ね合わせて実施した。
【0206】
唯一のAAV8.aVEGF試験ベクターの関連した有害所見は、1.00×1012GC/眼の試験ベクターを投与された動物におけるスペクトル領域光干渉断層写真術によって観察された重大な網膜の菲薄化及び光受容体の喪失であった。
【0207】
C.網膜電図(ERG)
このサブパートにおいて、AAV8.aVEGF試験ベクター及び抗VEGF Fab導入遺伝子産物の正常な網膜機能に対する影響の評価が記載される。動物は、AAV8.aVEGF試験ベクターまたはFFB-314(コントロール試料)を網膜下に投与された。網膜機能は、全視野網膜電図(ERG)によって評価された。全視野ERGは、広く使用される網膜機能の電気生理学試験である。網膜電図は、光刺激に応答する網膜によって生成される集合電位である。通常、それは、角膜表面と接触する電極によって記録される。この試験における網膜電図は、国際臨床視覚電気生理学会(ISCEV;McCulloch, Doc Ophthalmol. 2015 Feb;130(1):1-12. 2015)が設定した推奨に従って実施された。提示される結果は、3ヶ月時点で集められたデータに基づく。この報告において、AAV8.aVEGF試験ベクター及び抗VEGF Fab導入遺伝子産物の正常な網膜機能に対する影響の評価が記載される。動物は、AAV8.aVEGF試験ベクターまたはFFB-314(コントロール試料)を網膜下に投与された。網膜機能は、全視野網膜電図によって評価された。要約すると、1.00×1010ゲノムコピー(GC)/眼のAAV8.aVEGF試験ベクターの投与は網膜機能を損なわない。対照的に、1.00×1012GC/眼のAAV8.aVEGF試験ベクターの投与は網膜機能を損なう。
【0208】
1.網膜電図(ERG)のパラメーター
網膜電図(ERG)は、通常、全網膜細胞がフラッシュ刺激(暗順応の動物、中程度から強烈な閃光)に対し能動的な応答であるときに生成する。2つの構成要素は以下のものである:
・a波:フラッシュ後の最初の角膜陰性シグナル。起源:光受容体光電流、光受容体機能の最も直接的な特徴。
・b波:大部分がオン型双極細胞(光受容体下流の二次ニューロン)によって生成されるa波の後に続く角膜陽性シグナル。
この試験において、国際臨床視覚電気生理学会(ISCEV)に従う標準及び追加プロトコールが使用された:
・暗順応桿状体のERG:刺激強度:0.01~0.02cd s m-2。応答:b波のみ、a波はなし。源:桿状体「オン型」双極細胞(桿状体からの入力に駆動される二次ニューロン)。意味:桿状体機能の測定。データシートにおける称号:「薄暗いフラッシュ」
・暗順応標準的なフラッシュERG:刺激強度:3cd s m-2。応答:桿体錐体のa波とb波の混合;60%~70%のシグナルは、桿状体駆動経路によって生成される。源:光受容体、桿状体と錐体の両方(a波);桿状体と錐体の両方によって駆動される高次ニューロン。意味:大部分の桿状体の機能の測定、暗順応の状態に対して感度が低く、「薄暗いフラッシュ」応答よりも低い可変性である。データシートにおける称号:「標準的なフラッシュ」。
・暗順応明るいフラッシュERG:刺激強度:10cd s m-2。応答及び意味:「標準的なフラッシュ」の応答についてと同一であるが、明るいフラッシュへの応答は、規模がより大きく、より可変性が低くあり得る。データシートにおける称号:「明るいフラッシュ」
・明順応標準的なフラッシュ錐体ERG:刺激強度:5分間の明順応の後、30cd m-2のバックグランド光の存在下で送達される3cd s m-2。応答:錐体駆動経路によって生成されるa波及びb波。意味:錐体を完全に非感光性にするバックグランド光の存在下で、ERGが錐体及び錐体駆動二次網膜ニューロンによって排他的に作成され、錐体の機能を測定する。データシートにおける称号:「標準的な錐体ERG」
・明順応明るいフラッシュ錐体ERG(ISCEV標準に対して追加して)刺激強度:5分間の明順応の後、30cd m-2のバックグランド光の存在下で送達される10c
d s m-2。応答及び意味:錐体駆動ERGは「標準的な錐体ERG」の場合のようであったが、より大きな規模であり、潜在的により低い可変性である。
【0209】
各々の処理(FFB-314(ビヒクル)群、AAV8.aVEGF試験ベクター1.00×1010GC/眼群、AAV8.aVEGF試験ベクター1.00×1012GC/眼群)に対して、ERG測定(a波振幅、a波潜時、b波振幅、b波潜時)が、処理した眼及びコントロールの眼について平均及び標準偏差(SD)を用いてまとめられた。AAV8.aVEGF試験ベクター(処理)眼とFFB-314(コントロール眼)との間のERG測定を比較するため、及び注射後対注射前の比較のために、ペアt検定が使用された。AAV8.aVEGF試験ベクター1.00×1010GC/眼群対FFB-314(ビヒクル)群、AAV8.aVEGF試験ベクター1.00×1012GC/眼群対FFB-314(ビヒクル)群、及びAAV8.aVEGF試験ベクター1.00×1012GC/眼群対AAV8.aVEGF試験ベクター1.00×1010GC/眼群についてERG測定を比較するために、2標本t検定が使用された。t検定は、標本サイズが小さいとき[Winter JCF.Using the Student’s t-test with extremely small sample sizes.Practical Assessment,Research and Evaluation.2013;18(10)。オンラインで入手可能:pareonline.net/-getvn.asp?v=18&n=10]や、データが正規分布していないときでも適切である。Shuster JJ.Diagnostic for assumptions in moderate to large simple clinical trials: do they really help? Statist.Med.2005;24:2431-2438;Ganju J.D.“Diagnostic for assumptions in moderate to large simple clinical trials:do they really help?”に対するコメントStatist.Med.2006;25:1798-1800を参照。全ての統計学的分析はSAS v9.4(SAS Institute Inc.,Cary,NC)で実施され、0.05以下の両側P値は統計学的に有意であるとみなされる。
【0210】
2.結果
抗VEGF Fab導入遺伝子産物は、AAV8.aVEGF試験ベクターを投与された全ての動物において発現した(この実施例のパートAの薬理学的結果を参照)。AAV8.aVEGF試験ベクターまたはFFB-314の投与に続いて3か月の網膜機能(注射後)を、処理された眼及び未処理の眼について投与前(注射前)の網膜機能と比較した。群8の動物は、FFB-314の投与後の取得できないERGのためにデータ分析から排除された。
【0211】
【0212】
a.処理群間の網膜機能の比較
処理した眼について、注射後の網膜機能は、低用量群(1.00×1010GC/眼のAAV8.aVEGF試験ベクター)とFFB-314群との動物間で同等であった(先行する表を参照)。処理した眼について、高用量群(1.00×1012GC/眼のAAV8.aVEGF試験ベクター)の動物における注射後の網膜機能は、FFB-314群の動物と比較して有意に低減していた(先行する表を参照)。処理した眼について、高用量群の動物における注射後の網膜機能は、低用量群の動物と比較して有意に低減していた(先行する表を参照)。未処理の眼について、注射後の網膜機能は、全ての群について、注射前と同等であった。
【0213】
b.処理群内の網膜機能の比較
処理した眼について、低用量群及びFFB-314群において、注射後の網膜機能は、対応する注射前のベースラインと同等であった。処理した眼について、高用量群において、注射後の網膜機能は、対応する注射前のベースラインと比較して低減していた。未処理の眼について、注射後の網膜機能は、対応する注射前のベースラインと同等であった。
【0214】
E.ウイルスの脱落
AAV8.aVEGF試験ベクターの脱落は、涙、鼻分泌物、血清、唾液、尿、及び糞便の試料中で導入遺伝子特異的配列を標的とする定量的PCR解析によって測定された。試料は、AAV8.aVEGF試験ベクターまたはFFB-314の投与の前後で採取された。AAV8.aVEGF試験ベクターDNAは、AAV8.aVEGF試験ベクターを投与された動物から採取された多くの試料において容易に検出可能であった。AAV8.aVEGFのDNAの存在は、用量依存的であり、一過性であり、経時的に低下した。
【0215】
F.免疫原性
この試験において、AAV8.aVEGF試験ベクター及び抗VEGF Fab導入遺伝子産物の免疫原性が記載される。免疫原性は以下によって評価された:
・酵素結合免疫吸着検査法(ELISA)を用いる、抗VEGF Fab導入遺伝子産物に対するIgM及びIgG抗体の存在;
・NAbアッセイを用いるAAV8カプシドに対する中和抗体(NAb)の存在;
・酵素結合免疫スポット(ELISPOT)アッセイを用いる、AAV8.aVEGF試験ベクター及び抗VEGF Fab導入遺伝子産物に対するT細胞応答。
【0216】
この実施例において上述されるように、動物は、AAV8.aVEGF試験ベクターまたはFFB-314(コントロール試料)を網膜下に投与された。抗VEGF Fab導入遺伝子産物に対する持続するIgM、IgG、またはT細胞の応答は、いずれの動物においてもまったく観察されなかった。1.00×1012GC/眼のAAV8.aVEGF試験ベクターを投与された動物は、1.00×1010GC/眼のAAV8.aVEGF試験ベクターを投与された動物よりも高い、AAV8カプシドに応答する中和抗体(NAb)を生じた。NAb応答は、予め存在するNAbを有する動物においてより高かった。1.00×1012GC/眼の試験ベクターを投与された6匹の動物のうちの2匹において、少し増加したAAV8カプシドに対するT細胞応答が観察された。
【0217】
結果
抗VEGF Fab導入遺伝子産物は、AAV8.aVEGF試験ベクターを投与された全ての動物において発現した(実施例6)。FFB-314を投与された動物の血清または前房液において抗VEGF Fab導入遺伝子産物に対するIgMは多くは存在しなかった。ベースラインレベルを超える抗VEGF Fab導入遺伝子産物に対するIgGは、FFB-314を投与された動物において観察されなかった。
【0218】
抗VEGF Fab導入遺伝子産物に対するIgMは、1.00×1010GC/眼のAAV8.aVEGF試験ベクターを投与された1匹の動物の前房液においてベースラインレベルを超えた。しかしながら、血清においては対応する上昇が存在せず、したがってこの観察は、臨床的に意味はなかった。ベースラインレベルを超える抗VEGF Fab導入遺伝子産物に対するIgGは、この処理群において観察されなかった。
【0219】
ベースラインレベルを超える抗VEGF Fab導入遺伝子産物に対するIgMは、1.00×1012GC/眼のAAV8.aVEGF試験ベクターを投与された1匹の動物の前房液において観察された。しかしながら、血清においては対応する上昇が存在せず、この観察は、臨床的に意味はなかった。ベースラインレベルを超える抗VEGF Fab導入遺伝子産物に対するIgGは、この処理群において、別の動物からの血清及び前房液において、ならびに第3の動物の前房液のみにおいて観察された。しかしながら、いずれの検出可能なIgMが先行しなかったので、これらの観察は、臨床的に意味はなかった。これらの動物におけるIgGの存在は、抗VEGF Fab導入遺伝子産物の発現の喪失と関連しなかった。
【0220】
AAV8カプシドに対するNAbのベースラインレベルは、0日の試験日で採取した血液試料由来の血清中で測定された。検出限界は1:5希釈であり、5未満の力価を検出不能とみなした。
【0221】
FFB-314が投与された6匹の動物のうちの4匹において、予め存在するNAbが観察されなかった。90日の試験日まで追跡された2匹の動物はNAbを生じなかった。FFB-314が投与された2匹の動物において、予め存在するNAbが観察された。これら2匹の動物におけるNAbのレベルは、試験中に2倍希釈系列において2未満で変動した。
【0222】
1.00×1010GC/眼のAAV8.aVEGF試験ベクターを投与された9匹の動物のうちの2匹において、予め存在するNAbが観察されなかった。90日の試験日まで追跡された1匹の動物において、AAV8.aVEGF試験ベクターの投与に続いてNAbが観察されなかった。予め存在するNAbを有する動物において、それらのレベルは、AAV8.aVEGF試験ベクターの投与に続いて2倍希釈系列において4未満で増加した。
【0223】
1.00×1012GC/眼のAAV8.aVEGF試験ベクターを投与された9匹の動物のうちの4匹において、予め存在するNAbが観察されなかった。予め存在するNAbの状態にもかかわらず、多くの動物において、AAV8.aVEGFの投与に続いて2倍希釈系列で9までのNAb応答における増加が観察された。この応答は、90日の試験日を通じて持続した。
【0224】
AAV8.aVEGF試験ベクターに対するT細胞応答は、単一の時点で、FFB-314を投与された1匹の動物において観察された。1匹の動物において、非特異的なT細胞応答が全ての時点において観察された。
【0225】
AAV8.aVEGF試験ベクターに対する持続するT細胞応答は、1.00×1010GC/眼の試験ベクターを投与された動物において、観察されなかった。
【0226】
1.00×1012GC/眼のAAV8.aVEGF試験ベクターを投与された6匹の動物のうちの4匹において、AAV8.aVEGF試験ベクターに対する低いレベルの免疫応答が観察された。低いレベルの免疫応答を有する4匹の動物のうちの2匹において、持続した(2回を超えて連続する時点)応答が観察された。抗VEGF Fab導入遺伝子産物に対する持続するT細胞の応答は、いずれの動物においても観察されなかった。
【0227】
抗VEGF Fab導入遺伝子産物に対する持続するIgM、IgG、またはT細胞の応答は、いずれの動物においてもまったく観察されなかった。
【0228】
1.00×1012GC/眼のAAV8.aVEGF試験ベクターを投与された動物は、1.00×1010GC/眼の同一の試験ベクターを投与された動物よりも高い、AAV8.aVEGF試験ベクターに対するNAb応答を生じた。NAb応答は、予め存在するNAbを有する動物においてより高かった。1.00×1012GC/眼のAAV8.aVEGF試験ベクターを投与された6匹の動物のうちの2匹において、少し増加したこのAAV8.aVEGF試験ベクターに対するT細胞応答が観察された。
【0229】
実施例7 カニクイザルにおけるAAV2/8ベクターの網膜下投与に続く、AAV2/8ベクターのmRNA及び抗VEGFフラグメント抗原結合の分布の評価
この試験は、AAV2/8ベクターの網膜下投与に続く、実施例3、実施例5、及び実
施例6からの組織を用いて、AAV2/8ベクターのmRNAの網膜の分布及び抗VEGF Fabの眼全体にわたる分布を評価するために実施された。網膜の異なる部分におけるmRNAのレベルは、定量的逆転写-ポリメラーゼ連鎖反応及びインサイチューハイブリダイゼーションによって評価された。抗VEGF Fabの濃度は、網膜の切片、前房液、及び硝子体液において酵素結合免疫吸着検査法によって測定された。
【0230】
AAV2/8ベクターのmRNAは、網膜下投与に続き、網膜全体にわたって分布する。同様に、抗VEGF Fabは、網膜全体にわたって分布し、硝子体と前房液の両方において検出される。
【0231】
【0232】
網膜下投与の部位は、網膜ブレブによって示され、これはSD-OCTによって可視化できる。全てのSD-OCTの画像において、網膜ブレブは可視化されている。
【0233】
RT-qPCRによって測定される網膜におけるAAV2/8.aVEGF試験ベクターのmRNAのレベル
AAV8.aVEGF試験ベクターのmRNAは、FFB-314を投与された動物の網膜において検出されなかった。AAV8.aVEGF試験ベクターのmRNAは、AAV8.aVEGF試験ベクターを投与された全ての動物の網膜において検出された。網膜下注射の部位を含む網膜の切片において最も高いmRNAのレベルが検出された。しかしながら、AAV8.aVEGF試験ベクターのmRNAは、注射ブレブの外側の切片においても検出された。これらの切片のmRNAレベルは、ブレブにおけるものよりも低かった。レベルは、注射ブレブに対して最も辺縁のセクションにおいて4logまで低かった。注射ブレブにすぐ隣接する切片において、mRNAのレベルは中間であった。
【0234】
インサイチューハイブリダイゼーション(ISH)によって決定される網膜におけるAAV2/8ベクターのmRNAの発現
ISHによって決定されるAAV2/8ベクターのmRNAの発現は、注射部位で高かった。網膜層内の形質導入された細胞は、RPE細胞、光受容体、及び神経節細胞を含んだ。注射部位から離れるとき、mRNAの発現は低く、注射部位から最も遠位の領域においてほとんど完全に消失した。
【0235】
前房液、硝子体、及び網膜における抗VEGF Fabの濃度
抗VEGF Fabは、AAV2/8ベクターを投与された全ての動物の眼の網膜、硝子体、及び硝子体において発現していた(
図6~8)。硝子体における発現は、前房液おけるものよりも3~9倍高かった。群5(
図8)において1匹の動物(C65873)を除いて、網膜部分における最大発現は、硝子体におけるものよりも1.2~3.6倍高か
った。この濃度勾配は、恐らく抗VEGF Fabの分布のメカニズムを反映している。抗VEGF Fabは、形質導入された網膜によって硝子体に分泌され、次いで、硝子体から前房液へと分散する。注目すべきことは、抗VEGF Fabの網膜全体にわたっての発現は、mRNAの発現よりも均一である。
【0236】
全体として、機能的なAAV2/8ベクターは、驚くべきことに、注射ブレブに限定される代わりに、形質導入した細胞によるベクターmRNAの発現によって証明されるように、網膜下投与に続き、網膜全体にわたって分布する。抗VEGF Fabはまた、驚くべきことに、注射ブレブに対して辺縁である網膜部分を含む網膜全体にわたって分布し、硝子体と前房液の両方において検出される。
【0237】
実施例8 抗VEGF導入遺伝子産物の組換えヒトVEGFに対する結合の親和性の測定
この試験は、抗VEGF Fab重鎖及び軽鎖の産物の組換えヒトVEGFに対する結合の親和性を測定するために実施された。結合親和性は、表面プラズモン共鳴(SPR)技術に基づくBiacore 3000システムを用いて測定された。この技術は、全内部反射の条件下でセンサーチップに当たる平面偏光に基づいている。センサーチップ上の固相化したリガンド(例えばVEGF)と相互作用する分子(例えば抗VEGF Fab導入遺伝子産物)との相互作用は、平面偏光の反射率における変化を引き起こす。この変化は、リアルタイムでセンサーグラムによって、応答単位としてすぐに検出される(Daghestani,Theory and applications of surface plasmon resonance,resonant mirror,resonant waveguide grating,and dual polarization interferometry biosensors.Sensors(Basel).2010;10(11): 9630-46.)。抗VEGF導入遺伝子産物の結合のための平衡結合親和定数は、ラニビズマブの公開された範囲と一致する。
【0238】
実施例9 組織交差反応性試験
この試験の目的は、ヒト組織の選択されたパネル由来の組織学的に調製された凍結切片と共に免疫組織化学技術を用いて、スポンサーに提供された抗体FabフラグメントaVEGF導入遺伝子産物の可能性のある交差反応性を評価することであった。
【0239】
抗VEGF Fab導入遺伝子産物(1mg/mL)(「試験産物」)及びラニビズマブ(0.97mg/mL)をこの試験に使用した。天然ヒトIgG Fabフラグメントタンパク質(「コントロール試料」)は、14.64mg/mLのタンパク質濃度で提供された。試験遺伝子産物の免疫組織化学的検出を促進するために、天然ヒトIgG Fabフラグメントタンパク質及びラニビズマブをビオチンと結合した。それぞれのタンパク質濃度は、2.79mg/mL、2.88mg/mL、及び2.89mg/mLであった。試験のためのコントロール材料及びヒト組織からの凍結切片を調製した。組織生存性の評価は、ヒト組織のパネルが生存可能であることを示した。コントロール用量設定のスライド評価に続いて、以下の3つの濃度の試験導入遺伝子産物-ビオチン:5、2.5、及び1.25μg/mL、ならびに以下の濃度のラニビズマブ-ビオチン:2.5μg/mLが組織用量設定における使用のために選択された。組織用量設定において、特異的陽性染色が、試験された組織のいずれにおいても、抗VEGF導入遺伝子産物-ビオチンまたはラニビズマブ-ビオチンにおいてまったく観察されなかった。全ての他の観察された染色は可変であり、非特異的であるとみなされた。
【0240】
この試験の条件において、試験導入遺伝子産物-ビオチン及びラニビズマブ-ビオチンの抗原特異的結合が、陽性コントロール材料(ヒト神経膠芽腫及びVEGFタンパク質スポット)において実証された。組織用量設定において試験された濃度において、天然ヒトIgG Fabフラグメントタンパク質-ビオチンまたは抗体希釈物において同様の染色
がまったく観察されなかった。
【0241】
実施例10 臨床治験
単一の網膜下投与の利点を提供し、それによって繰り返し注射の負担を低減するrAAV8.aVEGFベクターがさらなる試験のために選択された。6ヶ月をこえて継続するNHPにおける抗VEGF Fabの発現及びrAAV8.aVEGFベクターで処理されたWANDの動物モデルにおける血管新生の低減が、前臨床試験において実証されてきており、網膜下注射の安全性が非ヒト霊長類において評価される。最初の臨床治験は、上述されるようなrAAV8.aVEGF試験ベクターの単一の網膜下注射の後の安全性及び導入遺伝子の発現を評価する。網膜下に注射されると、これらのベクターは、抗VEGF Fab遺伝子産物を放出し続け、血管新生シグナルを阻止し、それによって網膜をさらなる損傷から防御すると予想される。
【0242】
各々の用量コホートは3対象を含む。登録された最初の3対象は、最小の用量で開始し、各々の群は段階的に上昇する。各々の最初のrAAV8.aVEGF投与の後、次の患者に投与する前に安全性のための4週間の観察期間がある。主要安全性評価項目はrAAV8.aVEGFの投与後6週の時点である
【0243】
主要評価項目
処置後6週、24週、6ヶ月及び12ヶ月の眼及び非眼の安全性評価
【0244】
副次評価項目
・106週間を超える眼及び非眼の安全性
・水性rAAV8.aVEGFタンパク質の経時的なベースラインからの平均変化
・BCVAの経時的なベースラインからの平均変化
・26週、54週、及び106週でのBCVAによるベースラインと比較して15文字以上を獲得または喪失する対象の割合
・SD-OCTによって測定されるときのCRTの経時的なベースラインからの平均変化・ラニビズマブ救援注射の経時的な平均数
・1回目の救援ラニビズマブ注射までの時間
・経時的な、CNV及び損傷サイズならびにFAに基づく漏出領域におけるベースラインからの平均変化
・免疫原性測定(AAV8に対するNAb、AAV8に対する結合抗体、aVEGFタンパク質に対する抗体、及び酵素結合免疫スポット[ELISpot])。
・血清及び尿におけるベクター脱落分析
【0245】
探索的評価項目:
・眼底自発蛍光(FAF)による地図状萎縮領域における経時的なベースラインからの平均変化、FAFによる地図状萎縮の新しい領域の発生(ベースラインにおいて地図状萎縮がまったくない対象において)
・BCVAによるベースラインと比較してそれぞれ10文字以上を獲得または喪失する対象の割合
・前年と比較して救援注射における50%の低減を有する対象の割合
・SD-OCTにおいてまったく液体を有さない対象の割合
【0246】
この試験のために、患者は血管新生加齢性黄斑変性(滲出型AMD)の診断を有し、以下の基準に合致する必要がある。
組み入れ基準:
この研究に参加する資格を得るためには、対象は以下の基準の全てを満たす必要がある。1つ以上のこれらの基準はさらなる試験、及び他の集団の治療のために必要とされない
場合があることは理解されよう。
1.50歳以上の男性もしくは女性;
2.各用量コホートのセンチネル対象は、試験する眼において20/100以下かつ20/400以上のBCVA(65以下かつ35以上のETDRS文字)を有する必要がある;
センチネル対象の評価に続いて、用量コホートにおける残りの対象は、20/63以下かつ20/400以上のBCVA(75以下かつ35以上のETDRS文字)を有する必要がある。
3.両方の眼が適格である場合において、研究者に決定されるとき、試験する眼は対象のより悪い目である必要がある。
4.試験する眼においてAMDに続発する中心窩下CNVの確定診断を有する必要がある。
a.以下の:10ディスク領域未満である必要のある損傷サイズ(典型的なディスク領域は2.54mm2)、損傷サイズの50%未満の血液、及び/または瘢痕のようなCNVの損傷特性。
5.来院1の8ヶ月(または未満)前に、試験する眼においてnAMDの治療のための抗VEGF剤の少なくとも4回の硝子体内注射を投薬され、SD-OCT上において確認された解剖学上の応答を有する必要がある。
6.試験する眼において来院1の時点でSD-OCT上において実証された網膜下もしくは網膜内液の存在を有する必要がある。
7.試験する眼において偽性(白内障手術後の状態)である必要がある。
8.全ての試験処置に従うことを自発的に受け入れることができ、試験の期間中対応可能でなければならない。
9.妊娠の可能性のある女性は、スクリーニング来院の時点で陰性の尿の妊娠検査を有するべきであり、8日目までに陰性の血清の結果を有するべきであり、試験中に追加の妊娠検査をする意思があるべきである。
10.性的に活発な対象(女性と男性の両方)は、スクリーニング来院からベクター投与後24週間まで、医学的に許容可能なバリアー避妊法(例えば、コンドーム、ペッサリー、または禁欲)を使用する意思があるべきである。この時点以降の避妊の停止は、主治医と話し合うべきである。
11.署名された書面によるインフォームドコンセントを提供する意思と能力があるべきである。
【0247】
除外基準:
以下の除外基準のいずれかに合致する対象は試験に参加する資格がない。これらの基準のいずれかまたは全ては、さらなる試験、及び他の患者集団の治療では含まれない場合があることは理解されよう。
1.AMD以外の任意の要因に続発する試験する眼におけるCNVまたは黄斑浮腫。
2.試験する眼において、血液がAMD損傷の50%以上を占めるか、または血液が1.0mm2を超えて中心窩の下に存在する。
3.試験する眼におけるVAの改善を阻止する任意の状態、例えば、線維症、萎縮、または中心窩の中心における網膜上皮裂孔。
4.試験する眼における活動性の高い網膜剥離または網膜剥離の病歴。
5.試験する眼における進行した緑内障。
6.研究者の意見において、試験する眼における対象のリスクを増加させる可能性があるか、試験期間中に視力喪失を阻止または治療する医学的または外科的介入のいずれかを必要とする可能性があるか、または処置または評価の試験と干渉する可能性のある任意の状態。
7.スクリーニング来院の前の12週間以内に試験する眼における眼内手術の履歴。スクリーニング来院の前の10週間を超えて実施される場合、イットリウム・アルミニウム・
ガーネットの嚢切開は容認される。
8.スクリーニング前の6ヶ月以内に試験する眼における硝子体内療法、例えば硝子体内ステロイド注射、または抗VEGF療法以外の治験薬の履歴。
9.スクリーニング時の試験する眼におけるインプラントの存在(眼内レンズを除外する)
10.スクリーニング前の5年以内に化学療法及び/または放射線を必要とする悪性腫瘍の病歴。局在する基底細胞癌は容認される。
11.登録30日以内または治験薬の半減期の5倍のいずれか長い方の期間内にいずれかの治験薬を投薬される。
12.他のいずれかの遺伝子療法試験への参加。
13.網膜毒性を引き起こすことの知られている治療法、または視力に影響を及ぼし得るかもしくは既知の網膜毒性を有する任意の薬物との併用療法、例えばクロロキンまたはヒドロキシクロロキンの履歴。
14.試験する眼における外科手技と干渉し得る眼または眼周囲の感染;
15.過去6ヶ月間における心筋梗塞、脳血管障害、または一過性虚血発作。
16.最大限の治療にもかかわらず制御不能の高血圧(180mmHgを超える収縮期血圧[BP]、100mmHgを超える拡張期血圧)。
17.研究者の意見における、眼の外科手術または治癒過程を妨げ得る任意の付随する治療。
18.ラニビズマブもしくはその任意の成分に対する既知の過敏性またはrAAV8.aVEFG試験ベクターに類似する剤に対する(研究者の意見における)過去の過敏性。
19.研究者の意見における、被験者の安全性または試験への成功裏の参加を損なうであろう任意の重篤なまたは不安定な医学的または心理的状態。
【0248】
ラニビズマブを投薬された後に試験を継続する基準
来院2において、対象は、ラニビズマブに対する最初の抗VEGF応答について評価される。対象はSD-OCTとBCVAの両方を受け、それは、研究者によって来院1の値と比較される。
1.応答性(対象は試験を継続する):応答性は、SD-OCTによる、50ミクロンを超えるCRTの低減、または液体における30%を超える改善によって定義される。
2.非応答性(対象は早期撤退として試験から出る):非応答性は、上述の基準に合致しないとして定義される。各々のコホートにおいて6までの対象のさらなる対象が登録され続け、単一用量のrAAV8.aVEFG試験ベクターを投薬される。
この来院の時点において、中央検査室の結果がレビューされる。以下の値を有する全ての対象は撤退する:
3.正常上限(ULN)の2.5倍を超えるアスパラギン酸アミノトランスフェラーゼ(AST)/アラニンアミノトランスフェラーゼ(ALT)。
4.対象が以前に知られているギルバート症候群の病歴を有していない限りULNの1.5倍を超える総ビリルビン、及び結合ビリルビンが総ビリルビンの35%未満であることを示す分画したビリルビン。
5.ULNの1.5倍を超えるプロトロンビン時間(PT)。
6.男性の対象について10g/dL未満のヘモグロビン、女性の対象について9g/dL未満のヘモグロビン;
7. 100×103/μL未満の血小板;
8. 30mL/分/1.73m2未満の推定糸球体ろ過率(GFR)。
【0249】
最初の試験において、rAAV8.aVEGF試験ベクターの網膜下送達の前の14日の来院1において、ラニビズマブ(LUCENTIS,Genentech)0.5mgを硝子体内注射によって投与する。rAAV8.aVEGFは、網膜外科医によって、局所麻酔下で網膜下投与により与えられる。処置は、中心部硝子体切除術を伴う標準的な3
ポートの経毛様体扁平部硝子体切除術を含み、網膜下カニューレ(36~41ゲージ)による網膜下腔への単一の網膜下投与が後に続く。100~150マイクロリットルのrAAV8.aVEGFが送達される。患者は3、4、または5の用量の1を投薬される。3つの用量レベル:3×109ゲノムコピー(GC)/眼、1×1010GC/眼、及び6×1010GC/眼。疾患活動性について以下の1以上の救援基準が適用される場合、rAAV8.aVEGF試験ベクターの投与後4週間から開始して、対象は試験する眼において、硝子体内ラニビズマブ救援治療を投薬され得る。スペクトル領域光干渉断層写真術(SD-OCT)上での網膜液の蓄積と関連する(最良矯正視力[BCVA]当たり)5文字以上の視力喪失。SD-OCT上での新規または持続する、網膜下または網膜内液の、脈絡膜血管新生(CNV)と関連した上昇。新規の眼の出血。
【0250】
以下の所見セットの1つが発生する場合、臨床医の裁量によりさらなる救援注射を延期することができる。SD-OCTによって評価されるとき、視力が20/20もしくはそれより良好であり、中心網膜厚が「正常」である、または視力及びSD-OCTが2回の連続する注射の後で安定である。注射が延期される場合、視力またはSD-OCTが上記の基準に従って悪化する場合、それらは再開される。
【0251】
実施例11 用量段階的増加試験
このフェーズI、非盲検、多重コホート、用量段階的増加試験は、予め治療された血管新生AMD(nAMD)を有する対象におけるrAAV8.aVEGF遺伝子療法の安全性及び忍容性を評価するよう設計される。これらの用量は約18の対象において試験される。選択/除外基準に合致し、最初の抗VEGF注射に対する解剖学的な応答性を有する対象は、網膜下送達によって投与される単一用量のrAAV8.aVEGFを投薬される。rAAV8.aVEGFは、VEGFに結合してVEGF活性を中和するモノクローナル抗体フラグメントをコードする遺伝子を含むAAV8ベクターを使用する。安全性は、rAAV8.aVEGF投与後の最初の24週間(最初の試験期間)を最初の焦点とする。ある実施形態において、試験は抗VEGF抗体、例えばラニビズマブを投与することを含み、応答性はSD-OCTによって1週目(来院2)において測定される。抗VEGF抗体投与後、この治療に応答性である患者に対して、rAAV8.aVEGFを来院3(2週目)に投与でき、次いで安全性は、26週(rAAV8.aVEGF投与後24週)を通じて評価される。最初の試験期間の完了に続き、対象はrAAV8.aVEGFによる投与に続く104週まで評価され続ける。
【0252】
選択/除外基準に合致する対象は、登録され、試験する眼において0.5mgのラニビズマブの硝子体内注射を受ける(来院1)。来院2(ラニビズマブ注射の7日後)の時点で、対象はSD-OCTによって評価され、それらのベースライン評価と比較して、ラニビズマブ注射と関連する最初の抗VEGF活性に対する解剖学的な応答性を確かめる。解剖学的な応答性を有さない対象は試験から撤退する。撤退した対象に関して、来院1におけるラニビズマブ注射と関連するAEを有する全ての者は、AEが解消するまで(注射後30日まで)追跡される。来院3(2週目)において、対象は、網膜下送達によって手術室において投与される単一用量のrAAV8.aVEGFを投薬される。各々のコホートにおけるセンチネル対象は、20/100以下、かつ20/400以上(65以下かつ35以上のETDRS文字)の視力を有する。センチネル対象に対するrAAV8.aVEGF Fab投与の後、安全性のために4週間の観察期間がある。5までの追加の対象(20/63以下かつ20/400以上[75以下かつ35以上のETDRS文字]の拡張した視力基準)が、各々の登録の間が最小1日で並行して登録され得る。安全審査トリガー(SRT)がまったく観察されない場合、4週間後最後の対象が投与される。対象は、rAAV8.aVEGF Fabの治療後、最初の4週以内に3回の来院を有する。rAAV8.aVEGF Fabの投与後4週間で開始し、対象は、それらが予め規定された救援注射基準に合致する場合、硝子体内ラニビズマブ救援療法を投薬され得る。rAAV
8.aVEGFのベクター及び導入遺伝子に対する免疫原性が、試験期間にわたって評価される。
【0253】
安全性は、rAAV8.aVEGF投与後の最初の24週間(最初の試験期間)を最初の焦点とする。最初の試験期間の完了に続き、対象はrAAV8.aVEGFによる投与に続く104週まで評価され続ける(106週)。試験の最後に、対象は、長期フォローアップ研究に参加するように求められる。rAAV8.aVEGFの安全性及び忍容性が各々の用量の対象において評価され、眼及び非眼のAE及びSAE、化学、血液学、凝固、尿検査、免疫原性、眼の検査及び撮像(BCVA、眼圧、スリットランプ生体顕微鏡、間接眼底検査、及びSD-OCT)、ならびに生命兆候の評価を通じて観察される。
【0254】
【0255】
B.評価項目
主要評価項目測定:
1.安全性:26週間を超えての、眼の有害事象(AE)及び非眼の重篤な有害事象(SAE)の発生
【0256】
副次評価項目測定:
2.安全性:106週間を超えての、眼及び非眼のAE及びSAEの発生。
3. 106週間を超えての最良矯正視力(BCVA)における変化。
4. 106週間を超えての、SD-OCTによって測定されるときの中心網膜厚(CRT)における変化。
5.救援注射:106週間を超えての救援注射の平均数。
6. 106週間を超えてのFAによって測定されるときの、脈絡膜血管新生及び損傷サイズにおける変化ならびに漏出領域CNVの変化。
【0257】
基準:組み入れ基準:
1.以前に硝子体内抗VEGF療法を受けている試験する眼におけるAMDに続発する中心窩下CNVの診断を有する50歳以上の患者。選択された患者集団は、性別に基づかない(男性及び女性が含まれる)。
2.各々のコホートの最初の患者に対して20/100以下、かつ20/400以上の間のBCVA(65以下、かつ35以上の糖尿病網膜症の早期治療研究[ETDRS]文字)、続いてコホートの残りに対して、20/63以下、かつ20/400以上の間のBCVA(75以下、かつ35以上のETDRS文字)。
3.抗VEGF療法の必要性及び応答の履歴。
4.試験登録時の抗VEGFに対する応答性(1週目(来院2)においてSD-OCTによって評価される)
5.試験する眼において偽性(白内障手術後の状態)である必要がある。
6.正常上限(ULN)の2.5倍未満のアスパラギン酸アミノトランスフェラーゼ(AST)/アラニンアミノトランスフェラーゼ(ALT);ULNの1.5倍未満の総ビリルビン(TB);ULNの1.5倍未満のプロトロンビン時間(PT);10g/dLを超えるヘモグロビン(Hb)(男性)、9g/dLを超えるヘモグロビン(女性);100×103/μLを超える血小板;30mL/分/1.73m2を超える推定糸球体ろ過率(eGFR)
7.署名された書面によるインフォームドコンセントを提供する意思と能力があるべきである。
【0258】
除外基準:
1.AMD以外の任意の要因に続発する試験する眼におけるCNVまたは黄斑浮腫。
2.試験する眼における視力の改善を阻止する任意の状態、例えば、線維症、萎縮、または中心窩の中心における網膜上皮裂孔。
3.試験する眼における活動性の高い網膜剥離または網膜剥離の病歴。
4.試験する眼における進行した緑内障。
5.スクリーニング前の6ヶ月以内に試験する眼における硝子体内療法、例えば硝子体内ステロイド注射、または抗VEGF療法以外の治験薬の履歴。
6.スクリーニング時の試験する眼におけるインプラントの存在(眼内レンズを除外する)
7.過去6ヶ月間における心筋梗塞、脳血管障害、または一過性虚血発作。
8.最大限の治療にもかかわらず制御不能の高血圧(180mmHgを超える収縮期血圧[BP]、100mmHgを超える拡張期血圧)。
【0259】
実施例12 ベクター作製及び製造
A.製造プロセスの記載
細胞播種:正規のヒト胚腎臓293細胞株が作製プロセスのために使用される。ベクター作製に使用される細胞培養は、単一の解凍したMCBバイアルから開始し、マスターバッチ記録文書(MBR)に従って拡張する。細胞はCorningのT-フラスコ及びCS-10を用いて5×109~5×1010の細胞まで拡張し、これは、BDSロットごとのベクター作製のための50までのHS-36への播種を生成するのに十分な細胞量をもたらす。細胞は、10%のガンマ線照射した、米国起源の、ウシ胎仔血清(FBS)で補充したダルベッコ改変イーグル培地(DMEM)からなる培地で培養する。細胞は、足場依存性であり、細胞解離は動物由来成分不含の細胞解離試薬であるTrypLE(商標)Selectを用いて達成される。細胞播種は、滅菌、単回使用の、使い捨てバイオプロセスバッグ及びチューブセットを用いて達成される。細胞は、37℃(±2℃)で、5%(±0.5%)CO2空気中に維持される。
【0260】
一過性トランスフェクション:約3日の増殖(DMEM培地+10%FBS)に続き、HS-36細胞培養培地を新しい無血清DMEM培地と交換し、最適化されたPEIに基づくトランスフェクション法を用いて3つの作製プラスミドでトランスフェクトする。作製プロセスにおいて使用される全てのプラスミドは、トレーサビリティ、文書管理、材料の分離を確実にするための制御を利用するCMO品質システム及びインフラストラクチャーに照らして作製される。
【0261】
50のHS-36(BDSバッチごとに)をトランスフェクトするのに十分なDNAプラスミドトランスフェクション複合体が、BSC中で調製される。最初に、7.5mgの関連するベクターゲノムプラスミド、150mgのpAdDeltaF6(Kan)、75mgのpAAV2/8Kan AAVヘルパープラスミド、及びGMPグレードのPEI(PEIPro,PolyPlus Transfection SA)を含むDNA/PEI混合物が調製される。このプラスミドの比率は、小規模最適化試験においてAAV作製のために最適化されるよう決定されている。よく混合した後、溶液を室温において25分間放置し、次いで、反応を停止するために無血清培地に添加し、次いで、HS-36に添加する。トランスフェクション混合物は、HS-36の全ての36層間で均質化され、細胞は37℃(±2℃)で、5%(±0.5%)CO2空気中に5日間インキュベートされる。
【0262】
細胞培地採取:トランスフェクトされた細胞及び培地は、使い捨てバイオプロセスバッグを用いて、無菌的に培地をユニットから流出させることによって、各々のHS-36から採取される。培地の採取に続いて、約200リットルの容量がMgCl2で2mMの最終濃度まで補充され(Benzonaseの補因子)、Benzonaseヌクレアーゼ(Cat#:1.016797.0001,Merck Group)が25単位/mLの最終濃度まで添加される。産物(使い捨てバイオプロセスバッグ中)が、トランスフェクション処理の結果として採取物中に存在する残留する細胞及びプラスミドDNAの酵素的消化に十分な時間を提供するために37℃で2時間インキュベーターの中でインキュベートされる。このステップは、最終ベクターDP中の残留するDNA量を最小化するために実施される。インキュベーション期間の後、ろ過及び下流のタンジェント流ろ過の間の産物の回復を助けるために、NaClを500nMの最終濃度まで添加する。
【0263】
浄化:細胞及び細胞残屑は、ペリスタポンプで駆動される、滅菌の閉鎖されたチューブ及びバッグセットとして連続的に接続されるデプスフィルターカプセル(1.2/0.22μm)を用いて産物から除去される。浄化は、下流のフィルター及びクロマトグラフィーカラムが汚染から防御されることを保証し、バイオバーデン低減ろ過は、フィルターの連なりの最後に、下流の精製の前に上流の作製プロセス中に潜在的に導入された全てのバイオバーデンが除去されることを確実にする。採取された物質はSartorius Sartoguard PESカプセルフィルター(1.2/0.22μm)(Sartorius Stedim Biotech Inc.)を通過させる。
【0264】
大規模タンジェント流ろ過:浄化産物の容量低減(10倍)は、カスタムの滅菌、閉鎖されたバイオプロセスチューブ、バッグ及び膜のセットを用いるタンジェント流ろ過(TFF)によって達成される。TFFの原理は、好適な多孔度(100kDa)の膜と平行の圧の下、溶液を流すことである。圧力差は、より小さいサイズの分子を駆動して膜を通らせ、廃棄ストリームに効果的に移動させる一方で、膜の孔よりも大きな分子を保持する。溶液を再循環させることによって、平行流が膜表面を掃引して膜孔の汚染を防止する。適切な膜の孔径及び表面積を選択することによって、液体試料は迅速に用量を低減でき、一方で所望の分子を保持して濃縮する。TFFの適用における透析ろ過は、液体が膜を通って廃棄ストリームに移動するのと同一の速度で再循環試料に新しい緩衝液を添加することを含む。透析ろ過の容量の増加に伴って量を増加する小分子は、再循環試料から除去さ
れる。これは浄化産物の適度な精製をもたらすが、後に続くアフィニティーカラムクロマトグラフィーステップと適合する緩衝液交換をも達成する。したがって、100kDaのPES膜が濃縮に使用され、次いで、20mMのTris pH 7.5及び400mMのNaClからなる緩衝液の最小で4の透析容量で透析ろ過がされる。透析ろ過された産物は、4℃において一晩保存され、次いで、1.2/0.22μmのデプスフィルターカプセルを用いて浄化され、全ての沈殿した物質を除去する。
【0265】
アフィニティークロマトグラフィー:透析ろ過された産物は、効果的にAAV8セロタイプを捕捉するPoros(商標)Capture Select(商標)AAV8親和性樹脂(Life Technologies)へと適用される。これらのイオン条件において、相当の割合の残留細胞DNA及びタンパク質はカラムを通過し、一方でAAV粒子は効果的に捕捉される。適用に続いて、カラムを追加の供給不純物を除去するために洗浄し、1/10容量の中和緩衝液(Bis Trisプロパン、200mM、pH10.2)中への回収によって即座に中和される低pHステップ溶離(400mMのNaCl、20mMのクエン酸ナトリウム;pH 2.5)が後に続く。
【0266】
アニオン交換クロマトグラフィー:空のAAV粒子を含む工程内不純物のさらなる低減を達成するために、Poros-AAV8溶離プールを50倍に希釈し(20mMのBis Trisプロパン、0.001%のPluronic F68;pH10.2)、イオン強度を低下させ、CIMultus(商標)QAモノリスマトリックス(BIA Separations)への結合を可能にする。低塩洗浄に続いて、ベクター産物を60CV NaCl線状塩勾配(10~180mMのNaCl)を用いて溶離する。この浅い塩勾配は、ベクターゲノム(完全な粒子)を含む粒子からベクターゲノム(空の粒子)含まずにカプシド粒子を効果的に分離し、完全なカプシドの濃縮された調製物をもたらす。それぞれがチューブへの非特異的結合を最小化し、高pHへの曝露時間を最小化する、1/100容量の0.1%のpluronic F68と1/27容量のBis Tris
pH6.3を含むチューブに画分を回収する。適切なピーク画分を回収し、ピーク面積を評価し、適切なベクター収量決定のための以前のデータと比較する。
【0267】
最終的な製剤及びBDSを得るためのバイオバーデン低減ろ過:プールされたAEX画分で最終的な製剤を達成するために100kDa膜によるTFFを用いる。これは、製剤緩衝液(安定性試験の完了に続いて選択されるNaCl及び0.001%のPluronicを含むPBSまたは0.001%のPluronicを含むPBS)の透析ろ過によって達成され、所望の標的でBDS中間体を得るよう濃縮される。試料はBDS中間体試験(以下の節に記載される)のために回収される。BDS中間体は、滅菌ポリプロピレンチューブに貯蔵され、最終的な充填のためのリリースまで-60℃以下で隔離された場所で凍結される。安定性試験は、-60℃未満での貯蔵に続く安定性を評価するために進行中である。
【0268】
最終的な充填:凍結されたBDSは解凍され、プールされ、最終的な製剤緩衝液(安定性試験の完了に続いて選択されるNaCl及び0.001%のPluronicを含むPBSまたは0.001%のPluronicを含むPBS)を用いて目的の濃度に調整(希釈またはTFFによる濃縮ステップ)される。次いで、産物は0.22μmフィルターを通して最終的なろ過をされ、バイアル当たり0.1mL以上から0.5mL以下の充填容量で、West Pharmaceutical’s “Ready-to-Use”(予め滅菌された)ガラスバイアルまたはCrystal Zenith(ポリマー)バイアル(バイアルのタイプは比較試験の結果を待つ)いずれかとクリンプシール付きストッパーとで充填される。バイアルは、以下の仕様に従って個別にラベルされる。ラベルされたバイアルは-60℃以下で保存される。投与前に全ての用量は製剤緩衝液における希釈を必要とする。希釈は、投与時に薬局により実施される。
【0269】
B.アッセイ方法
無菌性及び静菌性/真菌性:この手順は、試料マトリックスがアッセイの阻害を引き起こさないことを確実にするために、米国薬局方(USP)<71>に従って1回行われる。試験に含まれるのは適合性試験である。
【0270】
粒子凝集:製剤粒子の凝集は、動的光散乱(DLS)アッセイを用いて評価された。DLSは、分散粒子による散乱光強度の変動を測定し、試料中の様々な粒子のサイズを分析するために使用される。DLS装置ソフトウェアは、典型的には異なる直径の粒子集団を示す。系が単分散である場合、1つの集団のみが検出され、粒子の平均有効直径を決定することができる。凝集の場合のような多分散系では、CONTIN分析を用いて複数の粒子集団が検出され、サイズ決定される。
【0271】
残留プラスミドDNA:プラスミドDNA配列の検出は、プラスミドバックボーンに存在するがベクターゲノムに存在しないカナマイシン遺伝子に特異的なqPCRとプライマープローブセットとを用いて達成される。DNase消化の存在下と非存在下の両方においてアッセイを実施し、遊離したプラスミドの量と、ベクター粒子にパッケージングされた量とを決定できるようにする。
【0272】
E1 DNA:アデノウイルスE1 DNAは宿主細胞の混入物質であり、遺伝子に特異的なqPCRによって検出される。DNase消化の存在下と非存在下の両方においてアッセイを実施し、遊離したE1 DNAとパッケージングされたE1 DNAとを定量化できるようにする。
【0273】
残留宿主細胞DNA:残留する宿主細胞DNA(HCDNA)のレベルは、高コピー数DNA配列であり、したがって感度をもたらす、ヒト18s rDNA遺伝子に対するqPCRを用いて定量化される。全体の残留HCDNAレベルに加えて、様々なサイズ範囲のDNAの量も測定される。
【0274】
残留宿主細胞タンパク質:残留する293宿主細胞タンパク質(HCP)は、Cygnus Technologiesに販売されるような、市販のELISAキットを用いて検出される。
【0275】
Poros-AAV8浸出性リガンド:Poros-AAV8樹脂の製造者であるLife Technologiesによって供給される、酵素結合免疫吸着検査法(ELISA)キットを、製剤中に滲出したラクダ抗体を検出するのに使用する。
【0276】
マイコプラズマ検出:マイコプラズマ試験はUSP<63>に従って実施する。
【0277】
バイオバーデン試験:この試験はUSP<61>に従って実施する。
【0278】
エンドトキシン試験:この試験はUSP<85>に従って実施する。
【0279】
外来性の物質のためのインビトロアッセイ:ウイルス混入物質のためのインビトロアッセイの目的は、AAV8.AMDベクター作製中に導入される可能性のある外来性のウイルスを検出することであり、CBER’s 1993 Points to Consider及びICH Q5Aに基づく。インビトロアッセイは3つの指標細胞株:ヒト二倍体肺(MRC-5)細胞、アフリカミドリザル腎臓(Vero)細胞、及びヒト包皮線維芽細胞(Hs68)細胞を使用する。アッセイ評価項目は、広範囲のウイルスの検出を促進する、アッセイ期間の終了時における少なくとも28日間の過程における細胞変性効果
(CPE)の観察及び血球吸着である。
【0280】
ベクターゲノム識別:DNAシーケンシング:ウイルスベクターゲノムDNAは単離され、プライマーウォーキングを用いた2倍の配列カバー率によって配列決定される。配列のアラインメントが実施され、予想される配列と比較される。
【0281】
ベクターカプシド識別:VP1のAAVカプシド質量分析:製剤のAAV2/8セロタイプの確認は、AAVカプシドタンパク質のペプチドの分析に基づくアッセイによって達成される。
【0282】
ゲノムコピー(GC)力価:AAVベクターのゲノムコピー(GC)力価を測定するための液滴デジタルPCR(ddPCR)に基づく技術はLock et al.Human Gene Therapy Methods 25:115-125に記載される。用いられるアッセイは、DNase Iによる消化、後に続くカプセルに包まれたベクターゲノムコピーを測定するデジタルPCR解析を含む。DNA検出は、RBGのpolyA領域を標的とする配列特異的プライマーを、この同じ領域にハイブリダイズする蛍光標識されたプローブと組み合わせて用いて達成される。標準の数、評価試料、及びコントロール(バックグランド及びDNA混入のための)がアッセイに導入されている。
【0283】
空対完全な粒子の比:製剤の全粒子含量は、SDS-PAGE解析によって測定される。イオジキサノール勾配において精製された参照ベクター製剤が様々な方法(分析的超遠心、電子顕微鏡、及び260/280nmの吸光度)によって解析され、製剤中の完全な粒子のパーセンテージを確立する。この参照物質は、既知のゲノムコピー数(従って外延により、粒子数)に系列希釈され、各々の希釈は、同様の希釈系列の製剤と共にSDS-PAGEゲルで泳動される。参照物質と製剤のVP3タンパク質のバンドのピーク領域の容量は、デンシトメトリーで測定され、参照物質の容量が粒子数に対してプロットされる。製剤の全粒子濃度は、この曲線から外挿によって測定され、ゲノムコピー(GC)力価が差し引かれて空の粒子の力価を得る。空対完全な粒子の比は、空の粒子の力価対GC力価の比である。
【0284】
感染力価:感染単位(IU)アッセイは、RC32細胞(rep2発現HeLa細胞)においてAAV8.AMDベクターの生産的な取り込みと複製とを測定するのに使用される。以前に公開されたものと同様に、96ウェルエンドポイント型が使用されている。手短に、RC32細胞を系列希釈のAAV8.AMD.BDSと統一希釈のAd5とで、rAAVの各々の希釈について12の重複で、共感染する。感染の72時間後に細胞を溶解し、入力したものを超えるrAAVベクター増幅を検出するためにqPCRを実施する。エンドポイント希釈組織培養感染量50%(TCID50)計算(Spearman-Karber)を実施してIU/mLとして表される複製力価を決定する。「感染」値は、細胞と接触する粒子、受容体結合、インターナリゼーション、核への移行、及びゲノム複製に依存するので、それらは、アッセイの幾何学的配置ならびに使用される細胞株における適切な受容体及び結合後の経路の存在に影響を受ける。受容体及び結合後の経路は、通常、不死化細胞株において維持されないため、感染性アッセイ力価は、存在する「感染性」粒子の数の絶対的な尺度ではない。しかし、「感染性単位」に対するカプシド化されたGCの比(GC/IU比として記載される)は、ロットからロットへの製品一貫性の尺度として使用することができる。
【0285】
宿主細胞DNA:残留するヒト293DNAを検出するためにqPCRアッセイが使用される。「関連性のないDNA」でスパイクした後、全DNA(関連性のないベクター及び残留するゲノム)を約1mLの産物から抽出する。宿主細胞DNAは18S rDNA遺伝子を標的としてqPCRを用いて定量化される。検出されるDNAの量は、スカイく
された関連性のないDNAの回復に基づいて標準化される。
【0286】
宿主細胞タンパク質:ELISAは、混入する宿主HEK293細胞タンパク質のレベルを測定するために実施される。Cygnus Technologies HEK293 Host Cell Proteins 2nd Generation ELISAキットが説明書に従って使用される。
【0287】
複製可能なAAV(rcAAV)アッセイ:試料は、作製プロセスにおいて生じる可能性があり得る複製可能なAAV2/8(rcAAV)の存在について分析される。
【0288】
このタイプのアッセイの例は(
図10A~10D)に示され、そこではwtAAV8が異なるGC数のAAV8ベクター中にスパイクされ、細胞溶解物の新しい細胞に対する3代の連続的な継代の後に1μgの293細胞のDNA当たりのcap遺伝子コピー数が測定される。アッセイ開発の詳細はCTA提出資料に含まれる。これらの結果は、このアッセイを用いる最小限検出可能なwtAAV8の量は10
4GCであることを示す。この数は、1TCID
50IUとほぼ同等であり、AAV8の293細胞に対する感染性の欠失を反映し、AAV2と比較して得られる高いGC:IU比によって実証される。低い感度は、現在のアッセイ系においては避けられないが、将来的に未だ発見されていないAAVの細胞受容体または進入後の経路に重要な他のタンパク質を有する細胞株を作出することによって克服できるかもしれない。wtAAV8の、10
11GCまでの濃度のAAV8ベクターへのスパイクは、検出にほとんど影響を及ぼさず、このベクターのレベルにおける、ベクターのwtAAV8の複製に対する干渉の欠如を示す。野生型AAVが、過去においてrcAAV2に対する代替物として、及び我々自身のrcAAVアッセイ開発の努力においてAAV8に対する代替物として、過度に使用されてきている一方で、最良の代替物は、AAV2のITRを含むAAV8カプシド、AAV2のrep遺伝子、及びAAV8のcap遺伝子である。
【0289】
【0290】
臨床的に好適な界面活性剤、Pluronic F68をAAV8.AMDの最終的な製剤緩衝液に添加し、このタイプの損失を最小限に抑えることを期待する。製剤と貯蔵バイアル及び臨床送達装置との間の相互作用は、表面への結合を通じてベクターの損失量を決定するために調査された。エンジニアリングラン製剤のGC力価(oqPCR)を、バイアル化及び-60℃以下での貯蔵の前後で測定する。送達装置に関して、DPは解凍され、適切な臨床希釈剤で正しい用量濃度へと希釈され、装置を通過させる。GC力価決定は解凍直後、希釈後、及び装置を通過した後にDPにおいて実施し、適切な数の重複が統計学的有意性を保証するために含められた。この方法におけるGC力価の比較は、貯蔵及び
患者への投与の最中のDP喪失の評価を可能にする。送達装置を通過した後の製剤の活性を評価するために、平行した試験もまた同様の方法で実施した。この目的のためにインビトロラニビズマブ発現に基づく効力検定が使用される。
本明細書において引用される全ての刊行物は、参照によりそれらの内容が本明細書に組み込まれ、2017年3月3日に出願された米国特許仮出願第62/466,721号、2017年2月17日に出願された米国特許仮出願第62/460,515号、2017年1月5日に出願された米国特許仮出願第62/442,946号、2016年5月3日に出願された米国特許仮出願第62/331,100号、及び、2016年4月15日に出願された米国特許仮出願第62/323,184号も同様である。同様に、本願と共に提出される配列表も参照により本明細書によって組み込まれる。本発明は特定の実施形態を参照して説明されてきたが、本発明の趣旨から逸脱することなく改変をなし得ることは理解されよう。そのような改変は、添付の特許請求の範囲の範囲内に入ることが意図される。
さらなる実施形態において、aVEGFv8の重鎖及び軽鎖のコード配列は、配列番号39に提示される。重鎖のリーダー配列が配列番号39のnt1993~2052にコードされ、VHのORFが配列番号39のnt2053~2421にコードされ、CH1が配列番号39のnt2422~2742にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のArgのコドンがVH鎖に残る。軽鎖のリーダー配列が配列番号39のnt2830~2889にコードされ、VLのORFが配列番号39のnt2890~3210に提示され、CLのORFが配列番号39のnt3211~3531に位置する。
さらなる実施形態において、aVEGFv9の重鎖及び軽鎖のコード配列は、配列番号40に提示される。重鎖のリーダー配列が配列番号40のnt1999~2058にコードされ、VHのORFが配列番号40のnt2059~2427にコードされ、CH1が配列番号40のnt2428~2748にコードされる。本明細書に記載される他のコンストラクトにおけるように、F2A切断部位の配置の結果として、追加のArgのコドンがVH鎖に残る。軽鎖のリーダー配列が配列番号40のnt2836~2895にコードされ、VLのORFが配列番号40のnt2896~3216に提示され、CLのORFが配列番号40のnt3217~3537に位置する。