IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ NTN株式会社の特許一覧

特開2024-119380変速機用軸およびそれを用いた軸受装置
<>
  • 特開-変速機用軸およびそれを用いた軸受装置 図1
  • 特開-変速機用軸およびそれを用いた軸受装置 図2
  • 特開-変速機用軸およびそれを用いた軸受装置 図3
  • 特開-変速機用軸およびそれを用いた軸受装置 図4
  • 特開-変速機用軸およびそれを用いた軸受装置 図5
  • 特開-変速機用軸およびそれを用いた軸受装置 図6
  • 特開-変速機用軸およびそれを用いた軸受装置 図7
  • 特開-変速機用軸およびそれを用いた軸受装置 図8
  • 特開-変速機用軸およびそれを用いた軸受装置 図9
  • 特開-変速機用軸およびそれを用いた軸受装置 図10
  • 特開-変速機用軸およびそれを用いた軸受装置 図11
  • 特開-変速機用軸およびそれを用いた軸受装置 図12
  • 特開-変速機用軸およびそれを用いた軸受装置 図13
  • 特開-変速機用軸およびそれを用いた軸受装置 図14
  • 特開-変速機用軸およびそれを用いた軸受装置 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024119380
(43)【公開日】2024-09-03
(54)【発明の名称】変速機用軸およびそれを用いた軸受装置
(51)【国際特許分類】
   C23C 8/32 20060101AFI20240827BHJP
   C22C 38/00 20060101ALI20240827BHJP
   F16C 3/02 20060101ALI20240827BHJP
   F16C 19/44 20060101ALI20240827BHJP
   F16C 33/62 20060101ALI20240827BHJP
   C21D 1/06 20060101ALN20240827BHJP
   C22C 38/44 20060101ALN20240827BHJP
   C21D 9/28 20060101ALN20240827BHJP
【FI】
C23C8/32
C22C38/00 301N
F16C3/02
F16C19/44
F16C33/62
C21D1/06 A
C22C38/44
C21D9/28 A
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2023026242
(22)【出願日】2023-02-22
(71)【出願人】
【識別番号】000102692
【氏名又は名称】NTN株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】宮崎 佳祐
【テーマコード(参考)】
3J033
3J701
4K028
4K042
【Fターム(参考)】
3J033AA01
3J033AB00
3J033AB03
3J701AA14
3J701AA32
3J701AA42
3J701AA52
3J701AA62
3J701BA53
3J701BA55
3J701BA69
3J701BA70
3J701DA02
3J701EA02
3J701GA11
3J701XB01
3J701XB03
3J701XB31
3J701XE01
3J701XE03
3J701XE12
3J701XE14
4K028AA01
4K028AA02
4K028AA03
4K028AB01
4K028AB06
4K028AC07
4K028AC08
4K042AA14
4K042BA04
4K042CA06
4K042CA08
4K042CA10
4K042CA15
4K042DA01
4K042DA02
4K042DA06
4K042DB07
4K042DC02
4K042DC03
4K042DC04
4K042DD02
4K042DD05
4K042DE02
4K042DE03
(57)【要約】
【課題】比較的安価に長寿命化を図ることができる変速機用軸およびそれを用いた軸受装置を提供する。
【解決手段】変速機用軸1は、変速機に用いられ、針状ころ2が転動する軌道面を有する。変速機用軸1は、母材11を備える。母材11は、クロムモリブデン鋼からなり、かつ鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒を含む拡散層を表面に有する。軌道面1bの算術平均粗さ(Ra)が0.1μm以下である。
【選択図】図3
【特許請求の範囲】
【請求項1】
変速機に用いられ、針状ころが転動する軌道面を有する変速機用軸であって、
クロムモリブデン鋼からなり、かつ鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒を含む拡散層を表面に有する母材を備え、
前記軌道面の算術平均粗さが0.1μm以下である、変速機用軸。
【請求項2】
前記拡散層中における前記少なくとも1つの結晶粒を含む化合物粒の面積比率は3%以上であり、前記化合物粒の平均粒径は0.3μm以下である、請求項1に記載の変速機用軸。
【請求項3】
前記拡散層は、複数のマルテンサイトブロックを含む、請求項1または2に記載の変速機用軸。
【請求項4】
前記マルテンサイトブロックの最大粒径は、3.8μm以下である、請求項3に記載の変速機用軸。
【請求項5】
前記母材の前記表面における旧オーステナイト結晶粒の平均粒径は、8μm以下である、請求項1または2に記載の変速機用軸。
【請求項6】
遊星型変速機を構成する遊星歯車を支持する、請求項1または2に記載の変速機用軸。
【請求項7】
請求項1または2に記載の変速機用軸と、
前記変速機用軸の前記軌道面を転動する複数の針状ころと、を備えた、軸受装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変速機用軸およびそれを用いた軸受装置に関する。
【背景技術】
【0002】
自動車、建設機械などに使用される遊星機構を用いた変速機では、外径部を軌道面とする軸と、内径部を軌道面とする遊星歯車と、これらの各軌道面の間に配置された保持器付き針状ころ軸受とのセットである軸受装置が使用される。変速機にはギヤが使用される。ギヤの部分は磨耗により摩耗粉が発生する。摩耗粉は異物として軸受装置の潤滑油に混入し、転動部の寿命を縮める恐れがある。また回転速度が比較的低い条件下で軸受装置が使用され、転動部の油膜形成が不足する可能性もある。このため、この軸受装置には、異物または潤滑不良による表面損傷に強い部品が要求される。特に軸は固定部品であるため、円周上の1カ所に負荷が加わる構造を有する。このため軸が軸受の寿命に影響する場合がある。
【0003】
軸受において異物環境下または希薄潤滑下にて寿命を延ばす方法として、鋼材からなる部品にアンモニア(NH3)を含む浸炭窒化雰囲気で熱処理(浸炭窒化処理)を行ない、表面の残留オーステナイト量および炭素、窒素の濃度を多くする強化方法が一般的に知られている。
【0004】
またショットピーニングにより軸またはころに凹部を設け、その凹部に固体潤滑剤を被覆して摩擦係数を低下させる技術が、例えば特開2006-161887号公報(特許文献1)に開示されている。また同様に、ショットピーニングにより表層に硬化層(Hv850以上Hv10000以下)を形成するとともに大きな圧縮残留応力(絶対値が600MPa以上1700MPa以下)を与えて強化する技術が、例えば特開2017-106534号公報(特許文献2)に開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006-161887号公報
【特許文献2】特開2017-106534号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら一般的な浸炭窒化処理だけでは十分な寿命を得ることができない。また特許文献1、2のようなショットピーニングを伴う長寿命化手法では製品毎の個別処理が必要になり製造プロセスが煩雑となる。
【0007】
本発明は、上記の課題を解決するためになされたものであって、その目的は、比較的安価に長寿命化を図ることができる変速機用軸およびそれを用いた軸受装置を提供することである。
【課題を解決するための手段】
【0008】
本発明の変速機用軸は、変速機に用いられ、針状ころが転動する軌道面を有する変速機用軸であって、母材を備える。母材はクロムモリブデン鋼からなり、かつ鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒を含む拡散層を表面に有する。軌道面の算術平均粗さ(Ra)が0.1μm以下である。なお、相手側となる針状ころの転動面の算術平均粗さ(Ra)は通常0.05μm以下である。
【0009】
なお本発明における変速機は減速機および増速機のいずれであってもよい。
上記の変速機用軸において、拡散層中における少なくとも1つの結晶粒を含む化合物粒の面積比率は3%以上であり、化合物粒の平均粒径は0.3μm以下である。
【0010】
上記の変速機用軸において、拡散層は、複数のマルテンサイトブロックを含む。
上記の変速機用軸において、マルテンサイトブロックの最大粒径は3.8μm以下である。
【0011】
上記の変速機用軸において、母材の表面における旧オーステナイト結晶粒の平均粒径は8μm以下である。
【0012】
上記の変速機用軸において、遊星型変速機を構成する遊星歯車を支持する。
本発明の軸受装置は、上記の変速機用軸と、その変速機用軸の軌道面を転動する複数の針状ころとを備える。
【発明の効果】
【0013】
本発明によれば、比較的安価に長寿命化を図ることができる変速機用軸およびそれを用いた軸受装置を実現することができる。
【図面の簡単な説明】
【0014】
図1】遊星型変速機における遊星歯車およびその支持構造を、遊星歯車を破断して示す一部破断斜視図である。
図2図1に示す遊星歯車およびその支持構造の断面図である。
図3図2の領域Rにおける変速機用軸の構成を拡大して示す拡大断面図であり、四三酸化鉄皮膜を有さない例(A)および四三酸化鉄皮膜を有する例(B)である。
図4】一実施形態に係る変速機用軸の製造方法を示すフロー図である。
図5図4における浸炭窒化熱処理の工程を細分化して示すフロー図である。
図6】一実施形態に係る変速機用軸の製造方法におけるヒートパターンを示すグラフである。
図7】軌道面がストレートの状態(A)と軌道面にたわみがある状態(B)との各々における針状ころの駆動力と軌道面に作用する荷重分布とを示す図である。
図8】試料1に対するEPMAによる炭素濃度および窒素濃度の測定結果を示すグラフである。
図9】試料2に対するEPMAによる炭素濃度および窒素濃度の測定結果を示すグラフである。
図10】試料1の表面近傍における電子顕微鏡像である。
図11】試料2の表面近傍における電子顕微鏡像である。
図12】試料1の表面近傍における光学顕微鏡像である。
図13】試料2の表面近傍における光学顕微鏡像である。
図14】試料1および試料2の表面近傍における第3群および第5群に属するマルテンサイトブロックの平均粒径を示すグラフである。
図15】試料1および試料2の表面近傍における第3群および第5群に属するマルテンサイトブロックの平均アスペクト比を示すグラフである。
【発明を実施するための形態】
【0015】
以下、図面を参照して、本発明の実施形態について説明する。以下の図面においては、同一または相当する部分に同一の参照符号を付し、重複する説明は繰り返さない。
【0016】
<遊星型変速機における遊星歯車とその支持構造>
まず一実施形態に係る遊星型変速機における遊星歯車とその支持構造について図1および図2を用いて説明する。
【0017】
図1は、遊星型変速機における遊星歯車およびその支持構造を、遊星歯車を破断して示す一部破断斜視図である。図2は、図1に示す遊星歯車およびその支持構造の断面図である。
【0018】
遊星型変速機は、遊星歯車装置を有している。遊星歯車装置は、太陽歯車(サン・ギヤ)と、遊星歯車(プラネタリ・ギヤ)と、内歯車(インターナル・ギヤ)との3系統の歯車を有している。遊星歯車装置では、1系統の歯車への入力に対して、他の2系統の歯車のどちらかを固定または開放することで必要な変速が実行される。
【0019】
図1に示されるように、遊星歯車4は、外周部に複数の歯4aを有している。遊星歯車4の歯4aは、太陽歯車(図示せず)の外周側に設けられた歯と噛み合う。これにより遊星歯車4は、太陽歯車の外周側で回転する。また遊星歯車4の歯4aは、内歯車(図示せず)の内周側に設けられた歯と噛み合う。これにより遊星歯車4は、内歯車の内周側で回転する。このように遊星歯車4は、太陽歯車と内歯車との間で、太陽歯車の軸を中心として公転する。
【0020】
遊星型変速機は、遊星歯車4を回転可能に支持する転がり軸受装置10を有している。転がり軸受装置10は、変速機用軸1と、複数の針状ころ2と、保持器3とを有している。なお転がり軸受装置10は、遊星歯車4を含んでいてもよい。
【0021】
遊星歯車4の中央部には、貫通孔が設けられている。貫通孔を規定する壁面4bは、遊星歯車4の内周面を構成している。遊星歯車4の貫通孔には、変速機用軸1が挿入されている。これにより遊星歯車4は、変速機用軸1の外周を取り囲んでいる。変速機用軸1は、例えば円柱形状を有している。変速機用軸1は、内部に油路1aを有している。変速機用軸1は転がり軸受装置10の内方部材に対応し、遊星歯車4は転がり軸受装置10の外方部材に対応する。変速機用軸1の外周面(軌道面1b)と遊星歯車4の内周面(軌道面4b)との間には、保持器付き針状ころ軸受が配置されている。
【0022】
保持器付き針状ころ軸受は、複数の針状ころ2と、保持器3とを有している。保持器3は、環状の形状を有しており、変速機用軸1の外周面を取り囲んでいる。保持器3は、複数のポケット3aを有している。複数のポケット3aは、ほぼ等しい間隔で周方向に沿って配置されている。複数のポケット3aの各々には、針状ころ2が転動自在に保持されている。
【0023】
図2に示されるように、複数の針状ころ2の各々は、変速機用軸1の軌道面1bとなる外周面と遊星歯車4の軌道面4bとなる内周面とを転動するように配置されている。保持器付き針状ころ軸受により、遊星歯車4は変速機用軸1に対して回転自在に支持されている。
【0024】
なお、変速機用軸の適用例として歯車式変速機について述べたが、ベルト式やトロイダル式、油圧式などの変速機にも適用できる。
【0025】
<変速機用軸1の構成>
次に、変速機用軸1の構成について図3を用いて説明する。
【0026】
図3は、図2の領域Rにおける変速機用軸の構成を拡大して示す拡大断面図であり、四三酸化鉄皮膜を有さない例(A)および四三酸化鉄皮膜を有する例(B)である。図3に示されるように、変速機用軸1は、母材11を備えている。母材11の材質は、例えばクロムを含む鋼材よりなっている。母材11の材質は、図3の(A)の四三酸化鉄を有さない例においては、クロムモリブデン鋼である。当該クロムモリブデン鋼は、JIS(Japanese Industrial Standards)規格(JIS G 4053:2016)に規定されるSCr鋼種、SCM鋼種およびSNCM鋼種に属する鋼であり、たとえばJIS規格に定めるSCM435であってもよい。
【0027】
母材11には、浸炭窒化熱処理が施されている。このため母材11は、表面(外周面)において、拡散層DRを有している。拡散層DRは、窒素および炭素の濃度が、変速機用軸1を構成する鋼材中(拡散層DRよりも内部IP)の窒素および炭素の濃度よりも高くなっている部分である。拡散層DRの深さDは、例えば0.6mm以上1.5mm以下である。
【0028】
拡散層DRは、複数の化合物粒を有している。化合物粒は、鉄(Fe)の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒である。より具体的には、化合物粒は、セメンタイト(Fe3C)の鉄サイトの一部がクロムによって置換されており、炭素(C)サイトの一部が窒素(N)により置換されている化合物(すなわち、(Fe,Cr)3(C,N)により示される化合物)の結晶粒である。
【0029】
変速機用軸1は、図3の(A)のように四三酸化鉄皮膜12を備えなくてもよいが、図3の(B)のように四三酸化鉄皮膜12を備えてもよい。四三酸化鉄皮膜12は、母材11の表面に接して配置されている。四三酸化鉄皮膜12は、四三酸化鉄(Fe34)よりなっており、いわゆる黒錆といわれるものであり、不動態酸化皮膜である。四三酸化鉄皮膜12の表面は、多孔質である。四三酸化鉄皮膜12の厚みは、1μm以上2μm以下である。四三酸化鉄皮膜12は、変速機用軸1の少なくとも軌道面1bに配置されている。ただし図3の(A)のように変速機用軸1が四三酸化鉄皮膜12を有さない場合、軌道面1bは母材11の表面である。四三酸化鉄皮膜12は、母材11の表面全面を覆うように配置されていてもよい。また図3の(B)のように四三酸化鉄皮膜12を有する場合、母材11の材質はクロムモリブデン鋼に限られない。すなわち図3の(B)の場合、母材11の材質は、クロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼のいずれかである。
【0030】
四三酸化鉄皮膜12は、例えば黒染め処理法といわれる化成処理により母材11の表面上に形成される。本実施形態における黒染め処理法は、130℃以上160℃以下の水酸化ナトリウム(NaOH)を主成分とする強アルカリ水溶液中に3分以上浸漬することである。この黒染め処理法によれば、強アルカリ水溶液の温度が130℃以上160℃以下と低いため、母材11が変質または変形するほどまで加熱されない。このため母材11の組織、強度、性質などの変化が抑制され、浸炭窒化熱処理により得られた母材11の組織、強度、性質などは黒染め処理後にも維持されている。また黒染め処理法により形成される四三酸化鉄皮膜12の厚みは1μm以上2μm以下と薄い。このため四三酸化鉄皮膜12が接する母材11の表面状態は、浸炭窒化熱処理が施された鋼材の表面状態とほぼ同じである。
【0031】
母材11は、例えばクロムモリブデンよりなり、四三酸化鉄皮膜12の形成前に、後述の図6に示す特殊な浸炭窒化熱処理を施されていることが好ましい。この特殊な浸炭窒化熱処理により、母材11の結晶粒微細化が強化されるとともに、析出化合物が富化される。これにより耐表面損傷が強化され、疲労強度が向上し、たわみによる変形が抑止されて、さらなる寿命向上が図られる。
【0032】
以下に、上記特殊な浸炭窒化熱処理が施された母材11について説明する。
母材11(または四三酸化鉄皮膜12)に含まれる軌道面1bの算術平均粗さ(Ra)は、粗さ曲線から抜き取られる部分の平均線の方向をx方向としてx座標で示し、抜き取られる部分の基準長さをlとしたときに、以下の式(1)で定義できる。
【0033】
【数1】
【0034】
算術平均粗さ(Ra)が0.1μm以下である軌道面1bは、研削加工により形成される。さらに粗さの向上を図るために、軌道面1bは超仕上げ加工またはホーニング加工により形成されてもよい。軌道面1bの算術平均粗さ(Ra)は、JIS規格(JIS B 0601:2013)に定められた方法により測定される。
【0035】
拡散層DRは、複数の化合物粒以外に、複数のマルテンサイトブロックを有している。拡散層DR中における化合物粒の平均粒径は、0.3μm以下である。拡散層DR中における化合物粒の平均粒径は、0.25μm以下であることが好ましい。拡散層DR中における化合物粒の面積比率は、3%以上である。拡散層DR中における化合物粒の面積比率は、8%以上であることが好ましい。拡散層DR中における化合物粒の面積比率は、例えば10%以下である。
【0036】
なお、拡散層DR中における化合物粒の平均粒径および面積比率は、以下の方法で測定される。第1に、拡散層DRの断面研磨が行われる。第2に、研磨面の腐食が行われる。第3に、腐食が行われた研磨面に対して、SEM(Scanning Electron Microscopy)撮影が行われる(以下においては、SEM撮影によって得られた画像を、「SEM画像」という)。なお、SEM画像は、十分な数(20個以上)の化合物粒が含まれるように撮影される。第4に、得られたSEM画像に対して画像処理を行うことにより、当該SEM画像中における各々の化合物粒の面積および化合物粒の総面積が算出される。
【0037】
化合物粒の円相当径と化合物粒の面積との間には、π×(化合物粒の円相当径)2/4=化合物粒の面積、の関係が成立する。そのため、当該SEM画像中に表示されている各々の化合物粒の面積を4/πで除した値の平方根を計算することにより、当該SEM画像中に表示されている各々の化合物粒の円相当径が算出される。当該SEM画像中に表示されている各々の化合物粒の円相当径の合計を当該SEM画像中に表示されている化合物粒の数で除した値が、拡散層DR中における化合物粒の平均粒径とされる。当該SEM画像中に表示されている化合物粒の総面積を当該SEM画像の面積で除した値が、拡散層DR中における化合物粒の面積比率とされる。
【0038】
マルテンサイトブロックは、結晶方位が揃った結晶により構成されているマルテンサイト相のブロックである。マルテンサイト相は、炭素が固溶した鉄のオーステナイト相を急冷することにより得られる非平衡相である。第1のマルテンサイト相のブロックの結晶方位と第1のマルテンサイト相のブロックに隣接する第2のマルテンサイト相のブロックの結晶方位とのずれが15°以上である場合、第1のマルテンサイト相のブロックと第2のマルテンサイト相のブロックとは、異なるマルテンサイトブロックである。他方、第1のマルテンサイト相のブロックの結晶方位と第1のマルテンサイト相のブロックに隣接する第2のマルテンサイト相のブロックの結晶方位とのずれが15°未満である場合、第1のマルテンサイト相のブロックと第2のマルテンサイト相のブロックとは、1つのマルテンサイトブロックを構成している。
【0039】
拡散層DR中におけるマルテンサイトブロックの最大粒径は、3.8μm以下である。拡散層DR中におけるマルテンサイトブロックの最大粒径は、例えば3.6μm以上である。
【0040】
結晶粒径が1μm以下の拡散層DR中に含まれるマルテンサイトブロックは、第1群を構成している。拡散層DR中に含まれているマルテンサイトブロックの総面積に対する第1群を構成しているマルテンサイトブロックの面積比率は、0.55以上0.75以下であることが好ましい。
【0041】
拡散層DRに含まれるマルテンサイトブロックは、第2群と、第3群とに区分されていてもよい。第2群に属するマルテンサイトブロックの結晶粒径の最大値は、第3群に属するマルテンサイトブロックの結晶粒径の最小値よりも小さい。第3群に属するマルテンサイトブロックの総面積を拡散層DRに含まれるマルテンサイトブロックの総面積で除した値は、0.5以上である。第3群に属する結晶粒径が最も大きいマルテンサイトブロックを除く第3群に属するマルテンサイトブロックの総面積を拡散層DRに含まれるマルテンサイトブロックの総面積で除した値は、0.5未満である。
【0042】
このことを別の観点からいえば、第2群に含まれるマルテンサイトブロックと第3群に属するマルテンサイトブロックとは、以下の方法により区分される。すなわち、第1に、各々のマルテンサイトブロックを、結晶粒径が最も小さいものから順次第2群に割り当てていくとともに、マルテンサイトブロックの総面積に対する第2群に割り当てられたマルテンサイトブロックの総面積が順次計算される。第2に、マルテンサイトブロックの総面積に対する第2群に割り当てられたマルテンサイトブロックの総面積の割合が50%を超えない限界に達した時点で、第2群へのマルテンサイトブロックの割り当てが停止される。第3に、第2群に割り当てられていないマルテンサイトブロックが、第3群に割り当てられる。
【0043】
好ましくは、第3群に含まれるマルテンサイトブロックの平均粒径は、0.7μm以上1.4μm以下である。好ましくは、第3群に含まれるマルテンサイトブロックの平均アスペクト比は、2.5以上2.8以下である。
【0044】
拡散層DRに含まれるマルテンサイトブロックは、第4群と、第5群とに区分されていてもよい。第4群に属するマルテンサイトブロックの結晶粒径の最大値は、第5群に属するマルテンサイトブロックの結晶粒径の最小値よりも小さい。第5群に属するマルテンサイトブロックの総面積を拡散層DRに含まれるマルテンサイトブロックの総面積で除した値は、0.7以上である。第5群に属する結晶粒径が最も大きいマルテンサイトブロックを除く第5群に属するマルテンサイトブロックの総面積を拡散層DRに含まれるマルテンサイトブロックの総面積で除した値は、0.7未満である。
【0045】
このことを別の観点からいえば、第4群に含まれるマルテンサイトブロックと第5群に属するマルテンサイトブロックとは、以下の方法により区分される。すなわち、第1に、各々のマルテンサイトブロックを、結晶粒径が最も小さいものから順次第4群に割り当てていくとともに、マルテンサイトブロックの総面積に対する第4群に割り当てられたマルテンサイトブロックの総面積が順次計算される。第2に、マルテンサイトブロックの総面積に対する第4群に割り当てられたマルテンサイトブロックの総面積の割合が30%を超えない限界に達した時点で、第4群へのマルテンサイトブロックの割り当てが停止される。第3に、第4群に割り当てられていないマルテンサイトブロックが、第5群に割り当てられる。
【0046】
好ましくは、第5群に含まれるマルテンサイトブロックの平均粒径は、0.7μm以上1.1μm以下である。好ましくは、第5群に含まれるマルテンサイトブロックの平均アスペクト比は、2.4以上2.6以下である。
【0047】
拡散層DR中におけるマルテンサイトブロックの結晶粒径およびマルテンサイトブロックのアスペクト比は、EBSD(Electron BackScattered Diffraction)法を用いて測定される。
【0048】
第1に、EBSD法に基づいて、拡散層DRにおける断面画像が撮影される(以下においては、「EBSD画像」という)。なお、EBSD画像は、十分な数(20個以上)のマルテンサイトブロックが含まれるように撮影される。EBSD画像に基づいて、隣接するマルテンサイト相のブロックの結晶方位のずれが特定される。これにより、各々のマルテンサイトブロックの境界が特定される。第2に、特定されたマルテンサイトブロックの境界に基づいて、EBSD画像に表示されている各々のマルテンサイトブロックの面積および形状が算出される。
【0049】
より具体的には、EBSD画像に表示されている各々のマルテンサイトブロックの面積を4/πで除した値の平方根を計算することにより、EBSD画像に表示されている各々のマルテンサイトブロックの円相当径が算出される。EBSD画像に表示されているマルテンサイトブロックの円相当径のうち、最も大きな値が、拡散層DR中におけるマルテンサイトブロックの最大粒径とされる。
【0050】
上記のように算出された各々のマルテンサイトブロックの円相当径に基づいて、EBSD画像に表示されているマルテンサイトブロックのうち、第1群に属するマルテンサイトブロックが決定される。EBSD画像に表示されているマルテンサイトブロックのうち第1群に属するマルテンサイトブロックの総面積を、EBSD画像に表示されているマルテンサイトブロックの総面積で除した値は、第1群に属する拡散層DR中のマルテンサイトブロックの総面積を拡散層DR中のマルテンサイトブロックの総面積により除した値とされる。
【0051】
上記のように算出された各々のマルテンサイトブロックの円相当径に基づいて、EBSD画像に表示されているマルテンサイトブロックは、第2群と第3群とに分類される(または、第4群と第5群とに分類される)。第3群(または第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの円相当径の合計を第3群(または第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの個数で除した値が、第3群に属する(または第5群に属する)拡散層DR中のマルテンサイトブロックの平均粒径とされる。
【0052】
EBSD画像に表示されている各々のマルテンサイトブロックの形状から、EBSD画像に表示されている各々のマルテンサイトブロックの形状が最小二乗法により楕円近似される。この最小二乗法による楕円近似は、S. Biggin and D. J. Dingley, Journal of Applied Crystallography, (1977)10, 376-378に記載の方法にしたがって行われる。この楕円形状において、長軸の寸法を短軸の寸法で除することにより、EBSD法画像に表示されている各々のマルテンサイトブロックのアスペクト比が算出される。第3群(または第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックのアスペクト比の合計を第3群(または第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの個数で除した値が、第3群に属する(または第5群に属する)拡散層DR中のマルテンサイトブロックの平均アスペクト比とされる。
【0053】
拡散層DR中には、複数の旧オーステナイト粒が含まれている。なお、旧オーステナイト粒は、後述する保持工程S13aおよびS14a(図5)において形成されるオーステナイト粒の結晶粒界(旧オーステナイト粒界)により画される領域である。旧オーステナイト粒の平均粒径は、8μm以下であることが好ましい。旧オーステナイト粒の平均粒径は、6μm以下であることがさらに好ましい。
【0054】
なお、拡散層DR中における旧オーステナイト粒の平均粒径は、以下の方法で測定される。第1に、拡散層DRの断面研磨が行われる。第2に、研磨面の腐食が行われる。第3に、腐食が行われた研磨面に対して、光学顕微鏡撮影が行われる(以下においては、光学顕微鏡撮影によって得られた画像を、「光学顕微鏡画像」という)。なお、光学顕微鏡画像は、十分な数(20個以上)の旧オーステナイト粒が含まれるように撮影される。第4に、得られた光学顕微鏡画像に対して画像処理を行うことにより、当該光学顕微鏡画像中における各々の旧オーステナイト粒の面積が算出される。
【0055】
光学顕微鏡画像に表示されている各々の旧オーステナイト粒の面積を4/πで除した値の平方根を計算することにより、光学顕微鏡像に表示されている各々の旧オーステナイト粒の円相当径が算出される。光学顕微鏡像に表示されている各々の旧オーステナイト粒の円相当径の合計を光学顕微鏡像に表示されている旧オーステナイト粒の数で除した値が、拡散層DR中における旧オーステナイト粒の平均粒径とされる。
【0056】
母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均炭素濃度は、0.7質量%以上であることが好ましい。母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均炭素濃度は、1.2質量%以下であることが好ましい。
【0057】
母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均窒素濃度は、0.2質量%以上であることが好ましい。母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均窒素濃度は、0.4質量%以下であることが好ましい。
【0058】
母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均炭素濃度および平均窒素濃度は、EPMA(Electron Probe Micro Analyzer)を用いて測定される。
【0059】
<変速機用軸1の製造方法>
次に、一実施形態に係る変速機用軸1の製造方法を図4図6を用いて説明する。
【0060】
図4は、一実施形態に係る変速機用軸の製造方法を示すフロー図である。図5は、図4における浸炭窒化熱処理の工程を細分化して示すフロー図である。図6は、一実施形態に係る変速機用軸の製造方法におけるヒートパターンを示すグラフである。
【0061】
図4に示されるように、本実施形態に係る変速機用軸の製造方法は、鋼材を準備する工程S1と、浸炭窒化熱処理を実施する工程S2と、研削、スーパーフィニッシュ、ホーニング加工などを実施する工程S3とを有している。当該製造方法はさらに、四三酸化鉄皮膜12を形成する工程S4を有してもよい。工程S1においては、クロムモリブデン鋼からなる鋼材が準備される。
【0062】
工程S2においては、工程S1において準備された鋼材に浸炭窒化熱処理が施される。この浸炭窒化熱処理においては、例えばアンモニア(NH3)のガスを含む雰囲気ガスが用いられる。工程S3においては、浸炭窒化熱処理が施された鋼材に、研削、スーパーフィニッシュ、ホーニング加工などが実施される。これにより鋼材は、変速機用軸1としての外径寸法に仕上げられる。
【0063】
この後、工程S4において、鋼材の表面に四三酸化鉄皮膜12が形成されてもよい。四三酸化鉄皮膜12は、例えば黒染め処理法といわれる化成処理により形成される。本実施形態においては、鋼材は130℃以上160℃以下の水酸化ナトリウムを主成分とする強アルカリ水溶液中に3分以上浸漬される。これにより図3に示されるように、母材11の表面上に四三酸化鉄皮膜12が形成され、本実施形態の変速機用軸1が製造される。
【0064】
なお工程S2における浸炭窒化熱処理として、図5および図6に示す特殊な浸炭窒化熱処理が実施されてもよい。以下、この特殊な浸炭窒化熱処理について説明する。
【0065】
図5に示されるように、特殊な浸炭窒化熱処理は、浸炭窒化工程S11と、拡散工程S12と、一次焼き入れ工程S13と、二次焼き入れ工程S14と、焼き戻し工程S15とを有している。
【0066】
浸炭窒化工程S11においては、例えば図4に示す工程S1で準備されたクロムモリブデン鋼からなる鋼材の表面に対する浸炭窒化が行われる。浸炭窒化工程S11は、鋼材を、所定の温度(以下においては、「第1保持温度」という)において、所定の時間(以下においては、「第1保持時間」という)炉内に保持することにより行われる。炉内雰囲気には、例えば、吸熱型変成ガス(Rガス)およびアンモニアを含有するガスが用いられる。第1保持温度は、例えば930℃以上940℃以下である。第1保持時間は、例えば10時間以上15時間以下である。
【0067】
拡散工程S12においては、浸炭窒化工程S11において鋼材の表面から導入された炭素および窒素が鋼材の内部へと拡散する。拡散工程S12は、所定の温度(以下においては、「第2保持温度」という)において、所定の時間(以下においては、「第2保持時間」という)炉内に保持することにより行われる。炉内雰囲気には、例えば、吸熱型変成ガス(Rガス)およびアンモニアを含有するガスが用いられる。第2保持温度は、例えば930℃以上940℃以下である。第2保持時間は、例えば5時間以上10時間以下である。
【0068】
拡散工程S12においては、以下の式(2)および式(3)により定義されるαが、浸炭窒化工程S11よりも低くなるように調整される。αの調整は、式(2)および式(3)から明らかなとおり、雰囲気中の一酸化炭素の量、二酸化炭素の量および未分解のアンモニアの量を調整することにより行われる。なお、雰囲気中の未分解のアンモニアの量は、0.1体積%以上であることが好ましい。
【0069】
【数2】
【0070】
一次焼き入れ工程S13においては、鋼材に対する焼き入れが行われる。一次焼き入れ工程S13は、保持工程S13aと、冷却工程S13bとを有している。保持工程S13aは、鋼材を所定の温度(以下においては、「第3保持温度」という)において所定の時間(以下においては「第3保持時間」という)炉内に保持することにより行われる。なお、一次焼き入れ工程S13においては、炉内の雰囲気にアンモニアは含まれていない。第3保持温度は、鋼材を構成する鋼のA1変態点以上の温度であって、第1保持温度および第2保持温度よりも低い温度である。第3保持温度は、例えば850℃以上930℃未満である。好ましくは、第3保持温度は、860℃以上880℃以下である。第3保持時間は、例えば0.5時間以上2時間以下である。冷却工程S13bにおいては、第3保持温度からMs点以下の温度まで、鋼材の冷却が行われる。冷却工程S13bは、例えば油冷により行われる。
【0071】
二次焼き入れ工程S14においては、鋼材の焼き入れが行われる。二次焼き入れ工程S14は、保持工程S14aと、冷却工程S14bとを有している。保持工程S14aは、鋼材を所定の温度(以下においては、「第4保持温度」という)において所定の時間(以下においては「第4保持時間」という)炉内に保持することにより行われる。なお、二次焼き入れ工程S14においては、炉内の雰囲気にアンモニアは含まれていない。第4保持温度は、鋼材を構成する鋼のA1変態点以上の温度であって、第3保持温度よりも低い温度である。第4保持温度は、例えば鋼材を構成する鋼のA1変態点以上850℃以下である。第4保持温度は、820℃以上840℃以下であることが好ましい。第4保持時間は、例えば1時間以上2時間以下である。冷却工程S14bにおいては、第4保持温度からMs点以下の温度まで、鋼材の冷却が行われる。冷却工程S14bは、例えば油冷により行われる。
【0072】
拡散層DR中の化合物粒は、主として保持工程S13aおよび保持工程S14aにおいて析出する。鋼中における炭素および窒素の固溶限は、保持温度が高くなるほど大きくなる(保持温度が低くなるほど小さくなる)。第3保持温度は、保持工程S13aにおける拡散層DR中に化合物粒が過大に析出することを避けるため、通常の焼き入れ時の保持温度よりも高く設定されている(通常の焼き入れ時よりも鋼中における炭素および窒素の固溶限が相対的に広くなるように設定されている)。
【0073】
保持工程S14aにおいては、保持工程S13aにおいて既に化合物粒が析出している。つまり、保持工程S14aにおいては、母材中の炭素濃度および窒素濃度が低下しており、保持工程S13aよりも相対的に化合物粒が析出しにくくなっている。そのため、第4保持温度は、鋼中における窒素および炭素の固溶限を狭くして保持工程S14aにおける化合物粒の析出を促進するため、第3保持温度よりも低く設定されている。これにより、拡散層DR中における化合物粒の面積比率と3%以上とすることができる。また、第4保持温度を第3保持温度よりも低く設定することにより、保持工程S13aおよび保持工程S14aにおいて析出した化合物粒の粗大化を抑制することができるため、拡散層DR中における化合物粒の平均粒径を0.3μm以下とすることができる。
【0074】
保持工程S13aおよび保持工程S14aにおいては、上記のようにして多量かつ微細に析出させた化合物粒のピン止め効果によりオーステナイト結晶粒の成長が抑制され、オーステナイト結晶粒が微細なままとされる。マルテンサイト変態に際しては、1つのオーステナイト結晶粒内に複数のマルテンサイトブロックが形成される。このことを別の観点からいえば、1つのマルテンサイトブロックは、複数のオーステナイト結晶粒に跨って形成されることはない。そのため、オーステナイト結晶粒が微細化されるほど、それに含まれるマルテンサイトブロックも微細化される。
【0075】
焼き戻し工程S15においては、鋼材に対する焼き戻しが行われる。焼き戻し工程S15は、鋼材を、所定の温度(以下においては、「第5保持温度」という)において所定の時間(以下においては、「第5保持時間」という)炉内に保持した後に冷却することにより行われる。第5保持温度は、鋼材を構成する鋼のA1変態点以下の温度である。第5保持温度は、例えば150℃以上350℃以下である。第4保持時間は、例えば0.5時間以上5時間以下である。焼き戻し工程S15における冷却は、例えば空冷により行われる。
【0076】
以上の工程S11~S15により、図4の工程S2に示す浸炭窒化熱処理が行なわれる。
【0077】
図6は、実施形態に係る変速機用軸の製造方法におけるヒートパターンを示すグラフである。図6には、上記の第1保持温度~第5保持温度および第1保持時間~第5保持時間の関係が模式的に示されている。
【0078】
<本実施形態の作用効果>
本開示に従った変速機用軸1は、変速機に用いられ、針状ころ2が転動する軌道面1bを有する。変速機用軸1は、母材11を備える。母材11はクロムモリブデン鋼からなり、かつ鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒を含む拡散層DRを表面に有する。軌道面1bの算術平均粗さRaが0.1μm以下である。変速機用軸1の表面である軌道面1bの算術平均粗さ(Ra)を0.1μm以下とすることで、比較的安価に変速機用軸1が改善される。これにより、変速機用軸1を長寿命化できる。また、当該変速機用軸1と、当該変速機用軸1の軌道面1bを転動する複数の針状ころ2とを備えた軸受装置10を長寿命化できる。なお、相手側となる針状ころの転動面の算術平均粗さ(Ra)は通常0.05μm以下である。
【0079】
その他、特に四三酸化鉄皮膜12を有する場合、次のような作用効果も得られる。図7は、軌道面がストレートの状態(A)と軌道面にたわみがある状態(B)との各々における針状ころの駆動力と軌道面に作用する荷重分布とを示す図である。図7(A)に示されるように、軌道面1bが軸方向にストレートの場合、ころ(転動体)2越しに軌道面1bに負荷される荷重分布はほぼ均等となる。これによりころ2の駆動力もころ2の軸方向にほぼ均等となる。
【0080】
これに対して図7(B)に示されるように、変速機用軸1の両端が固定された状態で変速機用軸1のおよそ中央部分に荷重が負荷される。このため、軌道面1bが軸方向にたわみ、曲げ応力が作用した状態で変速機用軸1は使用される。軌道面1bがたわんでいる場合、軌道面1b上を転動するころ2の形状の左右差などによりスキューが生じやすくなり、滑りが大きくなる。このため、油膜切れが発生しやすく、金属接触による表面損傷の危険性が高くなる。
【0081】
四三酸化鉄皮膜12は、多孔質の表面を有し、表面に凹部を含んだ構造をしている。このため四三酸化鉄皮膜12が形成されることにより、表面の凹部に油が保持されて油膜形成能力が向上し、希薄潤滑条件下における寿命が向上する。
【0082】
また四三酸化鉄皮膜12は相手材(針状ころ)に比べて軟らかい。このため、加工目による凹凸部または異物を噛みこんだ際にできる圧痕周辺の凸部が早期に摩滅し、実使用における金属接触を低減させることができる。なお寿命試験において、運転初期段階で四三酸化鉄皮膜12に0.8μm程度の摩耗が発生し、破損発生まで摩耗が進行しなかった。このことから四三酸化鉄皮膜12の厚みは、0.8μm以上(好ましくは1μm以上)必要である。また四三酸化鉄皮膜12を厚膜化した場合に黒染め処理の時間が長くなりコストアップにつながるため、四三酸化鉄皮膜12の厚みは2μm以下であることが望ましい。
【0083】
黒染め処理によれば、一度に複数の製品を処理することが可能であり、処理追加によるコストアップを抑えることができる。また黒染め処理時に表面粗さが向上するため、変速機用軸1の加工工数を抑えることができる。
【0084】
なお、一方方向荷重が長時間作用した場合、時間と共に大きくなる微小な塑性変形(クリープ)が懸念される。しかし、図5および図6に示される特殊な浸炭窒化熱処理を施した変速機用軸1では、結晶粒の微細化と析出化合物の増加とにより、最大曲げ応力が作用する表層部の降伏応力が大きくなる。このため、一般的な浸炭窒化処理品よりもクリープ変形を抑えることができ、長時間たわみによる変形を最小限に抑えることができる。また、図5および図6に示される特殊な浸炭窒化熱処理では従来の浸炭窒化処理に比べて、母材11の疲労強度と耐表面損傷性能とが向上しており、さらに寿命が向上される。
【実施例0085】
以下に、実施形態に係る変速機用軸1の効果を確認するために行った実験(以下において「本実験」という)を説明する。
【0086】
<試料>
本実験には、試料1および試料2が用いられた。試料1および試料2に用いられた鋼材は、表1に示されるようにSCM435(JIS G 4053:2016)である。試料1および試料2の各々は、針状ころ軸受装置の内方部材である回転軸(図1の変速機用軸1に相当)である。
【0087】
【表1】
【0088】
表2に示されるように、試料1および試料2の各々に対しては、第1保持温度が930℃以上940℃以下、第1保持時間が13時間の条件で浸炭窒化工程S11が行われた。試料1および試料2の各々に対しては、第2保持温度が930℃以上940℃以下、第2保持時間が6時間の条件で拡散工程S12が行われた。なお、浸炭窒化工程S11および拡散工程S12における雰囲気中の一酸化炭素量、二酸化炭素量、およびアンモニア量は、それぞれ11体積%以上17体積%以下、0.05体積%以上0.15体積%以下、0.1体積%以上0.3体積%以下とされた。
【0089】
試料1および試料2の各々に対して、第3保持温度が870℃、第3保持時間が1時間の条件で一次焼き入れ工程S13が行われた。この後、試料1に対して、第4保持温度が830℃、第4保持温度が1.5時間の条件で二次焼き入れ工程S14が行われた。試料2には、この二次焼き入れ工程S14が行われなかった。この後、試料1および試料2の各々に対して、第5保持温度が180℃、第5保持時間が3時間の条件で焼き戻し工程S15が行われた。この後、試料1および試料2の各々に対して、加工工程S3として、研磨量が150μmの機械研磨が行われた。
【0090】
【表2】
【0091】
<炭素濃度および窒素濃度の測定>
図8は、試料1に対するEPMAによる炭素濃度および窒素濃度の測定結果を示すグラフである。図9は、試料2に対するEPMAによる炭素濃度および窒素濃度の測定結果を示すグラフである。なお、図8および図9においては、横軸は試料1および試料2の表面からの距離(単位:mm)であり、縦軸は炭素濃度および窒素濃度(単位:質量%濃度)である。
【0092】
図8に示されるように、試料1の表面近傍においては、炭素濃度および窒素濃度に、鋭いピークが多数確認された。この結果から、試料1においては、表面近傍に炭化物、窒化物および炭窒化物などの微細な化合物粒が析出していることが実験的に確認された。また、試料1においては、表面と表面から10μmの距離にある深さ位置との間の領域における平均炭素濃度が0.7%以上1.2%以下の範囲内にあり、当該領域における平均窒素濃度が0.2質量%以上0.4質量%以下の範囲内にあった。他方、図9に示されるように、試料2の表面近傍において、炭素濃度および窒素濃度に、鋭いピークが多数確認されなかった。この結果から、試料2においては、表面近傍に炭化物、窒化物および炭窒化物などの微細な化合物粒が析出していないことが実験的に確認された。
【0093】
<組織観察>
図10は、試料1の表面近傍における電子顕微鏡像である。図10に示されるように、試料1の表面近傍においては、0.2μm以上3.0μm以下の化合物粒が多数析出していることが確認された。また、試料1の表面近傍においては、化合物粒の平均粒径が約0.25μmであることが確認された。さらに、試料1の表面近傍においては、化合物粒の面積比率が約8%であることが確認された。
【0094】
図11は、試料2の表面近傍における電子顕微鏡像である。図11に示されるように、試料2の表面近傍においては、化合物粒の面積比率が約1%であることが確認された。
【0095】
また試料1の表面近傍におけるEBSD画像を確認したところ、試料1の表面近傍においては、マルテンサイトブロックの最大粒径が3.6μm以上3.8μm以下の範囲内にあることが確認された。また、試料1の表面近傍においては、マルテンサイトブロックの面積の90%以上を結晶粒径が2μm以下のマルテンサイトブロックが占めていることが確認された。さらに、試料1の表面近傍においては、マルテンサイトブロックの面積の55%以上75%以下を結晶粒径が1μm以下のマルテンサイトブロックが占めていることが確認された。
【0096】
また試料2の表面近傍におけるEBSD画像を確認したところ、試料2の表面近傍においては、マルテンサイトブロックの最大粒径が5.1μm以上7.3μm以下の範囲内にあることが確認された。また、試料2の表面近傍においては、マルテンサイトブロックの面積の65%以上80%以下を結晶粒径が2μm以下のマルテンサイトブロックが占めていることが確認された。さらに、試料2の表面近傍においては、マルテンサイトブロックの面積の35%以上45%以下を結晶粒径が1μm以下のマルテンサイトブロックが占めていることが確認された。
【0097】
図12は、試料1の表面近傍における光学顕微鏡像である。図12に示されるように、試料1の表面近傍においては、旧オーステナイト粒の平均粒径が4μm以上8μm以下の範囲にあり、旧オーステナイト粒の結晶粒径は1μm以上10μm以下の範囲で分布していることが確認された。図13は、試料2の表面近傍における光学顕微鏡像である。図13に示されるように、試料2の表面近傍においては、旧オーステナイト粒の平均粒径が12μm以上25μm以下の範囲にあり、旧オーステナイト粒の結晶粒径は5μm以上100μm以下の広い範囲で分布していることが確認された。
【0098】
図14は、試料1および試料2の表面近傍における第3群および第5群に属するマルテンサイトブロックの平均粒径を示すグラフである。なお、図14においては、縦軸は平均粒径(単位:μm)を示している。
【0099】
図14に示されるように、試料1の表面近傍においては、第3群に属するマルテンサイトブロックの平均粒径が約1.0μmであった。このことから、試料1においては、第3群に属するマルテンサイトブロックの平均粒径が、0.7μm以上1.4μm以下の範囲内にあることが確認された。
【0100】
図14に示されるように、試料1の表面近傍においては、第5群に属するマルテンサイトブロックの平均粒径が約0.8μmであった。このことから、試料1においては、第5群に属するマルテンサイトブロックの平均粒径が、0.6μm以上1.1μmの範囲内にあることが確認された。
【0101】
他方で、試料2の表面近傍においては、第3群に属するマルテンサイトブロックの平均粒径が約1.7μmであった。また、試料2の表面近傍においては、第5群に属するマルテンサイトブロックの平均粒径が約1.3μmであった。
【0102】
図15は、試料1および試料2の表面近傍における第3群および第5群に属するマルテンサイトブロックの平均アスペクト比を示すグラフである。なお、図15においては、縦軸は平均アスペクト比を示している。
【0103】
図15に示されるように、試料1の表面近傍においては、第3群に属するマルテンサイトブロックの平均アスペクト比が、約2.8であった。このことから、試料1においては、第3群に属するマルテンサイトブロックの平均アスペクト比が2.5以上2.8以下の範囲内にあることが確認された。
【0104】
図15に示されるように、試料1の表面近傍においては、第5群に属するマルテンサイトブロックの平均アスペクト比が、約2.6であった。このことから、試料1においては、第5群に属するマルテンサイトブロックの平均アスペクト比が2.4以上2.6以下の範囲内にあることが確認された。
【0105】
他方で、試料2の表面近傍においては、第3群に属するマルテンサイトブロックの平均アスペクト比が、約3.2であった。また、試料2の表面近傍においては、第5群に属するマルテンサイトブロックの平均アスペクト比は、約3.0であった。
【0106】
<異物混入潤滑下における転動疲労寿命試験>
試料1~試料6の各々における変速機用軸と保持器付き針状ころ軸受と外方部材とを用いて、異物混入潤滑下における転動疲労試験(以下においては、「転動疲労試験」という)が行なわれた。試料3は試料1に軌道面1b(図3参照)の算術平均粗さRaが0.08μm越え0.1μm以下となるための加工を施した変速機用軸であり、試料4は試料2に軌道面1b(図3参照)の算術平均粗さRaが0.08μm越え0.1μm以下となるための加工を施した変速機用軸である。試料3および4の各々に施した算術平均粗さRaが0.08μm越え0.1μm以下となるための加工としては、研削加工がなされた。ただしさらに粗さの向上を図る場合には、試料3および4の各々に超仕上げ加工またはホーニング加工がなされてもよい。
【0107】
試料5は試料1に軌道面1b(図3参照)の算術平均粗さRaが0.08μm以下となるための加工を施した変速機用軸であり、試料6は試料2に軌道面1b(図3参照)の算術平均粗さRaが0.08μm以下となるための加工を施した変速機用軸である。試料5および6の各々に施した算術平均粗さRaが0.08μm以下となるための加工としては、研削加工がなされた。更に粗さの向上を図る場合には、試料5および6の各々に超仕上げ加工やホーニング加工でも良い。この処理により形成された、試料5および試料6の軌道面1bの算術平均粗さRaは約0.06μmであった。
【0108】
転動疲労試験においては、L10寿命(試験開始から剥離が発生するまでの時間を統計的に解析し、累積破損確率が10%となるときの試験時間)、L50寿命(試験開始から剥離が発生するまでの時間を統計的に解析し、累積破損確率が50%となるときの試験時間)で評価を行った。その結果を以下の表3に示す。
【0109】
【表3】
【0110】
表3中の※1の「結晶粒」は、鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒である。また表中の1~6の数字は、軸受に異常がなく転動した時間を長い順に示している。つまり表中の数字が小さいほど長寿命であることを示す。なお表中「3~5」は、3つの試料において寿命がほぼ同一であったため、(3位から5位の間で優劣をつけ難いものとして)このように記している。
【0111】
表3の結果から、一般的な浸炭窒化を施され、かつ軌道面1bの算術平均粗さ(Ra)が0.1μm以下となるための加工が施されていない試料2が基準である。つまり試料2が、表3中の左上の順位「6」である。これに比べて、一般的な浸炭窒化を施され、かつ軌道面1bの算術平均粗さ(Ra)が0.1μm以下となるための加工が施された試料4,6の寿命が向上していることが分かった。また図5、6に示す浸炭窒化熱処理が施され、かつ軌道面1bの算術平均粗さ(Ra)が0.1μm以下となるための加工が施された試料3,5の寿命は、試料2を基準として大幅に向上することが分かった。また試料3,5の寿命は、図5、6に示す浸炭窒化熱処理が施され、かつ軌道面1bの算術平均粗さ(Ra)が0.1μm以下となるための加工が施されていない試料1を基準としても向上することが分かった。
【0112】
以上より軌道面1bの算術平均粗さ(Ra)が0.1μm以下とされることにより、そのようにされない場合よりも寿命が向上することが分かった。また図5、6に示す特殊な浸炭窒化熱処理を施したうえで軌道面1bの算術平均粗さ(Ra)が0.1μm以下とされることにより寿命が大幅に向上することが分かった。なお変速機用軸1の軌道面1bの算術平均粗さ(Ra)が0.1μmを超える場合、摩耗等が懸念される。このため軌道面1bの算術平均粗さ(Ra)は0.1μm以下であることが好ましく、そのなかでも0.08μm以下であることがより好ましい。
【0113】
今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0114】
以下、本開示の諸態様を付記としてまとめて記載する。
(付記1)
変速機に用いられ、針状ころが転動する軌道面を有する変速機用軸であって、
クロムモリブデン鋼からなり、かつ鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒を含む拡散層を表面に有する母材を備え、
前記軌道面の算術平均粗さが0.1μm以下である、変速機用軸。
【0115】
(付記2)
前記拡散層中における前記少なくとも1つの結晶粒を含む化合物粒の面積比率は3%以上であり、前記化合物粒の平均粒径は0.3μm以下である、付記1に記載の変速機用軸。
【0116】
(付記3)
前記拡散層は、複数のマルテンサイトブロックを含む、付記1または2に記載の変速機用軸。
【0117】
(付記4)
前記マルテンサイトブロックの最大粒径は、3.8μm以下である、付記3に記載の変速機用軸。
【0118】
(付記5)
前記母材の前記表面における旧オーステナイト結晶粒の平均粒径は、8μm以下である、付記1~4のいずれか1項に記載の変速機用軸。
【0119】
(付記6)
遊星型変速機を構成する遊星歯車を支持する、付記1~5のいずれか1項に記載の変速機用軸。
【0120】
(付記7)
付記1~6のいずれか1項に記載の変速機用軸と、
前記変速機用軸の前記軌道面を転動する複数の針状ころと、を備えた、軸受装置。
【符号の説明】
【0121】
1 変速機用軸、1a 油路、1b,4b 軌道面、2 針状ころ、3 保持器、3a ポケット、4 遊星歯車、4a 歯、10 軸受装置、11 母材、12 四三酸化鉄皮膜、DR 拡散層、IP 内部。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15