(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024114771
(43)【公開日】2024-08-23
(54)【発明の名称】偏光板、位相差層付偏光板、ならびに、該偏光板または該位相差層付偏光板を含む画像表示装置
(51)【国際特許分類】
G02B 5/30 20060101AFI20240816BHJP
H05B 33/02 20060101ALI20240816BHJP
H05B 33/14 20060101ALI20240816BHJP
H10K 50/86 20230101ALI20240816BHJP
H10K 59/10 20230101ALI20240816BHJP
【FI】
G02B5/30
H05B33/02
H05B33/14 Z
H10K50/86
H10K59/10
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2024100978
(22)【出願日】2024-06-24
(62)【分割の表示】P 2022540177の分割
【原出願日】2021-07-16
(31)【優先権主張番号】P 2020127940
(32)【優先日】2020-07-29
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020133463
(32)【優先日】2020-08-06
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】100122471
【弁理士】
【氏名又は名称】籾井 孝文
(72)【発明者】
【氏名】▲高▼永 幸佑
(72)【発明者】
【氏名】上条 卓史
(72)【発明者】
【氏名】近野 洋
(57)【要約】
【課題】極めて薄型でありながら、異形加工部におけるクラック発生が抑制された偏光板を提供すること。
【解決手段】本発明の偏光板は、偏光子と保護層とを有し、矩形以外の異形を有する。保護層は10μm以下の厚みを有する樹脂膜で構成されている。偏光子は、二色性物質を含むPVA系樹脂フィルムで構成されている。単体透過率をx%とし、PVA系樹脂の複屈折をyとし、PVA系樹脂フィルムの面内位相差をznmとし、PVA系樹脂の配向関数をfとした場合に、1つの実施形態において偏光子は下記式(1)を満たし、別の実施形態において偏光子は下記式(2)を満たし、さらに別の実施形態において偏光子は下記式(3)を満たす。さらに別の実施形態において、偏光子は突き刺し強度が30gf/μm以上である。
y<-0.011x+0.52 (1)
z<-60x+2850 (2)
f<-0.018x+1.1 (3)
【選択図】
図3
【特許請求の範囲】
【請求項1】
偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有する偏光板であって、
該偏光板は矩形以外の異形を有し、
該保護層は10μm以下の厚みを有する樹脂膜で構成されており、
該偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、単体透過率をx%とし、該ポリビニルアルコール系樹脂の複屈折をyとした場合に、下記式(1)を満たす、偏光板:
y<-0.011x+0.525 (1)。
【請求項2】
偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有する偏光板であって、
該偏光板は矩形以外の異形を有し、
該保護層は10μm以下の厚みを有する樹脂膜で構成されており、
該偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、単体透過率をx%とし、該ポリビニルアルコール系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす、偏光板:
z<-60x+2875 (2)。
【請求項3】
偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有する偏光板であって、
該偏光板は矩形以外の異形を有し、
該保護層は10μm以下の厚みを有する樹脂膜で構成されており、
該偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、単体透過率をx%とし、該ポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす、偏光板:
f<-0.018x+1.11 (3)。
【請求項4】
偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有する偏光板であって、
該偏光板は矩形以外の異形を有し、
該保護層は10μm以下の厚みを有する樹脂膜で構成されており、
該偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、突き刺し強度が30gf/μm以上である、偏光板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、偏光板、位相差層付偏光板、ならびに、該偏光板または該位相差層付偏光板を含む画像表示装置に関する。
【背景技術】
【0002】
近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置の画像形成方式に起因して、画像表示装置の少なくとも一方には偏光板が配置されている。近年、画像表示装置の薄型化への要望が高まるのに伴い、偏光板についても薄型化の要望が高まっている。ところで、近年、偏光板を矩形以外に加工すること(異形加工:例えば、ノッチおよび/または貫通穴の形成)が望まれる場合がある。しかし、薄型偏光板の異形加工部においては、クラックが発生しやすいという問題がある。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、極めて薄型でありながら、異形加工部におけるクラック発生が抑制された偏光板を提供することにある。
【課題を解決するための手段】
【0005】
本発明の1つの実施形態による偏光板は、偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有し、かつ、矩形以外の異形を有する。該保護層は10μm以下の厚みを有する樹脂膜で構成されている。該偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、単体透過率をx%とし、該ポリビニルアルコール系樹脂の複屈折をyとした場合に、下記式(1)を満たす:
y<-0.011x+0.525 (1)。
本発明の別の実施形態による偏光板は、偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有し、かつ、矩形以外の異形を有する。該保護層は10μm以下の厚みを有する樹脂膜で構成されている。該偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、単体透過率をx%とし、該ポリビニルアルコール系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす:
z<-60x+2875 (2)。
本発明のさらに別の実施形態による偏光板は、偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有し、かつ、矩形以外の異形を有する。該保護層は10μm以下の厚みを有する樹脂膜で構成されている。該偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、単体透過率をx%とし、該ポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす:
f<-0.018x+1.11 (3)。
本発明のさらに別の実施形態による偏光板は、偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有し、かつ、矩形以外の異形を有する。該保護層は10μm以下の厚みを有する樹脂膜で構成されている。該偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、かつ、偏光子の突き刺し強度が30gf/μm以上である。
1つの実施形態において、上記偏光子の厚みは10μm以下である。
1つの実施形態において、上記偏光子の単体透過率は40.0%以上であり、かつ、偏光度が99.0%以上である。
1つの実施形態においては、上記異形は、貫通穴、V字ノッチ、U字ノッチ、平面視した場合に船形に近似した形状の凹部、平面視した場合に矩形の凹部、平面視した場合にバスタブ形状に近似したR形状の凹部、およびこれらの組み合わせからなる群から選択される。
1つの実施形態においては、上記U字ノッチの曲率半径は5mm以下である。
1つの実施形態においては、上記樹脂膜は、エポキシ樹脂および(メタ)アクリル系樹脂から選択される少なくとも1種の樹脂を含む。
1つの実施形態においては、上記樹脂膜はエポキシ樹脂の光カチオン硬化物で構成されており、該樹脂膜の軟化温度は100℃以上である。
1つの実施形態においては、上記樹脂膜はエポキシ樹脂の有機溶媒溶液の塗布膜の固化物で構成されており、該樹脂膜の軟化温度は100℃以上である。
1つの実施形態においては、上記樹脂膜は熱可塑性(メタ)アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されており、該樹脂膜の軟化温度は100℃以上である。1つの実施形態においては、上記熱可塑性(メタ)アクリル系樹脂は、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド単位からなる群から選択される少なくとも1つを有する。
本発明の別の局面によれば、位相差層付偏光板が提供される。当該位相差層付偏光板は、上記の偏光板と位相差層とを含み、該位相差層は、上記偏光子の上記保護層が配置された側と反対側に配置されている。
1つの実施形態においては、上記位相差層のRe(550)は100nm~190nmであり、Re(450)/Re(550)は0.8以上1未満であり、該位相差層の遅相軸と上記偏光子の吸収軸とのなす角度は40°~50°である。
1つの実施形態においては、上記位相差層は粘着剤層を介して上記偏光板に積層されている。
本発明のさらに別の局面によれば、画像表示装置が提供される。当該画像表示装置は、上記の偏光板または上記の位相差層付偏光板を含む。
【発明の効果】
【0006】
本発明の実施形態によれば、異形(異形加工部)を有する偏光板において、偏光子のポリビニルアルコール(PVA)系樹脂の配向状態を制御することにより、極めて薄型でありながら、異形加工部におけるクラック発生が抑制された偏光板を実現することができる。また、このような偏光子(結果として、偏光板)は、実用上許容可能な光学特性を発揮し得る。
【図面の簡単な説明】
【0007】
【
図1】本発明の1つの実施形態による偏光板の概略断面図である。
【
図2】本発明の実施形態による偏光板における異形または異形加工部の一例を説明する概略平面図である。
【
図3】本発明の実施形態による偏光板における異形または異形加工部の変形例を説明する概略平面図である。
【
図4】本発明の実施形態による偏光板における異形または異形加工部のさらなる変形例を説明する概略平面図である。
【
図5】本発明の実施形態による偏光板における異形または異形加工部のさらなる変形例を説明する概略平面図である。
【
図6】本発明の実施形態による偏光板に用いられ得る偏光子の製造方法における加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。
【
図7】本発明の1つの実施形態による位相差層付偏光板の概略断面図である。
【
図8】実施例および比較例で作製した偏光子の単体透過率とPVA系樹脂の複屈折との関係を示すグラフである。
【
図9】実施例および比較例で作製した偏光子の単体透過率とPVA系樹脂フィルムの面内位相差との関係を示すグラフである。
【
図10】実施例および比較例で作製した偏光子の単体透過率とPVA系樹脂の配向関数との関係を示すグラフである。
【発明を実施するための形態】
【0008】
以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
【0009】
A.偏光板
A-1.偏光板の全体構成
図1は、本発明の1つの実施形態による偏光板の概略断面図である。図示例の偏光板100は、偏光子10と、偏光子10の一方の側に配置された保護層20と、を有する。目的に応じて、偏光子10の保護層20と反対側に別の保護層(図示せず)が設けられてもよい。保護層20は10μm以下の厚みを有する樹脂膜で構成されている。偏光板は、画像表示装置の視認側偏光板として用いられてもよく、背面側偏光板として用いられてもよい。偏光板は、代表的には視認側偏光板として用いられる。この場合、保護層20は、視認側(画像表示セルと反対側)に配置され得る。
【0010】
本発明の実施形態による偏光板は、矩形以外の異形を有する。本明細書において「矩形以外の異形を有する」とは、偏光板の平面視形状が矩形以外の形状を有することをいう。異形は、代表的には、異形加工された異形加工部である。したがって、「矩形以外の異形を有する偏光板」(以下、「異形偏光板」と称する場合がある)は、異形偏光板全体(すなわち、偏光板の平面視形状を規定する外縁)が矩形以外である場合のみならず、矩形の偏光板の外縁から内方に離間した部分に異形加工部が形成されている場合も包含する。偏光板において、このような異形加工部にはクラックが発生しやすいところ、本発明の実施形態によれば、そのようなクラックを顕著に抑制することができる。より詳細には、以下のとおりである。通常の(すなわち、異形ではない)偏光板(実質的には、偏光子)においては、クラックは多くの場合偏光子の吸収軸(延伸方向)に沿って発生する。一方、異形加工部においては、L字クラック(吸収軸に対して斜め方向のクラック)が発生し得る。本発明の実施形態によれば、後述するように、偏光子のPVA系樹脂の分子鎖の吸収軸方向への配向を従来の偏光子よりも緩やかにすることにより、通常のクラックのみならずこのようなL字クラックも顕著に抑制することができる。
【0011】
異形(異形加工部)としては、例えば
図2および
図3に示すように、隅部をR形状に面取りしたもの、貫通穴、平面視した場合に凹部となる切削加工部が挙げられる。凹部の代表例としては、船形に近似した形状、矩形、バスタブ形状に近似したR形状、V字ノッチ、U字ノッチが挙げられる。異形(異形加工部)の別の例としては、
図4および
図5に示すように、自動車のメーターパネルに対応した形状が挙げられる。当該形状は、外縁がメーター針の回転方向に沿った円弧状に形成され、かつ、外縁が面方向内方に凸のV字形状(R形状を含む)をなす部位を含む。言うまでもなく、異形(異形加工部)の形状は図示例に限定されない。例えば、貫通穴の形状は、図示例の略円形以外に目的に応じて任意の適切な形状(例えば、楕円形、三角形、四角形、五角形、六角形、八角形)が採用され得る。また、貫通穴は、目的に応じて任意の適切な位置に設けられる。貫通穴は、
図3に示すように、矩形状の偏光板の長手方向端部の略中央部に設けられてもよく、長手方向端部の所定の位置に設けられてもよく、偏光板の隅部に設けられてもよく;図示していないが、矩形状の偏光板の短手方向端部に設けられてもよく;
図4または
図5に示すように、異形偏光板の中央部に設けられてもよい。
図3に示すように、貫通穴を複数設けてもよい。さらに、図示例の形状を目的に応じて適切に組み合わせてもよい。例えば、
図2の異形偏光板の任意の位置に貫通穴を形成してもよく;
図4または
図5の異形偏光板の外縁の任意の適切な位置にV字ノッチおよび/またはU字ノッチを形成してもよい。このような異形偏光板は、自動車のメーターパネル、スマートフォン、タブレット型PCまたはスマートウォッチ等の画像表示装置に好適に用いられ得る。なお、例えば異形がR形状を含む場合、その曲率半径は、例えば0.2mm以上であり、また例えば1mm以上であり、また例えば2mm以上である。一方、曲率半径は、例えば10mm以下であり、また例えば5mm以下である。また例えば、異形がU字ノッチである場合、その曲率半径(U字部分の曲率半径は)、例えば5mm以下であり、また例えば1mm~4mmであり、また例えば2mm~3mmである。
【0012】
異形(異形加工部)は、任意の適切な方法により形成され得る。形成方法の具体例としては、エンドミルによる切削、トムソン刃等の打ち抜き刃による打ち抜き、レーザー光照射による切断が挙げられる。これらの方法は組み合わせてもよい。
【0013】
A-2.偏光子
偏光子は、二色性物質を含むPVA系樹脂フィルムで構成されている。1つの実施形態において、偏光子は、単体透過率をx%とし、当該偏光子を構成するポリビニルアルコール系樹脂の複屈折をyとした場合に、下記式(1)を満たす。1つの実施形態において、偏光子は、単体透過率をx%とし、当該偏光子を構成するポリビニルアルコール系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす。1つの実施形態において、偏光子は、単体透過率をx%とし、当該偏光子を構成するポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす。1つの実施形態において、偏光子の突き刺し強度は、30gf/μm以上である。
y<-0.011x+0.525 (1)
z<-60x+2875 (2)
f<-0.018x+1.11 (3)
【0014】
上記偏光子におけるPVA系樹脂の複屈折(以下、PVAの複屈折またはPVAのΔnと表記する)、PVA系樹脂フィルムの面内位相差(以下、「PVAの面内位相差」と表記する)、PVA系樹脂の配向関数(以下、「PVAの配向関数」と表記する)および偏光子の突き刺し強度はいずれも、偏光子を構成するPVA系樹脂の分子鎖の配向度と関連する値である。具体的には、PVAの複屈折、面内位相差および配向関数は、配向度の上昇に伴って大きい値となり得、突き刺し強度は、配向度の上昇に伴って低下し得る。本発明の実施形態による偏光子(すなわち、上記式(1)~(3)または突き刺し強度を満たす偏光子)は、PVA系樹脂の分子鎖の吸収軸方向への配向が従来の偏光子よりも緩やかであることに起因して、吸収軸方向の加熱収縮が抑制される。その結果、このような偏光子(結果として、偏光板)は、極めて薄型でありながら、異形加工部におけるクラック発生を抑制することができる。また、このような偏光子(結果として、偏光板)は可撓性および折り曲げ耐久性にも優れることから、好ましくは湾曲した画像表示装置、より好ましくは折り曲げ可能な画像表示装置、さらに好ましくは折り畳み可能な画像表示装置に適用され得る。従来、配向度が低い偏光子では許容可能な光学特性(代表的には、単体透過率および偏光度)を得るのが困難であったところ、本発明の実施形態に用いられる偏光子は、従来よりも低いPVA系樹脂の配向度と許容可能な光学特性とを両立することができる。
【0015】
偏光子は、好ましくは下記式(1a)および/または式(2a)を満たし、より好ましくは下記式(1b)および/または式(2b)を満たす。
-0.004x+0.18<y<-0.011x+0.525 (1a)
-0.003x+0.145<y<-0.011x+0.520 (1b)
-40x+1800<z<-60x+2875 (2a)
-30x+1450<z<-60x+2850 (2b)
【0016】
本明細書において、上記PVAの面内位相差は、23℃、波長1000nmにおけるPVA系樹脂フィルムの面内位相差値である。近赤外領域を測定波長とすることにより、偏光子中のヨウ素の吸収の影響を排除することができ、位相差を測定することが可能となる。また、上記PVAの複屈折(面内複屈折)は、PVAの面内位相差を偏光子の厚みで割った値である。
【0017】
PVAの面内位相差は、下記のように評価する。まず、波長850nm以上の複数の波長で位相差値を測定し、測定された位相差値:R(λ)と波長:λのプロットを行い、これを下記のセルマイヤー式に最小二乗法でフィッティングさせる。ここで、AおよびBはフィッティングパラメータであり最小二乗法により決定される係数である。
R(λ)=A+B/(λ2-6002)
このとき、この位相差値R(λ)は、波長依存性のないPVAの面内位相差(Rpva)と、波長依存性の強いヨウ素の面内位相差値(Ri)とに下記のように分離することができる。
Rpva= A
Ri = B/(λ2-6002)
この分離式に基づいて、波長λ=1000nmにおけるPVAの面内位相差(すなわちRpva)を算出することができる。なお、当該PVAの面内位相差の評価方法については、特許第5932760号公報にも記載されており、必要に応じて、参照することができる。
また、この位相差を厚みで割ることでPVAの複屈折(Δn)を算出することができる。
【0018】
上記波長1000nmにおけるPVAの面内位相差を測定する市販の装置としては、王子計測社製のKOBRA-WR/IRシリーズ、KOBRA-31X/IRシリーズ等があげられる。
【0019】
偏光子の配向関数(f)は、好ましくは下記式(3a)を満たし、より好ましくは下記式(3b)を満たす。配向関数が小さすぎると、許容可能な単体透過率および/または偏光度が得られない場合がある。
-0.01x+0.50<f<-0.018x+1.11 (3a)
-0.01x+0.57<f<-0.018x+1.1 (3b)
【0020】
配向関数(f)は、例えば、フーリエ変換赤外分光光度計(FT-IR)を用い、偏光を測定光として、全反射減衰分光(ATR:attenuated total reflection)測定により求められる。具体的には、偏光子を密着させる結晶子はゲルマニウムを用い、測定光の入射角は45°入射とし、入射させる偏光された赤外光(測定光)は、ゲルマニウム結晶のサンプルを密着させる面に平行に振動する偏光(s偏光)とし、測定光の偏光方向に対し、偏光子の延伸方向を平行および垂直に配置した状態で測定を実施し、得られた吸光度スペクトルの2941cm-1の強度を用いて、下記式に従って算出される。ここで、強度Iは、3330cm-1を参照ピークとして、2941cm-1/3330cm-1の値である。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、偏光子中のPVAの主鎖(-CH2-)の振動に起因する吸収であると考えられている。
f=(3<cos2θ>-1)/2
=(1-D)/[c(2D+1)]
=-2×(1-D)/(2D+1)
ただし、
c=(3cos2β-1)/2で、2941cm-1の振動の場合は、β=90°である。
θ:延伸方向に対する分子鎖の角度
β:分子鎖軸に対する遷移双極子モーメントの角度
D=(I⊥)/(I//)(この場合、PVA分子が配向するほどDが大きくなる)
I⊥:測定光の偏光方向と偏光子の延伸方向が垂直の場合の吸収強度
I//:測定光の偏光方向と偏光子の延伸方向が平行の場合の吸収強度
【0021】
偏光子の厚みは、好ましくは10μm以下であり、より好ましくは8μm以下である。偏光子の厚みの下限は、例えば1μmであり得る。偏光子の厚みは、1つの実施形態においては2μm~10μm、別の実施形態においては2μm~8μmであってもよい。偏光子の厚みをこのように非常に薄くすることにより、熱収縮を非常に小さくすることができる。このような構成が、偏光板の異形加工部におけるクラック発生の抑制にも寄与し得ると推察される。
【0022】
偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上であり、より好ましくは41.0%以上である。単体透過率の上限は、例えば49.0%であり得る。偏光子の単体透過率は、1つの実施形態においては40.0%~45.0%である。偏光子の偏光度は、好ましくは99.0%以上であり、より好ましくは99.4%以上である。偏光度の上限は、例えば99.999%であり得る。偏光子の偏光度は、1つの実施形態においては99.0%~99.9%である。本発明の実施形態による偏光子は、当該偏光子を構成するPVA系樹脂の配向度が従来よりも低く、上記のような面内位相差、複屈折および/または配向関数を有するにもかかわらず、このような実用上許容可能な単体透過率および偏光度を実現できることを1つの特徴とする。これは、後述する製造方法に起因するものと推察される。なお、単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
【0023】
偏光子の突き刺し強度は、例えば30gf/μm以上であり、好ましくは35gf/μm以上であり、より好ましくは40gf/μm以上であり、さらに好ましくは45gf/μm以上であり、特に好ましくは50gf/μm以上である。突き刺し強度の上限は、例えば80gf/μmであり得る。偏光子の突き刺し強度をこのような範囲とすることにより、異形加工部にクラックが発生すること、および、偏光子が吸収軸方向に沿って裂けることを顕著に抑制することができる。その結果、屈曲性に非常に優れた偏光子(結果として、偏光板)が得られ得る。突き刺し強度は、所定の強さで偏光子を突き刺した時の偏光子の割れ耐性を示す。突き刺し強度は、例えば、圧縮試験機に所定のニードルを装着し、当該ニードルを所定速度で偏光子に突き刺したときに偏光子が割れる強度(破断強度)として表され得る。なお、単位から明らかなとおり、突き刺し強度は、偏光子の単位厚み(1μm)あたりの突き刺し強度を意味する。
【0024】
偏光子は、上記のとおり、二色性物質を含むPVA系樹脂フィルムで構成される。好ましくは、PVA系樹脂フィルム(実質的には、偏光子)を構成するPVA系樹脂は、アセトアセチル変性されたPVA系樹脂を含む。このような構成であれば、所望の突き刺し強度を有する偏光子が得られ得る。アセトアセチル変性されたPVA系樹脂の配合量は、PVA系樹脂全体を100重量%としたときに、好ましくは5重量%~20重量%であり、より好ましくは8重量%~12重量%である。配合量がこのような範囲であれば、突き刺し強度をより好適な範囲とすることができる。
【0025】
偏光子は、代表的には、二層以上の積層体を用いて作製され得る。積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、好ましくは、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含む。本発明の実施形態においては、延伸の総倍率は好ましくは3.0倍~4.5倍であり、通常に比べて顕著に小さい。このような延伸の総倍率であっても、ハロゲン化物の添加および乾燥収縮処理との組み合わせにより、許容可能な光学特性を有する偏光子を得ることができる。さらに、本発明の実施形態においては、好ましくは空中補助延伸の延伸倍率がホウ酸水中延伸の延伸倍率よりも大きい。このような構成とすることにより、延伸の総倍率が小さくても許容可能な光学特性を有する偏光子を得ることができる。加えて、積層体は、好ましくは長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。1つの実施形態においては、偏光子の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解等の問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理等、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。偏光子の製造方法の詳細については、A-3項で説明する。
【0026】
A-3.偏光子の製造方法
上記偏光子の製造方法は、好ましくは、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは60℃~120℃である。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは2%以上である。さらに、空中補助延伸の延伸倍率は、好ましくは水中延伸の延伸倍率よりも大きい。このような製造方法によれば、上記A-2項で説明した偏光子を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱して幅方向に2%以上収縮させることにより、優れた光学特性(代表的には、単体透過率および偏光度)を有する偏光子を得ることができる。
【0027】
A-3-1.積層体の作製
熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、ハロゲン化物とPVA系樹脂とを含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。上記のとおり、PVA系樹脂層におけるハロゲン化物の含有量は、好ましくはPVA系樹脂100重量部に対して5重量部~20重量部である。
【0028】
塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。
【0029】
PVA系樹脂層の厚みは、好ましくは2μm~30μm、さらに好ましくは2μm~20μmである。延伸前のPVA系樹脂層の厚みをこのように非常に薄くし、かつ、後述するように延伸の総倍率を小さくすることにより、従来よりもPVA系樹脂の配向度が低いにもかかわらず許容可能な単体透過率および偏光度を有する偏光子を得ることができる。
【0030】
PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。
【0031】
A-3-1-1.熱可塑性樹脂基材
熱可塑性樹脂基材としては、任意の適切な熱可塑性樹脂フィルムが採用され得る。熱可塑性樹脂基材の詳細については、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
【0032】
A-3-1-2.塗布液
塗布液は、上記のとおり、ハロゲン化物とPVA系樹脂とを含む。上記塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
【0033】
塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。
【0034】
上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。上記のとおり、PVA系樹脂は、好ましくはアセトアセチル変性されたPVA系樹脂を含む。
【0035】
PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。
【0036】
上記ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。
【0037】
塗布液におけるハロゲン化物の量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部であり、より好ましくは、PVA系樹脂100重量部に対して10重量部~15重量部である。PVA系樹脂100重量部に対するハロゲン化物の量が20重量部を超えると、ハロゲン化物がブリードアウトし、最終的に得られる偏光子が白濁する場合がある。
【0038】
一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂層中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂基材とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂基材の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理等、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。
【0039】
A-3-2.空中補助延伸処理
特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解等の問題を防止することができ、高い光学特性を達成することが可能になる。
【0040】
空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよいが、高い光学特性を得るためには、自由端延伸が積極的に採用され得る。1つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定され得る。自由端延伸の場合、幅方向の収縮率=(1/延伸倍率)1/2で計算される。
【0041】
空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。
【0042】
空中補助延伸における延伸倍率は、好ましくは1.0倍~4.0倍であり、より好ましくは1.5倍~3.5倍であり、さらに好ましくは2.0倍~3.0倍である。空中補助延伸の延伸倍率がこのような範囲であれば、水中延伸と組み合わせた場合に延伸の総倍率を所望の範囲に設定することができ、所望の複屈折、面内位相差および/または配向関数を実現することができる。その結果、異形加工部におけるクラック発生が抑制された偏光子(結果として、偏光板)を得ることができる。さらに、上記のとおり、空中補助延伸の延伸倍率は水中延伸の延伸倍率よりも大きいことが好ましい。このような構成とすることにより、延伸の総倍率が小さくても許容可能な光学特性を有する偏光子を得ることができる。より詳細には、空中補助延伸の延伸倍率と水中延伸の延伸倍率との比(水中延伸/空中補助延伸)は、好ましくは0.4~0.9であり、より好ましくは0.5~0.8である。
【0043】
空中補助延伸の延伸温度は、熱可塑性樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。
【0044】
A-3-3.不溶化処理、染色処理および架橋処理
必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。上記染色処理は、代表的には、PVA系樹脂層を二色性物質(代表的には、ヨウ素)で染色することにより行う。必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理、染色処理および架橋処理の詳細については、例えば特開2012-73580号公報に記載されている。
【0045】
A-3-4.水中延伸処理
水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら延伸することができる。その結果、優れた光学特性を有する偏光子を製造することができる。
【0046】
積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸の総倍率は、各段階の延伸倍率の積である。
【0047】
水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光子を製造することができる。
【0048】
上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、特に好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光子を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。
【0049】
好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。
【0050】
延伸温度(延伸浴の液温)は、好ましくは40℃~85℃、より好ましくは60℃~75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。
【0051】
水中延伸による延伸倍率は、好ましくは1.0倍~2.2倍であり、より好ましくは1.1倍~2.0倍であり、さらに好ましくは1.1倍~1.8倍であり、さらにより好ましくは1.2倍~1.6倍である。水中延伸における延伸倍率がこのような範囲であれば、延伸の総倍率を所望の範囲に設定することができ、所望の複屈折、面内位相差および/または配向関数を実現することができる。その結果、異形加工部におけるクラック発生が抑制された偏光子(結果として、偏光板)を得ることができる。延伸の総倍率(空中補助延伸と水中延伸とを組み合わせた場合の延伸倍率の合計)は、上記のとおり、積層体の元長に対して、好ましくは3.0倍~4.5倍であり、より好ましくは3.0倍~4.3倍であり、さらに好ましくは3.0倍~4.0倍である。塗布液へのハロゲン化物の添加、空中補助延伸および水中延伸の延伸倍率の調整、および乾燥収縮処理を適切に組み合わせることにより、このような延伸の総倍率であっても許容可能な光学特性を有する偏光子を得ることができる。
【0052】
A-3-5.乾燥収縮処理
上記乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは2%~6%である。
【0053】
図6は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。
【0054】
搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。
【0055】
加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。
【0056】
A-3-6.その他の処理
好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
【0057】
A-4.保護層
保護層の厚みは10μm以下である。保護層の厚みが10μm以下であることにより、偏光板の薄型化に寄与し得る。また、従来、偏光子の加熱時の収縮に追随して偏光子を保護する観点から、20μm以上の厚みを有する保護層が用いられている。これに対し、本発明の実施形態で用いられる偏光子は、上記の通り、従来よりもPVA系樹脂の配向度が低く、結果として、加熱による収縮が小さいことから、厚みが10μm以下の保護層を用いた場合であっても、加熱時のクラックの発生が抑制される。さらに、このような偏光子は、異形加工部におけるクラック抑制にも貢献し得る。
【0058】
保護層の厚みは、好ましくは7μm以下であり、より好ましくは5μm以下であり、さらに好ましくは3μm以下である。保護層の厚みは、例えば1μm以上である。
【0059】
保護層は樹脂膜で構成される。樹脂膜を形成する樹脂としては、目的に応じて任意の適切な樹脂が用いられ得る。具体例としては、(メタ)アクリル系、トリアセチルセルロース(TAC)等のセルロース系、ポリエステル系、ポリウレタン系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、アセテート系等の熱可塑性樹脂;(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または活性エネルギー線硬化型樹脂;シロキサン系ポリマー等のガラス質系ポリマーが挙げられる。1つの実施形態において、樹脂膜を形成する樹脂としては、エポキシ樹脂、(メタ)アクリル系樹脂が挙げられる。これらは、単独で用いてもよく組み合わせて用いてもよい。
【0060】
保護層を構成する樹脂膜は、例えば、溶融樹脂の成形物であってもよく、樹脂を水性溶媒または有機溶媒に溶解または分散して得られる樹脂溶液の塗布膜の固化物であってもよく、硬化型樹脂の硬化物(例えば、光カチオン硬化物)であってもよい。
【0061】
1つの実施形態において、保護層は、熱可塑性(メタ)アクリル系樹脂(以下、(メタ)アクリル系樹脂を単に「アクリル系樹脂」と称する場合がある)の有機溶媒溶液の塗布膜の固化物、エポキシ樹脂の光カチオン硬化物、あるいはエポキシ樹脂の有機溶媒溶液の塗布膜の固化物であり得る。以下、具体的に説明する。
【0062】
A-4-1.熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物
1つの実施形態においては、保護層は熱可塑性アクリル系樹脂の有機溶媒溶液の塗布膜の固化物で構成されている。本実施形態の保護層の軟化温度は、加湿耐久性の観点から、好ましくは100℃以上、より好ましくは115℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上であり、また、成形性の観点から、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。
【0063】
アクリル系樹脂は、ガラス転移温度(Tg)が好ましくは100℃以上である。その結果、保護層の軟化温度も、ほぼ100℃以上となる。アクリル系樹脂のTgが100℃以上であれば、このような樹脂から得られた保護層を含む偏光板は、クラック耐性に加えて加湿耐久性にも優れたものとなり得る。アクリル系樹脂のTgは、より好ましくは110℃以上、さらに好ましくは115℃以上、さらにより好ましくは120℃以上、特に好ましくは125℃以上である。一方、アクリル系樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。アクリル系樹脂のTgがこのような範囲であれば、成形性に優れ得る。
【0064】
アクリル系樹脂としては、上記のようなTgを有する限りにおいて任意の適切なアクリル系樹脂が採用され得る。アクリル系樹脂は、代表的には、モノマー単位(繰り返し単位)として、アルキル(メタ)アクリレートを主成分として含有する。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。アクリル系樹脂の主骨格を構成するアルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。これらは単独であるいは組み合わせて使用することができる。さらに、アクリル系樹脂には、任意の適切な共重合モノマーを共重合により導入してもよい。アルキル(メタ)アクリレートの種類、数、組み合わせおよび配合比、共重合モノマーの種類、数、組み合わせおよび配合比、ならびに、重合条件等を適切に設定することにより、所望の保護層を形成し得るアクリル系樹脂が得られ得る。
【0065】
アクリル系樹脂は、好ましくは、環構造を含む繰り返し単位を有する。環構造を含む繰り返し単位としては、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位、マレイミド(N-置換マレイミド)単位が挙げられる。環構造を含む繰り返し単位は、1種類のみがアクリル系樹脂の繰り返し単位に含まれていてもよく、2種類以上が含まれていてもよい。ラクトン環単位を有するアクリル系樹脂は、例えば特開2008-181078号公報に記載されている。グルタルイミド単位を有するアクリル系樹脂は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。
【0066】
アクリル系樹脂における環構造を含む繰り返し単位の含有割合は、好ましくは1モル%~50モル%、より好ましくは10モル%~40モル%、さらに好ましくは20モル%~30モル%である。含有割合が少なすぎると、Tgが100℃未満となる場合があり、得られる保護層の耐熱性、耐溶剤性および表面硬度が不十分となる場合がある。含有割合が多すぎると、成形性および透明性が不十分となる場合がある。
【0067】
本発明の実施形態においては、アクリル系樹脂と他の樹脂とを併用してもよい。すなわち、アクリル系樹脂を構成するモノマー成分と他の樹脂を構成するモノマー成分とを共重合し、当該共重合体を後述する保護層の成形に供してもよく;アクリル系樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。
【0068】
本実施形態の保護層は、例えば、偏光子表面に、アクリル系樹脂の有機溶媒溶液を塗布して塗布膜を形成し、当該塗布膜を固化させることによって形成され得る。
【0069】
有機溶媒としては、アクリル系樹脂を溶解または均一に分散し得る任意の適切な有機溶媒を用いることができる。有機溶媒の具体例としては、酢酸エチル、トルエン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノンが挙げられる。
【0070】
溶液のアクリル系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、偏光子に密着した均一な塗布膜を形成することができる。
【0071】
溶液は、任意の適切な基材に塗布してもよく、偏光子に塗布してもよい。基材に塗布する場合には、基材上に形成された塗布膜の固化物が偏光子に転写される。偏光子に塗布する場合には、塗布膜を乾燥(固化)させることにより、偏光子上に保護層が直接形成される。好ましくは、溶液は偏光子に塗布され、偏光子上に保護層が直接形成される。このような構成であれば、転写に必要とされる接着剤層または粘着剤層を省略することができるので、偏光板をさらに薄くすることができる。溶液の塗布方法としては、任意の適切な方法を採用することができる。具体例としては、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)が挙げられる。
【0072】
溶液の塗布膜を乾燥(固化)させることにより、保護層が形成され得る。乾燥温度は、好ましくは100℃以下であり、より好ましくは50℃~70℃である。乾燥温度がこのような範囲であれば、偏光子に対する悪影響を防止することができる。乾燥時間は、乾燥温度に応じて変化し得る。乾燥時間は、例えば1分~10分であり得る。
【0073】
A-4-2.エポキシ樹脂の光カチオン硬化物
1つの実施形態においては、保護層は、エポキシ樹脂の光カチオン硬化物で構成される。このような保護層を用いることにより、クラックの発生が抑制され、かつ、優れた加湿耐久性が得られ得る。上記のとおり、保護層が光カチオン硬化物であるため、保護層形成用組成物は光カチオン重合開始剤を含む。光カチオン重合開始剤は、光酸発生剤の機能を持つ感光剤であり、代表的にはカチオン部とアニオン部とからなるイオン性のオニウム塩が挙げられる。このオニウム塩において、カチオン部は光を吸収し、アニオン部は酸の発生源となる。この光カチオン重合開始剤から発生した酸によりエポキシ基の開環重合が進行する。得られる光カチオン硬化物である保護層は軟化温度が高く、ヨウ素吸着量が低減され得る。そのため、クラックの発生が抑制され、かつ、優れた加湿耐久性を有する偏光板を提供することができる。
【0074】
本実施形態の保護層の軟化温度は、加湿耐久性の観点から、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上であり、また、成形性の観点から、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。
【0075】
A-4-2-1.エポキシ樹脂
エポキシ樹脂としては、任意の適切なエポキシ樹脂を用いることができ、芳香環または脂環を有するエポキシ樹脂が好ましく用いられ得る。本実施形態においては、好ましくは芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂を用いることができる。芳香族骨格としては、例えば、ベンゼン環、ナフタレン環、フルオレン環等が挙げられる。エポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。好ましくは芳香族骨格としてビフェニル骨格もしくはビスフェノール骨格を有するエポキシ樹脂またはその水添物が用いられる。このようなエポキシ樹脂を用いることにより、より優れた耐久性を有し、屈曲性にも優れた偏光板が提供され得る。
【0076】
1つの実施形態において、ビフェニル骨格を有するエポキシ樹脂は、以下の構造を含むエポキシ樹脂である。ビフェニル骨格を有するエポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
【化1】
(式中、R
14~R
21は、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状の置換または非置換の炭化水素基、または、ハロゲン元素を表す)。
【0077】
1つの実施形態においては、ビフェニル骨格を有するエポキシ樹脂は下記式で表されるエポキシ樹脂である。
【化2】
(式中、R
14~R
21は上記の通りであり、nは0~6の整数を表す)。
【0078】
1つの実施形態において、ビフェニル骨格を有するエポキシ樹脂はビフェニル骨格のみを有するエポキシ樹脂である。ビフェニル骨格のみを有するエポキシ樹脂を用いることにより、得られる保護層の耐久性がさらに向上し得る。別の実施形態においては、ビフェニル骨格を有するエポキシ樹脂はビフェニル骨格以外の化学構造を含んでいてもよい。ビフェニル骨格以外の化学構造としては、例えば、ビスフェノール骨格、脂環式構造、芳香族環構造等が挙げられる。この場合、ビフェニル骨格以外の化学構造の割合(モル比)はビフェニル骨格よりも少ないことが好ましい。
【0079】
上記エポキシ樹脂(光カチオン硬化後のエポキシ樹脂)は、好ましくはガラス転移温度(Tg)が100℃以上である。その結果、保護層の軟化温度も、ほぼ100℃以上となる。エポキシ樹脂のTgが100℃以上であれば、得られる保護層を含む偏光板は、耐久性に優れたものとなりやすい。エポキシ樹脂のTgは、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、エポキシ樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。エポキシ樹脂のTgがこのような範囲であれば、成形性に優れ得る。
【0080】
上記エポキシ樹脂のエポキシ当量は、好ましくは100g/当量以上であり、より好ましくは150g/当量以上、さらに好ましくは200g/当量以上である。また、エポキシ樹脂のエポキシ当量は、好ましくは3000g/当量以下であり、より好ましくは2500g/当量以下、さらに好ましくは2000g/当量以下である。エポキシ当量が上記範囲であることにより、より安定した保護層(残存モノマーが少なく、十分に硬化した保護層)が得られる。なお、本明細書において「エポキシ当量」とは、「1当量のエポキシ基を含むエポキシ樹脂の質量」をいい、JIS K 7236に準じて測定することができる。
【0081】
本実施形態においては、上記エポキシ樹脂と他の樹脂とを併用してもよい。すなわち、上記エポキシ樹脂(例えば、芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂)と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂としては、例えば、アクリル系樹脂、オキセタン系樹脂が挙げられる。
【0082】
アクリル系樹脂としては、任意の適切な(メタ)アクリル系化合物を用いることができる。例えば、(メタ)アクリル系化合物としては、例えば、分子内に一個の(メタ)アクリロイル基を有する(メタ)アクリル系化合物(以下、「単官能(メタ)アクリル系化合物」ともいう)、分子内に二個以上の(メタ)アクリロイル基を有する(メタ)アクリル系化合物(以下、「多官能(メタ)アクリル系化合物」ともいう)が挙げられる。これらの(メタ)アクリル系化合物は、単独で用いてもよく、2種類以上組み合わせて用いてもよい。これらのアクリル系樹脂については、例えば特開2019-168500号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
【0083】
オキセタン樹脂としては、分子内にオキセタニル基を1個以上有する任意の適切な化合物が用いられる。例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル等の分子内にオキセタニル基を1個有するオキセタン化合物;3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル等の分子内にオキセタニル基を2個以上有するオキセタン化合物;等が挙げられる。これらオキセタン樹脂は1種のみを用いてもよく、2種以上を組み合わせてもよい。オキセタン樹脂としては、好ましくは3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン等が用いられる。これらのオキセタン樹脂は、容易に入手可能であり、希釈性(低粘度)、相溶性に優れ得る。
【0084】
1つの実施形態においては、相溶性や接着性の点から、好ましくは分子量500以下であり、室温(25℃)で液状のオキセタン樹脂が用いられる。1つの実施形態においては、好ましくは分子内に2個以上のオキセタニル基を含有するオキセタン化合物、分子内に1個のオキセタニル基と1個の(メタ)アクリロイル基または1個のエポキシ基を含有するオキセタン化合物が用いられ、より好ましくは3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、3-エチル-3-(オキシラニルメトキシ)オキセタン、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチルが用いられる。これらのオキセタン樹脂を用いることにより、保護層の硬化性および耐久性が向上し得る。
【0085】
A-4-2-2.光カチオン重合開始剤
光カチオン重合開始剤は、光酸発生剤の機能を持つ感光剤であり、代表的にはカチオン部とアニオン部とからなるイオン性のオニウム塩が挙げられる。このオニウム塩において、カチオン部は光を吸収し、アニオン部は酸の発生源となる。この光カチオン重合開始剤から発生した酸によりエポキシ基の開環重合が進行する。光カチオン重合開始剤としては、紫外線等の光照射により芳香族骨格および水素添加された芳香族骨格からなる群より選択される少なくとも1種を有するエポキシ樹脂を硬化させることができる任意の適切な化合物を用いることができる。光カチオン重合開始剤は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
【0086】
光カチオン重合開始剤としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe-ヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート等が挙げられる。好ましくは、トリフェニルスルホニウム塩系ヘキサフルオロアンチモネートタイプの光カチオン重合開始剤、ジフェニルヨードニウム塩系ヘキサフルオロアンチモネートタイプの光カチオン重合開始剤が用いられる。
【0087】
本実施形態の保護層は、例えば、上記エポキシ樹脂と光カチオン重合開始剤とを含む組成物を塗布して塗膜を形成し、該塗膜に光(例えば、紫外線)を照射することにより形成され得る。
【0088】
上記組成物におけるエポキシ樹脂濃度は、溶媒100重量部に対して、好ましくは10重量部~30重量部である。このような樹脂濃度であれば、偏光子に密着した均一な塗布膜を形成することができる。
【0089】
上記組成物は、任意の適切な基材に塗布してもよく、偏光子に塗布してもよい。基材に塗布する場合には、基材上に形成された塗布膜の硬化物が偏光子に転写される。偏光子に塗布する場合には、塗布膜を例えば光照射により硬化させることにより、偏光子上に保護層が直接形成される。好ましくは、上記組成物は偏光子に塗布され、偏光子上に保護層が直接形成される。このような構成であれば、転写に必要とされる接着剤層または粘着剤層を省略することができるので、偏光板をさらに薄くすることができる。組成物の塗布方法としては、上述の通りである。
【0090】
塗布膜の硬化は、任意の適切な光源を用いて任意の適切な照射量となるように光(代表的には紫外線)を照射することにより行われ得る。光照射後、光反応による硬化を完結させるために加熱処理をさらに施してもよい。加熱処理は任意の適切な温度および時間で行われ得る。
【0091】
A-4-3.エポキシ樹脂の有機溶媒溶液の塗布膜の固化物
1つの実施形態においては、保護層はエポキシ樹脂の有機溶媒溶液の塗布膜の固化物で構成される。本実施形態の保護層の軟化温度は、加湿耐久性の観点から、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上であり、また、成形性の観点から、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。
【0092】
A-4-3-1.エポキシ樹脂
本実施形態において、エポキシ樹脂は、好ましくはガラス転移温度(Tg)が100℃以上である。その結果、保護層の軟化温度も、ほぼ100℃以上となる。エポキシ樹脂のTgが100℃以上であれば、このような樹脂から得られた保護層を含む偏光板は、耐久性に優れたものとなりやすい。エポキシ樹脂のTgは、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。一方、エポキシ樹脂のTgは、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下、特に好ましくは160℃以下である。エポキシ樹脂のTgがこのような範囲であれば、成形性に優れ得る。
【0093】
エポキシ樹脂としては、上記のようなTgを有する限りにおいて任意の適切なエポキシ樹脂が採用され得る。エポキシ樹脂は、代表的には、分子構造内にエポキシ基を有する樹脂をいう。エポキシ樹脂としては、好ましくは分子構造内に芳香族環を有するエポキシ樹脂が用いられる。芳香族環を有するエポキシ樹脂を用いることにより、より高いTgを有するエポキシ樹脂が得られ得る。分子構造内に芳香族環を有するエポキシ樹脂における芳香族環としては、例えば、ベンゼン環、ナフタレン環、フルオレン環等が挙げられる。エポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。2種以上のエポキシ樹脂を用いる場合、芳香族環を含むエポキシ樹脂と、芳香族環を含まないエポキシ樹脂を組み合わせて用いてもよい。
【0094】
分子構造内に芳香族環を有するエポキシ樹脂としては、具体的には、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、レゾルシンジグリシジルエーテル型エポキシ樹脂、ヒドロキノンジグリシジルエーテル型エポキシ樹脂、テレフタル酸ジグリシジルエステル型エポキシ樹脂、ビスフェノキシエタノールフルオレンジグリシジルエーテル型エポキシ樹脂、ビスフェノールフルオレンジグリシジルエーテル型エポキシ樹脂、ビスクレゾールフルオレンジグリシジルエーテル型エポキシ樹脂等の2つのエポキシ基を有するエポキシ樹脂;ノボラック型エポキシ樹脂、N,N,O-トリグリシジル-P-又は-m-アミノフェノール型エポキシ樹脂、N,N,O-トリグリシジル-4-アミノ-m-又は-5-アミノ-o-クレゾール型エポキシ樹脂、1,1,1-(トリグリシジルオキシフェニル)メタン型エポキシ樹脂等の3つのエポキシ基を有するエポキシ樹脂;グリシジルアミン型エポキシ樹脂(例えば、ジアミノジフェニルメタン型、ジアミノジフェニルスルホン型、メタキシレンジアミン型)等の4つのエポキシ基を有するエポキシ樹脂等が挙げられる。また、ヘキサヒドロ無水フタル酸型エポキシ樹脂、テトラヒドロ無水フタル酸型エポキシ樹脂、ダイマー酸型エポキシ樹脂、p-オキシ安息香酸型等のグリシジルエステル型エポキシ樹脂を用いてもよい。
【0095】
エポキシ樹脂のエポキシ当量は、好ましくは1000g/当量以上であり、より好ましくは3000g/当量以上、さらに好ましくは5000g/当量以上である。また、エポキシ樹脂のエポキシ当量は、好ましくは30000g/当量以下であり、より好ましくは25000g/当量以下、さらに好ましくは20000g/当量以下である。エポキシ当量が上記範囲であることにより、より安定した保護層が得られる。なお、本明細書において「エポキシ当量」とは、「1当量のエポキシ基を含むエポキシ樹脂の質量」をいい、JIS K 7236に準じて測定することができる。
【0096】
本実施形態においては、エポキシ樹脂と他の樹脂とを併用してもよい。すなわち、エポキシ樹脂と他の樹脂とのブレンドを保護層の成形に供してもよい。他の樹脂は、目的に応じて適切に選択され得る。
【0097】
本実施形態の保護層は、例えば、上記エポキシ樹脂を含む有機溶媒溶液を塗布して塗膜を形成し、該塗膜を固化させることにより、形成され得る。有機溶媒溶液におけるエポキシ樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、偏光子に密着した均一な塗布膜を形成することができる。
【0098】
上記有機溶媒としては、エポキシ樹脂を溶解または均一に分散し得る任意の適切な溶媒を用いることができる。溶媒の具体例としては、酢酸エチル、トルエン、メチリエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノンが挙げられる。
【0099】
溶液は、任意の適切な基材に塗布してもよく、偏光子に塗布してもよい。基材に塗布する場合には、基材上に形成された塗布膜の固化物が偏光子に転写される。偏光子に塗布する場合には、塗布膜を乾燥(固化)させることにより、偏光子上に保護層が直接形成される。好ましくは、溶液は偏光子に塗布され、偏光子上に保護層が直接形成される。このような構成であれば、転写に必要とされる接着剤層または粘着剤層を省略することができるので、偏光板をさらに薄くすることができる。溶液の塗布方法としては、上述の通りである。
【0100】
溶液の塗布膜を乾燥(固化)させることにより、塗布膜の固化物である保護層が形成され得る。乾燥温度は、好ましくは100℃以下であり、より好ましくは50℃~70℃である。乾燥温度がこのような範囲であれば、偏光子に対する悪影響を防止することができる。乾燥時間は、乾燥温度に応じて変化し得る。乾燥時間は、例えば1分~10分であり得る。
【0101】
B.位相差層付偏光板
B-1.位相差層付偏光板の全体構成
図7は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板200は、上記A項に記載の偏光板100と位相差層120とを含む。したがって、位相差層付偏光板200は、偏光板100と同様の異形を有する。位相差層付偏光板200においては、位相差層120が偏光子10の保護層としても機能し得る。位相差層120は、代表的には、接着層(図示せず)を介して、偏光板100(図示例では、偏光子10)に積層されている。接着層は、接着剤層または粘着剤層であり、リワーク性等の観点からは粘着剤層(例えば、アクリル系粘着剤層)であることが好ましい。図示しないが、必要に応じて、位相差層付偏光板は、偏光子10の位相差層120側に別の保護層(図示せず)を有していてもよい。また、必要に応じて、位相差層付偏光板は、位相差層120の偏光板100と反対側に、別の位相差層(図示せず)を有していてもよい。別の位相差層は、代表的には、屈折率特性がnz>nx=nyの関係を示すいわゆるポジティブCプレートである。
【0102】
位相差層120のRe(550)は、好ましくは100nm~190nmであり、Re(450)/Re(550)は、好ましくは0.8以上1未満である。さらに、位相差層120の遅相軸と偏光子10の吸収軸とのなす角度は、好ましくは40°~50°である。
【0103】
B-2.位相差層
位相差層120は、目的に応じて任意の適切な光学的特性および/または機械的特性を有し得る。位相差層は、代表的には遅相軸を有する。1つの実施形態においては、位相差層の遅相軸と偏光子10の吸収軸とのなす角度θは、上記のとおり好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、後述するように位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。
【0104】
位相差層は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、1つの実施形態においてはλ/4板として機能し得る。この場合、位相差層の面内位相差Re(550)は、好ましくは100nm~190nm、より好ましくは110nm~170nm、さらに好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。
【0105】
位相差層のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。
【0106】
位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。
【0107】
位相差層は、光弾性係数の絶対値が好ましくは2×10-11m2/N以下、より好ましくは2.0×10-13m2/N~1.5×10-11m2/N、さらに好ましくは1.0×10-12m2/N~1.2×10-11m2/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、得られる画像表示装置の熱ムラが良好に防止され得る。
【0108】
位相差層は、代表的には樹脂フィルムの延伸フィルムで構成される。1つの実施形態において、位相差層の厚みは、好ましくは70μm以下であり、より好ましくは45μm~60μmである。位相差層の厚みがこのような範囲であれば、加熱時のカールを良好に抑制しつつ、貼り合わせ時のカールを良好に調整することができる。また、後述するように位相差層がポリカーボネート系樹脂フィルムで構成される実施形態においては、位相差層の厚みは、好ましくは40μm以下であり、より好ましくは10μm~40μmであり、さらに好ましくは20μm~30μmである。位相差層が、このような厚みを有するポリカーボネート系樹脂フィルムで構成されることにより、カールの発生を抑制しつつ、折り曲げ耐久性および反射色相の向上にも寄与し得る。
【0109】
位相差層は、上記の特性を満足し得る任意の適切な樹脂フィルムで構成され得る。そのような樹脂の代表例としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂が挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて(例えば、ブレンド、共重合)用いてもよい。位相差層が逆分散波長特性を示す樹脂フィルムで構成される場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)が好適に用いられ得る。
【0110】
上記ポリカーボネート系樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、本発明に好適に用いられ得るポリカーボネート系樹脂の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、当該記載は本明細書に参考として援用される。
【0111】
前記ポリカーボネート系樹脂のガラス転移温度は、110℃以上150℃以下であることが好ましく、より好ましくは120℃以上140℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。
【0112】
前記ポリカーボネート系樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.30dL/gが好ましく、より好ましは0.35dL/g以上である。還元粘度の上限は、通常1.20dL/gが好ましく、より好ましくは1.00dL/g、更に好ましくは0.80dL/gである。還元粘度が前記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が前記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。
【0113】
ポリカーボネート系樹脂フィルムとして市販のフィルムを用いてもよい。市販品の具体例としては、帝人社製の商品名「ピュアエースWR-S」、「ピュアエースWR-W」、「ピュアエースWR-M」、日東電工社製の商品名「NRF」が挙げられる。
【0114】
位相差層は、例えば、上記ポリカーボネート系樹脂から形成されたフィルムを延伸することにより得られる。ポリカーボネート系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、位相差層に所望される特性等に応じて適宜設定され得る。なお、上記のとおり、ポリカーボネート系樹脂は、多くのフィルム製品が市販されているので、当該市販フィルムをそのまま延伸処理に供してもよい。
【0115】
樹脂フィルム(未延伸フィルム)の厚みは、位相差層の所望の厚み、所望の光学特性、後述の延伸条件等に応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。
【0116】
上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮等の様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。延伸の温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。
【0117】
上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。
【0118】
1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。
【0119】
別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して上記の角度θの方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して角度θの配向角(角度θの方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、角度θは、位相差層付偏光板において偏光子の吸収軸と位相差層の遅相軸とがなす角度であり得る。角度θは、上記のとおり、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。
【0120】
斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。
【0121】
上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する位相差層(実質的には、長尺状の位相差フィルム)が得られ得る。
【0122】
上記フィルムの延伸温度は、位相差層に所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する位相差層が得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。
【0123】
C.画像表示装置
上記偏光板または位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明の実施形態は、そのような偏光板または位相差層付偏光板を含む画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項に記載の偏光板またはB項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が画像表示セル(例えば、液晶セル、有機ELセル、無機ELセル)側となるように(偏光子が視認側となるように)積層されている。画像表示装置は、好ましくは、矩形以外の異形を有する。このような画像表示装置において、本発明の実施形態による効果が顕著である。異形を有する画像表示装置の具体例としては、自動車のメーターパネル、スマートフォン、タブレット型PC、スマートウォッチが挙げられる。
【実施例0124】
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
【0125】
(1)厚み
干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。厚み算出に用いた計算波長範囲は400nm~500nmで、屈折率は1.53とした。
(2)PVAの面内位相差(Re)
実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から樹脂基材を剥離除去した偏光子(偏光子単体)について、位相差測定装置(王子計測機器社製 製品名「KOBRA-31X100/IR」)を用いて、波長1000nmにおけるPVAの面内位相差(Rpva)を評価した(説明した原理にしたがい、波長1000nmにおけるトータルの面内位相差から、ヨウ素の面内位相差(Ri)を引いた数値である)。吸収端波長は600nmとした。
(3)PVAの複屈折(Δn)
上記(2)で測定したPVAの面内位相差を、偏光子の厚みで割ることによりPVAの複屈折(Δn)を算出した。
(4)単体透過率および偏光度
実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から樹脂基材を剥離除去した偏光子(偏光子単体)について、紫外可視分光光度計(日本分光社製「V-7100」)を用いて単体透過率Ts、平行透過率Tp、直交透過率Tcを測定した。これらのTs、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式により偏光度Pを求めた。
偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、分光光度計は、大塚電子社製「LPF-200」等でも同等の測定をすることが可能であり、いずれの分光光度計を用いた場合であっても同等の測定結果が得られることが確認されている。
(5)突き刺し強度(単位厚み当たりの破断強度)
実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から偏光子を剥離し、ニードルを装着した圧縮試験機(カトーテック社製、 製品名「NDG5」ニードル貫通力測定仕様)に載置し、室温(23℃±3℃)環境下、突き刺し速度0.33cm/秒で突き刺し、偏光子が割れたときの強度を破断強度とした。評価値は試料片10個の破断強度を測定し、その平均値を用いた。なお、ニードルは、先端径1mmφ、0.5Rのものを用いた。測定する偏光子については、直径約11mmの円形の開口部を有する治具を偏光子の両面から挟んで固定し、開口部の中央にニードルを突き刺して試験を行った。
(6)PVAの配向関数
実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から樹脂基材を剥離除去した偏光子(偏光子単体)について、樹脂基材を剥離した面と反対側の面に対して、フーリエ変換赤外分光光度計(FT-IR)(Perkin Elmer社製、商品名:「Frontier」)を用い、偏光された赤外光を測定光として、偏光子表面の全反射減衰分光(ATR:attenuated total reflection)測定を行った。偏光子を密着させる結晶子はゲルマニウムを用い、測定光の入射角は45°入射とした。配向関数の算出は以下の手順で行った。入射させる偏光された赤外光(測定光)は、ゲルマニウム結晶のサンプルを密着させる面に平行に振動する偏光(s偏光)とし、測定光の偏光方向に対し、偏光子の延伸方向を垂直(⊥)および平行(//)に配置した状態で各々の吸光度スペクトルを測定した。得られた吸光度スペクトルから、(3330cm-1強度)を参照とした(2941cm-1強度)Iを算出した。I⊥は、測定光の偏光方向に対し偏光子の延伸方向を垂直(⊥)に配置した場合に得られる吸光度スペクトルから得られる(2941cm-1強度)/(3330cm-1強度)である。また、I//は、測定光の偏光方向に対し偏光子の延伸方向を平行(//)に配置した場合に得られる吸光度スペクトルから得られる(2941cm-1強度)/(3330cm-1強度)である。ここで、(2941cm-1強度)は、吸光度スペクトルのボトムである、2770cm-1と2990cm-1をベースラインとしたときの2941cm-1の吸光度であり、(3330cm-1強度)は、2990cm-1と3650cm-1をベースラインとしたときの3330cm-1の吸光度である。得られたI⊥およびI//を用い、式1に従って配向関数fを算出した。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、偏光子中のPVAの主鎖(-CH2-)の振動起因の吸収といわれている。また、3330cm-1のピークは、PVAの水酸基の振動起因の吸収といわれている。
(式1)f=(3<cos2θ>-1)/2
=(1-D)/[c(2D+1)]
但し
c=(3cos2β-1)/2
で、上記のように2941cm-1を用いた場合、β=90°⇒y=-2×(1-D)/(2D+1)である。
θ:延伸方向に対する分子鎖の角度
β:分子鎖軸に対する遷移双極子モーメントの角度
D=(I⊥)/(I//)
I⊥:測定光の偏光方向と偏光子の延伸方向が垂直の場合の吸収強度
I//:測定光の偏光方向と偏光子の延伸方向が平行の場合の吸収強度
(7)クラック発生率
実施例および比較例で得られた偏光板(または位相差層付偏光板)の保護層表面に表面保護フィルムを仮着した。次いで、当該偏光板(または位相差層付偏光板)の粘着剤層にセパレーターを仮着した。この積層体を約130mm×約70mmに切り出した。このとき、偏光子の吸収軸が短手方向となるように切り出した。切り出した積層体の短辺の中央部に幅5mm、深さ(凹部の長さ)6.85mm、曲率半径2.5mmのU字ノッチを形成した。U字ノッチは、エンドミル加工により形成した。エンドミルの外径は4mm、送り速度は500mm/分、回転数は35000rpm、削り量および削り回数は粗削り0.2mm/回、仕上げ削り0.1mm/回の合計2回であった。U字ノッチを形成した積層体からセパレーターを剥離し、アクリル系粘着剤層を介してガラス板(厚み1.1mm)に貼り付けた。最後に、表面保護フィルムを剥離し、保護層/偏光子/粘着剤層/ガラス板(または保護層/偏光子/粘着剤層/位相差層/粘着剤層/ガラス板)の構成を有する試験サンプルを得た。この試験サンプルを-40℃で30分間保持した後85℃で30分間保持することを300サイクル繰り返すヒートショック試験に供し、試験後のL字クラック発生の有無を目視で確認した。この評価を3枚の偏光板(または位相差層付偏光板)を用いて行い、クラック(実質的には、L字クラック)の発生した偏光板(または位相差層付偏光板)の数を評価した。
【0126】
[実施例1]
1.偏光子の作製
熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理(処理条件:55W・min/m2)を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が40.5%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温62℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に延伸の総倍率が3.0倍となるように一軸延伸を行った(水中延伸処理:水中延伸処理における延伸倍率は1.25倍)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は2%であった。
このようにして、樹脂基材上に厚み7.4μmの偏光子を形成した。
【0127】
2.偏光板の作製
ビフェニル骨格を有するエポキシ樹脂(三菱ケミカル社製、商品名:jER(登録商標) YX4000)15部とオキセタン樹脂(東亞合成社製、商品名:アロンオキセタン(登録商標) OXT-221)10重量部と、をメチルエチルケトン73部に溶解し、エポキシ樹脂溶液を得た。得られたエポキシ樹脂溶液に、光カチオン重合開始剤(サンアプロ社製、商品名:CPI(登録商標)-100P)2部を添加し、保護層形成組成物を得た。得られた保護層形成組成物を、上記1.で得られた樹脂基材/偏光子の積層体の偏光子表面に直接(すなわち、易接着層を形成せずに)ワイヤーバーを用いて塗布し、塗布膜を60℃で3分間乾燥した。次いで、高圧水銀ランプを用いて積算光量が600mJ/cm2となるよう紫外線を照射し、保護層を形成した。保護層の厚みは3μmであった。次いで、樹脂基材を剥離し、剥離面にアクリル系粘着剤層(厚み15μm)を設けた。このようにして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0128】
[実施例2~4]
ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:7.4μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0129】
[実施例5]
水中延伸の延伸倍率を1.46倍としたこと(結果として、延伸の総倍率を3.5倍としたこと)以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:6.7μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0130】
[実施例6-1]
ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例5と同様にして、樹脂基材上に偏光子(厚み:6.7μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0131】
[実施例6-2]
実施例6-1と同様にして樹脂基材/偏光子(厚み:6.7μm)の積層体を得た。一方、エポキシ樹脂(三菱ケミカル株式会社製、商品名:jER(登録商標) YX6954BH30、重量平均分子量:36000、エポキシ当量:13000)20部をメチルエチルケトン80部に溶解し、エポキシ樹脂溶液(20%)を得た。このエポキシ樹脂溶液を、上記積層体の偏光子表面にワイヤーバーを用いて塗布し、塗布膜を60℃で3分間乾燥して、塗布膜の固化物として構成される保護層を形成した。保護層の厚みは3μmであった。次いで、樹脂基材を剥離し、剥離面に実施例1と同様のアクリル系粘着剤層を設けた。このようにして、保護層(エポキシ樹脂の塗布膜の固化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0132】
[実施例6-3]
実施例6-1と同様にして樹脂基材/偏光子(厚み:6.7μm)の積層体を得た。得られた積層体の偏光子面に、易接着層としてポリウレタン系の水系分散樹脂(第一工業製薬社製、製品名:スーパーフレックスSF210)を厚みが0.1μmになるように塗布し、易接着層を形成した。一方、100%ポリメチルメタクリレートであるアクリル系樹脂(楠本化成社製、製品名:B-728)20重量部をメチルエチルケトン80重量部に溶解し、アクリル系樹脂溶液(20%)を得た。このアクリル系樹脂溶液を、易接着層表面にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、塗布膜の固化物として構成される保護層を形成した。保護層の厚みは2μmであった。さらに、保護層の易接着層と反対側の面にさらにハードコート層(厚み3μm)を形成した。ハードコート(HC)層は、ジメチロール-トリシクロデカンジアクリレート(共栄社化学製、商品名:ライトアクリレートDCP-A)70重量部、イソボルニルアクリレート(共栄社化学製、商品名:ライトアクリレートIB-XA)20重量部、1,9-ノナンジオールジアクリレート(共栄社化学製、商品名:ライトアクリレート1.9NA-A)10重量部、さらに、光重合開始剤(BASF社製、商品名:イルガキュア907)3重量部を、適当な溶媒を用いて混合し、得られた塗工液を、硬化後に3μmになるように保護層面上に塗布し、次いで、溶媒を乾燥させ、高圧水銀ランプを用いて積算光量300mJ/cm2となるよう紫外線を窒素雰囲気下にて照射すること形成した。最後に、樹脂基材を剥離し、剥離面に実施例1と同様のアクリル系粘着剤層を設けた。このようにして、HC層/保護層(アクリル樹脂の塗布膜の固化層)/易接着層/偏光子/粘着剤層の構成を有する偏光板を得た。
【0133】
[実施例7~8]
ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例5と同様にして、樹脂基材上に偏光子(厚み:6.7μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0134】
[実施例9~12]
水中延伸の延伸倍率を1.67倍としたこと(結果として、延伸の総倍率を4.0倍としたこと)、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:6.2μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0135】
[実施例13~16]
水中延伸の延伸倍率を1.88倍としたこと(結果として、延伸の総倍率を4.5倍としたこと)、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:6.0μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0136】
[比較例1]
水中延伸の延伸倍率を2.29倍としたこと(結果として、延伸の総倍率を5.5倍としたこと)以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:5.5μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0137】
[比較例2-1]
ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は比較例1と同様にして、樹脂基材上に偏光子(厚み:5.5μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0138】
[比較例2-2]
実施例6-2と同様のエポキシ樹脂溶液を用いて保護層を形成したこと以外は比較例2-1と同様にして、保護層(エポキシ樹脂の塗布膜の固化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0139】
[比較例2-3]
実施例6-3と同様のアクリル樹脂溶液を用いて保護層を形成したこと以外は比較例2-1と同様にして、保護層(アクリル樹脂の塗布膜の固化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0140】
[比較例3~4]
ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は比較例1と同様にして、樹脂基材上に偏光子(厚み:5.5μm)を形成した。以下の手順は実施例1と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層の構成を有する偏光板を得た。
【0141】
[実施例17]
1.位相差層を構成する位相差フィルムの作製
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
【0142】
得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、所定の位相差が得られるように調整しながら延伸し、厚み48μmの位相差フィルムを得た。延伸条件は、幅方向に、延伸温度143℃、延伸倍率2.8倍であった。得られた位相差フィルムのRe(550)は141nmであり、Re(450)/Re(550)は0.86であり、Nz係数は1.12であった。
【0143】
2.位相差層付偏光板の作製
実施例6-1と同様にして樹脂基材/偏光子(厚み:6.7μm)の積層体を得た。積層体の偏光子表面に実施例1と同様にして保護層(エポキシ樹脂の光カチオン硬化層)を形成した。次いで、樹脂基材を剥離し、剥離面に上記で得られた位相差フィルム(位相差層)を、厚み5μmのアクリル系粘着剤層を介して貼り合わせた。その際、位相差層の遅相軸と偏光子の吸収軸とが45°の角度をなすようにして貼り合わせた。最後に、位相差層表面に実施例1と同様のアクリル系粘着剤層を設けた。このようにして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層/位相差層/粘着剤層の構成を有する位相差層付偏光板を得た。
【0144】
[比較例5]
比較例2-1と同様にして樹脂基材/偏光子(厚み:5.5μm)の積層体を得た。この積層体を用いたこと以外は実施例17と同様にして、保護層(エポキシ樹脂の光カチオン硬化層)/偏光子/粘着剤層/位相差層/粘着剤層の構成を有する位相差層付偏光板を得た。
【0145】
実施例および比較例で得られた偏光板または位相差層付偏光板を上記(2)~(7)の評価に供した。結果を表1に示す。
【0146】
【0147】
表1から明らかなように、実施例の偏光板および位相差層付偏光板は、異形加工部(U字ノッチ部分)のクラック発生が抑制されている。
【0148】
また、
図8~
図10にそれぞれ、実施例および比較例で得られた偏光子の単体透過率とPVAのΔn、面内位相差または配向関数との関係を示す。
図8~
図10に示される通り、複屈折、面内位相差または配向関数が同程度(結果として、配向度が同程度)であったとしても、単体透過率が高い場合には、異形加工部においてクラックが発生しやすいことがわかる。例えば、
図8においてΔnが35(×10
-3)付近を見ると、単体透過率が約44.2%より大きくなると式(1)を満たさなくなり、結果として、比較例4のようにクラックが発生する。よって、異形加工部におけるクラックの発生を効果的に抑制するためには、PVA系樹脂の配向度に加えて単体透過率(結果として、二色性物質の吸着量)の調整も重要であることがわかる。また、式(1)、式(2)および/または式(3)を満たす偏光子は、これらの調整が好適に行われたものであり、異形加工部におけるクラックの発生が好適に抑制され得ることがわかる。
本発明の偏光板は、画像表示装置に用いられ、特に、自動車のメーターパネル、スマートフォン、タブレット型PC、スマートウォッチ等の異形を有する画像表示装置に好適に用いられる。