(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024116005
(43)【公開日】2024-08-27
(54)【発明の名称】ハイブリッド車両の制御装置
(51)【国際特許分類】
B60W 10/08 20060101AFI20240820BHJP
B60K 6/46 20071001ALI20240820BHJP
B60W 10/06 20060101ALI20240820BHJP
B60W 20/17 20160101ALI20240820BHJP
B60L 50/61 20190101ALI20240820BHJP
B60L 58/10 20190101ALI20240820BHJP
【FI】
B60W10/08 900
B60K6/46 ZHV
B60W10/06 900
B60W20/17
B60L50/61
B60L58/10
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2023021966
(22)【出願日】2023-02-15
(71)【出願人】
【識別番号】000002967
【氏名又は名称】ダイハツ工業株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】山本 笙太
(72)【発明者】
【氏名】石淵 雅顕
(72)【発明者】
【氏名】吉井 侑典
(72)【発明者】
【氏名】藤本 隆志
(72)【発明者】
【氏名】鳥田 博幸
(72)【発明者】
【氏名】中本 和男
【テーマコード(参考)】
3D202
5H125
【Fターム(参考)】
3D202AA07
3D202BB05
3D202BB12
3D202BB18
3D202CC42
3D202DD01
3D202DD05
3D202DD06
3D202DD22
3D202DD24
3D202DD26
3D202DD45
5H125AA01
5H125AC08
5H125AC12
5H125BC05
5H125BD17
5H125CA09
5H125EE08
5H125EE09
5H125EE21
5H125EE52
(57)【要約】
【課題】シリーズ方式のハイブリッド車両において、エンジンの始動時に必要な電力出力を走行条件に応じた適切な値とすることで、EV走行領域を拡大する。
【解決手段】EV走行とHV走行のいずれかによって走行するハイブリッド車両の制御装置であって、EV走行をしている場合に、HV走行に切り替える必要があるか否かの判定を行うときに、少なくとも、現在の電池の電力出力と、内燃機関の始動時に必要な電力出力と、を用いて判定を行う。そのときに、内燃機関の始動に必要な発電用電動機への電力出力に関する第1のマップ化情報と、内燃機関の始動中のハイブリッド車両の走行に必要な駆動用電動機への電力出力に関する第2のマップ化情報と、発電用電動機による制振制御時に必要な電力出力に関する第3のマップ化情報と、に基づいて、内燃機関の始動時に必要な電力出力を算出する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
内燃機関と、前記内燃機関の動作時に前記内燃機関の動力を電力に変換可能であるとともに前記内燃機関の非動作時に電池からの電力を用いて前記内燃機関を始動可能な発電用電動機と、電力を用いて駆動輪に走行のための駆動力を供給する駆動用電動機と、前記発電用電動機および前記駆動用電動機に電力を出力可能な前記電池と、を備え、前記発電用電動機による発電を行わずに前記電池から供給される電力のみによって走行するEV(Electric Vehicle)走行と、前記発電用電動機により発電された電力および前記電池から供給される電力の両方によって走行するHV(Hybrid Vehicle)走行と、のいずれかによって走行するハイブリッド車両の制御装置であって、
前記EV走行をしている場合に、前記HV走行に切り替える必要があるか否かの判定を行うときに、少なくとも、現在の前記電池の電力出力と、前記内燃機関の始動時に必要な電力出力と、を用いて前記判定を行い、そのときに、
前記内燃機関の始動に必要な前記発電用電動機への電力出力に関する第1のマップ化情報と、
前記内燃機関の始動中の前記ハイブリッド車両の走行に必要な前記駆動用電動機への電力出力に関する第2のマップ化情報と、
前記発電用電動機による制振制御時に必要な電力出力に関する第3のマップ化情報と、
に基づいて、前記内燃機関の始動時に必要な電力出力を算出する、ハイブリッド車両の制御装置。
【請求項2】
前記第1のマップ化情報における電力出力は、固定値、または、前記内燃機関の始動時の前記内燃機関の状態に応じた変動値である、請求項1に記載のハイブリッド車両の制御装置。
【請求項3】
前記第2のマップ化情報における電力出力は、前記駆動用電動機の回転数が小さいほど大きく、かつ、前記駆動用電動機の要求トルクが大きいほど大きくなる変動値である、請求項1に記載のハイブリッド車両の制御装置。
【請求項4】
前記第3のマップ化情報における電力出力は、前記ハイブリッド車両の車速が大きいほど大きい変動値である、請求項1に記載のハイブリッド車両の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハイブリッド車両の制御装置に関する。
【背景技術】
【0002】
複数の動力源を備えるハイブリッド車両に搭載されるシステムとして、例えば、いわゆるシリーズ方式のハイブリッドシステムがある。シリーズ方式のハイブリッドシステムは、例えば、エンジンと、エンジンの動力で発電する発電モータと、走行のための駆動力を発生する駆動モータと、駆動モータなどに供給される電力を蓄える電池(バッテリ)と、を含む。以下、このようなシリーズ方式のハイブリッドシステムが搭載されたハイブリッド車両を、単に「ハイブリッド車両」と称する。また、電力出力を単に「電力」や「出力」とも称する。
【0003】
ハイブリッド車両は、EV(Electric Vehicle)走行と、HV(Hybrid Vehicle)走行と、のいずれかによって走行する。EV走行では、発電モータによる発電を行わずに、電池から供給される電力のみによって走行する。また、HV走行では、エンジンの動力によって発電モータにより発電された電力と、電池から供給される電力と、の両方によって走行する。
【0004】
そして、EV走行時に、電池出力が、必要な電力よりも小さくなった場合、エンジンを始動してHV走行に切り替える。必要な電力とは、例えば、走行に必要な電力、エンジンの始動時に必要な電力、マージン、損失(各種エネルギー損失)、電機負荷などの合計である。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2015-113068号公報
【特許文献2】特開2018-100013号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上述の従来技術では、「エンジンの始動時に必要な電力出力」は、考えられる最大値を元に固定値として設定されている。そのため、走行条件によってはエンジン始動が必要以上に早く実行され、EV走行領域(EV走行する場面)を狭くしてしまっている。また、搭載する電池が小さくなると、EV走行領域が縮小して、商品性が低下してしまう。
【0007】
そこで、本発明は、上述の事情に鑑みてなされたものであって、シリーズ方式のハイブリッド車両において、エンジンの始動時に必要な電力出力を走行条件に応じた適切な値とすることで、EV走行領域を拡大することができるハイブリッド車両の制御装置を提供することを課題とする。
【課題を解決するための手段】
【0008】
上述の課題を解決するために、本発明のハイブリッド車両の制御装置は、内燃機関と、前記内燃機関の動作時に前記内燃機関の動力を電力に変換可能であるとともに前記内燃機関の非動作時に電池からの電力を用いて前記内燃機関を始動可能な発電用電動機と、電力を用いて駆動輪に走行のための駆動力を供給する駆動用電動機と、前記発電用電動機および前記駆動用電動機に電力を出力可能な前記電池と、を備える。また、前記発電用電動機による発電を行わずに前記電池から供給される電力のみによって走行するEV走行と、前記発電用電動機により発電された電力および前記電池から供給される電力の両方によって走行するHV走行と、のいずれかによって走行する。前記EV走行をしている場合に、前記HV走行に切り替える必要があるか否かの判定を行うときに、少なくとも、現在の前記電池の電力出力と、前記内燃機関の始動時に必要な電力出力と、を用いて前記判定を行い、そのときに、前記内燃機関の始動に必要な前記発電用電動機への電力出力に関する第1のマップ化情報と、前記内燃機関の始動中の前記ハイブリッド車両の走行に必要な前記駆動用電動機への電力出力に関する第2のマップ化情報と、前記発電用電動機による制振制御時に必要な電力出力に関する第3のマップ化情報と、に基づいて、前記内燃機関の始動時に必要な電力出力を算出する。
【0009】
上記構成によれば、内燃機関の始動時に必要な電力出力を3種類のマップ化情報に細分化したことで、内燃機関の始動のための電力出力の閾値を走行条件に応じた適切な値とすることができる。これにより、EV走行領域を拡大することができる。
【0010】
また、前記ハイブリッド車両の制御装置において、前記第1のマップ化情報における電力出力は、固定値、または、前記内燃機関の始動時の前記内燃機関の状態に応じた変動値である。
【0011】
上記構成によれば、具体的に、適切な第1のマップ化情報を設定できる。
【0012】
また、前記ハイブリッド車両の制御装置において、前記第2のマップ化情報における電力出力は、前記駆動用電動機の回転数が小さいほど大きく、かつ、前記駆動用電動機の要求トルクが大きいほど大きくなる変動値である。
【0013】
上記構成によれば、具体的に、適切な第2のマップ化情報を設定できる。
【0014】
また、前記ハイブリッド車両の制御装置において、前記第3のマップ化情報における電力出力は、前記ハイブリッド車両の車速が大きいほど大きい変動値である。
【0015】
上記構成によれば、具体的に、適切な第3のマップ化情報を設定できる。
【発明の効果】
【0016】
本発明によれば、内燃機関の始動時に必要な電力出力を3種類のマップ化情報に細分化したことで、内燃機関の始動のための電力出力の閾値を走行条件に応じた適切な値とすることができる。これにより、EV走行領域を拡大することができる。
【図面の簡単な説明】
【0017】
【
図1】
図1は、実施形態のハイブリッド車両の要部構成の例を示す図である。
【
図2】
図2は、実施形態のハイブリッド車両における制御内容の特徴の概要の説明図である。
【
図3】
図3は、実施形態における第1のマップ化情報の例を示すグラフである。
【
図4】
図4は、実施形態における第2のマップ化情報の例などを示すグラフである。
【
図5】
図5は、実施形態における第3のマップ化情報の例などを示すグラフである。
【
図6】
図6は、実施形態におけるエンジン始動閾値の例などを示すグラフである。
【
図7】
図7は、実施形態のハイブリッド車両における処理を示すフローチャートである。
【発明を実施するための形態】
【0018】
以下に、図面を参照しながら、本発明のハイブリッド車両の制御装置の実施形態について説明する。なお、以下の実施形態によって本発明が限定されるものではなく、以下の実施形態における構成要素には、当業者が容易に想到できるもの、実質的に同一のもの、および、いわゆる均等の範囲のものが含まれる。さらに、以下の実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換、変更および組み合わせを行うことができる。
【0019】
図1は、実施形態のハイブリッド車両1の要部構成の例を示す図である。
図1を参照しながら、本実施形態にハイブリッド車両1の要部構成について説明する。
【0020】
ハイブリッド車両1は、シリーズ方式のハイブリッドシステム2を搭載している車両である。ハイブリッド車両1は、駆動輪17と、ECU(Electronic Control Unit:電子制御ユニット)31と、アクセルセンサ32と、ブレーキスイッチ33と、車速センサ34と、を備える。
【0021】
また、ハイブリッドシステム2は、エンジン11と、発電モータ12(MG1:発電用電動機)と、駆動モータ13(MG2:駆動用電動機)と、電池14と、PCU(Power Control Unit:パワーコントロールユニット)15と、を含む。
【0022】
エンジン11は、例えば、ガソリンエンジン等の内燃機関である。
【0023】
発電モータ12は、エンジン11の動作時にエンジン11の動力を電力に変換可能であるとともに、エンジン11の非動作時に電池14からの電力を用いてエンジン11を始動可能である。
【0024】
具体的には、発電モータ12は、エンジン11の動力を電力に変換するための構成で、例えば、永久磁石同期モータである。発電モータ12の回転軸は、エンジン11のクランクシャフトに、図示しないギヤを介して機械的に連結されている。例えば、エンジン11のクランクシャフトにエンジン出力ギヤが相対回転不能に支持され、発電モータ12の回転軸にモータギヤが相対回転不能に支持されて、エンジン出力ギヤとモータギヤとが噛合している。
【0025】
駆動モータ13は、電池14からの電力などを用いて駆動輪17に走行のための駆動力を供給する。具体的には、駆動モータ13は、例えば、発電モータ12よりも大型の永久磁石同期モータである。駆動モータ13の回転軸は、駆動輪17を回転駆動させるための駆動系16に連結されている。駆動系16は、デファレンシャルギヤを含む。駆動モータ13の動力は、デファレンシャルギヤに伝達され、デファレンシャルギヤから左右の前輪または後輪からなる駆動輪17に分配されて伝達される。これによって、左右の駆動輪17が回転し、ハイブリッド車両1が前進または後進する。
【0026】
電池14は、発電モータ12および駆動モータ13に電力を出力可能な構成である。具体的には、電池14は、例えば、複数の二次電池(例えばリチウムイオン電池)を組み合わせた組電池である。電池14は、例えば、約200~350[V]の直流電力を出力する。
【0027】
PCU15は、発電モータ12および駆動モータ13の駆動を制御するためのユニットである。PCU15は、第1インバータ21と、第2インバータ22と、コンバータ23と、を備える。
【0028】
第1インバータ21は、コンバータ23からの直流電力を交流電力に変換し、発電モータ12により発電された交流電力を直流電力に変換するインバータ装置である。
【0029】
第2インバータ22は、コンバータ23からの直流電力を交流電力に変換し、駆動モータ13による回生運転により発生した交流電力を直流電力に変換するインバータ装置である。
【0030】
コンバータ23は、電池14から出力される直流電力を昇圧し、または、第1インバータ21や第2インバータ22から出力される直流電力を降圧するコンバータ装置である。
【0031】
エンジン11の始動時には、電池14から出力される直流電力がコンバータ23により昇圧されて、昇圧された直流電力が第1インバータ21で交流電力に変換され、変換された交流電力が発電モータ12に供給される。これによって、発電モータ12が力行運転されて、エンジン11が発電モータ12によりモータリング(クランキング)される。モータリングによりエンジン11のクランクシャフトの回転数が始動に必要な回転数まで上昇した状態で、エンジン11の点火プラグがスパークされると、エンジン11が始動する。
【0032】
ハイブリッド車両1の走行時には、駆動モータ13が力行運転されて、駆動モータ13が動力を発生する。
【0033】
ハイブリッド車両1の走行時において、駆動モータ13に要求される出力が電池14の出力より小さいときには、ハイブリッド車両1は、EV(Electric Vehicle)走行を行う。すなわち、EV走行では、エンジン11が停止し、発電モータ12による発電を行わず、電池14からコンバータ23および第2インバータ22を介して供給される電力のみによって駆動モータ13が駆動される。
【0034】
一方、ハイブリッド車両1の走行時において、駆動モータ13に要求される出力が電池14の出力を上回るときには、ハイブリッド車両1は、HV(Hybrid Vehicle)走行を行う。すなわち、HV走行では、発電モータ12により発電された電力、および、電池14から供給される電力の両方によって駆動モータ13が駆動される。
【0035】
具体的には、HV走行では、エンジン11が稼動状態となり、発電モータ12が発電運転(回生運転)されることにより、エンジン11の動力が発電モータ12で交流電力に変換される。そして、発電モータ12からの交流電力が第1インバータ21で直流電力に変換され、当該直流電力が第2インバータ22で交流電力に変換されて、当該交流電力が駆動モータ13に供給される。当該交流電力と電池14からの電力により、駆動モータ13が駆動される。
【0036】
ハイブリッド車両1の減速時には、駆動モータ13が回生運転されて、駆動輪17から駆動モータ13に伝達される動力が交流電力に変換される。このとき、駆動モータ13が駆動系16の抵抗となり、その抵抗がハイブリッド車両1を制動する制動力(回生制動力)として作用する。このとき、PCU15では、駆動モータ13から第2インバータ22に供給される交流電力が第2インバータ22で直流電力に変換され、当該直流電力がコンバータ23で降圧される。そして、降圧後の直流電力が電池14に供給されることにより、電池14が充電される。
【0037】
ECU31は、ハイブリッドシステム2を制御する制御装置である。ECU31には、アクセルセンサ32、ブレーキスイッチ33および車速センサ34が接続されている。ECU31は、アクセルセンサ32から出力される検出信号から、アクセルペダルの最大操作量に対する現在の操作量の割合であるアクセル開度を求める。また、ECU31は、車速センサ34から出力される検出信号から、当該検出信号(パルス信号)の周波数を求めて、当該周波数を車速に換算する。
【0038】
アクセルセンサ32は、運転者により足踏み操作されるアクセルペダルの操作量(アクセル開度)に応じた検出信号を出力するセンサである。
【0039】
ブレーキスイッチ33は、運転者により足踏み操作されるブレーキペダルの操作量または踏み込んだか否かを示すブレーキ信号を出力するセンサである。
【0040】
車速センサ34は、ハイブリッド車両1の走行に伴って回転する回転体の回転に同期したパルス信号を検出信号として出力するセンサである。なお、ECU31が車速を認識する手法は、車速センサ34から取得した検出信号を用いる手法に限定されず、ほかに、例えば、PCU15やVSC(Vehicle Stability Control:車両安定制御システム)からCAN(Controller Area Network)経由で取得した車速関連情報を用いる手法などであってもよい。
【0041】
ハイブリッド車両1は、ECU31を含む複数のECUを搭載している。各ECUは、マイコン(マイクロコントローラユニット)を備える。マイコンには、例えば、CPU(Central Processing Unit)、フラッシュメモリ等の不揮発性メモリ、DRAM(Dynamic Random Access Memory)等の揮発性メモリなどが内蔵されている。複数のECUは、CAN通信プロトコルによる双方向通信が可能に相互接続されている。各ECUには、制御に必要な各種センサが接続されており、その接続されたセンサの検出信号が入力される。また、各ECUには、各種センサから入力される検出信号以外に制御に必要な情報が他のECUから入力される。
【0042】
ここで、
図2は、実施形態のハイブリッド車両1における制御内容の特徴の概要の説明図である。ハイブリッド車両1では、EV走行時に、例えば、電池14の出力(符号A10)が、走行に必要な電力出力(符号A1)、エンジン11の始動時に必要な出力(符号A2)、マージン(符号A3)、損失(符号A4)(各種エネルギー損失)、電機負荷(符号A5)などの合計よりも小さくなった場合、エンジン11を始動してHV走行に切り替える。
【0043】
そして、従来技術では、「エンジンの始動時に必要な出力」は、考えられる最大値を元に固定値として設定されていた。そのため、走行条件によってはエンジン始動が必要以上に早く実行され、EV走行領域を狭くしてしまっていた。
【0044】
そこで、以下では、エンジンの始動時に必要な電力出力を走行条件に応じた適切な値とすることで、EV走行領域を拡大することができる技術について説明する。
【0045】
ハイブリッド車両1がEV走行をしている場合に、ECU31は、HV走行に切り替える必要があるか否かの判定を行うときに、少なくとも、現在の電池14の電力出力と、エンジン11の始動時に必要な電力出力と、を用いて判定を行う。ECU31は、そのときに、エンジン11の始動時に必要な電力出力として、細分化した3種類のマップ化情報である第1のマップ化情報(符号P1)と、第2のマップ化情報(符号P2)と、第3のマップ化情報(符号P3)と、を用いる。なお、マップ化情報とは、所定のパラメータの値に対して他のパラメータの値を対応付けた情報であり、テーブル形式、関数形式など、形式は任意である。
【0046】
ここで、
図3は、実施形態における第1のマップ化情報の例を示すグラフである。第1のマップ化情報は、エンジン11の始動に必要な発電モータ12への電力出力に関する情報である。
【0047】
第1のマップ化情報における電力出力は、例として、車速(横軸)に対して、固定値(縦軸)として設定される。
【0048】
ただし、第1のマップ化情報における電力出力は、これに限定されず、エンジン11の始動時のエンジン11の状態に応じた変動値であってもよい。具体的には、例えば、第1のマップ化情報における電力出力は、エンジン11に関係する液体(エンジンオイル、冷却水など)の温度が高いほど小さな変動値としてもよい。理由は、液体の温度が高いほど、エンジン11の始動に必要な発電モータ12への出力は小さいと考えられるからである。
【0049】
また、例えば、第1のマップ化情報における電力出力は、エンジン11が完全停止中か否かに応じた変動値としてもよい。また、エンジン11が惰性による回転中の場合はその回転速度に応じた変動値としてもよい。理由は、それらに応じて、エンジン11の始動に必要な発電モータ12への出力が異なると考えられるからである。
【0050】
このようにして、適切な内容の第1のマップ化情報を設定できる。
【0051】
次に、
図4は、実施形態における第2のマップ化情報の例などを示すグラフである。(a)、(b)において、横軸は時間で、縦軸は各パラメータの値である。なお、縦軸における数の正負は、0に対して上側が正で、下側が負である。(a)は、エンジン11の始動タイミングが早くて、電力不足による車体の急減速が発生しない場合である。一方、(b)は、エンジン11の始動タイミングが遅くて、電力不足による車体の急減速が発生する場合である。
【0052】
符号G11は、車速を示す。符号G12は、エンジン11の回転数を示す。
【0053】
符号G13は、駆動モータ13のトルクの上限(ガード値)を示す。符号G14は、駆動モータ13の要求トルクを示す。符号G15は、駆動モータ13の実トルクを示す。
【0054】
符号G16は、電池14の出力の上限を示す。符号G17は、電池14の出力を示す。符号G18は、駆動モータ13の電力(0より上側が使用電力。0より下側が発電電力。以下、同様)を示す。符号G19は、発電モータ12の電力を示す。
【0055】
制御の概要は、次の通りである。まず、(a)の場合を説明する。アクセルONとなると、駆動モータ13の要求トルク(符号G14)が上昇し、それに対するフィードフォワード制御によって駆動モータ13の実トルク(符号G15)が上昇する。
【0056】
エンジン11を始動させるタイミングになると、その後、エンジン11の始動のために発電モータ12の電力(符号G19)が上昇する。これに応じて、駆動モータ13のトルクの上限(符号G13)が一時的に減少し、駆動モータ13の実トルク(符号G15)も一時的に減少するが、減少の度合いが小さいので、車体の急減速は発生しない。
【0057】
次に、(b)の場合を説明する。(a)の場合と同様に事項は、説明を適宜省略する。エンジン11を始動させるタイミングになると、その後、エンジン11の始動のために発電モータ12の電力(符号G19)が上昇する。これに応じて、駆動モータ13のトルクの上限(符号G13)が一時的に減少し、駆動モータ13の実トルク(符号G15)も一時的に減少し、減少の度合いが大きいので、車体の急減速が発生する。
【0058】
このような車両性能を踏まえて、エンジン11の始動タイミングを早くできるような第2のマップ化情報を設定する。第2のマップ化情報は、エンジン11の始動中のハイブリッド車両1の走行に必要な駆動モータ13への電力出力に関する情報である。
【0059】
第2のマップ化情報における電力出力は、例として、駆動モータ13の回転数が小さいほど大きく、かつ、駆動モータ13の要求トルクが大きいほど大きくなる変動値として設定される。具体的には、(c)に示す通りである。(c)では、横軸は駆動モータ13の回転数で、縦軸は駆動モータ13への出力である。また、符号G21~符号G29は、それぞれ、要求トルク(Nm)が、20、40、60、80,100、120、140、160、170の場合を示す。(c)のグラフに示すデータは、例えば、実測データやシミュレーションデータによって算出できる。
【0060】
このようにして、適切な内容の第2のマップ化情報を設定できる。
【0061】
次に、
図5は、実施形態における第3のマップ化情報の例などを示すグラフである。(a)において、横軸は時間で、縦軸は各パラメータの値である。なお、縦軸における数の正負は、0に対して上側が正で、下側が負である。
【0062】
符号G31は、電池14の出力の上限を示す。符号G32は、駆動モータ13の電力の上限を示す。符号G33は、電池14の出力を示す。
【0063】
符号G34は、駆動モータ13の電力を示す。符号G35は、発電モータ12の電力を示す。
【0064】
制御の概要は、次の通りである。基本的には、駆動モータ13の電力(符号G34)が駆動モータ13の電力の上限(符号G32)を超えないように制御するとともに、電池14の出力(符号G33)が電池14の出力の上限(符号G31)を超えないように制御する。
【0065】
なお、駆動モータ13の電力(符号G34)が一時的に駆動モータ13の電力の上限(符号G32)を超えているが、電池14の出力(符号G33)が電池14の出力の上限(符号G31)を超えていないので、問題はない。
【0066】
そして、様々な走行パターンで得られたデータを用いて、駆動モータ13による制振制御時に必要な電力出力に関する第3のマップ化情報を設定する。例えば、第3のマップ化情報における電力出力は、ハイブリッド車両1の車速が大きいほど大きい変動値である。
【0067】
具体的には、(b)、(c)に示す通りである。(b)では、縦軸は駆動モータ13による制振制御時に用いた出力で、横軸は車速である。プロットされている複数の点に対して、例えば、最小二乗法などを用いて回帰線(回帰直線または回帰曲線)を算出する。
【0068】
(c)では、縦軸は駆動モータ13による制振制御時に必要な出力で、横軸は車速である。このようにして、適切な内容の第3のマップ化情報を設定できる。
【0069】
次に、
図6は、実施形態におけるエンジン始動閾値の例などを示すグラフである。(a)は、第1のマップ化情報、第2のマップ化情報、第3のマップ化情報を合計したものである。縦軸は出力で、横軸は駆動モータ13の回転数である。また、符号G41~符号G49は、それぞれ、要求トルク(Nm)が、20、40、60、80,100、120、140、160、170の場合を示す。なお、符号G400は、従来技術における対応値である。
【0070】
(b)は、電池14の出力から(a)の値を引いたものである。縦軸は出力で、横軸は駆動モータ13の回転数である。また、符号G51~符号G59は、それぞれ、要求トルク(Nm)が、20、40、60、80,100、120、140、160、170の場合を示す。なお、符号G500は、従来技術における対応値である。
【0071】
(b)のグラフの値から、さらに、走行に必要な電力出力、マージン、損失、電機負荷などを引いたものが、エンジン11の始動の閾値となる。このようにして、適切な閾値を設定できる。
【0072】
次に、
図7は、実施形態のハイブリッド車両1における処理を示すフローチャートである。
【0073】
まず、ステップS1において、ECU31は、ハイブリッド車両1がEV走行中か否かを判定し、Yesの場合はステップS2に進み、Noの場合は処理を終了する。
【0074】
ステップS2において、ECU31は、走行に必要な出力(
図2の符号A1)を算出する。
【0075】
次に、ステップS3において、ECU31は、マップ化情報に基づいて、エンジン11の始動時に必要な出力(
図2の符号A2)を算出する。具体的には、上述したように、ECU31は、エンジン11の始動時に必要な電力出力として、細分化した3種類のマップ化情報である第1のマップ化情報(
図3)と、第2のマップ化情報(
図4(c))と、第3のマップ化情報(
図5(c))と、を用いて、エンジン11の始動時に必要な出力(
図6(a))を算出する。
【0076】
次に、ステップS4において、ECU31は、マージン、損失、電機負荷を取得する。
【0077】
次に、ステップS5において、ECU31は、ステップS2~S4で算出または取得したデータ(走行に必要な出力、エンジン11の始動時に必要な出力、マージン、損失、電機負荷)の合計値を算出する。
【0078】
次に、ステップS6において、ECU31は、現在の電池14の出力を取得する。
【0079】
次に、ステップS7において、ECU31は、現在の電池14の出力がステップS5で算出した合計値よりも小さいか否かを判定し、Yesの場合はステップS8に進み、Noの場合は処理を終了する。
【0080】
ステップS8において、ECU31は、ハイブリッド車両1について、EV走行からHV走行に切り替える。
【0081】
このように、本実施形態のハイブリッド車両1の制御装置によれば、エンジン11の始動時に必要な電力出力を3種類のマップ化情報に細分化したことで、エンジン11の始動のための電力出力の閾値を走行条件に応じた適切な値とすることができる。つまり、上述したように、適切な内容の第1のマップ化情報、第2のマップ化情報、第3のマップ化情報を用いることで、エンジン11の始動のための電力出力の閾値を走行条件に応じた適切な値とすることができる。これにより、EV走行領域を拡大することができる。なお、第1のマップ化情報、第2のマップ化情報、第3のマップ化情報のうち、特にEV走行領域の拡大に寄与するのは、第2のマップ化情報である。
【0082】
また、具体的には、例えば、エンジン始動時に必要な出力として常に最悪値を見込まなくて良くなるため、低車速域ではアクセル低~中開度加速時のEV走行領域が拡大可能である(
図6(b)。従来技術の対応値である符号G500との比較)。また、中~高車速域ではアクセル低~高開度加速時のEV走行領域が拡大可能である(
図6(b)。従来技術の対応値である符号G500との比較)。
【0083】
また、搭載する電池14が小さくなった場合でも、EV走行領域の縮小を抑制でき、商品性の低下を抑制できる。
【0084】
また、EV走行領域が拡大することにより、燃費が向上し、商品性が向上する。
【0085】
また、本実施形態のECU31で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD(Compact Disc)-ROM(Read Only Memory)、フレキシブルディスク(FD)、CD-R(Recordable)、DVD(Digital Versatile Disk)等のコンピュータ装置で読み取り可能な記録媒体に記録して提供することができる。また、当該プログラムを、インターネット等のネットワーク経由で提供または配布するようにしてもよい。
【0086】
本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【0087】
例えば、各マップ化情報の縦軸や横軸の物理量は、上述のものに限定されない。例えば、
図4(c)に示す第2のマップ化情報では、横軸は、駆動モータ13の回転数に限定されず、ほかに、駆動モータ13の要求トルクや車両加速度などであってもよい。
【符号の説明】
【0088】
1…ハイブリッド車両、11…エンジン、12…発電モータ、13…駆動モータ、14…電池、15…PCU、16…駆動系、17…駆動輪、21…第1インバータ、22…第2インバータ、23…コンバータ、31…ECU、32…アクセルセンサ、33…ブレーキスイッチ、34…車速センサ