(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024011621
(43)【公開日】2024-01-25
(54)【発明の名称】距離画像撮像装置、及び距離画像撮像方法
(51)【国際特許分類】
G01S 17/894 20200101AFI20240118BHJP
G01S 7/4865 20200101ALI20240118BHJP
【FI】
G01S17/894
G01S7/4865
【審査請求】未請求
【請求項の数】19
【出願形態】OL
(21)【出願番号】P 2022113790
(22)【出願日】2022-07-15
(71)【出願人】
【識別番号】000003193
【氏名又は名称】TOPPANホールディングス株式会社
(74)【代理人】
【識別番号】100149548
【弁理士】
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100139686
【弁理士】
【氏名又は名称】鈴木 史朗
(74)【代理人】
【識別番号】100169764
【弁理士】
【氏名又は名称】清水 雄一郎
(74)【代理人】
【識別番号】100147267
【弁理士】
【氏名又は名称】大槻 真紀子
(72)【発明者】
【氏名】高橋 聡
【テーマコード(参考)】
5J084
【Fターム(参考)】
5J084AA05
5J084AD02
5J084BA04
5J084BA07
5J084BA36
5J084BA40
5J084BB02
5J084CA65
5J084CA67
5J084EA02
(57)【要約】
【課題】マルチパスの傾向に応じた対応を行う。
【解決手段】照射時間と蓄積時間の組合せが第1条件であり、基準となる照射タイミングと蓄積タイミングとの時間差が第1時間差であり、前記第1時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第1測定を行い、前記照射時間と前記蓄積時間の組合せが第2条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第2時間差であり、前記第2時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第2測定を行い、前記第2測定では、前記第2条件又は前記第2時間差の何れか一方が前記第1測定とは異なる測定を行い、前記第1測定及び前記第2測定のそれぞれにて蓄積された電荷量に基づく特徴量の傾向に基づいて前記被写体までの距離を算出する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
被写体に光パルスを照射する光源部と、
入射した光に応じた電荷を発生する光電変換素子及び電荷を蓄積する複数の電荷蓄積部を具備する画素と、前記光パルスを照射する照射タイミングに同期させた蓄積タイミングで前記電荷蓄積部のそれぞれに電荷を振り分けて蓄積させる画素駆動回路と、
前記電荷蓄積部の各々に蓄積される電荷量に基づいて前記被写体までの距離を算出する距離画像処理部と、
を備え、
前記距離画像処理部は、
前記光パルスを照射する照射時間と前記電荷蓄積部のそれぞれに電荷を振り分けて蓄積させる蓄積時間の組合せが第1条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第1時間差であり、前記第1時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第1測定を行い、
前記照射時間と前記蓄積時間の組合せが第2条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第2時間差であり、前記第2時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第2測定を行い、
前記第2測定では、前記第2条件又は前記第2時間差の何れか一方が前記第1測定とは異なる測定を行い、
前記第1測定及び前記第2測定のそれぞれにて蓄積された電荷量に基づく特徴量を抽出し、前記特徴量の傾向に基づいて前記被写体までの距離を算出する、
距離画像撮像装置。
【請求項2】
前記距離画像処理部は、
前記第2測定では、前記第2時間差が前記第1測定と同じであり、前記第2条件が前記第1測定とは異なる測定を行う、
請求項1に記載の距離画像撮像装置。
【請求項3】
前記距離画像処理部は、
前記第2測定では、前記第2時間差が前記第1測定と異なり、前記第2条件が前記第1測定と同じである測定を行う、
請求項1に記載の距離画像撮像装置。
【請求項4】
前記距離画像処理部は、前記光パルスの反射光がシングルパスにて前記画素に受光されたか、前記光パルスの反射光がマルチパスにて前記画素に受光されたかを判定するマルチパス判定を行い、前記マルチパス判定の結果に応じて前記被写体までの距離を算出する、
請求項1に記載の距離画像撮像装置。
【請求項5】
前記距離画像処理部は、前記照射時間と前記蓄積時間の組み合わせ毎に、前記反射光がシングルパスで前記画素に受光された場合における前記照射タイミングと前記蓄積タイミングとの時間差と前記特徴量とが対応付けられているルックアップテーブルを参照し、前記ルックアップテーブルの傾向と前記特徴量の傾向との類似度合いに基づいて、前記マルチパス判定を行う、
請求項4に記載の距離画像撮像装置。
【請求項6】
前記ルックアップテーブルは、前記光パルスの形状、及び、前記照射時間と前記蓄積時間の組合せ毎に複数作成され、
前記距離画像処理部は、複数の前記ルックアップテーブルのうち、前記第1測定及び前記第2測定の測定条件のそれぞれに対応する前記ルックアップテーブルを用いて、前記マルチパス判定を行う、
請求項5に記載の距離画像撮像装置。
【請求項7】
前記特徴量は、前記電荷蓄積部のそれぞれに蓄積された電荷量のうち、少なくとも前記光パルスの反射光に対応する電荷量を用いて算出される値である、
請求項1に記載の距離画像撮像装置。
【請求項8】
前記画素には、第1電荷蓄積部、第2電荷蓄積部、第3電荷蓄積部、及び第4電荷蓄積部が設けられ、
前記距離画像処理部は、前記第1電荷蓄積部、前記第2電荷蓄積部、前記第3電荷蓄積部、又は前記第4電荷蓄積部の少なくともいずれかに前記光パルスの反射光に対応する電荷が蓄積されるタイミングにて、前記第1電荷蓄積部、前記第2電荷蓄積部、前記第3電荷蓄積部、前記第4電荷蓄積部の順に電荷を蓄積させ、
前記特徴量は、前記第1電荷蓄積部、前記第2電荷蓄積部、前記第3電荷蓄積部、及び前記第4電荷蓄積部のそれぞれに蓄積された電荷量を変数とする複素数である、
請求項1に記載の距離画像撮像装置。
【請求項9】
前記特徴量は、前記第1電荷蓄積部に蓄積された第1電荷量と前記第3電荷蓄積部に蓄積された第3電荷量との差分である第1変数を実部とし、前記第2電荷蓄積部に蓄積された第2電荷量と前記第4電荷蓄積部に蓄積された第4電荷量との差分である第2変数を虚部とする複素数で表される値である、
請求項8に記載の距離画像撮像装置。
【請求項10】
前記距離画像処理部は、前記第1測定及び前記第2測定において、前記蓄積タイミングに対して前記照射タイミングを遅らせることにより、前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定を行う、
請求項1に記載の距離画像撮像装置。
【請求項11】
前記距離画像処理部は、シングルパスかマルチパスかを判定することなく前記被写体までの距離を算出する仮測定を行い、前記仮測定において算出された距離に応じて前記第1条件及び前記第2条件の少なくとも一方を決定する、
請求項2に記載の距離画像撮像装置。
【請求項12】
前記距離画像処理部は、前記仮測定において算出された距離に応じて、前記被写体が比較的近くに存在すると判定する場合、前記第2条件における前記照射時間と前記蓄積時間の組合せが前記第1条件よりも短い時間となるように前記第2条件を決定し、前記被写体が比較的遠くに存在すると判定する場合、前記第2条件における前記照射時間と前記蓄積時間の組合せが前記第1条件よりも長い時間となるように前記第2条件を決定する、
請求項11に記載の距離画像撮像装置。
【請求項13】
前記距離画像処理部は、シングルパスかマルチパスかを判定することなく前記被写体までの距離を算出する仮測定を行い、前記仮測定において算出された距離に応じて前記第2時間差を決定する、
請求項3に記載の距離画像撮像装置。
【請求項14】
前記距離画像処理部は、前記第2測定において算出した距離を、前記第2時間差に基づく距離に応じて補正し、補正後の距離を前記被写体までの距離とする、
請求項13に記載の距離画像撮像装置。
【請求項15】
前記距離画像処理部は、前記ルックアップテーブルの傾向と、前記複数の測定のそれぞれの前記特徴量の傾向との類似度合いを示す指標値を算出し、
前記指標値は、前記複数の測定のそれぞれから算出される前記特徴量である第1特徴量と、前記ルックアップテーブルにおいて前記複数の測定のそれぞれに対応する前記特徴量である第2特徴量との差分を、前記第2特徴量の絶対値で正規化した差分正規化値について、前記複数の測定のそれぞれの前記差分正規化値を加算した加算値であり、
前記距離画像処理部は、前記指標値が閾値を超えない場合に前記反射光がシングルパスにて前記画素に受光されたと判定し、前記指標値が前記閾値を超える場合に前記反射光がマルチパスにて前記画素に受光されたと判定する、
請求項5に記載の距離画像撮像装置。
【請求項16】
前記距離画像処理部は、前記反射光がマルチパスで前記画素に受光されたと判定した場合、マルチパスに含まれる光の経路のそれぞれに対応する距離を、最小二乗法を用いることにより算出する、
請求項4に記載の距離画像撮像装置。
【請求項17】
前記距離画像処理部は、前記仮測定において算出された距離に応じて、前記第1測定及び前記第2測定において前記光パルスを照射する強度を制御する、
請求項11に記載の距離画像撮像装置。
【請求項18】
前記光電変換素子によって発生された電荷を排出する電荷排出部を更に備え、
前記距離画像処理部は、前記蓄積タイミングとは異なるタイミングでは、前記光電変換素子によって発生された電荷が前記電荷排出部によって排出されるように制御する、
請求項1に記載の距離画像撮像装置。
【請求項19】
被写体に光パルスを照射する光源部と、入射した光に応じた電荷を発生する光電変換素子及び電荷を蓄積する複数の電荷蓄積部を具備する画素と、前記光パルスを照射する照射タイミングに同期させた蓄積タイミングで前記電荷蓄積部のそれぞれに電荷を振り分けて蓄積させる画素駆動回路と、前記電荷蓄積部の各々に蓄積される電荷量に基づいて前記被写体までの距離を算出する距離画像処理部と、を備える距離画像撮像装置が行う距離画像撮像方法であって、
前記距離画像処理部は、
前記光パルスを照射する照射時間と前記電荷蓄積部のそれぞれに電荷を振り分けて蓄積させる蓄積時間の組合せが第1条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第1時間差であり、前記第1時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第1測定を行い、
前記照射時間と前記蓄積時間の組合せが第2条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第2時間差であり、前記第2時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第2測定を行い、
前記第2測定では、前記第2条件又は前記第2時間差の何れか一方が前記第1測定とは異なる測定を行い、
前記第1測定及び前記第2測定のそれぞれにて蓄積された電荷量に基づく特徴量を抽出し、前記特徴量の傾向に基づいて前記被写体までの距離を算出する、
距離画像撮像方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、距離画像撮像装置、及び距離画像撮像方法に関する。
【背景技術】
【0002】
光の速度が既知であることを利用し、空間(測定空間)における光の飛行時間に基づいて測定器と対象物との距離を測定する、タイム・オブ・フライト(Time of Flight、以下「TOF」という)方式の距離画像撮像装置が実現されている(例えば、特許文献1参照)。このような距離画像撮像装置では、光パルスを照射した時点から被写体に反射した反射光が戻ってくるまでの遅延時間を、反射光を撮像素子に入射させて反射光の光量に応じた電荷を複数の電荷蓄積部に振り分けて蓄積させることによって求め、遅延時間と光速とを用いて被写体までの距離を計算する。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
距離画像撮像装置では、光パルスの光源と物体との間を直接往復した直接波(シングルパス)を画素が受光することを想定して距離を算出する演算式が定義されている。しかしながら、物体のコーナー部や、物体の表面が凹凸構造となっている部分などにおいて光パルスが多重反射し、直接波と間接波とが混在したマルチパスが受光される場合がある。このようなマルチパスを受光した場合、シングルパスを受光したとみなして距離を算出してしまうと、測定距離に誤差が生じてしまう。
一方、距離画像撮像装置では、測距範囲を広げるために被写体までの距離に応じて光パルスを照射する時間(照射時間)及び電荷蓄積部に電荷を蓄積させる時間(蓄積時間)を変更する場合がある。照射時間及び蓄積時間が変更されると、画素が受光するマルチパスの傾向が異なる可能性があり、このようなマルチパスの傾向に応じた対応を行うことが困難であった。
【0005】
本発明は、上記の課題に基づいてなされたものであり、マルチパスの傾向に応じた対応を行うことができる距離画像撮像装置、及び距離画像撮像方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の距離画像撮像装置は、被写体に光パルスを照射する光源部と、入射した光に応じた電荷を発生する光電変換素子及び電荷を蓄積する複数の電荷蓄積部を具備する画素と、前記光パルスを照射する照射タイミングに同期させた蓄積タイミングで前記電荷蓄積部のそれぞれに電荷を振り分けて蓄積させる画素駆動回路と、前記電荷蓄積部の各々に蓄積される電荷量に基づいて前記被写体までの距離を算出する距離画像処理部と、を備え、前記距離画像処理部は、前記光パルスを照射する照射時間と前記電荷蓄積部のそれぞれに電荷を振り分けて蓄積させる蓄積時間の組合せが第1条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第1時間差であり、前記第1時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第1測定を行い、前記照射時間と前記蓄積時間の組合せが第2条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第2時間差であり、前記第2時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第2測定を行い、前記第2測定では、前記第2条件又は前記第2時間差の何れか一方が前記第1測定とは異なる測定を行い、前記第1測定及び前記第2測定のそれぞれにて蓄積された電荷量に基づく特徴量を抽出し、前記特徴量の傾向に基づいて前記被写体までの距離を算出する、距離画像撮像装置。
【0007】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記第2測定では、前記第2時間差が前記第1測定と同じであり、前記第2条件が前記第1測定とは異なる測定を行う。
【0008】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記第2測定では、前記第2時間差が前記第1測定と異なり、前記第2条件が前記第1測定と同じである測定を行う。
【0009】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記光パルスの反射光がシングルパスにて前記画素に受光されたか、前記光パルスの反射光がマルチパスにて前記画素に受光されたかを判定するマルチパス判定を行い、前記マルチパス判定の結果に応じて前記被写体までの距離を算出する。
【0010】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記照射時間と前記蓄積時間の組み合わせ毎に、前記反射光がシングルパスで前記画素に受光された場合における前記照射タイミングと前記蓄積タイミングとの時間差と前記特徴量とが対応付けられているルックアップテーブルを参照し、前記ルックアップテーブルの傾向と前記特徴量の傾向との類似度合いに基づいて、前記マルチパス判定を行う。
【0011】
本発明の距離画像撮像装置では、前記ルックアップテーブルは、前記光パルスの形状、及び、前記照射時間と前記蓄積時間の組合せ毎に複数作成され、前記距離画像処理部は、複数の前記ルックアップテーブルのうち、前記第1測定及び前記第2測定の測定条件のそれぞれに対応する前記ルックアップテーブルを用いて、前記マルチパス判定を行う。
【0012】
本発明の距離画像撮像装置では、前記特徴量は、前記電荷蓄積部のそれぞれに蓄積された電荷量のうち、少なくとも前記光パルスの反射光に対応する電荷量を用いて算出される値である。
【0013】
本発明の距離画像撮像装置では、前記画素には、第1電荷蓄積部、第2電荷蓄積部、第3電荷蓄積部、及び第4電荷蓄積部が設けられ、前記距離画像処理部は、前記第1電荷蓄積部、前記第2電荷蓄積部、前記第3電荷蓄積部、又は前記第4電荷蓄積部の少なくともいずれかに前記光パルスの反射光に対応する電荷が蓄積されるタイミングにて、前記第1電荷蓄積部、前記第2電荷蓄積部、前記第3電荷蓄積部、前記第4電荷蓄積部の順に電荷を蓄積させ、前記特徴量は、前記第1電荷蓄積部、前記第2電荷蓄積部、前記第3電荷蓄積部、及び前記第4電荷蓄積部のそれぞれに蓄積された電荷量を変数とする複素数である。
【0014】
本発明の距離画像撮像装置では、前記特徴量は、前記第1電荷蓄積部に蓄積された第1電荷量と前記第3電荷蓄積部に蓄積された第3電荷量との差分である第1変数を実部とし、前記第2電荷蓄積部に蓄積された第2電荷量と前記第4電荷蓄積部に蓄積された第4電荷量との差分である第2変数を虚部とする複素数で表される値である。
【0015】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記第1測定及び前記第2測定において、前記蓄積タイミングに対して前記照射タイミングを遅らせることにより、前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定を行う。
【0016】
本発明の距離画像撮像装置では、前記距離画像処理部は、シングルパスかマルチパスかを判定することなく前記被写体までの距離を算出する仮測定を行い、前記仮測定において算出された距離に応じて前記第1条件及び前記第2条件の少なくとも一方を決定する。
【0017】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記仮測定において算出された距離に応じて、前記被写体が比較的近くに存在すると判定する場合、前記第2条件における前記照射時間と前記蓄積時間の組合せが前記第1条件よりも短い時間となるように前記第2条件を決定し、前記被写体が比較的遠くに存在すると判定する場合、前記第2条件における前記照射時間と前記蓄積時間の組合せが前記第1条件よりも長い時間となるように前記第2条件を決定する。
【0018】
本発明の距離画像撮像装置では、前記距離画像処理部は、シングルパスかマルチパスかを判定することなく前記被写体までの距離を算出する仮測定を行い、前記仮測定において算出された距離に応じて前記第2時間差を決定する。
【0019】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記第2測定において算出した距離を、前記第2時間差に基づく距離に応じて補正し、補正後の距離を前記被写体までの距離とする。
【0020】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記ルックアップテーブルの傾向と、前記複数の測定のそれぞれの前記特徴量の傾向との類似度合いを示す指標値を算出し、前記指標値は、前記複数の測定のそれぞれから算出される前記特徴量である第1特徴量と、前記ルックアップテーブルにおいて前記複数の測定のそれぞれに対応する前記特徴量である第2特徴量との差分を、前記第2特徴量の絶対値で正規化した差分正規化値について、前記複数の測定のそれぞれの前記差分正規化値を加算した加算値であり、前記距離画像処理部は、前記指標値が閾値を超えない場合に前記反射光がシングルパスにて前記画素に受光されたと判定し、前記指標値が前記閾値を超える場合に前記反射光がマルチパスにて前記画素に受光されたと判定する。
【0021】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記反射光がマルチパスで前記画素に受光されたと判定した場合、マルチパスに含まれる光の経路のそれぞれに対応する距離を、最小二乗法を用いることにより算出する。
【0022】
本発明の距離画像撮像装置では、前記距離画像処理部は、前記仮測定において算出された距離に応じて、前記第1測定及び前記第2測定において前記光パルスを照射する強度を制御する。
【0023】
本発明の距離画像撮像装置では、前記光電変換素子によって発生された電荷を排出する電荷排出部を更に備え、前記距離画像処理部は、前記蓄積タイミングとは異なるタイミングでは、前記光電変換素子によって発生された電荷が前記電荷排出部によって排出されるように制御する。
【0024】
本発明の距離画像撮像方法は、被写体に光パルスを照射する光源部と、入射した光に応じた電荷を発生する光電変換素子及び電荷を蓄積する複数の電荷蓄積部を具備する画素と、前記光パルスを照射する照射タイミングに同期させた蓄積タイミングで前記電荷蓄積部のそれぞれに電荷を振り分けて蓄積させる画素駆動回路と、前記電荷蓄積部の各々に蓄積される電荷量に基づいて前記被写体までの距離を算出する距離画像処理部と、を備える距離画像撮像装置が行う距離画像撮像方法であって、前記距離画像処理部は、前記光パルスを照射する照射時間と前記電荷蓄積部のそれぞれに電荷を振り分けて蓄積させる蓄積時間の組合せが第1条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第1時間差であり、前記第1時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第1測定を行い、前記照射時間と前記蓄積時間の組合せが第2条件であり、基準となる前記照射タイミングと前記蓄積タイミングとの時間差が第2時間差であり、前記第2時間差を基準として前記照射タイミングと前記蓄積タイミングとの時間差が互いに異なる複数の測定からなる第2測定を行い、前記第2測定では、前記第2条件又は前記第2時間差の何れか一方が前記第1測定とは異なる測定を行い、前記第1測定及び前記第2測定のそれぞれにて蓄積された電荷量に基づく特徴量を抽出し、前記特徴量の傾向に基づいて前記被写体までの距離を算出する。
【発明の効果】
【0025】
本発明によれば、マルチパスの傾向に応じた対応を行うことができる。
【図面の簡単な説明】
【0026】
【
図1】実施形態の距離画像撮像装置1の概略構成を示すブロック図である。
【
図2】実施形態の距離画像センサ32の概略構成を示すブロック図である。
【
図3】実施形態の画素321の構成の一例を示す回路図である。
【
図5】実施形態の距離画像処理部4が行う処理を説明する図である。
【
図6A】従来の距離画像撮像装置が被写体OBを測定する例を模式的に示す図である。
【
図6B】従来の距離画像撮像装置が被写体OBを測定する例を模式的に示す図である。
【
図7A】従来の距離画像撮像装置が被写体OBを測定する例を模式的に示す図である。
【
図7B】従来の距離画像撮像装置が被写体OBを測定する例を模式的に示す図である。
【
図8A】第1実施形態の測定方法を説明する図である。
【
図8B】第1実施形態の測定方法を説明する図である。
【
図9A】第1実施形態の測定方法を説明する図である。
【
図9B】第1実施形態の測定方法を説明する図である。
【
図10】実施形態の複素関数CP(φ)の例を示す図である。
【
図11】実施形態の複素関数CP(φ)の例を示す図である。
【
図12】実施形態の距離画像処理部4が行う処理を説明する図である。
【
図13】実施形態の距離画像処理部4が行う処理を説明する図である。
【
図14】実施形態の距離画像処理部4が行う処理を説明する図である。
【
図15】実施形態の距離画像処理部4が行う処理を説明する図である。
【
図16】実施形態の距離画像撮像装置1が行う処理の流れを示すフローチャートである。
【
図17】ルックアップテーブルの例を示す図である。
【
図18A】第2実施形態の測定方法を説明する図である。
【
図18B】第2実施形態の測定方法を説明する図である。
【発明を実施するための形態】
【0027】
以下、実施形態の距離画像撮像装置を、図面を参照しながら説明する。
【0028】
図1は、実施形態の距離画像撮像装置の概略構成を示すブロック図である。距離画像撮像装置1は、例えば、光源部2と、受光部3と、距離画像処理部4とを備える。
図1には、距離画像撮像装置1において距離を測定する対象物である被写体OBも併せて示している。
【0029】
光源部2は、距離画像処理部4からの制御に従って、距離画像撮像装置1において距離を測定する対象の被写体OBが存在する測定対象の空間に光パルスPOを照射する。光源部2は、例えば、垂直共振器面発光レーザー(VCSEL:Vertical Cavity Surface Emitting Laser)などの面発光型の半導体レーザーモジュールである。光源部2は、光源装置21と、拡散板22とを備える。
【0030】
光源装置21は、被写体OBに照射する光パルスPOとなる近赤外の波長帯域(例えば、波長が850nm~940nmの波長帯域)のレーザー光を発光する光源である。光源装置21は、例えば、半導体レーザー発光素子である。光源装置21は、タイミング制御部41からの制御に応じて、パルス状のレーザー光を発光する。
【0031】
拡散板22は、光源装置21が発光した近赤外の波長帯域のレーザー光を、被写体OBに照射する面の広さに拡散する光学部品である。拡散板22が拡散したパルス状のレーザー光が、光パルスPOとして出射され、被写体OBに照射される。
【0032】
受光部3は、距離画像撮像装置1において距離を測定する対象の被写体OBによって反射された光パルスPOの反射光RLを受光し、受光した反射光RLに応じた画素信号を出力する。受光部3は、レンズ31と、距離画像センサ32とを備える。
【0033】
レンズ31は、入射した反射光RLを距離画像センサ32に導く光学レンズである。レンズ31は、入射した反射光RLを距離画像センサ32側に出射して、距離画像センサ32の受光領域に備えた画素に受光(入射)させる。
【0034】
距離画像センサ32は、距離画像撮像装置1に用いられる撮像素子である。距離画像センサ32は、二次元の受光領域に複数の画素を備える。距離画像センサ32のそれぞれの画素の中に、1つの光電変換素子と、この1つの光電変換素子に対応する複数の電荷蓄積部と、それぞれの電荷蓄積部に電荷を振り分ける構成要素とが設けられる。つまり、画素は、複数の電荷蓄積部に電荷を振り分けて蓄積させる振り分け構成の撮像素子である。
【0035】
距離画像センサ32は、タイミング制御部41からの制御に応じて、光電変換素子が発生した電荷をそれぞれの電荷蓄積部に振り分ける。また、距離画像センサ32は、電荷蓄積部に振り分けられた電荷量に応じた画素信号を出力する。距離画像センサ32には、複数の画素が二次元の行列状に配置されており、それぞれの画素の対応する1フレーム分の画素信号を出力する。
【0036】
距離画像処理部4は、距離画像撮像装置1を制御し、被写体OBまでの距離を算出する。距離画像処理部4は、タイミング制御部41と、距離演算部42と、測定制御部43とを備える。
【0037】
タイミング制御部41は、測定制御部43の制御に応じて、測定に要する様々な制御信号を出力するタイミングを制御する。ここでの様々な制御信号とは、例えば、光パルスPOの照射を制御する信号、反射光RLを複数の電荷蓄積部に振り分けて蓄積させる信号、1フレームあたりの蓄積回数を制御する信号などである。蓄積回数とは、電荷蓄積部CS(
図3参照)に電荷を振り分けて蓄積させる処理を繰返す回数である。この蓄積回数と、電荷を振り分けて蓄積させる処理1回あたりに各電荷蓄積部に電荷を蓄積させる時間幅(蓄積時間幅)の積が露光時間となる。
【0038】
距離演算部42は、距離画像センサ32から出力された画素信号に基づいて、被写体OBまでの距離を演算した距離情報を出力する。距離演算部42は、複数の電荷蓄積部に蓄積された電荷量に基づいて、光パルスPOを照射してから反射光RLを受光するまでの遅延時間を算出する。距離演算部42は、算出した遅延時間に応じて被写体OBまでの距離を算出する。
【0039】
測定制御部43は、タイミング制御部41を制御する。例えば、測定制御部43は、1フレームの蓄積回数及び蓄積時間幅を設定し、設定した内容で撮像が行われるようにタイミング制御部41を制御する。
【0040】
このような構成によって、距離画像撮像装置1では、光源部2が被写体OBに照射した近赤外の波長帯域の光パルスPOが被写体OBによって反射された反射光RLを受光部3が受光し、距離画像処理部4が、被写体OBとの距離を測定した距離情報を出力する。
【0041】
なお、
図1においては、距離画像処理部4を距離画像撮像装置1の内部に備える構成の距離画像撮像装置1を示しているが、距離画像処理部4は、距離画像撮像装置1の外部に備える構成要素であってもよい。
【0042】
ここで、
図2を用いて、距離画像撮像装置1において撮像素子として用いられる距離画像センサ32の構成について説明する。
図2は、実施形態の距離画像撮像装置1に用いられる撮像素子(距離画像センサ32)の概略構成を示すブロック図である。
【0043】
図2に示すように、距離画像センサ32は、例えば、複数の画素321が配置された受光領域320と、制御回路322と、振り分け動作を有した垂直走査回路323と、水平走査回路324と、画素信号処理回路325とを備える。
【0044】
受光領域320は、複数の画素321が配置された領域であって、
図2では、8行8列に二次元の行列状に配置された例を示している。画素321は、受光した光量に相当する電荷を蓄積する。制御回路322は、距離画像センサ32を統括的に制御する。制御回路322は、例えば、距離画像処理部4のタイミング制御部41からの指示に応じて、距離画像センサ32の構成要素の動作を制御する。なお、距離画像センサ32に備えた構成要素の制御は、タイミング制御部41が直接行う構成であってもよく、この場合、制御回路322を省略することも可能である。
【0045】
垂直走査回路323は、制御回路322からの制御に応じて、受光領域320に配置された画素321を行ごとに制御する回路である。垂直走査回路323は、画素321の電荷蓄積部CSそれぞれに蓄積された電荷量に応じた電圧信号を画素信号処理回路325に出力させる。この場合、垂直走査回路323は、光電変換素子により変換された電荷を画素321の電荷蓄積部それぞれに振り分けて蓄積させる。つまり、垂直走査回路323は、「画素駆動回路」の一例である。
【0046】
画素信号処理回路325は、制御回路322からの制御に応じて、それぞれの列の画素321から対応する垂直信号線に出力された電圧信号に対して、予め定めた信号処理(例えば、ノイズ抑圧処理やA/D変換処理など)を行う回路である。
【0047】
水平走査回路324は、制御回路322からの制御に応じて、画素信号処理回路325から出力される信号を、水平信号線に順次出力させる回路である。これにより、1フレーム分蓄積された電荷量に相当する画素信号が、水平信号線を経由して距離画像処理部4に順次出力される。
【0048】
以下では、画素信号処理回路325がA/D変換処理を行い、画素信号がデジタル信号であるものとして説明する。
【0049】
ここで、
図3を用いて、距離画像センサ32に備える受光領域320内に配置された画素321の構成について説明する。
図3は、実施形態の距離画像センサ32の受光領域320内に配置された画素321の構成の一例を示す回路図である。
図3には、受光領域320内に配置された複数の画素321のうち、1つの画素321の構成の一例を示している。画素321は、4個の画素信号読み出し部を備えた構成の一例である。
【0050】
画素321は、1個の光電変換素子PDと、ドレインゲートトランジスタGDと、対応する出力端子Oから電圧信号を出力する3個の画素信号読み出し部RUとを備える。画素信号読み出し部RUのそれぞれは、読み出しゲートトランジスタGと、フローティングディフュージョンFDと、電荷蓄積容量Cと、リセットゲートトランジスタRTと、ソースフォロアゲートトランジスタSFと、選択ゲートトランジスタSLとを備える。それぞれの画素信号読み出し部RUでは、フローティングディフュージョンFDと電荷蓄積容量Cとによって電荷蓄積部CSが構成されている。
【0051】
なお、
図3においては、3個の画素信号読み出し部RUの符号「RU」の後に、「1」~「3」の何れかの数字を付与することによって、それぞれの画素信号読み出し部RUを区別する。また、同様に、3個の画素信号読み出し部RUに備えたそれぞれの構成要素も、それぞれの画素信号読み出し部RUを表す数字を符号の後に示すことによって、それぞれの構成要素が対応する画素信号読み出し部RUを区別して表す。
【0052】
図3に示した画素321において、出力端子O1から電圧信号を出力する画素信号読み出し部RU1は、読み出しゲートトランジスタG1と、フローティングディフュージョンFD1と、電荷蓄積容量C1と、リセットゲートトランジスタRT1と、ソースフォロアゲートトランジスタSF1と、選択ゲートトランジスタSL1とを備える。画素信号読み出し部RU1では、フローティングディフュージョンFD1と電荷蓄積容量C1とによって電荷蓄積部CS1が構成されている。画素信号読み出し部RU2~RU3も同様の構成である。
【0053】
なお、距離画像センサ32に配置される画素の構成は、
図3に示したような、3個の画素信号読み出し部RUを備える構成に限定されるものではなく、複数の画素信号読み出し部RUを備えた構成の画素であればよい。つまり、距離画像センサ32に配置される画素に備える画素信号読み出し部RU(電荷蓄積部CS)の数は、2個であってもよいし、4個以上であってもよい。
【0054】
また、
図3に示した構成の画素321では、電荷蓄積部CSを、フローティングディフュージョンFDと電荷蓄積容量Cとによって構成する一例を示した。しかし、電荷蓄積部CSは、少なくともフローティングディフュージョンFDによって構成されればよく、画素321が電荷蓄積容量Cを備えない構成であってもよい。
【0055】
また、
図3に示した構成の画素321では、ドレインゲートトランジスタGDを備える構成の一例を示したが、光電変換素子PDに蓄積されている(残っている)電荷を破棄する必要がない場合には、ドレインゲートトランジスタGDを備えない構成であってもよい。
【0056】
光電変換素子PDは、入射した光を光電変換して電荷を発生させ、発生させた電荷を蓄積する埋め込み型のフォトダイオードである。光電変換素子PDの構造は任意であってよい。光電変換素子PDは、例えば、P型半導体とN型半導体とを接合した構造のPNフォトダイオードであってもよいし、P型半導体とN型半導体との間にI型半導体を挟んだ構造のPINフォトダイオードであってもよい。また、光電変換素子PDは、フォトダイオードに限定されるものではなく、例えば、フォトゲート方式の光電変換素子であってもよい。
【0057】
画素321では、光パルスPOを照射する照射タイミングに同期させた蓄積タイミングにおいて入射した光を、光電変換素子PDが電荷に変換し、変換した電荷を4個の電荷蓄積部CSのそれぞれに振り分けて蓄積させる。また、蓄積タイミング以外のタイミングで画素321に入射した光については、光電変換素子PDが変換した電荷をドレインゲートトランジスタGDから排出して、電荷蓄積部CSに蓄積させないようにする。
【0058】
このようにして蓄積タイミングにおける電荷の蓄積と、蓄積タイミング以外のタイミングにおける電荷の破棄とが、1フレームに渡って繰り返し行われた後、読出し期間が設けられる。読み出し期間では、水平走査回路324により、電荷蓄積部CSのそれぞれに蓄積された、1フレーム分の電荷量に相当する電気信号が、距離演算部42に出力される。
【0059】
このようにして、1フレームにわたり画素321を駆動させることにより、反射光RLに相当する電荷量が、反射光RLが距離画像撮像装置1に入射されるまでの遅延時間Tdに応じた比率で、画素321が備える4つの電荷蓄積部CSうちの2つの電荷蓄積部CSに振り分けて蓄積される。距離演算部42は、このような性質を利用して、以下の式(1)により、遅延時間Tdを算出する。なお、式(1)では、電荷蓄積部CS1及びCS2に蓄積される電荷量のうちの外光成分に相当する電荷量が電荷蓄積部CS3に蓄積された電荷量と同量であることを前提とする。
【0060】
Td=To×(Q2-Q3)/(Q1+Q2-2×Q3) … 式(1)
但し、Toは光パルスPOが照射された期間
Q1は電荷蓄積部CS1に蓄積された電荷量
Q2は電荷蓄積部CS2に蓄積された電荷量
Q3は電荷蓄積部CS3に蓄積された電荷量
【0061】
距離演算部42は、式(1)で求めた遅延時間Tdに、光速(速度)を乗算させることにより、被写体Sまでの往復の距離を算出する。そして、距離演算部42は、上記で算出した往復の距離を1/2とすることにより、被写体Sまでの距離を求める。
【0062】
次に、
図4を用いて、実施形態のマルチパスについて説明する。
図4は、実施形態のマルチパスについて説明する図である。距離画像撮像装置1では、Lider(Light Detection and Ranging)などと比較して照射範囲の広い光源を使用する。このため、ある程度の範囲を有する空間を一度に測定できるメリットを有する一方で、マルチパスが発生し易いというデメリットを有している。
図4の例では、距離画像撮像装置1が測定空間Eに光パルスPOを照射し、直接波W1と、間接波W2との複数の反射波(マルチパス)を受光する様子が模式的に示されている。以下の説明では、マルチパスが2つの反射波により構成される場合を例示して説明する。しかしながらこれに限定されることはなく、マルチパスが3つ以上の反射波により構成されていてもよい。マルチパスが3つ以上の反射波により構成されている場合にも、以下に説明する方法を適用することが可能である。
【0063】
マルチパスを受光した場合、距離画像撮像装置1に受光される反射光の形状(時系列変化)はシングルパスのみを受光した場合とは異なるものとなる。
【0064】
例えば、シングルパスの場合、距離画像撮像装置1には、光パルスと同じ形状の反射光(直接波W1)が、遅延時間Td遅れて受光される。これに対し、マルチパスの場合、直接波に加え、さらに光パルスと同じ形状の反射光(間接波W2)が遅延時間Td+α遅れて受光される。ここでのαは、直接波W1に対して間接波W2が遅延する時間である。すなわち、マルチパスの場合、距離画像撮像装置1には、光パルスと同じ形状の光が複数、互いに時間差を有しながら加算された状態の反射光が受光される。
【0065】
つまり、マルチパスとシングルパスの場合とでは、異なる形状(時系列変化)の反射光が受光される。上述した式(1)は、遅延時間が、光パルスが光源と物体との間を直接往復するのに要した時間であることを前提とした数式である。すなわち、式(1)では距離画像撮像装置1がシングルパスを受光することを前提としている。このため、距離画像撮像装置1がマルチパスを受光したにもかかわらず、式(1)を用いて距離を算出してしまうと、算出された距離は、実在する被写体OBの位置と対応しない距離となってしまう。このため、算出した距離(測定距離)と実際の距離との差異が乖離してしまい、誤差が発生する要因となる。
【0066】
この対策として、本実施形態では、照射タイミングと蓄積タイミングとの時間差が互いに異なる複数の測定を行う。ここでの照射タイミングは光パルスPOを照射するタイミングである。蓄積タイミングは、電荷蓄積部CSのそれぞれに電荷を蓄積させるタイミングである。
【0067】
図5は、距離画像処理部4が、照射タイミングと蓄積タイミングとの時間差を変更させながら複数回の測定を行う方法について説明する図である。
図5には、光パルスPOが照射されてから遅延時間Td経過後に反射光RLを受光する画素321のタイミングチャートが示されている。
【0068】
図5では、光パルスPOを照射するタイミングを「L」、反射光が受光されるタイミングを「R」、駆動信号TX1のタイミングを「G1」、駆動信号TX2のタイミングを「G2」、駆動信号TX3のタイミングを「G3」、駆動信号RSTDのタイミングを「GD」、の項目名でそれぞれ示している。なお、駆動信号TX1は、読み出しゲートトランジスタG1を駆動させる信号である。駆動信号TX2、TX3についても同様である。
【0069】
図5に示すように、距離画像処理部4は、照射タイミングと蓄積タイミングとの時間差を変更させながら複数回(この図の例ではM回)の測定を行う。ここでMは2以上の任意の自然数である。
【0070】
図5の照射時間Toは、光パルスPOを照射する時間幅である。蓄積時間Taは、電荷蓄積部CSのそれぞれに電荷を蓄積させる時間幅である。照射時間Toと蓄積時間Taは同等の時間幅である。同等の時間幅には、照射時間Toと蓄積時間Taが同じ時間幅である場合、及び、照射時間Toが蓄積時間Taよりも所定時間長い場合を含む。ここでの所定時間は、光パルスPOの波形なまり、電荷蓄積部CSに蓄積されるノイズ量などに応じて決定される。
【0071】
まず、距離画像処理部4は、1回目の測定を行う。1回目の測定では、照射タイミングと蓄積タイミングとの時間差を0(ゼロ)とする。つまり、1回目の測定では、照射タイミングと蓄積タイミングを同じタイミングとする。距離画像処理部4は、単位蓄積時間UTにおいて、光パルスPOを照射させると同時に電荷蓄積部CS1をオン状態として、以降、電荷蓄積部CS2、CS3を順にオン状態として、電荷蓄積部CS1~CS3のそれぞれに電荷を蓄積させる蓄積処理を行う。このような蓄積処理を、所定の蓄積回数繰り返し行った後、距離画像処理部4は、読出時間RDにおいて電荷蓄積部CSのそれぞれに蓄積された電荷量に相当する信号値を読出す。
【0072】
次に、距離画像処理部4は、2回目の測定を行う。2回目の測定では、照射タイミングと蓄積タイミングとの時間差を照射遅延時間Dtm2とする。つまり、2回目の測定では、照射タイミングを、蓄積タイミングに対して照射遅延時間Dtm2だけ遅らせる。2回目の測定で照射タイミングが照射遅延時間Dtm2遅れることから、反射光RLは、照射タイミングから(遅延時間Td+照射遅延時間Dtm2)遅れて画素321に受光される。距離画像処理部4は、このような照射遅延時間Dtm2を有する蓄積処理を、所定の蓄積回数繰り返し行った後、読出時間RDにおいて電荷蓄積部CSのそれぞれに蓄積された電荷量に相当する信号値を読出す。
【0073】
次に、距離画像処理部4は、(M-1)回目の測定を行う。(M-1)回目の測定では、照射タイミングと蓄積タイミングとの時間差を照射遅延時間Dtm3とする。つまり、(M-1)回目の測定では、照射タイミングを、蓄積タイミングに対して照射遅延時間Dtm3だけ遅らせる。(M-1)回目の測定で照射タイミングが照射遅延時間Dtm3遅れることから、反射光RLは、照射タイミングから(遅延時間Td+照射遅延時間Dtm3)遅れて画素321に受光される。距離画像処理部4は、このような照射遅延時間Dtm3を有する蓄積処理を、所定の蓄積回数繰り返し行った後、読出時間RDにおいて電荷蓄積部CSのそれぞれに蓄積された電荷量に相当する信号値を読出す。
【0074】
次に、距離画像処理部4は、M回目の測定を行う。M回目の測定では、照射タイミングと蓄積タイミングとの時間差を照射遅延時間Dtm4とする。つまり、M回目の測定では、照射タイミングを、蓄積タイミングに対して照射遅延時間Dtm4だけ遅らせる。M回目の測定で照射タイミングが照射遅延時間Dtm4遅れることから、反射光RLは、照射タイミングから(遅延時間Td+照射遅延時間Dtm4)遅れて画素321に受光される。距離画像処理部4は、このような照射遅延時間Dtm4を有する蓄積処理を、所定の蓄積回数繰り返し行った後、読出時間RDにおいて電荷蓄積部CSのそれぞれに蓄積された電荷量に相当する信号値を読出す。
【0075】
本実施形態では、距離画像処理部4は、このように、照射タイミングと蓄積タイミングとの時間差を変更させながら複数回の測定を行い、測定を行う毎に電荷蓄積部CSのそれぞれに蓄積された電荷量に基づく特徴量(後述する複素変数CP)を算出する。距離画像処理部4が複素変数CPを算出する具体的な方法は後で詳しく説明する。
【0076】
距離画像処理部4は、算出した特徴量に応じて、画素321がシングルパスを受光したか、マルチパスを受光したかを判定する。
【0077】
距離画像処理部4は、複数の測定のそれぞれに応じて算出した特徴量の傾向が、画素321がシングルパスを受光した場合における特徴量の傾向に類似する場合、画素321がシングルパスを受光したと判定する。例えば、距離画像処理部4は、画素321がシングルパスを受光した場合における、照射タイミングと蓄積タイミングとの時間差を特徴量と対応づけた情報を、データ(後述するルックアップテーブルLUT)として予め記憶させておく。ルックアップテーブルLUTの具体的な内容は後で詳しく説明する。
【0078】
距離画像処理部4は、複数の測定のそれぞれについて算出した特徴量の傾向が、ルックアップテーブルLUTの傾向に類似する度合(後述するSD指標)を算出する。距離画像処理部4は、算出したSD指標を閾値と比較することにより、画素321がシングルパスを受光したか否かを判定する。距離画像処理部4がSD指標を算出する具体的な方法は後で詳しく説明する。
【0079】
これにより、距離画像処理部4は、特徴量の傾向がルックアップテーブルLUTの傾向に類似する場合に画素321がシングルパスを受光したと判定し、特徴量の傾向がルックアップテーブルLUTの傾向に類似しない場合に画素321がマルチパスを受光したと判定することができる。
【0080】
距離画像処理部4は、画素321がシングルパスを受光したと判定した場合、単一の反射体を想定した関係式、例えば、式(1)を用いて距離を算出する。一方、距離画像処理部4は、画素321がマルチパスを受光したと判定した場合、式(1)を用いず、別の手段で距離を算出する。これにより、距離画像処理部4は、シングルパスを受光したか否かに応じて距離を算出することができ、距離に生じる誤差を低減させることが可能となる。
【0081】
しかしながら、このような照射タイミングと蓄積タイミングとの時間差を変更させながら複数回の測定を行おうとすると、被写体OBが存在する位置によってはマルチパスか否かの判定が困難になる場合がある。
図6(
図6A、
図6B)、及び
図7(
図7A、
図7B)を用いて、このようなマルチパスか否かの判定が困難になる場合について説明する。
図6及び
図7は従来の距離画像撮像装置が被写体OBを測定するタイミングを模式的に示す図である。なお、
図6及び
図7では、画素321が4つの電荷蓄積部CSを備える構成が図示されている。画素321の構造によって、画素321が備える電荷蓄積部CSの数を変更した場合においても、光パルスPOの照射時間Toや、電荷蓄積部CSへの蓄積時間Taの長さに応じて、上記と同様に、照射タイミングと蓄積タイミングとの時間差を変更させながら複数回の測定を行おうとすると、被写体OBが存在する位置によってはマルチパスか否かの判定が困難になる場合がある。すなわち、画素321が備える電荷蓄積部CSの数に関わらず、マルチパスか否かの判定が困難となる場合がある。
【0082】
なお、以下の説明では、撮像位置から比較的近い位置に存在する被写体OBを「近距離物体」と称する。また、撮像位置から比較的遠い位置に存在する被写体OBを「遠距離物体」と称する。
【0083】
図6Aには、近距離物体を1回目に測定した例が示されている。
図6Bには、近距離物体をK回目に測定した例が示されている。Kは、1以上かつM以下の任意の自然数である。
【0084】
図6の遅延時間Tdkは、光パルスPOを照射してから反射光RLが受光されるまでの遅延時間であり、
図5の遅延時間Tdよりも短い時間である。すなわち、
図6では、撮像位置から比較的近い位置に存在する近距離物体を測定する場合の例が示されている。また、
図6Bの照射遅延時間Dtmkは、K回目の測定における蓄積タイミングに対する照射タイミングの時間差を示す。
【0085】
近距離物体の場合、反射光RLの光量は、遠距離物体を測定する場合と比較して大きくなる。また、シングルパスとマルチパスとの光路差が小さい場合、シングルパスとマルチパスは、ほぼ同時か、或いは僅かな時間差で画素321に受光される。このため、画素321がシングルパスを受光した場合における特徴量の傾向と、マルチパスを受光した場合における特徴量の傾向との差異が小さくなり、シングルパスか否かの判定が困難になる場合がある。
【0086】
図7Aには、遠距離物体を1回目に測定した例が示されている。
図7Bには、遠距離物体をK回目に測定した例が示されている。
図7の遅延時間Tdeは、光パルスPOを照射してから反射光RLが受光されるまでの遅延時間であり、
図5の遅延時間Tdよりも長い時間である。すなわち、
図7では、撮像位置から比較的遠い位置に存在する遠距離物体を測定する場合の例が示されている。
【0087】
遠距離物体の場合、遅延時間Tdeが大きいことから、K回目の測定において画素321が反射光RLを受光するタイミングが、蓄積タイミングから外れてしまい、反射光RLに相当する電荷が電荷蓄積部CSに蓄積されない可能性がある。この場合、シングルパスか否かを判定するための特徴量を算出することが困難となる。
【0088】
このような被写体OBが存在する位置によってマルチパスか否かの判定が困難になるという課題に対し、第1実施形態では、照射時間及び蓄積時間の組合せを変えた複数回の測定をそれぞれ行うようにした。
【0089】
第1実施形態において、距離画像処理部4は、第1測定と第2測定を行う。第1測定は、照射時間と蓄積時間の組合せが第1条件であり、基準となる照射タイミングと蓄積タイミングとの時間差が第1時間差であり、第1時間差を基準として照射タイミングと蓄積タイミングとの時間差が互いに異なる複数の測定である。第2測定は、照射時間と蓄積時間の組合せが、第1条件とは異なる第2条件であり、基準となる照射タイミングと蓄積タイミングとの時間差が第2時間差であり、第2時間差を基準として照射タイミングと蓄積タイミングとの時間差が互いに異なる複数の測定である。
なお、本実施形態では、第1時間差は0(ゼロ)に設定される。すなわち、本実施形態では、基準となる照射タイミングと蓄積タイミングとの時間差が0(ゼロ)であり、基準とする初回(1回目)の照射タイミングと蓄積タイミングが同じタイミングとなる。
また、本実施形態では、第2時間差は、第1時間差と同じ値に設定される。すなわち、本実施形態では、第2測定において、基準となる照射タイミングと蓄積タイミングとの時間差が0(ゼロ)であり、基準とする初回(1回目)の照射タイミングと蓄積タイミングが同じタイミングとなる。
しかしながらこれに限定されることはない。第1時間差は0(ゼロ)でなくともよく、任意に設定されてよい。
【0090】
例えば、距離画像処理部4は、基準となる照射時間と蓄積時間の組合せ、例えば、
図5の照射時間Toと蓄積時間Taの組合せを第1条件とする。
近距離物体を測定する場合、距離画像処理部4は、第1条件よりも短い照射時間と蓄積時間の組合せ、例えば、後述する
図8の照射時間Tokと蓄積時間Takの組合せを第2条件とする。
遠距離物体を測定する場合、距離画像処理部4は、第1条件よりも長い照射時間と蓄積時間の組合せ、例えば、後述する
図9の照射時間Toeと蓄積時間Taeの組合せを第2条件とする。
【0091】
また、距離画像処理部4は、第1条件に対応するルックアップテーブルである第1ルックアップテーブルLUT、及び、第2条件に対応するルックアップテーブルである第2ルックアップテーブルLUTを予め記憶しておく。
【0092】
距離画像処理部4は、第1測定において、測定毎に、電荷蓄積部CSに蓄積された電荷量に基づく特徴量を算出する。第1測定における複数回の測定を行った後、距離画像処理部4は、測定毎に算出した特徴量の傾向と第1ルックアップテーブルLUTの傾向との類似度合いとして、第1SD指標を算出する。
【0093】
距離画像処理部4は、第2測定において、測定毎に、電荷蓄積部CSに蓄積された電荷量に基づく特徴量を算出する。第2測定における複数回の測定を行った後、距離画像処理部4は、算出した特徴量の傾向と第2ルックアップテーブルLUTの傾向との類似度合いとして、第2SD指標を算出する。
【0094】
距離画像処理部4は、第1SD指標、及び第2SD指標を用いて、被写体OBまでの距離を算出する。
【0095】
例えば、距離画像処理部4は、第1SD指標と閾値とを比較し、第1SD指標が、画素321がシングルパスを受光したことを示す場合、式(1)を用いて、距離を算出する。
一方、距離画像処理部4は、第1SD指標と閾値とを比較し、第1SD指標が、画素321がマルチパスを受光したことを示す場合、第2SD指標と閾値とを比較する。ここで、第1SD指標に対応する閾値と、第2SD指標に対応する閾値とは同じ値であってもよいし、異なる値であってもよい。距離画像処理部4は、第2SD指標が、画素321がシングルパスを受光したことを示す場合、式(1)を用いて、距離を算出する。距離画像処理部4は、第2SD指標が、画素321がマルチパスを受光したことを示す場合、式(1)を用いることなく、別の手段、例えば、後述するような最小二乗法を用いて距離を算出する。
【0096】
ここで、
図8(
図8A、
図8B)、及び
図9(
図9A、
図9B)を用いて、第1実施形態において近距離物体及び遠距離物体を測定する方法について説明する。
図8及び
図9は第1実施形態の距離画像撮像装置1が被写体OBを測定するタイミングを模式的に示す図である。
【0097】
図8Aには、第2測定において近距離物体を1回目に測定した例が示されている。
図8Bには、第2測定において近距離物体をK回目に測定した例が示されている。
【0098】
図8の照射時間Tokは、照射時間Toよりも短い時間幅である。蓄積時間Takは、蓄積時間Taよりも短い時間幅である。照射時間Tokと蓄積時間Takは同程度の時間幅である。
【0099】
第2測定において照射時間と蓄積時間を短く設定することにより、測定できる距離の範囲が狭まるが、近距離物体を測定することを前提としていることから、さほど問題とはならない。一方、照射時間と蓄積時間を短く設定することにより、測定の精度を向上させることが可能である。そして、照射時間と蓄積時間を短く設定することにより、複数の測定を行う際に、電荷蓄積部CSに蓄積される電荷量を照射時間と蓄積時間を短くしない場合と比較すると、シングルパスと異なるタイミングで受光するマルチパスを分離しやすくなり、画素321がシングルパスを受光した場合とマルチパスを受光した場合とにおいて、特徴量の傾向に差が出やすくなる。
【0100】
また、仮に、第1測定において反射光RLの光量が大きく、電荷蓄積部CSに蓄積された電荷量が電荷蓄積部CSの蓄積容量の上限を超えて電荷量が計測できなくなる飽和が発生した場合であっても、第2測定において照射時間と蓄積時間を短く設定することにより飽和し難くすることができる。
【0101】
図9Aには、第2測定において遠距離物体を1回目に測定した例が示されている。
図9Bには、第2測定において遠距離物体をK回目に測定した例が示されている。
【0102】
図9の照射時間Toeは、照射時間Toよりも長い時間幅である。蓄積時間Taeは、蓄積時間Taよりも長い時間幅である。照射時間Toeと蓄積時間Taeは同程度の時間幅である。
【0103】
第2測定において照射時間と蓄積時間を長く設定することにより、測定できる距離の範囲を広げることができ、照射タイミングを遅らせたK回目の測定においても、反射光RLに対応する電荷が電荷蓄積部CSに蓄積されるようにすることが可能である。したがって、第2測定における複数回の測定のそれぞれから特徴量を算出することができ、画素321がシングルパスを受光した場合とマルチパスを受光した場合とを判定することが可能となる。
【0104】
さらに、第2測定において照射時間と蓄積時間を長く設定することにより、電荷蓄積部CSに蓄積される電荷量を増加させることができる。遠距離物体を測定する場合、近距離物体と比較して反射光RLの光量が小さい。このため、電荷蓄積部CSに蓄積される電荷量が小さく、ノイズの影響を受けやすくなり、測定誤差の要因となっていた。これに対し、第1実施形態では、電荷蓄積部CSに蓄積される電荷量を増加させることができ、ノイズの影響を低減させることが可能となる。
【0105】
このように、距離画像処理部4は、第1測定と第2測定を行い、第1測定及び第2測定のそれぞれにて蓄積された電荷量に基づく特徴量を抽出し、特徴量の傾向に基づいて被写体OBまでの距離を算出する。これにより、照射時間と蓄積時間の組合せを変更させた第2測定を行うことができ、電荷蓄積部CSに蓄積される電荷量を減少又は増加させることができる。したがって、蓄積回数を変更しなくとも、飽和を回避するオートエクスポージャ(自動露出)と測定可能な距離を広げるHDR(High Dynamic Range)を実現可能とすると共に、シングルパスとマルチパスとの判定をし易くして、測定精度を向上させることができる。
【0106】
ここで、距離画像処理部4が特徴量を算出する方法、ルックアップテーブルLUTの内容、及びSD指標を算出する方法について説明する。
【0107】
距離画像処理部4は、電荷蓄積部CSのそれぞれに蓄積された電荷量に基づいて、以下の式(2)に示す複素変数CPを算出する。複素変数CPは「特徴量」の一例である。
【0108】
CP=(Q1-Q2)+j(Q2-Q3) … 式(2)
ただし、jは虚数単位
Q1は電荷蓄積部CS1に蓄積された電荷量
Q2は電荷蓄積部CS2に蓄積された電荷量
Q3は電荷蓄積部CS3に蓄積された電荷量
【0109】
また、距離画像処理部4は、式(2)に示す複素変数CPを、式(3)を用いて位相(2πfτA)の関数GFとして表す。ここでの位相(2πfτA)は光パルスPOの照射タイミングに対する遅延時間τAを、光パルスPOの周期(1/f=2To)に対する位相遅延で示すものである。式(3)では、距離LAにある被写体OBAからの反射光のみ、すなわちシングルパスが受光されたことを前提とする。関数GFは「特徴量」の一例である。
【0110】
CP=DA×GF(2πfτA) … 式(3)
ただし、DAは距離LAにある被写体OBAからの反射光の強度(定数)
τAは距離LAにある被写体OBAまで光が往復するのに要する時間
τA=2LA/c
cは光速
【0111】
式(3)において、位相0(ゼロ)~2πに対応する関数GFの値を求めることができれば、距離画像撮像装置1に受光され得る全てのシングルパスを規定することができる。そこで、距離画像処理部4は、式(3)に示す複素変数CPについて位相φの複素関数CP(φ)を定義し、式(4)のように表す。φは、式(3)における複素変数CPの位相を0(ゼロ)とした場合の位相変化量である。
【0112】
CP(φ)=DA×GF(2πfτA-φ) … 式(4)
ただし、DAは距離LAにある被写体OBAからの反射光の強度
τAは距離LAにある被写体OBAまで光が往復するのに要する時間
τA=2LA/c
cは光速
φは位相
【0113】
ここで複素関数CP(φ)のふるまい(位相の変化に伴う複素数の変化)について、
図10、
図11を用いて説明する。
図10、
図11は、実施形態の複素関数CP(φ)の例を示す図である。
図10の横軸は位相x、縦軸は関数GF(x)の値である。
図10において実線は複素関数CP(φ)の実部、点線は複素関数CP(φ)の虚部の値をそれぞれ示している。
図11には、
図10の関数GF(x)を複素平面に示した例が示されている。
図11の横軸は実軸、縦軸は虚軸を示している。
図10、及び
図11の関数GF(x)に、信号の強度に相当する定数(D
A)を乗じた値が複素関数CP(φ)となる。
【0114】
複素関数CP(φ)の変化は、光パルスPOの形状(時系列変化)に応じて決定される。
図10には、例えば、光パルスPOが矩形波である場合の複素関数CP(φ)において位相の変化に伴う軌跡が示されている。
【0115】
位相x=0(つまり、遅延時間Td=0)においては、電荷蓄積部CS1に反射光に対応する電荷の全てが蓄積され、電荷蓄積部CS2、CS3には反射光に対応する電荷が蓄積されない。このため、関数GF(x=0)の実部(Q1-Q2)が最大値maxとなり、虚部(Q2-Q3)が0(ゼロ)となる。maxは全反射光に対応する電荷量に相当する信号値である。位相x=π/2(つまり、遅延時間Td=照射時間To)においては、電荷蓄積部CS2に反射光に対応する電荷の全てが蓄積され、電荷蓄積部CS1、CS3には反射光に対応する電荷が蓄積されない。このため、関数GF(x=π/2)の実部(Q1-Q2)が最小値(-max)となり、虚部(Q2-Q3)が最大値maxとなる。位相x=π(つまり、遅延時間Td=照射時間To×2)においては、電荷蓄積部CS3に反射光に対応する電荷の全てが蓄積され、電荷蓄積部CS1、CS2には反射光に対応する電荷が蓄積されない。このため、関数GF(x=π)の実部(Q1-Q2)が0(ゼロ)となり、虚部(Q2-Q3)が最小値(-max)となる。
【0116】
図11に示すように、複素平面においては、位相x=0で関数GF(x=0)は座標(max、0)、位相x=π/2で関数GF(x=π/2)は座標(-max、max)、位相x=πで関数GF(x=π)は座標(0、-max)となる。
【0117】
距離画像処理部4は、
図10、
図11に示すような関数GF(x)のふるまい(位相の変化に伴う複素数の変化)の傾向に基づいて、画素321がシングルパスを受光したか、マルチパスを受光したかを判定する。距離画像処理部4は、測定にて算出した複素関数CP(φ)変化の傾向が、シングルパスにおける関数GF(x)の変化の傾向と一致する場合、画素321がシングルパスを受光したと判定する。一方、距離画像処理部4は、測定にて算出した複素関数CP(φ)変化の傾向が、シングルパスにおける関数GF(x)の変化の傾向と一致しない場合、画素321がマルチパスを受光したと判定する。
【0118】
例えば、距離画像処理部4は、1回目の測定にて、複素関数CP(0)を算出する。距離画像処理部4は、2回目の測定に基づいて、複素関数CP(φ1)を算出する。位相φ1は、照射遅延時間Dtm2に相当する位相(2πf×Dtm2)である。fは光パルスPOの照射周波数(頻度)である。距離画像処理部4は、(M-1)回目の測定に基づいて、複素関数CP(φ2)を算出する。位相φ2は、照射遅延時間Dtm3に相当する位相(2πf×Dtm3)である。距離画像処理部4は、M回目の測定に基づいて、複素関数CP(φ3)を算出する。位相φ3は、照射遅延時間Dtm4に相当する位相(2πf×Dtm4)である。
【0119】
ここで、
図12~
図15を用いて、距離画像処理部4が、シングルパスを受光したか、マルチパスを受光したかを判定する具体的な方法について説明する。
図12~
図15には、
図11同様に、横軸が実軸、縦軸が虚軸の複素平面に示されている。
【0120】
距離画像処理部4は、例えば、
図12に示すように、複素平面においてルックアップテーブルLUTと、実測点P1~P3をプロットする。ルックアップテーブルLUTは、画素321がシングルパスを受光した場合における関数GF(x)とその位相xとを対応づけた情報である。ルックアップテーブルLUTは、例えば、予め測定され、記憶部(不図示)に記憶されている。実測点P1~P3は測定により算出された複素関数CP(φ)の値である。距離画像処理部4は、
図12に示すように、ルックアップテーブルLUTの変化の傾向と、実測点P1~P3の変化の傾向が一致する場合に、測定において画素321がシングルパスを受光したと判定する。
【0121】
距離画像処理部4は、
図13に示すように、複素平面においてルックアップテーブルLUTと、実測点P1#~P3#をプロットする。ルックアップテーブルLUTは、
図12におけるルックアップテーブルLUTと同様である。実測点P1#~P3#は、
図12とは異なる測定空間における測定により算出された複素関数CP(φ)の値である。距離画像処理部4は、
図13に示すように、ルックアップテーブルLUTの変化の傾向と、実測点P1#~P3#の変化の傾向が一致しない場合に、測定において画素321がマルチパスを受光したと判定する。
【0122】
ここで、距離画像処理部4が、ルックアップテーブルLUTの傾向と、実測点P1~P3の傾向とが一致するか否かを判定(一致判定)する。ここで、距離画像処理部4が、スケール調整、及びSD指標を用いて、一致判定を行う方法について説明する。
【0123】
(スケール調整について)
ここで、距離画像処理部4は、必要に応じてスケール調整を行う。スケール調整とは、ルックアップテーブルLUTのスケール(複素数の絶対値)と、実測点Pのスケール(複素数の絶対値)とが同じ値となるように調整する処理である。式(4)に示すように、複素関数CP(φ)は、関数GF(x)に定数DAを乗算した値である。定数DAは、受光する反射光の光量に応じて決定される一定値である。すなわち、定数DAは、光パルスPOの照射時間、照射強度、及び1フレームあたりの振り分け回数などに応じて、測定毎に決定される値となる。このため、実測点Pは、ルックアップテーブルLUTの対応点と比較して、原点を基準として定数DAだけ拡大(或いは縮小)された座標となる。
【0124】
このような場合、距離画像処理部4は、ルックアップテーブルLUTの変化の傾向と、実測点P1~P3の変化の傾向が一致するか判定し易くするために、スケール調整を行う。
【0125】
距離画像処理部4は、
図14に示すように、実測点P1~P3のうちの特定の実測点P(例えば、実測点P1)を抽出する。距離画像処理部4は、抽出した実測点を、原点を基準として定数D倍した、スケール調整後の実測点Ps(例えば、実測点P1s)が、ルックアップテーブルLUT上の点となるようにスケール調整を行う。そして、距離画像処理部4は、残りの実測点P(例えば、実測点P2、P3)についても、同じ乗算値(定数D)を乗算した値を、スケール調整後の実測点Ps(例えば、実測点P2s、P3s)とする。
【0126】
なお、距離画像処理部4は、スケール調整を行わなくとも特定の実測点P(例えば、実測点P1)がルックアップテーブルLUT上の点となる場合にはスケール調整は不要である。この場合、距離画像処理部4は、スケール調整を省略することができる。
【0127】
(SD指標を用いた一致判定について)
ここで、
図15を用いて、SD指標を用いた一致判定について説明する。
図15には複素平面が示されており、横軸が実軸、縦軸が虚軸を示している。
図15には、画素321がシングルパスを受光した場合における関数GF(x)を示すルックアップテーブルLUT、及びルックアップテーブルLUT上の点G(x0)、G(x0+Δφ)、G(x0+2Δφ)が示されている。また、
図15には、実測点として複素関数CP(0)、CP(1)、CP(2)が示されている。
【0128】
距離画像処理部4は、まず、測定により得られた複素関数CP(n)と始点を一致させた関数GG(n)を作成(定義)する。nは測定番号を示す自然数である。例えば、複数の測定のうち1回目の測定においては(n=0)、複数の測定のうち2回目の測定においては(n=1)、…、NN回目の測定においては(n=NN-1)となる。
【0129】
関数GG(x)は、測定により得られた複素関数CP(n)の始点と一致するように関数GF(x)の位相をシフトさせた関数である。例えば、距離画像処理部4は、式(5)に示すように、1回目の測定により得られた複素関数CP(n=0)に相当する位相量(x0)を初期位相とし、初期位相をシフトさせた関数GG(x)を作成する。式(5)におけるx0は初期位相、nは測定番号、Δφは測定毎の位相シフト量を示す。
【0130】
【0131】
距離画像処理部4は、次に、式(6)に示すように、複素関数CP(n)と関数GG(x)と差分を示す関数SD(n)を作成(定義)する。式(6)におけるnは測定番号を示す。
【0132】
【0133】
そして、距離画像処理部4は、式(7)に示すように、関数SD(n)を用いて、複素関数CP(n)と関数GG(x)とが類似する度合を示すSD指標を算出する。式(7)におけるnは測定番号、NNは測定回数を示す。なお、ここで定義したSD指標は、一例である。SD指標は、複素関数CP(n)と、関数GG(n)における複素平面上での解離度を、単一の実数に置換えたものであり、関数GF(x)の函数形などに応じて、函数形が調節可能であることは勿論である。SD指標は、少なくとも、複素関数CP(n)と、関数GG(n)における複素平面上での解離度を示す指標であればよく、任意に定義されてよい。
【0134】
【0135】
距離画像処理部4は、算出したSD指標を所定の閾値と比較する。距離画像処理部4は、SD指標が所定の閾値を超えない場合、画素321がシングルパスを受光したと判定する。一方、距離画像処理部4は、SD指標が所定の閾値を超える場合、画素321がマルチパスを受光したと判定する。
【0136】
ここで、距離画像処理部4が、判定結果に応じて測定距離を算出する方法について説明する。ここでの判定結果とは、シングルパスを受光したか、マルチパスを受光したかを判定した結果である。
【0137】
シングルパスを受光した場合、距離画像処理部4は、式(8)を用いて測定距離を算出する。式(8)におけるnは測定番号、x0は初期位相、nは測定番号、Δφは測定毎の位相シフト量を示す。なお、式(8)における内部距離は、画素321の構造などに応じて任意に設定されてよい。例えば、センサの受光面を距離の原点とするなどのセンサに対する距離の設定位置や、センサの光電変換等の性能に起因した補正距離である内部距離を特に考慮しない場合、内部距離=0とする。
【0138】
【0139】
或いは、距離画像処理部4は、画素321がシングルパスを受光したと判定した場合、式(1)に基づいて遅延時間Tdを算出し、算出した遅延時間Tdを用いて測定距離を算出するようにしてもよい。
【0140】
マルチパスを受光した場合、距離画像処理部4は、式(9)に示すように、測定により得られた複素関数CPを、複数(ここでは2つ)の経路から到来した反射光の和として表す。式(9)におけるDAは距離LAにある被写体OBAからの反射光の強度である。xAは距離LAにある被写体OBAまで光が往復するのに要する位相である。nは測定番号である。Δφは測定毎の位相シフト量を示す。DBは距離LBにある被写体OBBからの反射光の強度である。xBは距離LBにある被写体OBBまで光が往復するのに要する位相である。
【0141】
【0142】
距離画像処理部4は、式(10)に示す差分Jを最小にする{位相xA、xB、及び強度DA、DB}の組合せを決定する。差分Jは式(9)における複素関数CP(n)と関数Gとの差分の絶対値の二乗和に相当する。距離画像処理部4は、例えば、最小二乗法などを適用することにより、{位相xA、xB、及び強度DA、DB}の組合せを決定する。
【0143】
【0144】
なお、上記では、ルックアップテーブルLUTを用いて、シングルパスを受光したか、マルチパスを受光したかを判定する場合を例に説明した。しかしながらこれに限定されない。距離画像処理部4は、ルックアップテーブルLUTの代わりに、関数GF(x)を示す数式を用いてもよい。
【0145】
関数GF(x)を示す数式とは、例えば、位相の範囲に応じて定義される数式である。
図11の例であれば、位相xについて(0≦x≦2/π)の範囲において関数GF(x)は傾き(-1/2)、切片(max/2)の一次関数として定義される。また(2/π0<x≦π)の範囲において関数GF(x)は傾き(-2)、切片(-max)の一次関数として定義される。
【0146】
また、ルックアップテーブルLUTは、シングルパスのみが受光される環境で行った実際の測定結果に基づいて作成されたものであってもよいし、シミュレーション等による算出結果に基づいて作成されたものであってもよい。
【0147】
また、上記では、式(2)に示す複素変数CPを用いる場合を例示して説明したが、これに限定されることはない。複素変数CPは、少なくとも、反射光RLに応じた電荷量を蓄積する電荷蓄積部CSに蓄積された電荷量を用いて算出される変数であればよい。例えば、実部と虚部を入れ替えた複素変数CP2=(Q2-Q3)+j(Q1-Q2)であってもよいし、実部と虚部の組合せを変更した複素変数CP3=(Q1-Q3)+j(Q2-Q3)などであってもよい。
【0148】
また、上記では、
図5において、電荷蓄積部CSをオン状態とするタイミング(蓄積タイミング)を固定とし、光パルスPOを照射する照射タイミングを遅らせる場合を例示して説明したが、これに限定されることはない。複数の測定において、蓄積タイミングと照射タイミングが少なくとも相対的に変化すればよく、例えば、照射タイミングを固定し、蓄積タイミングを早めるようにしてもよいのは勿論である。また、上記では、関数SD(n)が式(6)で定義される場合を例に説明した。しかしながら、これに限定されることはない。関数SD(n)は、少なくとも、複素関数CP(n)と、関数GG(n)における複素平面上での差分を示す関数であればよく、任意に定義されてよい。
【0149】
ここで、
図16を用いて実施形態の距離画像撮像装置1が行う処理の流れを説明する。
図16は実施形態の距離画像撮像装置1が行う処理の流れを示すフローチャートである。
【0150】
(ステップS10)
距離画像処理部4は、仮測定を行う。仮測定は、第1測定及び第2測定とは別に行う測定であり、シングルパスか否かに関わらず、式(1)を用いて距離を算出する測定である。仮測定において、照射時間、照射タイミング、蓄積時間、及び蓄積タイミングのそれぞれは任意に設定されてよいが、例えば、
図5の1回目の測定と同じ値に設定される。
(ステップS11)
距離画像処理部4は、仮測定により算出した距離に基づいて、第1条件及び第2条件を決定する。
例えば、距離画像処理部4は、仮測定により算出した距離に基づいて被写体OBが近距離物体であると判定した場合、第2条件における照射時間及び蓄積時間を、第1条件よりも短い時間となるようにする。距離画像処理部4は、仮測定により算出した距離に基づいて被写体OBが遠距離物体であると判定した場合、第2条件における照射時間及び蓄積時間を、第1条件よりも長い時間となるようにする。
また、距離画像処理部4は、仮測定により算出した距離に基づいて被写体OBが遠距離物体であると判定した場合、M回目の測定において、反射光RLに相当する電荷が電荷蓄積部CSに蓄積されるように、第1条件における照射時間及び蓄積時間を決定するようにしてもよい。
(ステップS12)
距離画像処理部4は、第1条件を設定する。第1条件は、例えば、予め設定された基準とする照射時間To及び蓄積時間Taである。或いは、ステップS11において、第1条件における照射時間及び蓄積時間が決定された場合、第1条件は、その決定された値となる。
(ステップS13)
距離画像処理部4は、第1測定を行い、各測定に対応する特徴量を算出する。距離画像処理部4は、測定を行う度に、その測定で得られた電荷蓄積部CSに蓄積された電荷量に対応する信号値を用いて、特徴量としての複素関数CP(n)を算出する。
(ステップS14)
距離画像処理部4は、第1SD指標を算出する。距離画像処理部4は、第1測定において算出した特徴量のそれぞれと第1ルックアップテーブルLUTと用いて、特徴量の警告と第1ルックアップテーブルLUTの傾向との類似度合いとしての第1SD指標を算出する。
(ステップS15)
距離画像処理部4は、第2条件を設定する。第2条件は、例えば、ステップS11において決定された照射時間及び蓄積時間である。
(ステップS16)
距離画像処理部4は、第2測定を行い、各測定に対応する特徴量を算出する。距離画像処理部4は、測定を行う度に、その測定で得られた電荷蓄積部CSに蓄積された電荷量に対応する信号値を用いて、特徴量としての複素関数CP(n)を算出する。
(ステップS17)
距離画像処理部4は、第2SD指標を算出する。距離画像処理部4は、第2測定において算出した特徴量のそれぞれと第2ルックアップテーブルLUTと用いて、特徴量の傾向と第2ルックアップテーブルLUTの傾向との類似度合いとしての第2SD指標を算出する。
(ステップS18)
距離画像処理部4は、第1SD指標及び第2SD指標に基づいて距離を算出する。例えば、距離画像処理部4は、第1SD指標と閾値とを比較し、第1SD指標が、画素321がシングルパスを受光したことを示す場合、式(1)を用いて、距離を算出する。一方、距離画像処理部4は、第1SD指標と閾値とを比較し、第1SD指標が、画素321がマルチパスを受光したことを示す場合、第2SD指標と閾値とを比較する。ここで、第1SD指標に対応する閾値と、第2SD指標に対応する閾値とは同じ値であってもよいし、異なる値であってもよい。距離画像処理部4は、第2SD指標が、画素321がシングルパスを受光したことを示す場合、式(1)を用いて、距離を算出する。距離画像処理部4は、第2SD指標が、画素321がマルチパスを受光したことを示す場合、式(1)を用いることなく、別の手段にて距離を算出する。
【0151】
以上説明したように、第1実施形態の距離画像撮像装置1では、第1測定及び第2測定を行い、第1測定及び第2測定のそれぞれにて蓄積された電荷量に基づく特徴量を抽出する。距離画像処理部4は、第1測定では、照射時間及び蓄積時間の組合せが第1条件であり、基準となる照射タイミングと蓄積タイミングとの時間差が第1時間差であり、第1時間差を基準として照射タイミングと蓄積タイミングとの時間差が互いに異なる複数の測定を行う。距離画像処理部4は、第2測定では、照射時間及び蓄積時間の組合せが第2条件であり、基準となる照射タイミングと蓄積タイミングとの時間差が第2時間差であり、第2時間差を基準として照射タイミングと蓄積タイミングとの時間差が互いに異なる複数の測定を行う。
距離画像処理部4は、第2測定では、第2条件又は第2時間差の何れか一方が、第1測定とは異なる測定を行う。例えば、距離画像処理部4は、第2測定では、第2条件が第1測定と異なり、第2時間差が第1測定と同じとする測定を行う。
距離画像処理部4は、抽出した特徴量の傾向に基づいて被写体OBまでの距離を算出する。これにより、第1実施形態の距離画像撮像装置1では、第1条件、及び、照射時間及び蓄積時間の組合せを変更した第2条件それぞれについて複数回の測定を行うことができ、照射時間及び蓄積時間の組合せが異なる条件下におけるマルチパスの傾向を探ることが可能となる。したがって、第1測定において反射光RLがマルチパスの特徴を有するか判定が困難となり精度よく距離を算出できない場合であっても、第2測定において照射時間及び蓄積時間の組合せを変えることにより判定を行うことが可能となり精度よく距離を算出することが可能となる。したがって、マルチパスの傾向に応じた対応を行うことができる。
【0152】
また、第1実施形態の距離画像撮像装置1では、反射光RLがシングルパスにて画素321に受光されたか、反射光RLがマルチパスにて画素321に受光されたかを判定するマルチパス判定を行う。距離画像処理部4は、マルチパス判定の結果に応じて被写体OBまでの距離を算出する。これにより、第1実施形態の距離画像撮像装置1では、マルチパス判定の結果に応じて精度よく距離を算出することが可能となる。
【0153】
また、第1実施形態の距離画像撮像装置1では、距離画像処理部4は、照射時間と蓄積時間の組み合わせ毎に、ルックアップテーブルLUTを参照する。ルックアップテーブルLUTには、反射光RLがシングルパスで画素321に受光された場合における、照射タイミングと蓄積タイミングとの時間差と特徴量とが対応付けられている。距離画像処理部4は、ルックアップテーブルLUTの傾向と、特徴量の傾向との類似度合いに基づいて、マルチパス判定を行う。これにより、第1実施形態の距離画像撮像装置1では、ルックアップテーブルLUTを用いて容易にマルチパス判定を行うことが可能となる。
【0154】
また、第1実施形態の距離画像撮像装置1では、ルックアップテーブルLUTは、光パルスPOの形状、及び、照射時間と蓄積時間の組合せ毎に複数作成される。距離画像処理部4は、複数のルックアップテーブルのうち、第1測定及び第2測定の測定条件のそれぞれに対応するルックアップテーブルを用いて、マルチパス判定を行う。これにより、第1実施形態の距離画像撮像装置1では、測定条件に応じて適切なルックアップテーブルLUT選択することができ、精度よく判定することができる。
【0155】
また、第1実施形態の距離画像撮像装置1では、特徴量は、電荷蓄積部CSのそれぞれに蓄積された電荷量のうち、少なくとも反射光RLに対応する電荷量を用いて算出される値である。これにより、第1実施形態の距離画像撮像装置1では、反射光RLが受光される状況に基づいてマルチパス判定を行うことが可能となる。
【0156】
また、上述した第1実施形態では、画素321が3つの電荷蓄積部CSを備える場合を例に説明した。しかしながら、これに限定されない。画素321が4つの電荷蓄積部CSを備える場合にも適用することができる。この場合、特徴量は、電荷蓄積部CS1~CS4のそれぞれに蓄積された電荷量を変数とする複素数である。例えば、特徴量は、電荷量Q1とQ3の差分を実部とし、電荷量Q2とQ4の差分を虚部とする複素数で表される値である。具体的に、距離画像処理部4は、電荷蓄積部CSのそれぞれに蓄積された電荷量に基づいて、以下の式(11)に示す複素変数CPを算出する。
【0157】
CP=(Q1-Q3)+j(Q2-Q4) … 式(11)
ただし、jは虚数単位
Q1は電荷蓄積部CS1に蓄積された電荷量
Q2は電荷蓄積部CS2に蓄積された電荷量
Q3は電荷蓄積部CS3に蓄積された電荷量
Q4は電荷蓄積部CS4に蓄積された電荷量
【0158】
これにより、第1実施形態の距離画像撮像装置1では、外光成分を除去した電荷量、すなわち反射光RLに対応する電荷量を用いて特徴量を算出することができる。したがって、外光成分を含むノイズを除去することができ、精度よくマルチパス判定を行うことが可能となる。
【0159】
また、第1実施形態の距離画像撮像装置1では、距離画像処理部4は、第1測定及び第2測定において、蓄積タイミングに対して照射タイミングを遅らせることにより、蓄積タイミングに対する照射タイミングの時間差が互いに異なる複数の測定を行う。これにより、第1実施形態の距離画像撮像装置1では、画素321を駆動させるタイミングを変更することなく、光パルスPOを照射するタイミングのみを変更させることにより、容易に複数回の測定を行うことができる。
【0160】
また、第1実施形態の距離画像撮像装置1では、距離画像処理部4は、シングルパスかマルチパスかを判定することなく被写体までの暫定の距離を算出する仮測定を行い、仮測定において算出された距離に応じて、第1条件及び第2条件の少なくとも一方を決定する。これにより、第1実施形態の距離画像撮像装置1では、仮測定にて測定した暫定の距離に応じて第1条件及び第2条件の少なくとも一方を決定することができ、被写体OBまでのおおよその距離に応じて第1条件及び第2条件を設定でき、精度よくマルチパス判定を行うことができる第1測定又は第2測定を行うことが可能となる。
【0161】
また、第1実施形態の距離画像撮像装置1では、距離画像処理部4は、仮測定において算出された距離に応じて、被写体OBが比較的近くに存在する近距離物体であると判定する場合、第2条件における照射時間と蓄積時間の組合せが、第1条件よりも短い時間となるように第2条件を決定する。これにより、第1実施形態の距離画像撮像装置1では、被写体OBが近距離物体である場合には電荷蓄積部CSの飽和を抑制するオートエクスポージャを実現させると共に、マルチパス判定を行いやすくすることができる。一方、距離画像処理部4は、被写体OBが比較的遠くに存在する遠距離物体と判定する場合、第2条件における照射時間と蓄積時間の組合せが第1条件よりも長い時間となるように第2条件を決定する。これにより、被写体OBが遠距離物体である場合には測定可能な範囲を拡大させHDRを実現させると共に、マルチパス判定を行いやすくすることが可能となる。
【0162】
また、上述した第1実施形態では、画素321がシングルパスを受光したと判定された場合に式(1)を用いて被写体OBまでの距離を算出する場合を例示して説明した。しかしながら、これに限定されない。式(1)では、照射タイミングと蓄積タイミングが同じタイミング、つまり照射遅延時間が0(ゼロ)であることを前提としている。このため、複数回の測定のうち、2回目以降の測定結果を用いて距離を算出する場合には、式(1)をそのまま適用することができない。2回目以降の測定結果を用いて距離を算出する場合、距離画像処理部4は、照射遅延時間に応じた補正を行う。
【0163】
つまり、第1実施形態の距離画像撮像装置1では、距離画像処理部4は、複数回の測定のそれぞれに基づく距離を、複数回の測定のそれぞれの時間差に基づく距離に応じて補正し、補正後の距離を、被写体OBまでの距離とする。これにより、2回目以降の測定結果を用いて距離を算出した場合であっても、正しい距離を算出することができる。
【0164】
また、第1実施形態の距離画像撮像装置1では、距離画像処理部4は、SD指標を算出する。SD指標は、ルックアップテーブルLUTの傾向と、複数の測定のそれぞれの特徴量の傾向との類似度合いを示す指標値である。SD指標は、式(7)で示される。つまり、SD指標は、複数の測定のそれぞれから算出される複素関数CP(n)(第1特徴量)と、ルックアップテーブルLUTにおいて対応する関数GG(n)(第2特徴量)との差分を、第2特徴量の絶対値で正規化した差分正規化値について、複数の測定のそれぞれの差分正規化値を加算した加算値である。距離画像処理部4は、SD指標が閾値を超えない場合に、反射光RLがシングルパスにて画素321に受光されたと判定する。一方、距離画像処理部4は、SD指標が閾値を超える場合に、反射光RLがマルチパスにて画素321に受光されたと判定する。これにより、第1実施形態の距離画像撮像装置1では、SD指標と閾値とを比較するという簡単な方法でマルチパス判定を行うことができる。
【0165】
また、第1実施形態の距離画像撮像装置1では、距離画像処理部4は、反射光RLがマルチパスで画素321に受光されたと判定した場合、マルチパスに含まれる光の経路のそれぞれに対応する距離を、最小二乗法を用いることにより算出する。これにより、第1実施形態の距離画像撮像装置1では、マルチパスのそれぞれの経路について、最も確からしい経路を決定することができ、マルチパスのそれぞれに対応する距離を算出することが可能となる。
【0166】
また、上述した第1実施形態では、光パルスPOの強度が一定であることを前提とした。しかしながら、これに限定されない。距離画像処理部4は、光パルスを照射する光の強度(以下、光強度という)を制御するようにしてもよい。例えば、距離画像処理部4は、近距離物体を測定する場合、第2測定において照射時間及び蓄積時間を短くすると共に、光強度を弱くする。これにより、距離画像処理部4は、飽和を抑制すると共に、消費電力を抑制することができる。或いは、距離画像処理部4は、遠距離物体を測定する場合、第2測定において照射時間及び蓄積時間を長くすると共に、光強度を強くする。これにより、距離画像処理部4は、ショットノイズを低減させると共に、マルチパスの分離精度を向上させることができる。
【0167】
また、第1実施形態の距離画像撮像装置1では、ドレインゲートトランジスタGD(電荷排出部)を備える。距離画像処理部4は、1フレーム期間において、蓄積タイミングとは異なるタイミングにおいて、光電変換素子PD子によって発生された電荷が、ドレインゲートトランジスタGDによって排出されるように制御する。これにより、第1実施形態の距離画像撮像装置1では、光パルスPOの反射光RLを受光することが想定されていない時間区間において、外光成分に応じた電荷が蓄積され続けることを回避することができる。
【0168】
このように、SP方式においては、単位蓄積時間UTにおいて、反射光RLを受光することが想定されていない時間区間にはドレインゲートトランジスタGDをオン状態にして電荷の排出を行う。これにより、光パルスPOの反射光RLを受光することが想定されていない時間区間において、外光成分に応じた電荷が蓄積され続けることを回避する。
【0169】
一方、光パルスPOが連続的に照射される、所謂コンティニアスウェイブ方式(以下、CW方式という)では、単位蓄積時間UTにおいて電荷を電荷蓄積部CSに蓄積させる度に電荷の排出を行うことはない。これは、CW方式においては、常時、反射光RLを受光していることから、反射光RLを受光することが想定されていない時間区間が存在しないためである。CW方式においては、1フレームにおいて単位蓄積時間UTを複数回繰り返す処理が実行されている時間区間においては、光電変換素子PDに接続されたリセットゲートトランジスタなどの電荷排出部はオフ状態に制御され、電荷の排出を行わない。そして、1フレームにおいて読出時間RDが到来すると、電荷蓄積部CSのそれぞれに蓄積された電荷量を読み出した後、リセットゲートトランジスタなどの電荷排出部がオン状態に制御され、電荷の排出が行われる。また、上記の説明では、光電変換素子PDに電荷排出部が接続された機構を例に説明したがこれに限定されない。光電変換素子PDに電荷排出部が存在せず、フローティングディフュージョンFDに電荷排出部が接続されたリセットゲートトランジスタを用いる機構などであってもよい。
【0170】
本実施形態では、SP方式を採用していることから、距離画像撮像装置1の画素321がドレインゲートトランジスタGDを備える。これにより、CW方式により1フレームにおいて継続的に電荷を蓄積させる場合と比較して誤差を低減させることができるため、電荷量のSN比(信号成分に対する誤差の比率)を高めることが可能である。したがって、積算回数を増やしても誤差が積算され難いために、電荷蓄積部CSに蓄積される電荷量の精度を維持することができ、特徴量を精度よく算出することができる。
【0171】
また、上述した第1実施形態では、照射時間Toと蓄積時間Taは同等の時間幅であること、同等の時間幅には、照射時間Toが蓄積時間Taよりも所定時間長い場合を含むことを説明した。照射時間Toが蓄積時間Taよりも所定時間長い場合の効果について補足する。
【0172】
ここで、一例として、反射光RLが受光されたタイミング(以下、受光タイミングという)と、電荷蓄積部CS2がオン状態になるタイミング(以下、第2蓄積タイミングという)が一致する場合を考える。
【0173】
この場合、光パルスPOの形状が理想的な矩形形状である場合には、電荷蓄積部CS2のみに反射光RLに対応する電荷が蓄積され、電荷蓄積部CS1及びCS3には、反射光RLに対応する電荷が蓄積されない。しかしながら、実際の光パルスPOの形状は、波形なまりがあり、理想的な矩形形状にならない。この場合、光パルスPOの照射時間が、見かけ上、蓄積時間よりも短くなってしまう場合がある。照射時間が蓄積時間より短い場合、受光タイミングと第2蓄積タイミングが一致していれば、電荷蓄積部CS2のみに反射光RLに対応する電荷が蓄積される。しかし、その後、被写体OBまでの距離が変化して、受光タイミングが第2蓄積タイミングより遅れた場合であっても、照射時間が蓄積時間より短いために電荷蓄積部CS2のみに反射光RLに相当する電荷が蓄積される状態が続いてしまうことになる。このような場合に、距離を算出する精度が劣化してしまう可能性がある。
【0174】
これに対し、照射時間Toを、蓄積時間Taよりも長く設定すると、受光タイミングと第2蓄積タイミングが一致した場合であっても、電荷蓄積部CS2のみならず、電荷蓄積部CS3にも反射光RLに対応する電荷が蓄積される。このため、受光タイミングが第2蓄積タイミングより遅れた場合には、その遅れに応じた電荷量を電荷蓄積部CS3に蓄積させることができ、距離を算出する精度が劣化を抑制することができる。
【0175】
図17は、照射時間Toを蓄積時間Taよりも長く設定した場合におけるルックアップテーブルLUT#の例を示す図である。
図17に示すように、照射時間Toを蓄積時間Taよりも長く設定した場合、ルックアップテーブルが、位相x=π/2の地点において急峻に変化する形状から、連続的に変化し続ける丸みを帯びた形状となる。位相x=π/2の地点において急峻に変化すると、位相x=π/2の近傍において測定の精度が低下しやすい。一方、照射時間Toを蓄積時間Taよりも長く設定することにより、位相x=π/2の地点において連続的に変化するため、測定の精度が低下することを抑制することができる。
【0176】
次に、第2実施形態について説明する。第2実施形態では、第2測定において、第2条件(照射時間と蓄積時間の組合せ)を第1測定と同じ条件とする一方、第2時間差(基準とする照射タイミングと蓄積タイミングとの時間差)を第1測定と異なる条件とする、
【0177】
ここで、
図18(
図18A、
図18B)を用いて、第2実施形態において遠距離物体を測定する方法について説明する。
図18は第2実施形態の距離画像撮像装置1が被写体OBを測定するタイミングを模式的に示す図である。
【0178】
図18Aには、第2測定において遠距離物体を1回目に測定した例が示されている。
図18Bには、第2測定において遠距離物体をK回目に測定した例が示されている。
【0179】
図18の照射時間Toは、
図7の照射時間Toと同じ時間幅である。蓄積時間Taは、
図7の蓄積時間Taと同じ時間幅である。照射時間Toと蓄積時間Taは同程度の時間幅である。
【0180】
図18に示すように、第2測定の1回目(初回)の測定において、照射タイミングに対して蓄積タイミングを時間Tds遅らせる。すなわち、距離画像処理部4は、第2時間差として、時間Tdsを設定する。第2時間差である時間Tdsを基準として、以降の測定において、照射タイミングと蓄積タイミングとの時間差を、時間Tdsを基準として、異なる時間差としながら複数の測定を行う。
【0181】
このように、基準とする1回目の照射タイミングと蓄積タイミングの時間差を時間Tdsとすることにより、第2測定のK回目の測定において、照射タイミングを、1回目の測定に対して照射遅延時間Dtmk遅らせた場合においても、反射光RLに対応する電荷が、電荷蓄積部CSに蓄積されるようにすることができる。
【0182】
なお、測定において、1回目の測定から、このような蓄積タイミングを時間Tds遅らせた条件で測定を行う場合、近距離物体に反射した反射光RLに対応する電荷を電荷蓄積部CSに蓄積させることができなくなってしまい、近距離物体までの距離を測定することが困難となる。
【0183】
この対策として、本実施形態では、第1測定及び第2測定とは別に、仮測定を行う。仮測定は、第1測定及び第2測定とは別に行う測定であり、シングルパスか否かに関わらず、式(1)を用いて距離を算出する測定である。仮測定において、照射時間、照射タイミング、蓄積時間、及び蓄積タイミングのそれぞれは任意に設定されてよいが、例えば、
図5の1回目の測定と同じ値に設定される。
【0184】
例えば、距離画像処理部4は、仮測定により算出した距離に基づいて被写体OBが近距離物体であると判定した場合、第2測定において、照射タイミングと蓄積タイミングとの時間差0(ゼロ)を基準とした複数の測定を行う。
【0185】
一方、距離画像処理部4は、仮測定により算出した距離に基づいて被写体OBが遠距離物体であると判定した場合、第2測定において、照射タイミングと蓄積タイミングとの時間差が時間Tdsである関係を基準とした、複数の測定を行う。
【0186】
第2測定において、照射タイミングと蓄積タイミングとの時間差が時間Tdsである関係を基準とした複数の測定を行った場合、距離画像処理部4は、第2測定において算出した距離を、第2時間差に基づく距離に応じて補正し、補正後の距離を被写体OBまでの距離とする。
【0187】
以上説明したように、第2実施形態の距離画像撮像装置1では、第1測定及び第2測定を行う。距離画像処理部4は、第2測定では、第2条件が第1測定と同じ条件であり、第2時間差が第1測定と異なる測定を行う。これにより、第2実施形態の距離画像撮像装置1では、第1測定において第1時間差を基準とした複数回の測定を行い、第2測定において第1時間差とは異なる第2時間差を基準とした複数回の測定を行うことができ、第1測定及び第2測定のそれぞれの複数回の測定において基準となる時間差(照射タイミングと蓄積タイミングとの時間差)が異なるようにすることができる。
【0188】
したがって、被写体OBが遠距離物体である場合など、第1測定におけるK回目の測定において反射光RLに対応する電荷が電荷蓄積部CSに蓄積されないような場合であっても、第2測定においては、K回目の測定においても反射光RLに対応する電荷が電荷蓄積部CSに蓄積させることが可能となる。したがって、精度よく距離を算出することが可能となる。
【0189】
また、第2実施形態の距離画像撮像装置1では、距離画像処理部4は、シングルパスかマルチパスかを判定することなく被写体までの暫定の距離を算出する仮測定を行う。距離画像処理部4は、仮測定において算出された距離に応じて、第2時間差を決定する。これにより、第2実施形態の距離画像撮像装置1では、仮測定にて測定した暫定の距離に応じて第2時間差を決定することができ、被写体OBまでのおおよその距離に応じて、第2測定における複数の測定の全てにおいて反射光RLに対応する電荷が電荷蓄積部CSに蓄積されるように調整することができ、精度よく測定を行うことが可能となる。
【0190】
また、第2実施形態の距離画像撮像装置1では第2測定において、照射タイミングと蓄積タイミングとの時間差が時間Tdsである関係を基準とした複数の測定を行った場合、距離画像処理部4は、第2測定において算出した距離を、第2時間差(時間Tds)に基づく距離に応じて補正し、補正後の距離を被写体OBまでの距離とする。これにより、第2測定において、照射タイミングと蓄積タイミングとの時間差が0(ゼロ)ではない場合であっても、正しい距離を算出することができる。
なお、仮測定を行う場合において、測定する度に毎回仮測定を行わなくてもよい。具体的には、仮測定、第1測定、及び第2測定の順に、毎回の測定を繰り返さなくてもよい。例えば、被写体OBが測定領域における一定の範囲内に存在している場合、仮測定を省略して、第1測定と2測定のセット、又は第2測定だけを行うことによって距離を算出するようにしてもよい。一方、前回の測定から一定時間が経過した場合、或いは、被写体OBが測定領域の外に移動した場合など、特定の条件を満たす場合、例えば、仮測定、仮測定と第1測定のセット、又は第1測定の何れかを行い、その後に第2測定を行うようにしてもよい。
【0191】
上述した実施形態における距離画像撮像装置1、距離画像処理部4の全部または一部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
【0192】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【符号の説明】
【0193】
1…距離画像撮像装置
2…光源部
3…受光部
32…距離画像センサ
321…画素
42…距離演算部
CS…電荷蓄積部
PO…光パルス
RL…反射光
Dt…ドット光
L…ライン光