(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024012280
(43)【公開日】2024-01-30
(54)【発明の名称】自動化された単一細胞処理及び解析のためのシステム及び方法
(51)【国際特許分類】
C12Q 1/6851 20180101AFI20240123BHJP
C12Q 1/6869 20180101ALI20240123BHJP
C12Q 1/6876 20180101ALI20240123BHJP
C12M 1/00 20060101ALI20240123BHJP
G01N 35/02 20060101ALI20240123BHJP
G01N 35/10 20060101ALI20240123BHJP
【FI】
C12Q1/6851 Z
C12Q1/6869 Z
C12Q1/6876 Z
C12M1/00 A
G01N35/02 A
G01N35/10 A
【審査請求】有
【請求項の数】22
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023157472
(22)【出願日】2023-09-22
(62)【分割の表示】P 2021573419の分割
【原出願日】2020-06-02
(31)【優先権主張番号】62/861,826
(32)【優先日】2019-06-14
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/907,791
(32)【優先日】2019-09-30
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】502416811
【氏名又は名称】バイオ-ラッド ラボラトリーズ インコーポレイテッド
(74)【代理人】
【識別番号】110001302
【氏名又は名称】弁理士法人北青山インターナショナル
(72)【発明者】
【氏名】ハンディーク,カリヤン
(57)【要約】 (修正有)
【課題】サンプルの標的のセットを検出するための方法を提供する。
【解決手段】サンプル処理基材に、機能性粒子のセットに近接するサンプルの細胞のセットを捕捉し;サンプル処理基材で細胞のセットの溶解を実行して、細胞のセットから機能性粒子のセットに、標的のセットを結合することを可能にし;サンプル処理基材で、機能性粒子のセットのオリゴヌクレオチドに結合された標的のセットによって、逆転写作業を実行し;逆転写作業の産物によって、機能性粒子のセットと共に、第2鎖合成作業を実行し;第2鎖合成作業で得られた第1の標的のサブセットへの第1プローブのハイブリダイゼーションを促進し;サンプル処理基材で、第1プローブを光学的に検出し;第1プローブを脱ハイブリダイズし;第2鎖合成作業で得られた第2の標的のサブセットへの第2プローブのハイブリダイゼーションを促進することを備える方法とする。
【選択図】
図1C
【特許請求の範囲】
【請求項1】
サンプルの標的のセットを検出するための方法であって、前記方法は、
サンプル処理基材のマイクロウェルのセットに、単一細胞フォーマットで、機能性粒子のセットに近接する前記サンプルの細胞のセットを捕捉することと、
前記サンプル処理基材で前記細胞のセットの溶解を実行し、それによって、前記細胞のセットから前記機能性粒子のセットに、放出されたバイオマーカを結合することを可能にすることと、
前記サンプル処理基材の前記マイクロウェルのセットで、前記機能性粒子のセットに結合された内容物によって逆転写作業を実行することと、
前記逆転写作業の産物によって、前記機能性粒子のセットに結合された内容物と共に第2鎖合成作業を実行することと、
前記第2鎖合成作業の産物によって、前記機能性粒子のセットで増幅作業を実行することと、
前記増幅作業の産物に、フルオロフォアのセットに対応するプローブのセットの各々をハイブリダイズすることと、
前記プローブのセットによって放出された光の画像データセットを生成して、それによって、前記サンプルの標的のセットの検出を可能にすることと、を含む、方法。
【請求項2】
前記標的のセットは、対象からの免疫応答の評価のための抗体のパネルを含み、前記抗体のパネルは、IgM抗体、IgG抗体、IgD抗体、IgA抗体及びIgE抗体のうちの1以上を含む、請求項1に記載の方法。
【請求項3】
前記抗体のパネルは、重症急性呼吸器症候群コロナウイルス-2(SARS-CoV-2)に対する抗体を含む、請求項2に記載の方法。
【請求項4】
前記標的のセットはmRNA分子のパネルを含む、請求項1に記載の方法。
【請求項5】
前記サンプル処理基材全体に分布された前記サンプルによって、前記mRNA分子のパネルの空間トランスクリプトーム解析を実行することをさらに含む、請求項4に記載の方法。
【請求項6】
前記機能性粒子のセットに近接する前記サンプルの細胞のセットを捕捉することは、前記サンプル処理基材のマイクロウェルの第1セットに前記細胞のセットを送達することと、前記マイクロウェルの第1セットに整列して前記マイクロウェルの第1セットに面する第2基材のマイクロウェルの第2セット内に前記機能性粒子のセットを位置決めすることと、を含む、請求項1に記載の方法。
【請求項7】
前記マイクロウェルの第1セットに対して、前記マイクロウェルの第2セットによって、前記第2基材を圧縮して、それによって、前記サンプル処理基材の個々のウェルをパーティショニングすることと、前記細胞のセット由来の内容物が前記第2基材で前記機能性粒子のセットに向かって拡散することを可能にすることと、をさらに含む、請求項6に記載の方法。
【請求項8】
前記マイクロウェルの第1セットに対して、前記マイクロウェルの第2セットによって、前記第2基材を圧縮することは、前記第2基材に対して加熱体を作動させ、それによって、前記サンプル処理基材及び前記第2基材のうちの少なくとも1つの内容物の圧縮及び加熱を提供することを含む、請求項7に記載の方法。
【請求項9】
前記プローブのセットの各々をハイブリダイズすることは、第1フルオロフォアに対応する、前記プローブのセットの第1サブセットをハイブリダイズして、第1検出作業を実行することと、前記プローブの第1サブセットをデハイブリダイズして洗浄することと、第2フルオロフォアに対応する、前記プローブのセットの第2サブセットをハイブリダイズして、第2検出作業を実行することと、を含む、請求項1に記載の方法。
【請求項10】
前記プローブ(P)のセットは、前記標的のセットの多重化された検出のために構成され、前記フルオロフォア(F)のセットは、融点(M)のセットを有し、それによって、前記サンプル処理基材でM*FP標的の多重化を可能にする、請求項1に記載の方法。
【請求項11】
前記画像データセットからの蛍光値のセット及び実行された増幅サイクルの数に基づいて、前記機能性粒子のセットで捕捉されたmRNAの初期濃度の推定によってmRNA定量化作業を実行することをさらに含む、請求項1に記載の方法。
【請求項12】
サンプルを自動的に処理するためのシステムであって、前記システムは、
デッキであって、
前記デッキの第1面の第1領域の試薬カートリッジと、
前記第1面の第2領域のサンプル処理基材と、を支持して位置決めするように構成されたデッキと、
前記デッキに結合されたガントリであって、
ピペットインタフェースのために、前記デッキの前記第1面によって境界付けられる3次元ボリューム内で、軸のセットに沿った移動の経路を規定するトラックのセットを備えるガントリと、
前記デッキの前記第1面とは反対のベースであって、
熱体のセットを備える加熱冷却サブシステムと、
前記第2領域内への真空ポートを備えるポンピングシステムと、
イメージングサブシステムであって、
前記デッキで前記サンプル処理基材の均一な照明のため、フィルタのセット及び光学素子のセットを通じて光を透過させるために構成されたエミッタのセットを備える照明システムと、
前記サンプル処理基材から検出器上への光の成形のためのレンズのセットを備える検出サブシステムと、を備えるイメージングサブシステムと、を支持するベースと、を備える、システム。
【請求項13】
前記デッキと前記ベースとの間に支持された処理制御サブシステムをさらに備え、前記処理制御サブシステムは、自動サンプル処理作業を実行するためのコンピュータ可読媒体に格納された非一時的指令を備え、前記自動サンプル処理作業は、
前記ピペットインタフェース及び前記ポンピングサブシステムを使用して、
サンプル処理基材のマイクロウェルのセットに、単一細胞フォーマットで、機能性粒子のセットに近接する前記サンプルの細胞のセットを捕捉することと、
前記サンプル処理基材で前記細胞のセットの溶解を実行し、それによって、前記細胞のセットから前記機能性粒子のセットに、放出されたバイオマーカを結合することを可能にすることと、
前記サンプル処理基材のマイクロウェルのセットで、前記機能性粒子のセットに結合された内容物によって逆転写作業及び第2鎖合成作業を実行することと、
前記増幅作業の産物に、フルオロフォアのセットに対応する、プローブのセットの各々をハイブリダイズすることと、
前記イメージングサブシステムによって、前記プローブのセットによって放出された光の画像データセットを生成し、それによって、前記サンプルの標的のセットの検出を可能にすることと、のうちの少なくとも1つを含む、請求項12に記載のシステム。
【請求項14】
前記サンプル処理基材は、前記マイクロウェルのセット備えるマイクロウェル領域を備え、前記サンプル処理基材は、前記マイクロウェルのセットからの流路を規定するベース内に保持される、請求項12に記載のシステム。
【請求項15】
前記サンプル処理基材の前記マイクロウェルのセットに整列して前記マイクロウェルのセットに面するマイクロウェルの第2セットを備える第2基材をさらに備え、前記第2基材は、圧縮性層によって前記サンプル処理基材から部分的に分離される、請求項14に記載のシステム。
【請求項16】
前記加熱冷却サブシステムは、前記ガントリの前記ピペットインタフェースに結合するように構成された加熱体をさらに備える、請求項15に記載のシステム。
【請求項17】
前記第2基材に対して前記加熱体を移動させ、それによって、前記サンプル処理基材に対して前記第2基材を圧縮し、前記サンプル処理基材の個々のウェルをパーティショニングし、かつ、前記サンプル処理基材及び前記第2基材のうちの少なくとも1つの内容物に熱を伝導するための、コンピュータ可読媒体に格納された非一時的指令をさらに備える、請求項16に記載のシステム。
【請求項18】
単一細胞フォーマットで細胞のセットを捕捉するように構成されたマイクロウェルのセットを備えるマイクロウェル領域を備えるサンプル処理基材と、
サンプル処理基材に結合されたベースであって、
前記サンプル処理基材に流体的に結合された入口リザーバと、
前記サンプル処理基材の前記マイクロウェル領域内へのアクセス領域と、を規定するベースと、
前記アクセス領域に近接し、かつ、前記細胞のセットに近接して機能性粒子のセットの同時捕捉のために構成された粒子捕捉領域と、
前記マイクロウェル領域から前記サンプル処理基材の出口までの流路に沿って前記ベースに前記サンプル処理基材を結合するエラストマーバルブと、を備えるサンプル処理アセンブリ。
【請求項19】
前記粒子捕捉領域を規定するマイクロウェルの第2セットを備える第2基材をさらに備え、前記マイクロウェルの第2セットは、前記サンプル処理基材の前記マイクロウェルのセットに整列して前記マイクロウェルのセットに面し、前記第2基材は、圧縮性層によって前記サンプル処理基材から部分的に分離される、請求項18に記載のサンプル処理アセンブリ。
【請求項20】
前記第2基材は、前記第2基材が前記圧縮性層によって前記サンプル処理基材から変位させられ、それによって、前記マイクロウェル領域に隣接するキャビティを規定する第1モードと、前記第2基材が前記圧縮性層の圧縮によって前記サンプル処理基材に向かって変位させられ、それによって、前記マイクロウェル領域の個々のウェルをパーティショニングする第2モードとの間で移行可能である、請求項18に記載のサンプル処理アセンブリ。
【請求項21】
サンプルの標的のセットを検出するための方法であって、前記方法は、
サンプル処理基材のマイクロウェルのセットに、単一アレイフォーマットで、機能性粒子のセットに近接する組織サンプルを捕捉することと、
前記サンプル処理基材で、前記組織サンプルの溶解を実行し、それによって、前記組織セクションからの放出されたバイオマーカの前記機能性粒子のセットへの結合を可能にすることと、
前記機能性粒子のセットに結合された内容物によって、前記サンプル処理基材の前記マイクロウェルのセットで、逆転写作業を実行することと、
前記逆転写作業の産物によって、前記機能性粒子のセットに結合された前記内容物と共に第2鎖合成作業を実行することと、
前記第2鎖合成作業の産物によって、前記機能性粒子のセットで増幅作業を実行することと、
前記増幅作業の産物に、フルオロフォアのセットに対応する、プローブのセットの各々をハイブリダイズすることと、
前記プローブのセットによって放出された光の画像データセットを生成し、それによって、前記サンプルの標的のセットの検出を可能にすることと、を含む、方法。
【請求項22】
前記標的のセットは、対象からの免疫応答の評価のための抗体のパネルを含み、前記抗体のパネルは、IgM抗体、IgG抗体、IgD抗体、IgA抗体及びIgE抗体のうちの1以上を含む、請求項21に記載の方法。
【請求項23】
前記抗体のパネルは、重症急性呼吸器症候群コロナウイルス-2(SARS-CoV-2)に対する抗体を含む、請求項22に記載の方法。
【請求項24】
前記標的のセットはmRNA分子のパネルを含む、請求項21に記載の方法。
【請求項25】
前記サンプル処理基材全体に分布された前記サンプルによって、前記mRNA分子のパネルの空間トランスクリプトーム解析を実行することをさらに含む、請求項24に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
[0001] 本願は、2019年6月14日に出願された米国仮出願第62/861,826号及び2019年9月30日に出願された米国仮出願第62/907,791号の利益を主張し、これらは各々、この参照によってその全体が本明細書に組み込まれる。
【0002】
[0002] 本発明は、概して、サンプル処理の分野に関し、より具体的には、サンプル処理の分野における単一細胞の処理及び解析のための新規で有用な自動化システム及び方法に関する。
【背景技術】
【0003】
[0003] 細胞特異的な薬物検査、診断及びその他のアッセイへの関心が高まるにつれ、個々の細胞の単離、同定及び回収を可能にするシステム及び方法が非常に望まれるようになっている。これらの用途に単一細胞捕捉システム及び方法が特に有利であることが示されてきた。しかしながら、単一細胞の捕捉及びその後の解析のための関連のプロセス及びプロトコルは、細胞を適切に維持するために、しばしば、特定の順序かつ高精度で実行されなければならない。したがって、これらのプロセスは、ユーザにとって時間がかかる可能性があり、(例えば、試薬の混合などを通じたピペッティングでの間違いによって)適切に実行されない場合、細胞の損傷やその他の好ましくない結果をもたらし得る。特に、これらの新規なハイスループット単一細胞サイトメトリアッセイは、トランスレーショナル医療、個別化された治療法の選択、臨床診断及び/又は他の使用用途で大きな有用性を有しているが、自動化の欠如は初心者ユーザによる適切なパフォーマンスを妨げ、それによって、スループットを制限する。
【0004】
[0004] さらに、(例えば、タンパク質又はmRNAを解析するためのシステムに関する)大規模並列単一細胞解析システムの進歩が免疫学的研究に革命をもたらしている。患者の免疫細胞のハイスループットな単一細胞遺伝子発現プロファイリングは、研究者が、患者の複雑な免疫状態をより正確かつ詳細に評価することを可能にする。しかしながら、多重化された単一細胞解析技術の開発における過去10年間の継続的な進歩にも関わらず、これらの強力なツールの迅速な採用を規制する現実的な制限がまだある。細胞サンプルからバイオマーカの結果を取得するためのワークフローは、依然として非常に複雑であり、専門家のユーザ介入を必要とし、処理時間が長く、かつ、(例えば、複数の高コストの最先端機器システムへのアクセスに関して)アクセスが制限され、それによって、大多数の人にとってそうしたツールへのアクセスを妨げる。したがって、(例えば、細胞あたりの多数のタンパク質及び/又は他のバイオマーカの)定量的測定値の生成による、多数の単一細胞を解析することができる、より費用対効果の高い、迅速で統合された自動化されたシステムが必要である。
【図面の簡単な説明】
【0005】
【
図1A】[0005] 自動化された単一細胞サンプル処理のためのシステムの一実施形態の概略図を示している。
【
図1B】[0005] 自動化された単一細胞サンプル処理のためのシステムの一実施形態の概略図を示している。
【
図1C】[0005] 自動化された単一細胞サンプル処理のためのシステムの一実施形態の概略図を示している。
【
図3A】[0007] 自動化された単一細胞サンプル処理のためのシステムに関連するサンプル処理カートリッジの一変形例の図を示している。
【
図3B】[0007] 自動化された単一細胞サンプル処理のためのシステムに関連するサンプル処理カートリッジの一変形例の図を示している。
【
図3C】[0007] 自動化された単一細胞サンプル処理のためのシステムに関連するサンプル処理カートリッジの一変形例の図を示している。
【
図3D】[0007] 自動化された単一細胞サンプル処理のためのシステムに関連するサンプル処理カートリッジの一変形例の図を示している。
【
図3E】[0007] 自動化された単一細胞サンプル処理のためのシステムに関連するサンプル処理カートリッジの一変形例の図を示している。
【
図4A】[0008]
図3A~
図3Eに示すサンプル処理カートリッジに関連する蓋開放ツールの動作モードを示している。
【
図4B】[0008]
図3A~
図3Eに示すサンプル処理カートリッジに関連する蓋開放ツールの動作モードを示している。
【
図4C】[0008]
図3A~
図3Eに示すサンプル処理カートリッジに関連する蓋開放ツールの動作モードを示している。
【
図5A】[0009]
図3A~
図3Eに示すサンプル処理カートリッジに関連するバルブ及び加熱サブシステムの動作モードを示している。
【
図5B】[0009]
図3A~
図3Eに示すサンプル処理カートリッジに関連するバルブ及び加熱サブシステムの動作モードを示している。
【
図6】[0010] イメージングサブシステムの一実施形態を示している。
【
図7】[0011 自動化された単一細胞サンプル処理のための方法の一実施形態のフローチャートを示している。
【
図8】[0012] 自動化された単一細胞サンプル処理に使用される組成物の一実施形態を示している。
【
図9A】[0013] 自動化された単一細胞サンプル処理のための方法の第1変形例を示している。
【
図9B】[0013] 自動化された単一細胞サンプル処理のための方法の第1変形例を示している。
【
図10A】[0014] 自動化された単一細胞サンプル処理のための方法の第2変形例を示している。
【
図10B】[0014] 自動化された単一細胞サンプル処理のための方法の第2変形例を示している。
【
図11】[0015] 自動化された単一細胞サンプル処理のためのシステム及び/又は方法の一部の第1拡張を示している。
【
図12】[0016] 自動化された単一細胞サンプル処理のためのシステム及び/又は方法の一部の第2拡張を示している。
【
図13】[0017] 自動化された単一細胞サンプル処理のためのシステム及び/又は方法の一部の第3拡張を示す。
【
図14】[0018] 自動化された単一細胞サンプル処理のためのシステム及び/又は方法の一部の第4拡張を示す。と
【
図15】[0019] 自動化された単一細胞サンプル処理のためのシステム及び/又は方法の一部の第5拡張を示している。
【発明を実施するための形態】
【0006】
[0020] 本発明の好ましい実施形態の以下の説明は、本発明をこれらの好ましい実施形態に限定することを意図するのではなく、むしろ当業者が本発明を作成及び使用することを可能にすることを意図している。
【0007】
1.利点
[0021] 本発明は、従来のシステム及び方法を越えるいくつかの利点をもたらすことができる。
【0008】
[0022] 特に、本発明は、(例えば、多数のタンパク質及び/又は細胞あたりの他のバイオマーカの)定量的測定値の生成によって多数の単一細胞を解析するための、より費用対効果の高い、迅速で統合された自動化されたシステム及び方法の利点をもたらし、統合されたシステムは、リアルタイムイメージング(例えば、サンプル捕捉基材の蛍光イメージング)を有する統合システムさらに含む。本発明の実施形態は、(例えば、多くの細胞数に関して、高い多重化性能に関して、完全自動化に関して、など)非常に費用対効果の高い方法で様々なユーザにテクノロジーを迅速に普及させるための高性能の解決策を提供することができる。
【0009】
[0023] さらに、本発明は、単一細胞プロテオゲノミクスの応用を可能にするという利点をもたらす。例えば、単一細胞サイトメトリ(SCC)は、従来のフロー及びマスサイトメトリの検出量をはるかに超えた、タンパク質マーカに基づく細胞集団の特性評価のための新規な方法に関連する。そうした特性評価は、抗体染色/タグ付けベース解析(例えば、細胞タイプの分離及び細胞集団の定量化による抗体シグナル検出、タンパク質定量化に関連する解析、など)を含み得る。タンパク質マーカが記載されるが、本発明はまた、mRNA、DNA、グリカン及び/又は他の生体物質に関するマーカ及びタグ付けの使用を対象にする。
【0010】
[0024] さらに、本発明は、最先端の高パラメータ単一細胞サイトメトリを分散化することができるエンドツーエンドの解決策を提供するという利点をもたらす。特に、こうした解決策は、発見、トランスレーショナル及び/又は臨床応用による免疫学的研究を行う幅広い団体が、実験で最先端の単一細胞ツールを使用することを可能にする。
【0011】
[0025] さらに、本発明は、サンプル処理ディスポーザブル品(disposables)の設計を提供するという利点をもたらし、ディスポーザブル品は、機能性粒子によって、単一細胞フォーマットで細胞を同時捕捉するための領域を含む。こうしたディスポーザブル品は、追加又は代替として、サンプル処理中に熱を伝達するように設計された領域を含むことができる。
【0012】
[0026] さらに、本発明は、単一細胞捕捉及びその後の処理に関連するプロトコルの少なくとも部分的な自動化を可能にし、それによって、実行の成功及び一貫性を最適化するという利点をもたらす。より詳細には、ユーザは、方法(例えば、サンプルの投入、蓋のキャッピング、機器上での溶解、逆転写プロセス、cDNA増幅、ビーズ又はcDNA産物の回収、機器上でのライブラリの調製及び清掃、など)の一部又は全部から排除されることができる。さらに、システム及び/又は方法は、従来のシステム及び方法よりもプロトコルのより良い精度を可能にすることができる(例えば、正しい試薬の添加におけるより良い精度、試薬のより良い温度制御、重要な液体取り扱いステップの迅速な処理、正確なインキュベーション時間、最適なビーズの洗浄及び分離、自動バーコード読み取り、など)。さらに、システム及び/又は方法は、プロトコルの手動実行中に一般的に発生する可能性のある事故(例えば、システムのノッキング、試薬のこぼれ、サンプル又は機器の汚染、など)を防止するという利点をもたらすことができる。
【0013】
[0027] さらに、限定使用の及び/又は予め投入された並びにユニット化された試薬カートリッジの使用を通じて、システム及び/又は方法は、アッセイの進行中の開発及び将来の用途に対応するために、最適化された品質管理及び設計アーキテクチャを有する合理化されたユーザエクスペリエンスを提供するという利点をもたらすことができる。したがって、システムは、試薬又は試薬グループの独立した又はほぼ独立した制御の利点をもたらす。この変形例の特定の例では、システムは、以下の専用領域のいずれか又はすべてを有する試薬カートリッジを含む:室温領域、冷却領域、加熱領域、磁気領域(例えば、加熱領域と重なる)、廃棄物捕捉領域、中間試薬パーキング領域又は任意のその他の適切な領域。関連する利点として、システム及び/又は方法は、特定の自動プロトコルに従って使用されるプロトコル特有のタイプ及び量の試薬の分配などを通じて、ユーザが少量の試薬を購入することを可能にするという利点をもたらすことができる。これは、コストの節約、試薬の無駄の削減、又は、その他の適切な結果をもたらすように機能することができる。
【0014】
[0028] さらに、流体取り扱い及び分離要素(例えば、磁気分離コンポーネント)の使用を通じて、システム及び/又は方法は、自動化されたサンプル及びライブラリの清掃ステップを提供するという利点をもたらすことができる。関連して、システム及び/又は方法は、システム全体により良い流体の流れを確立するという利点をもたらすことができる。最初の例では、これは自動ピペッティングシステム(例えば、ピペッタ、ガントリ及び各種ピペットチップ)を通じて可能にされ、このシステムは、ユーザの介入なしで、(例えば、最適な流量を維持するため、試薬の最適な容量を確立するため、など)流体の流れを監視及び/又は誘導することができる。単一細胞調製及び/又は他のアッセイのための流体取り扱いシステムコンポーネントは、(a)流体分配のためのガントリに結合された液体ピペッタ、及び、(例えば、サンプル処理カートリッジの)流体チャネル又は流体リザーバ内へのポンピング、並びに/又は、(b)以下により詳細に記載するように、流体ネットワークに統合されたバルブを通じて接続及び制御される内蔵のオンチップ加圧可能廃棄物チャンバ、の両方の使用を包含し得る。そうした組み合わされた二重液体取り扱いシステムは、流れの前例のない制御(例えば、毎秒マイクロリットルから毎秒数十ミリリットル)、送達(例えば、1~100,000マイクロリットル)、及び、流体システムを通る試薬の滞留時間(例えば、数ミリ秒から数時間)を提供する。追加又は代替として、システムは、ユーザの介入によって(例えば、最小限のユーザ介入で、最適なユーザ介入を促進するため、など)、流体の流れを監視及び/又は誘導することができる。
【0015】
[0029] さらに、ソフトウェア及びワークフローの改善を通じて、システム及び/又は方法は、ユーザが実行する手動作業の数を最小限に抑え、かつ、関連するシステムステータスレポートを提供して円滑な作業及びサンプル処理を保証することができる。
【0016】
[0030] さらに、システムは、ピペッタなどのコンポーネントの3次元移動性の利点をもたらす。この変形例の特定の例では、システムは、ピペッタにXYZモビリティを提供するガントリを含み、ピペッタが流体送達に関連する様々なタスク(例えば、試薬チューブのフォイルカバーの貫通、ウェルのセット間での物質の移送、など)、及び/又は、自動化された方法での他のサンプル処理ステップ(例えば、標的物質の分離、加熱、冷却、など)を実行することを可能にする。
【0017】
[0031] 追加又は代替として、システム及び/又は方法は、他の適切な利益をもたらすことができる。
【0018】
2.システム
[0032]
図1A~
図1Cに示すように、自動化された単一細胞捕捉及び処理のためのシステム100の一実施形態は、サンプル処理要素のセットを支持及び位置決めするデッキ110と、デッキ110によって支持されたサンプル処理要素のセットと相互作用するためのツールを作動させるためのガントリ170と、様々な処理サブシステム及び処理サブシステムと通信する制御サブシステムを支持するベース180と、を含み、制御サブシステムは、システム100を様々な動作モード間で移行させるために、デッキ110、サンプル処理要素のセット及びガントリ170の状態を制御する。様々なワークフローを提供する動作モードの実施形態、変形例及び例は、以下のセクション3にさらに詳細に記載される。
【0019】
[0033] システム100の実施形態は、(例えば、多数のタンパク質及び/又は細胞ごとの他のバイオマーカの)定量的測定値の生成による、多数の単一細胞のmRNAの様相及び/又はタンパク質の様相を解析するための、費用対効果が高く、迅速で統合された自動化されたシステム及び方法を提供するように機能し、統合システムは、リアルタイムイメージング用途(例えば、サンプル捕捉基材の蛍光イメージング)のための統合サブシステムをさらに含む。システム100の実施形態はまた、非常に費用対効果の高い方法で、異なるユーザ間でテクノロジーを迅速に普及させるための高性能な解決策(例えば、多くの細胞数に関して、高い多重化性能に関して、完全自動化に関して、など)を提供することができる。
【0020】
[0034] 特定の用途では、システム100の実施形態は、単一細胞プロテオゲノミクス用途を自動的に可能にすることができる。例えば、単一細胞サイトメトリ(SCC)は、従来のフロー及びマスサイトメトリの検出量をはるかに超えた、タンパク質マーカに基づく細胞集団の特性評価のための新規な方法を伴う。そうした特性評価は、抗体染色/タグ付けベースの解析(例えば、細胞タイプの分離及び細胞集団の定量化による抗体シグナル検出、タンパク質定量化に関連する解析、など)を含むことができる。タンパク質マーカが記載されているが、本発明はまた、mRNA、DNA、グリカン及び/又は他の生体物質に関するマーカ及びタグ付けの使用を対象にする。
【0021】
[0035] さらに、システム100の実施形態は、高パラメータ単一細胞サイトメトリを実行するためのエンドツーエンドの解決策を提供するように機能することができる。特に、こうした解決策により、発見、トランスレーショナル及び/又は臨床応用による免疫学的研究を行う幅広い団体が、実験で最先端の単一細胞ツールを使用することを可能にする。さらに、システム100の実施形態は、サンプル処理ディスポーザブル品を提供するように機能することができ、ディスポーザブル品は、機能性粒子と共に単一細胞フォーマットで細胞を同時捕捉するための領域を含む。こうしたディスポーザブル品は、追加又は代替として、サンプル処理中に熱を伝達するように設計された領域を含むことができる。
【0022】
[0036] 上述したように、サンプル処理に関連して、システムの実施形態は、細胞、細胞由来物質及び/又は他の生物学的物質(例えば、無細胞核酸)を含むことができる又は処理するように構成されることができる。細胞は、哺乳動物細胞(例えば、ヒト細胞、マウス細胞、など)、胚、幹細胞、植物細胞又は任意の他の適切な種類の細胞の一部又は全部を含むことができる。細胞は、細胞内で発生し、かつ、任意選択的に、処理のための細胞捕捉システムによって捕捉される標的物質(例えば、標的溶解物、mRNA、RNA、DNA、など)を含むことができる。さらに、細胞を収容する容器は、複数の細胞含有サンプル(例えば、12サンプル、24サンプル、48サンプル、96サンプル、384サンプル、1536サンプル、他の数のサンプル)から調製されることができ、様々なサンプルが、ハッシュされる又はそれらを単一の容器(又は、少ない数の容器)に混合する前にバーコード付けされる。この特徴により、それぞれの単一細胞調製及びライブラリ調製作業のために、同じ自動実行で複数のサンプルの自動処理を可能にする。追加又は代替として、システム100は、粒子(例えば、ビーズ、プローブ、ヌクレオチド、オリゴヌクレオチド、ポリヌクレオチド、など)、液滴、カプセル化された細胞、カプセル化されたバイオマーカ、試薬又は任意の他の適切な物質と相互作用するように構成されることができる。
【0023】
[0037] システムは、追加又は代替として、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2019年9月9日に出願された米国出願第16/564,375号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;2017年11月16日に出願された米国出願第15/815,532号;2018年8月28日に出願された米国出願第16/115,370号、2019年9月9日に出願された米国出願第16/564,375号及び2020年3月12日に出願された米国出願第16/816,817号に記載されたシステムコンポーネントの一部又は全部を含むことができ、これらは各々、この参照によってその全体が組み込まれる。
【0024】
2.1 システム:デッキ
[0038]
図1A~
図1C及び
図2A~
図2Dに示すように、デッキ110は、自動サンプル処理のためのシステム100の1以上のコンポーネントを(例えば、上部の広い表面で、上部の広い表面及び下部の広い表面で、側面で、など)支持及び位置決めするためのプラットフォームとして機能する。さらに、デッキ110は、システム100の1以上のコンポーネントを位置決めして、以下に記載するような、流体処理サブシステム、イメージングサブシステム、加熱サブシステム、分離サブシステム(例えば、磁気分離サブシステム)、並びに/又は、ガントリ170及び/若しくはベース180に結合された他のサブシステムと整列又は他の方法で相互作用するように機能することができる。この点、デッキ110は、基準プラットフォームとして静止することができる一方で、他のコンポーネントは、デッキ110の要素と相互作用するための位置に作動される。代替として、デッキ110は、他のサブシステムとの相互作用のためにデッキ110の要素を位置決めするための1以上のアクチュエータに結合されることができる。
【0025】
[0039]
図1A~
図1Cに示す実施形態では、デッキ110は、サンプル処理要素のセットを支持するプラットフォームを提供し、サンプル処理要素は、使い捨て及び/又は再利用可能なコンポーネントを含むことができ、コンポーネントは、サンプル処理物質を収容するための容器、及び/又は、(例えば、流体取り扱いに関連して、物質分離に関連して、加熱及び冷却に関連して、など)サンプルを処理するためのツールを含む。実施形態では、デッキ110は、試薬カートリッジ120、サンプル処理カートリッジ130、ツール容器140、加熱冷却サブシステム150、ポンピングサブシステム157、流体レベル検出サブシステム159及び分離サブシステム160のうちの1以上のユニットを含むサンプル処理要素のセットを支持することができる。追加又は代替として、デッキ110は、イメージングサブシステム190に関連する他の適切なコンポーネント(例えば、蛍光検出サブシステム、共焦点顕微鏡サブシステム、分光学的検出サブシステム、全反射照明蛍光(TIRF)サブシステム、核磁気共鳴(NMR)サブシステム、ラマン分光法(RS)RSサブシステム、など)を含むことができる。
【0026】
[0040] サンプル処理要素は、デッキ110によって同一平面上で支持されることができ、又は代替として、別の面で支持されることもできる。好ましくは、デッキによって支持された別個の要素は重複しないが、デッキ110の代替の実施形態は、重複するようにサンプル処理要素を支持することができる(例えば、スペースの節約のため、など、作業の効率化のため、など)。
【0027】
[0041] デッキ110によって支持される要素の実施形態、変形例及び例の詳細は、以下のセクション2.1.1~2.1.8にさらに記載される。
【0028】
2.1.1 デッキ支持要素:試薬カートリッジ
[0042]
図2A~
図2Dに示すように、デッキ110は、試薬カートリッジ120のユニットを支持するための少なくとも1つの領域を含み、この領域は、以下に詳しく記載される加熱冷却サブシステム150並びに分離サブシステム160の一部に対して試薬カートリッジ120を位置決めするように機能する。この点、領域は、試薬カートリッジ120の相補部分と、加熱冷却サブシステム150及び分離サブシステム160の関連部分との間にインタフェースを提供し、かつ、さらにそうした部分間の整列を促進及び維持するための、1以上の開口部、凹部及び/又は突起を含むことができる。
【0029】
[0043] 試薬カートリッジ120は、1以上の区画内に、様々な用途のための1以上のワークフローに従って、細胞捕捉及び/又はサンプル処理のための物質を収容するように機能する。したがって、試薬カートリッジ120は、ドメインのセット全体に分散された貯蔵容量のセットを規定することができ、ドメインのセットは、各ドメインの物質内容物に適切な環境を提供するように構成されることができる。貯蔵容量のセットは、サンプル処理物質を直接収容することができ、及び/又は代替として、サンプル処理物質を収容する個々の容器(例えば、チューブなど)の位置を受け取って維持するように構成されることができる。各ドメインの貯蔵容量は、アレイに分散されることができる又は他の方法で配列されることができる。試薬カートリッジ120は、デッキ110によって支持されるように記載されるが、試薬カートリッジ120の変形例は、代替として、デッキ110とは独立して動作するように構成されることができる。
【0030】
[0044] 試薬カートリッジ120は、さらに追加又は代替として、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載された態様を含むことができ、これらは各々、この参照によってその全体が組み込まれる。
【0031】
2.1.2 デッキ支持要素:サンプルカートリッジ
[0045]
図1C及び
図2A~
図2Dに示すように、実施形態では、デッキ110は、サンプル処理カートリッジ130のユニットを支持するための少なくとも1つの領域を含み、当該領域は、以下により詳細に記載される、加熱冷却サブシステム150、ポンピングサブシステム157、流体レベル検出サブシステム159及び/又はイメージングサブシステム190の部分に対して、サンプル処理カートリッジ130を位置決めするように機能する。この点、領域は、サンプル処理カートリッジ130の相補部分と、加熱冷却サブシステム150、ポンピングサブシステム157、流体レベル検出サブシステム159及びイメージングサブシステム190の関連の部分との間のインタフェースを提供するため、並びに、さらにそうした部分間の整列を促進及び維持するための1以上の開口部、凹部及び/又は突起を含むことができる。
【0032】
[0046] サンプル処理カートリッジ130は、細胞が捕捉され、かつ任意選択的に、下流の用途のために分類、処理又は他の方法で処理される1以上のサンプル処理領域を提供するように機能し、下流の用途は、サンプル処理カートリッジ130(例えば、オンチップ)で、及び/又は、サンプル処理カートリッジ130から離れて(例えば、オフチップで)、実行されることができる。サンプル処理カートリッジ130の部分は、単一の基材内に構成されることができるが、追加又は代替として、複数の基材にまたがる複数の部分(例えば、流体経路によって接続される)を含むことができる。
【0033】
[0047]
図3A~
図3Dに示すように、サンプル処理カートリッジ130’の一例は、他の要素が結合される及び/又は他の要素が規定されるベース基材131を含むことができる。さらに、マイクロ流体要素を伴うサンプル処理に関して、ベース基材131は、マイクロ流体要素への流体移送、処理の様々な段階でのサンプル処理容積へのアクセス、及び、サンプル処理中に生成された廃棄物の移送のためのマニホールドとして機能することができる。変形例では、ベース基材131は、サンプル処理チップ132、サンプル物質(例えば、細胞を含有する、粒子を含有する、など)を受け取り、サンプル物質をサンプル処理チップ132内に送達するための入口リザーバ133、サンプル処理チップ132の1以上の領域にアクセスするためのアクセス領域134、アクセス領域を覆い、かつ、シーリング機能を提供するガスケット136を含む蓋135、及び、サンプル処理チップ132から廃棄物質を受け取るための廃棄物格納領域137のうちの1以上を支持する。サンプル処理カートリッジ130の変形例は、追加又は代替として、サンプル処理カートリッジ130で捕捉された細胞に由来する標的内容物を処理するための機能性粒子を保持するための、以下により詳細に記載する、領域(例えば、第2基材80)を含むことができる。カートリッジは、機器に存在するカートリッジ外ポンピングシステムにも接続するための追加のガスケット付きポートを有してもよい。しかしながら、ベース基材131の変形例は他の要素を含むことができる。例えば、以下により詳細に記載するように、ベース基材は、サンプル処理チップ132を通る流れを開閉するためのバルブ領域を集合的に規定するために、サンプル処理チップ132とのさらなる結合を提供する1以上の開口部、凹部及び/又は突起を含むことができる。
【0034】
[0048]
図3A及び
図3C(底面図)に示すように、サンプル処理チップ132(本明細書では同等にマイクロウェルデバイス又はスライドと呼ばれる)は、ウェルのセット(例えば、マイクロウェル)を規定する。ウェルのセットの各々は、単一細胞及び/又は1以上の粒子(例えば、プローブ、ビーズ、など)、任意の適切な試薬、複数の細胞又は任意の他の物質を捕捉するように構成されることができる。変形例では、サンプル処理チップ132のマイクロウェルは、ウェル全体に汚染することなく単一細胞及び/又は単一細胞からの物質の解析を可能にするために、単一細胞を単一機能性粒子と同時捕捉するように構成されることができる。サンプル処理チップ132の実施形態、変形例及び例は、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に提出された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号のうちの1以上に記載されており、これらは各々、上の参照によってその全体が組み込まれる。
【0035】
[0049] 物質組成において、サンプル処理チップ132は、微細加工されたケイ素又はガラス溶融シリカ物質から構成されることができ、これらは、例えば、ウェルのセットでより鋭利な縁部(例えば、より薄いウェル壁、90度に近い角度で配列されたウェル壁、など)を規定することによって、ウェルのセットのより高い解像度を可能にするように機能する。物質組成は、以下により詳細に記載するイメージングサブシステム190に関連して、サンプル処理チップ132の内容物の(例えば、底面を通じた、上面を通じた)光学的調査をさらに可能にすることができる。記載された物質及び製造プロセスは、従来のチップ設計と比較して、マイクロウェルカートリッジの1以上のより小さな特性寸法(例えば、長さ、幅、全体のフットプリント、など)をさらに可能にすることができる。特定の例では、サンプル処理チップ132は、許容可能な欠陥レベル(例えば、<5%)を有する完成デバイスの数;公称深度(例えば、25ミクロン)の+/-1ミクロン以内で測定された深度;公称リブ寸法(例えば、5ミクロン)の+/-1ミクロン以内で測定されたリブ、のうちの1以上に関連した仕様に従って、深掘り反応性イオンエッチング(DRIE)技術を使用して製造される。製造中の任意の課題を軽減するために、サンプル処理チップ132の特定の例は、a)マイクロウェル間の公称幅が5ミクロンで公称深さが30ミクロンのガラス基材をエッチングするために必要とされるレジスト厚さ及びリソグラフィの決定;b)横方向のレジスト侵食及びマスクバイアスの決定;c)エッチング後のマイクロウェル側壁の垂直テーパの特性評価;及び、d)最終デバイスの良好な歩留まりを達成するためのダイシングプロセスの最適化によって、開発された。
【0036】
[0050] 追加又は代替として、サンプル処理チップ132は、これらに限定されないが、ポリマー、金属、生物学的物質若しくは任意の他の物質又は物質の組み合わせなどの任意の他の適切な物質を含むことができる。サンプル処理チップ132は、精密射出成形、精密エンボス加工、マイクロリソグラフィエッチング、LIGAベースエッチングなどの様々なプロセスによって、又は、他の適切な技術によって製造されてもよい。
【0037】
[0051] ある変形例では、ウェルのセットの1以上の表面(例えば、底面、側面、底面及び側面、すべての表面、など)が、オリゴヌクレオチド分子と反応させられて、個々の細胞から個々のマイクロウェル内にバイオマーカを捕捉することができる。各マイクロウェル及び個々のマイクロウェルに存在するオリゴヌクレオチド分子がバーコードを付され、各マイクロウェルで処理されたバイオマーカが、特定のウェル、及びしたがって、特定の単一細胞にリンクし戻されることを可能にする。一変形形態では、ウェルのセットは、上の参照によって組み込まれた出願のうちの1以上に記載されるように、ウェルの長手方向軸を横切るように取られた六角形の断面を有するマイクロウェルのセットを含む。
【0038】
[0052] 一変形形態では、
図3Cに示すように、サンプル処理チップ132は、入口開口部32、マイクロウェル34のセット(例えば、1,000~10,000,000個のウェル)に流体を分配するための、入口開口部の下流の第1流体分配ネットワーク33、マイクロウェル34のセットの下流の第2流体分配ネットワーク35、及び、サンプル処理チップ132からの廃液の移送のための、第2流体分配ネットワーク35の末端部分に結合された出口開口部36を含むことができる。この変形例では、サンプル処理チップ132は、ベース基材131の第1面(例えば、下面)に(例えば、レーザ溶接、接着剤接合、溶媒接合、超音波溶接又は別の技術によって)結合される。サンプル処理チップ132をベース基材131の側面に結合することによって、加熱冷却サブシステム150からマイクロウェル34のセット及び/又はサンプル処理チップ132の他の領域への熱の伝達が可能になり、加熱冷却サブシステム150は以下により詳細に記載される。
【0039】
[0053] ベース基材131は、上述したように、入口リザーバ133(例えば、サンプル処理チップ132が結合される第1面とは反対側のベース基材131の第2面に規定される)も含むことができる。入口リザーバは、サンプル処理チップ132の入口開口部32内への送達のために、サンプル物質(例えば、細胞を含有するサンプル、バーコード付き細胞を含有するサンプル、カプセル化された物質を含有するサンプル、粒子を含有するサンプル、など)及び/又は上述した試薬カートリッジ120からのサンプル処理物質を受け取るように機能する。変形例では、入口リザーバ133は、ベース基材131の表面内の凹状領域として規定されることができ、凹状領域は、サンプル処理チップ132の入口開口部32に整列及び/又はシールする開口を含む。ベース基材131の入口リザーバ133は、以下のうちの1以上に記載されるように、成分及び/又は気泡緩和成分を包含する上流の流体と相互作用することができる:2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号、これらは各々、上の参照によってその全体が組み込まれる。
【0040】
[0054] 入口リザーバ133は、以下により詳細に記載するように、デッキ110によって支持される又は他の方法で相互作用する流体レベル検出サブシステム159と相互作用するように構成されることもできる。特に、入口リザーバ133の部分は、(例えば、光学的調査によって、圧力検知によって、重量検知によって、など)入口リザーバ133内の流体レベルの検知を可能にする物質から構成されることができる。例えば、入口リザーバ133は、(例えば、異なる物質を用いた製造によって、入口リザーバ133の物質の薄い領域を生成するための製造によって、など)可視スペクトル電磁放射及び/又は非可視スペクトル電磁放射に対して光学的に透明又は半透明の物質から構成されることができ、流体レベル検出サブシステム159の検知要素は、それに応じて、入口リザーバ133内の流体のレベルを調査するように構成されることができる。
【0041】
[0055] 変形例では、ベース基材131の入口リザーバ133及びサンプル処理チップ132の入口32のうちの1以上が、システム100の1以上のコンポーネントによって開閉されることができるバルブコンポーネントを含むことができる。第1変形例では、入口リザーバ132は、ピペットチップによって、又は、ガントリ170に結合された流体取り扱いサブシステムの他の適切なアタッチメント(以下により詳細に記載する)によって、アクセスされることができる開口を含む。ある実施形態では、開口は、閉じられることができ、及びしたがって、流体が入口リザーバ132からサンプル処理チップ132に移動するのを阻止することができる。しかしながら、入口リザーバ132は別の適切な方法で構成されることができる。入口リザーバ133に関連する開口部は、上部に向かって開いた円錐形状の表面を有してもよく、当該表面によって、
図3Cの33で規定されるマイクロチャネル内に流体(水溶液又は油又は空気)が直接ポンピングされ得るように、ピペットチップとの相互作用及びシールを可能にする。
【0042】
[0056]
図3A及び
図3Bに示すように、ベース基材131は、サンプル処理チップ132の1以上の領域にアクセスするためのアクセス領域134を規定することもでき、アクセス領域は、サンプル処理チップ132の領域が、サンプル処理の様々な段階でサンプル処理チップ132から観察される及び/又は抽出されることを可能にする。
図3A及び
図3Bに示すように、アクセス領域134は、ベース基材131内の凹状領域として規定されることができ、かつ、マイクロウェルのセットを含むサンプル処理チップ132の領域と整列された開口部37を含む。サンプル処理チップ132は、最小100個のマイクロウェルから最大1億個のマイクロウェルを有してもよい。したがって、マイクロウェル領域が環境に開放されている(例えば、ウェルを密封するためのカバーを有しない)変形例では、アクセス領域134の開口部37は、観察及び/又は物質抽出(例えば、以下にさらに詳細に記載するように、磁気分離による)マイクロウェルの内容物へのアクセスを提供するマイクロウェルとして機能することができる。開口部37は、マイクロウェル領域の形態及びフットプリントに一致することができ、第1変形例では、
図4Bに示すように、正方形の開口部であってもよい。しかしながら、他の変形例では、開口部37は別の適切な形態を有することができる。
【0043】
[0057] サンプル処理カートリッジ130の変形例は、追加又は代替として、
図3Dに示すように、サンプル処理チップ132に単一細胞フォーマットで捕捉された細胞に対して機能性粒子を位置決めするための本体(例えば、第2基材80)を含むことができる。本体/第2基材80は、信頼できる方法でサンプル処理チップ132のマイクロウェル34のセットで捕捉された細胞から放出された標的物質を捕捉するための機能性粒子を保持又は他の方法で位置決めするように機能する。本体/第2基材80は、サンプル処理チップ132のウェル34のセットと第2基材80との間の流体の流れのためのギャップを提供する第1モード(例えば、初期の捕捉中及び/又はサンプル処理中)と、(例えば、初期の捕捉ステップの後に)サンプル処理チップ132に対して第2基材80を圧縮してサンプル処理チップ132のウェル34のセットの内容物の分配を促進する第2モードとの間で移行するように機能することもできる。さらに、第2基材80は、(例えば、光学的調査を可能にする溶融シリカ又はガラスなどの物質から構成されることによって、例えば、アクセス領域134を通じて)サンプル処理チップのウェル34のセットの内容物の光学的調査を可能にするように機能することができる。
【0044】
[0058] 第2基材80は、微細加工されたケイ素又はガラス溶融シリカ物質から構成されることができ、これらは、特徴のうち、例えば、より鋭利な縁部(例えば、より薄いウェル壁、90度に近い角度で配列されたウェル壁、など)によって可能にされる特徴(例えば、第2基材80のウェルのセット)のより高解像度を可能にするように機能する。特定の例では、第2基材80は、深掘り反応性イオンエッチング(DRIE)技術又は他のエッチング技術を使用して製造される。追加又は代替として、第2基材80は、これらに限定されないが、ポリマー、金属、生物学的物質若しくは任意の他の物質又は物質の組み合わせなどの任意の他の適切な物質を含むことができる。他の変形例では、第2基材80は、精密射出成形、精密エンボス加工、マイクロリソグラフィエッチング、LIGAベースエッチングなどの様々なプロセスによって、又は、他の適切な技術によって製造されてもよい。
【0045】
[0059] 変形例では、第2基材80は、作業中にサンプル処理チップ132のウェル34のセットに面するように構成されたウェル81のセットを含むことができる。第2基材80のウェル81のセットは、サンプル処理チップ132のウェル34のセットを、第2基材80がサンプル処理チップと接触するようにより近づけられる第2作業モードで適切に分配するために、サンプル処理チップ132のウェル34の配列と一致するように構成されることができる。機能性粒子を保持するために、第2基材80のウェル81のセットの数は、サンプル処理チップ132のものより少なく及びより多くすることができる。しかしながら、第2基材80のウェルの数及び配列は、他の方法で構成されることができる(例えば、ウェルの数及び配列は、第2基材80とサンプル処理チップ132との間で一致することができる)。
【0046】
[0060] 変形例では、第2基材80のウェル81のセットは、(例えば、細胞のセットの溶解後)サンプル処理チップ132のウェル34のセットで捕捉された細胞のセットに由来する標的物質を捕捉するための機能性粒子のセットを保持するように構成されることができる。特定の例では、機能性粒子のセットは、第2基材のウェル81のセット内に埋め込まれる。特定の例の一変形例では、機能性粒子のセットは、サンプル処理チップ132の溶解された細胞からの物質(例えば、mRNAなど)が単離物質を越えて及び第2基材の機能性粒子に向かって拡散することを可能にする透過性単離物質(例えば、ヒドロゲル)によって、第2基材のウェル81のセット内に保持される。変形例では、機能性粒子のセットは、細胞のセットからの標的物質を結合するための結合部分(以下のセクション3でより詳細に記載する)で処理されたシリカビーズを含むことができる;しかしながら、他の変形例では、機能性粒子のセットは、別の適切な組成及び構成を有することができる。
【0047】
[0061] 変形例では、第2基材は、上述したアクセス領域134と相補的であるように構成されることができ、それによって、第2基材80をサンプル処理チップ132のマイクロウェル領域と整列するように位置決めする。作業モードをサポートする際、第2基材80は、圧縮性層82(例えば、エラストマーから構成される)によって、サンプル処理チップ132及び/又はサンプル処理カートリッジ130のベース基材131から分離されることができ、その結果、第1作業モードでは、圧縮性層82は展開されてギャップ83を生成し、これにより、流体がサンプル処理チップ132のウェル34のセットを横切ってサンプル処理チップ132と第2基材との間を流れることを可能にする。その後、第2作業モードでは、圧縮性層82は、サンプル処理チップ132に対して圧縮されて、サンプル処理チップのウェル34のセットの内容物を分配し、及び/又は、第2基材80の機能性粒子に向かう細胞由来の内容物を特異的な捕捉を可能にする。
【0048】
[0062] 特定の例では、
図3Dに示すように、第2基材80は、ケイ素から構成され、かつ、六方充填されたマイクロウェルの(例えば、幅3ミクロン深さ3ミクロン)、サンプル処理チップ132に面する表面上に埋め込まれる何千万ものシリカビーズを含む。しかしながら、第2基材80のマイクロウェルは他の適切な形態(例えば、断面が多角形、断面が非多角形、など)を有することができる。この例では、第2基材80は、アクセス領域134によってサンプル処理チップ132のウェル34のセット上に位置決めされ(例えば、整列されて面する)、かつ、エラストマー圧縮性層82は、第2基材80を結合及び位置決めするために使用され、その結果、第2基材80とサンプル処理チップ132との間のギャップが調整されて(例えば、ガントリ170の計装によって、ベース180の計装によって、など)、第2基材80とサンプル処理チップ132との間に約250ミクロンのギャップを作成することを可能にし、その結果、細胞懸濁液又は試薬がサンプル処理チップ132のウェルのセットを横切って流れることができる第1動作モード;及び、マイクロウェルを含有する異なる細胞が分配されて互いに単離されるように、第2基材80がサンプル処理チップ132に対して圧縮される第2動作モード、を可能にする。より詳細には、サンプル処理チップ132に対する第2基材80の移動は、所望の力(例えば、1ポンド未満の力、1ポンド以上の力、など)を付加することができ、かつ、様々な反応のためにサンプル処理カートリッジ130に、規定の制御された加熱を提供することもできるアクチュエータヒータサブシステム(以下でより詳細に記載する)によって実行されることができる。
【0049】
[0063] 特定の例では、直径2ミクロンの機能性シリカ粒子の高密度溶液が、重合化合物(例えば、光開始剤、化学重合剤、など)を含有するヒドロゲル溶液に分散され、かつ、ウェル81のセットを規定する第2基材80の表面に送達される。処理中、余分なシリカ粒子が洗い流され、かつ、ウェル81のセットがビーズで完全に飽和されるまでこのプロセスが繰り返される。特定のサイズ及び形状に起因して、特定の例の第2基材80の各マイクロウェルにおいて1つの粒子のみが捕捉されることができる。ビーズ上に平坦な表面を塗り付けることによって余分な液体及び粒子が除去され、かつ、ヒドロゲルが重合され(例えば、光によって、化学反応によって、など)、それによって、シリカ粒子を第2基材80の所定の位置に保持する。ヒドロゲルの組成は、mRNA分子、PCR試薬及び酵素並びにその他の物質がヒドロゲルを通って機能性粒子に向かって拡散するのを促進するように最適化される。
【0050】
[0064] しかしながら、変形例では、サンプル処理チップ132のウェルは、標的細胞がサンプル処理チップ132の個々のウェル内で機能性粒子と同時捕捉されるように、単一細胞フォーマットで捕捉された細胞に対して機能性粒子を位置決めするための領域として機能することができる(上の参照によって組み込まれる、例えば、2020年3月12日に出願された米国出願第16/816,817号のように;2019年9月9日に出願された米国出願第16/564,375号のように;2018年8月28日に出願された米国出願第16/115,370号のように)。
【0051】
[0065]
図3A~
図3Cに示すように、ベース基材131は、アクセス領域134を覆う蓋135を含む又はそうでなければ蓋135に結合することができ、蓋135は、シーリング機能を提供するガスケット136を含むことができ、蓋135は、開モードと閉モードとの間でアクセス領域134を移行させ、それによって、作業中のサンプル処理チップ132の内容物の蒸発サンプル損失及び/又は汚染を防止するように機能する。蓋135は、追加又は代替として、サンプル処理チップ132のマイクロウェル又は他の処理領域の内容物を細片から保護し、(例えば、領域を周囲環境から隔離することによって)サンプル処理チップ132の内容物の処理を可能にし、(例えば、ピペッタから試薬を受け入れるために開くことによって)プロトコルの開始を開始させ、サンプル処理チップ132のユーザ操作を防止し(例えば、必要なすべての試薬が添加された後に閉じることによって)、(例えば、蓋135によって)流体経路、キャビティ又はリザーバの一部又はすべて(例えば、入口とマイクロウェルのセットとの間の流体経路の上面として機能する、マイクロウェル領域に隣接する流体経路の境界として機能する、ウェルのセットと廃棄物チャンバとの間の流体経路の上面として機能する、など)を規定し、又は、任意の他の適切な機能を実行するように機能する。蓋135は、サンプル処理カートリッジ130が第2基材80を含む変形例において、アクセス領域134内の第2基材80の位置を覆って保持することができる;しかしながら、第2基材80を含むことができるサンプル処理カートリッジ130の変形例では、蓋135は省略されることができる。
【0052】
[0066]
図3Bに示すように、少なくとも1つの変形例では、蓋135は、サンプル処理チップ132とのギャップを提供しながら、蓋135がアクセス領域134と結合するように、形態においてアクセス領域134の特徴と相補的であることができる。さらに、変形例(
図3B及び
図3Cに示す)では、蓋135が閉位置にあるとき、蓋135は、上面でベース基材131と実質的に同一平面であることができる。しかしながら、蓋135は、別の適切な方法で形態的に構成されることができる。
【0053】
[0067] 変形例では、蓋135の突起38は、アクセス領域134の開口部37と相互作用することができ、それによって、蓋が閉位置にあるとき、開口部37へのアクセスを実質的に防止する。
図3Bに示すように、ある変形例では、突起38は、ガスケット136によって囲まれたベース(又は他の領域)を有することができ、ガスケット136は、蓋135の閉位置でアクセス領域134の開口部37をシールするように機能する。しかしながら、蓋135の変形例は、ガスケットを省略し、かつ、別の適切な方法でアクセス領域134のシーリングを促進することができる。別の実施形態では、サンプル処理チップ132内のマイクロウェルに最も接近する蓋の底面全体が、エラストマー基材(例えば、平坦なエラストマー基材)であることができ、エラストマー蓋がマイクロウェルを覆うことを可能にし、それによって、マイクロウェルの各々における熱サイクル中の分子の蒸発又は拡散損失を防止する。
【0054】
[0068] ある変形例では、
図3Eに示すように、蓋135は、加熱インタフェース85(例えば、温度センサの有無に関わらず、熱を能動的及び/又は受動的にサンプル処理チップ132に伝達する加熱体)を含むことができ、それによって、処理中のサンプル処理チップ132の制御された加熱を可能にする。
【0055】
[0069] ある変形例では、蓋135は、ロック/ラッチ機構が解放されるまで、蓋135がベース基材131との閉位置に維持されることを可能にするロック又はラッチ機構を含むことができる。
図4A~
図4Cに示す変形例では、蓋135の周辺部分は、ベース基材131の対応するタブ受容部分と相互作用する1以上のタブ39を含むことができ、タブ39は、それらがベース基材131のタブ受容部分と相互作用して屈曲構成からラッチ状態に戻るまで、ベース基材131内に押し込まれたときに屈曲するように構成される。追加又は代替として、
図4A~
図4Cに示す変形例では、ロック/ラッチ機構は、タブ受容部分からタブ39を解放し、かつ、ベース基材131に対して蓋135を閉モードから開モードに移行させるために相互作用されることができる解放本体41(例えば、バー、凹部、フック、など)を含むことができる。したがって、蓋135は、アクセス領域134が覆われていない開モードと、アクセス領域134が覆われている閉モードとを蓋に提供する。
図4A~
図4Cに示す変形例では、解放要素41は、ベース基材131のアクセス領域134から離れて凹んだバーを含み、バーは、蓋開放ツール145に可逆的に結合されることができる。変形例では、蓋開放ツール145は、アクチュエータ(例えば、作動チップ、以下に記載するガントリ170に結合された流体取り扱いサブシステムのピペッタ、など)と相互作用する第1領域(例えば、第1端部)と、蓋135の解放要素41と相互作用するように構成された連結要素42を含む第2領域(例えば、第2端部)と、を含むことができる。その後、ピペッタ/ピペットインタフェースの移動により、蓋開放ツール145は、開モード及び/又は閉モードの間で蓋を移行させるために、解放要素41を引く、及び/又は、蓋135を押すように構成されることができる。したがって、以下に記載するガントリ170に結合された流体取り扱い要素に関して、システム100は、(例えば、ガントリ170に結合される)アクチュエータに、リンク要素42を含む蓋開放ツール145を結合し;蓋開放ツールを蓋135の解放要素41と整列させるように移動させ、リンク要素42を解放要素41と可逆的に結合し;解放要素41に力を付加し、それによって、蓋135をラッチ状態から解放し、蓋135を閉モードから開モードに移行させる、ための動作モードを提供することができる。(例えば、ガントリ170に結合された、例えば、アクチュエータによって)ラッチ解除力を効果的に付加するために、ベース基材131は、(例えば、セクション2.1.4に記載の保持要素によって、加熱冷却サブシステムの保持要素によって、流体レベル検出サブシステムの保持要素によって、デッキの保持要素によって、など)、蓋開放ツール145を通じて付加されるラッチ解除力に対して受動的又は能動的に反作用力を付加する所定の位置に保持されることができる。
【0056】
[0070] しかしながら、変形例では、ロック/ラッチ機構は、追加又は代替として、ロックアンドキー機構、磁気要素又は別の適切な機構を含む又はそれらによって動作することができる。さらに、代替の変形例では、蓋135は、例えば、サンプル処理カートリッジ130の広い表面に平行なアクセスの周りで蓋を回転させるモータを含む、別の蓋アクチュエータを含むことができる。アクチュエータは、追加又は代替として、蓋135を平行移動させるように構成されることができ(例えば、蓋135をサンプル処理カートリッジ130の広い表面に平行にスライドさせる、蓋135を広い表面に垂直に平行移動させる、など)、又は、そうでなければ、1以上の既定の領域(例えば、マイクロウェルのセット)を選択的に覆い及び覆いを外すために蓋135を移動させる。したがって、蓋135は、自動又は半自動で動作するように構成されることができ、その結果、蓋135は、1以上のトリガで自動的に閉じ(例えば、細胞捕捉プロトコルはユーザによって開始される、細胞処理プロトコルはユーザによって開始される、選択されたプロトコルのためのすべての試薬が試薬カートリッジ120などから追加される、など)、かつ、1以上のトリガで自動的に開く(例えば、細胞捕捉プロトコルが完了する、ユーザの要求に応じて、細胞が生存可能であることが決定される、単一細胞が捕捉されたことが決定される、など)。追加又は代替として、蓋135の動作が、開始され及び/又はユーザによって完了され、スケジュール又は他の時間的パターンに従って操作される、若しくは、他の方法で操作されることができる。
【0057】
[0071]
図3A~
図3Cに示すように、ベース基材310は、サンプル処理チップ132から廃棄物質を受け取るための廃棄物格納領域137を含むこともできる。廃棄物格納領域137はまた、サンプル処理チップ132内で所望の圧力(例えば、真空圧、など)を維持するように機能することができ、それによって、入口リザーバ133からサンプル処理チップ132を通じて廃棄物格納領域137への液体の流れを可能にする。廃棄物格納領域137は、サンプル処理チップ132から廃棄物又は他の物質を受け取るための容積(例えば、ベース基材131内に凹む、ベース基材132から延在する、ベース基材131の出口に結合される、など)として規定されることができる。
図3A~
図3Cに示す変形例では、廃棄物格納領域137は、サンプル処理チップ132からの廃棄物が押されるか、又は、以下により詳細に記載されるポンピングサブシステム157の力によって廃棄物格納領域137内に上方に引っ張られるように、サンプル処理チップ132が結合される側とベース基材131の反対側に規定される。しかしながら、廃棄物格納領域137は、廃棄物を受け取るために、追加又は代替として、ベース基材131及びサンプル処理チップ132に対して別の適切な位置に構成されることができる。
【0058】
[0072] 廃棄物格納領域137は、10~100mLの容積容量又は別の適切な容積容量を有することができる。
【0059】
[0073]
図3A~
図3Cに示すように、廃棄物格納領域137は、廃棄物格納領域137内での廃棄物の格納を容易にするカバー48(例えば、蓋135とほぼ同一平面上にあるカバー)を含むことができる。代替として、廃棄物格納領域137はカバーを含まなくてもよい。さらに、
図3Cに示すように、廃棄物格納領域137の例は、カバーとは別個のポンプ出口51を含むことができ、ポンプ出口51は、廃棄物チャンバ内の残留空気がカートリッジ外ポンプ(例えば、ポンピング機構による、など)によって加圧されることを可能にする;しかしながら、廃棄物格納領域137の変形例は、代替として、廃棄物出口を省略することができる。
【0060】
[0074] 廃棄物格納領域137に関して、システム100は、サンプル処理チップ132から廃棄物格納領域137への流れを可能及び/又は防止するように構成されたバルブ43をさらに含むことができる。バルブ43は、出口開口部36から出る及び廃棄物格納領域137内に入る流れを可能にする及び/又は妨げるために、上述したサンプル処理チップ132の出口開口部36と相互作用することができる。バルブ43は、通常、開状態を有し、かつ、バルブ作動機構と相互作用すると閉状態に移行することができる。代替として、バルブ43は、通常、閉状態を有し、かつ、バルブ作動機構と相互作用すると開状態に移行することができる。
【0061】
[0075]
図3A及び
図5A~
図5Bに示す変形例では、バルブ43はエラストマー本体を備え、かつ、ベース基材131の対応のバルブ受容部分と整列するサンプル処理チップ132の開口部44を通じてサンプル処理チップ132をベース基材131に結合するように構成される。この変形例では、バルブ43の移行可能部分は、サンプル処理チップ132の出口開口部36からベース基材132の廃棄物格納領域137の入口までの流路に沿って(例えば、マイクロウェル領域からサンプル処理チップの出口までのサンプル処理カートリッジの廃棄物格納領域への流路に沿って)位置決めされるように構成される。一例では、サンプル処理チップ132の開口部44は、サンプル処理チップ132の出口開口部37と連続している;しかしながら、他の変形例では、出口開口部37及び開口部44は、互いにずらして配置され、かつ、別のマイクロ流体チャネルによって接続されてもよい。したがって、バルブ43を閉じることにより、出口開口部37から廃棄物格納領域137内への流れを遮ることができ、かつ、バルブ43が開かれて、出口開口部37から廃棄物格納領域137内への流れを可能にすることができる。
【0062】
[0076]
図5A~
図5Bに示すベース基材131の断面画像に示される一変形例では、バルブアクチュエータ45は、バルブ43と相互作用するため、下から(例えば、デッキの下から)ベース基材131にアクセスし、かつ、ベース基材132のチャネル又は他の凹部/開口部を通過することができる。特に、
図5B(上)に示すように、バルブアクチュエータ45の先端46(ベース基材への開口部と整列される)がバルブ(例えば、バルブ43のエラストマー膜)を押すとき、バルブ43は、サンプル処理チップ132の出口開口部37を廃棄物格納領域137から流体的に切り離すために、閉状態に移行することができる。追加又は代替として、
図5B(下)に示すように、バルブアクチュエータ45による力を除去することによって、バルブ43から圧力を除去し、かつ、バルブ43を開状態に移行させて、廃棄物格納領域137からのサンプル処理チップ132の出口開口部36を流体的に結合することができる。したがって、バルブ作動サブシステムは、先端がエラストマーバルブを変形させるためにバルブ開口部内に延在し、それによって流路を閉じる係合モードと、先端が引っ込められ、それによって、流路を開く非係合モードと、を含む。しかしながら、バルブ43は、追加又は代替として、別の適切な方法で構成されることができる。
【0063】
[0077] 他の変形例では、システムは、バルブをサンプル処理チップ132の他の流路及び/又はベース基材131に結合するための同様の機構を含むことができる。
【0064】
[0078] しかしながら、ベース基材131の変形例は他の要素を含むことができる。例えば、以下により詳細に記載するように、ベース基材131は、サンプル処理チップを通る流れを促進又は阻害するために、サンプル処理チップ132とのさらなる結合を提供する1以上の開口部、凹部及び/又は突起を含むことができる。例えば、
図5Aに示すように、ベース基材131は、サンプル処理チップ132を通る流体の流れを駆動及び/又は停止するために、ベース基材131をポンピングサブシステム157のポンピング要素に(例えば、デッキ110を通じて)結合するポンプ開口部46を含むことができる。
【0065】
[0079] しかしながら、サンプル処理カートリッジ130のベース基材131は他の適切な要素を含むことができる。
【0066】
2.1.3 デッキ支持要素:ツール容器
[0080]
図2A及び
図2Bに示すように、デッキ110は、ツール容器140のユニットを支持するための少なくとも1つの領域を含み、この領域は、以下に記載するガントリ170の流体取り扱い装置に対してツール容器140を位置決めするように機能する。
【0067】
[0081] ツール容器140は、1以上の区画内に、様々な用途のための1以上のワークフローに応じて、流体吸引、流体送達、サンプルの非標的物質からの標的物質の分離及び/又は他のツールのための様々なツールの1以上のユニットを包含するように機能する。したがって、ツール容器140は、試薬の移送及び/又は試薬のサンプルとの混合を容易にし、デッキ110の様々な領域で要素に流体的に結合し及び/又は切り離し、若しくは、他の方法でシステム100の1以上のコンポーネントと相互作用することができる。
【0068】
[0082] ツール容器140は、デッキ110によって支持されるように記載されるが、ツール容器140の変形例は、代替として、デッキ110とは独立して動作するように構成されることができる。
【0069】
[0083] ツール容器140は、さらに追加又は代替として、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載された態様を含むことができ、上述したように、これらの各々は参照によってその全体が組み込まれる。
【0070】
2.1.4 デッキ支持要素-イメージングサブシステム
[0084]
図1A及び
図6に示すように、システム100は、(例えば、サンプル処理チップ132のすべてのマイクロウェルから同時に)サンプル処理チップ132の内容物のリアルタイム検出の実行を可能にするように機能するイメージングサブシステム190を含むことができる。したがって、イメージングサブシステム190は、現在の最先端のシステムよりも100倍又は1000倍以上の細胞をリアルタイムで検出する能力を提供することができる。追加として、イメージングサブシステム190は、サンプル調製のためにベンチトップシステムに容易に統合されることができるように、低コストの統合ソリューション(例えば、小さなフットプリントサイズ(<1/2立方フィート)を有する)を提供するように機能する。より詳細には、イメージングサブシステム190は、サンプル処理チップ132の対象領域全体を見ることができる固体の完全に統合された検出システムを提供して、異なる試薬が細胞を越えてポンピングされ及び/又は特定の熱反応(例えば、温度インキュベーション)で処理される際に、細胞内で発生する事象の迅速なリアルタイム検出(例えば、蛍光ベース検出)を可能にする。
【0071】
[0085] 実施形態では、イメージングサブシステム190は、照明サブシステム192及び検出サブシステム196を含み、照明サブシステム192は、(例えば、様々な処理ステップ及び反応に関連する内容物の励起によって)サンプル処理チップ132及び/又はその内容物を照明するように機能する。検出サブシステム196は、リアルタイムでの検出を可能にするため、サンプル処理チップ132の対象領域全体のリアルタイムスキャンを提供するように機能する。変形例では、イメージングサブシステム190は、イメージングサブシステム190の照明及び検出機能を同期又は他の方法で調整するように機能するイメージングコントローラ199をさらに含むことができる。
図1A及び
図6に示すように、イメージングサブシステム190は、ベース180によって少なくとも部分的に支持され、かつ、デッキ110でサンプル処理カートリッジ130の標的オブジェクトの照明及び/又は検出に関してデッキ110と相互作用するように構成されることができる;しかしながら、イメージングサブシステム190は他の方法で構成されることができる。
【0072】
[0086] 特定の例では、
図6に示すように、照明サブシステム192は、フィルタ194のセット(例えば、バンドパス干渉フィルタ)に結合されたエミッタ193のセット(例えば、発光ダイオード、LED)と、サンプル処理チップの全表面領域(例えば、1cm
2の標的領域、1cm
2未満の標的領域、1cm
2以上の標的領域)を均一に照明するための光学素子195のセットと、含む。特定の例では、特定色のエミッタからの光は、光学素子のセットを介してコリメートされ、かつ、標的領域を照明するためにある角度で伝導される。特定の例では、エミッタ(例えば、LED)は、適切なシステム感度を提供するために、1ワットのオーダの光パワーを有するように選択される;しかしながら、他の変形例では、エミッタは別の適切な電力出力を有することができる。特定の例では、照明サブユニット192は、照明サブユニット192のサブユニット(例えば、LED、バンドパスフィルタ、励起フィルタ及びレンズ)に結合されたカスタム同心ホルダを含み、それによって、各エミッタ色に対応する各サブユニットを別個に構成する。特定の例では、4色蛍光検出システム用に選択された色素は、DAPI(Ex-365nm)、FITC(Ex-475nm)、Alexa Fluor 568(Ex-568nm)及びAlexa Fluor 647(Ex-635nm)である;しかしながら、他のエミッタ波長、フィルタ及び色素が用途に応じて選択されることができる(例えば、4超(例えば、6)又は4未満(例えば、3)の波長範囲が使用されることができる)。フィルタは、照明サブシステム192の性能を改善するために、通過帯域から遮断帯域への迅速な移行及び通過帯域と遮断帯域とのエッジの正確な許容誤差を伴う、遮断OD>6で選択されることができる。特定の例では、照明サブシステムの性能は、4つの励起波長の各々に供給される総電力、中心及び周辺の間の照明の均一性、並びに、最小のバックグラウンド蛍光の達成に強く依存する。したがって、この例の変形例は、励起に使用されるLEDの数の増加(すなわち、それによる電力の増加)、より明るいLED(すなわち、それによる電力の増加)、及び/又は、より高い量子効率を有する異なる色素の使用;光照明の均一性を高めるための構成(例えば、励起角度を変化させることによって、複数の場所に配置されたLEDを使用することによって、又は、反射器を使用することによって);光路で使用される光学素子及び/又は支持管における所望の表面仕上げ及び黒色コーティングの実施(例えば、それによるバックグラウンド蛍光の軽減)を含むことができる。
【0073】
[0087] 特定の例では、検出サブシステム196は、サンプル処理チップ132の対象領域から検出器198(例えば、25メガピクセルカメラ)に発する光(例えば、蛍光)の成形(例えば、コリメーション及び集束)のために400~700nmの回折制限性能を示すレンズ197のセット(例えば、2つの0.1NA、アポクロマート対物レンズ、TL2X-SAP)を含む。検出サブシステム196は、サンプル処理チップ132の染色された内容物から発する光の伝導を可能にするフィルタ96(例えば、マルチバンドパスフィルタ)も含む。特定の例の検出器198はCMOSコンポーネントを含む(例えば、各々2.4×2.4ミクロンである5472×3648ピクセルを有し、各機能性微粒子に対して~約4ピクセルが利用可能である)。特定の例の検出器198の量子効率は、400nm~525nmは~約80%であり、700nmで~45%に低下する。特定の例の検出器198は、室温で毎秒ピクセル当たり3.26電子のダークノイズレベルを有し、これは、検出器198に近接して冷却素子を位置決めすることによって改善されることができる。しかしながら、特定の例の変形例は、検出器、光学系及び/又はフィルタリング要素の任意の他の構成を含むことができる。例えば、検出器198の変形例は、機能性微粒子の分布の各々を画像化するために利用可能なより多くのピクセルを用いて、及び/又は、画像処理と組み合わせて、構成されることができ、検出サブシステム196は、隣接する粒子からの放出を軽減しながら個々の微粒子からのシグナルを分解するように構成されることができる。
【0074】
[0088] 特定の例では、検出サブシステム196の良好な性能は、(1)シリカ微粒子に付着した少なくとも1,000個の蛍光分子から発する蛍光を検出する能力に関連する、感度;(2)2つの直径5ミクロンの微粒子を分解する能力に関連する、分解能、又は、直径1ミクロンまでの分解能、又は、直径サブミクロンまでの分解能;(3)使用されるフルオロフォア間の最小スペクトルクロストーク、のうちの1以上によって決定される。性能に関連して、特定の例は、バックグラウンドノイズを低減することによって、及び/又は、能動的冷却又はシリカ粒子にタグ付けされた蛍光分子の数を増やすことによって、検出器198の暗電流を低減することによって、感度を高めるための構成を実装する。解像度の増加に関連して、検出器198は、3つの軸(例えば、x、y又はz軸)のいずれかで小さな局所的な移動(例えば、ミクロンサイズの変位)を行いながら、かつ、隣接する粒子からの寄与を抑制するために、以下に記載する制御199と連携した高度なシグナル処理を実行することによって、複数の画像を撮影するように構成されることができる。スペクトルクロストークの最小化に関連して、検出サブシステム196は、使用される色素との励起/発光フィルタの改善されたマッチングを実装する。イメージングの解像度を上げるための他の実施形態は、マイクロウェルチップとレンズ197との間に複数のピンホールアレイを持ち込み、所定の平面から発する光のみをイメージャに集束させることができるようにすることによって、共焦点イメージング要素を実装することができる。
【0075】
[0089] 特定の例では、イメージングコントローラ199は、エミッタの起動及び画像キャプチャを調整するように機能する。より詳細には、コントローラ199は、様々な起動の状態間でエミッタを移行させるためのアーキテクチャ(例えば、最大電力の1%以下内への電力減衰に関して、2ミリ秒~20分間の間の起動に関して、など);マイクロメータ分解能での照明サブシステム192のコンポーネント(例えば、エミッタ、光学、フィルタ、など)及び/又は検出サブシステム196(例えば、カメラコンポーネント、光学、フィルタ、など)の作動、それによって、画像取得中に画像の焦点を合わせることを可能にする;並びに、所望の積分長(例えば、2ミリ秒~20分)での検出器198に入射する光の透過及び積分に関連する、検出サブシステム196による画像キャプチャの調整/同期を含む。
【0076】
[0090] しかしながら、イメージングサブシステム190は、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;2017年11月16日に出願された米国出願第15/815,532号;及び、2014年3月13日に出願された米国出願第14/208,458号に記載されているように、他の要素及び/又は構成を含むことができ、これらの各々はこの参照によってその全体が組み込まれる。
【0077】
2.1.5 デッキ支持要素-加熱冷却サブシステム
[0091]
図1A~
図1C及び
図2Bに示すように、システム100は、試薬カートリッジ120及び/又はサンプル処理カートリッジ130の所望の領域から及び/又は所望の領域へ熱を伝導するように機能する加熱冷却サブシステム150を含むことができる。加熱冷却サブシステム150は、追加又は代替として、システム100の内部容積内で所望の温度を維持するように機能することができる。変形例では、加熱冷却サブシステム150は、加熱素子(例えば、ペルチェ加熱素子、抵抗加熱素子、他の加熱素子)、冷却素子(例えば、ペルチェ冷却素子、冷却アルミニウムブロック、冷却剤を循環させる流体経路システム、など)、加熱素子及び冷却素子へ又は加熱素子及び冷却素子からの熱を他の物体に伝導するための熱接触又は非接触体、ヒートシンク、ファン、温度センサ及び熱制御回路(例えば、以下でより詳細に記載するベース180の処理要素への電気的結合による)のうちの1以上を含むことができる。変形例では、冷却素子は、貯蔵容積及び/又はサンプルを摂氏2~8度、さらに好ましくは摂氏4度に維持することができる。追加又は代替として、冷却素子は、任意の適切な温度(例えば、摂氏2度未満、摂氏8度超、など)で1以上の貯蔵容積/サンプルを維持することができる。
【0078】
[0092] 加熱冷却サブシステム150の1以上の部分は、デッキ110の開口部に入り、様々な用途に熱伝導機能を提供するために、デッキ110によって支持された他のシステム要素(例えば、試薬カートリッジ、サンプル処理カートリッジ、ツール容器、など)の所望の部分と熱的に相互作用する又は他の方法で結合することができる。代替として、デッキ110は、熱伝導用途のための所望の領域で熱伝導性材料から構成されることができ、加熱冷却サブシステム150の一部は、熱伝導のためにデッキ110の熱伝導性材料領域に接触するように構成されることができる。
【0079】
[0093] 変形例では、熱体及び/又は加熱冷却サブシステム150の他の部分のうちの1以上は、熱体をデッキ110によって支持される要素との熱連通に出入りさせるアクチュエータに結合されることができる。例えば、蓋135、サンプル処理チップ132及び/又はサンプル処理カートリッジ130の第2基材80に関連して、加熱冷却サブシステム150の1以上の部分が、処理中のサンプル処理カートリッジ130の内容物の加熱のために、加熱及び/又は制御要素を、蓋135、サンプル処理チップ132及び/又は第2基材80に位置決めするアクチュエータに結合されることができる(例えば、ベース180との連通、デッキ110との連通、ガントリ170の可動部分との連通、など)。特に、可動加熱コンポーネント(例えば、以下に記載するガントリのピペットインタフェースと結合するように構成された加熱オブジェクト)が使用されて、以下により詳細に記載するように、サンプル処理チップ132のウェルを分配するために第2基材80を加熱及び/又はサンプル処理チップ132に対して圧縮することができる。追加又は代替として、試薬カートリッジ120及び/又は他の要素を加熱するように構成された加熱冷却サブシステム150のコンポーネントはアクチュエータに同様に結合されることができる。しかしながら、システム100の変形例は、加熱冷却サブシステム150のアクチュエータを省略することができる。
【0080】
[0094] 加熱冷却サブシステム150は、さらに追加又は代替として、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載される態様を含むことができ、上述したように、これらは各々参照によってその全体が組み込まれる。
【0081】
2.1.6 デッキ支持要素:ポンピングサブシステム
[0095]
図1A、
図2B及び
図5A~
図5Bに示すように、システム100は、(例えば、デッキ110及び/又はベース180に結合された)ポンピングサブシステム157を含むことができ、ポンピングサブシステム157は、上述したサンプル処理カートリッジ130の所望の部分に正圧及び/又は負圧を提供するように機能する。より詳細には、ポンピングサブシステム157は、流体を入口リザーバ133からサンプル処理カートリッジ130のサンプル処理チップ132内に流入させるように機能することができる。追加又は代替として、ポンピングサブシステム157は、サンプル処理カートリッジ130の廃棄物格納領域137から外部廃棄物レセプタクル内に流体を除去するように機能することができる。変形例では、ポンピングサブシステム157は、デッキ110の開口部を通じてサンプル処理カートリッジ130と相互作用するように構成された1以上のポート58(例えば、真空ポート)、ポート58に結合された1以上のポンプ(例えば、真空ポンプ、蠕動ポンプ、など)、ポンプに結合された圧力駆動経路を提供するための1以上のマニホールド、圧力経路に沿った圧力レベルを検出するように構成された1以上の圧力センサ、及び/又は、ポンピングサブシステム157の動作を制御するように構成された1以上の制御回路(例えば、以下により詳細に記載するベース180の処理要素への電気的結合による)を含むことができる。したがって、変形例では、サンプル処理カートリッジ130に直接結合されていないポンピングサブシステム157の部分は、デッキ110とベース180との間に配置されることができる。
【0082】
[0096] ポンピングサブシステム157は、さらに追加又は代替として、2020年5月5日に出願された米国特許第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載されている態様を含むことができ、上述したように、これらは各々参照によってその全体が組み込まれる。
【0083】
2.1.7 デッキ支持要素:流体レベル検出サブシステム
[0097]
図1A、
図2B及び
図9に示すように、システム100は、デッキ110によって少なくとも部分的に支持され、かつ、サンプル処理カートリッジ130と相互作用するように構成された流体レベル検出サブシステム159を含むことができる。流体レベル検出サブシステム159は、サンプル処理カートリッジ130及び/又はシステム100の他の流体処理要素に関連する流体パラメータ(例えば、流体の二元的存在、流体の量、流体流量、流体タイプなど)を検出及び/又は測定するように機能する。変形例では、流体レベル検出サブシステム159は、流体レベル制御回路に結合された流体レベルセンサを含むことができる(例えば、以下でより詳細に記載するベース180の処理要素への電気的結合による)。
【0084】
[0098] 流体レベル検出サブシステム159は、さらに追加又は代替として、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載されている態様を含むことができ、上述したように、これらは各々参照によってその全体が組み込まれる。
【0085】
2.1.8 デッキ支持要素:分離サブシステム及び動作モード
[0099]
図1A及び
図2Bに示すように、システム100は、(例えば、磁力を使用して、他の力を使用して)非標的物質からの標的物質の分離を容易にするように機能する分離サブシステム160を含むことができる。例えば、T細胞は、T細胞にのみ結合する抗体を含有する磁性粒子を使用して、血液中の他の細胞から分離されることができる。不要な細胞は、負の選択技術を使用することによって、抗体粒子を使用して結合されることもできる。分離の別の例は、母体の血液からの胎児細胞の分離を包含する可能性がある。別の例としては、全血からのまれな循環腫瘍細胞の分離を包含する可能性がある。分離の別の例は、B細胞を分泌するまれな抗体の分離を包含する可能性がある。変形例では、分離サブシステム160は、「マイクロウェルからの標的物質回収のためのシステム及び方法」と題され、2019年6月26日に出願された米国出願第62/866,726号に記載されたコンポーネントの実施形態、変形例及び例を含むことができ、この参照によってその全体が本明細書に組み込まれる。分離サブシステム160は、さらに追加又は代替として、2020年5月5日に出願された米国特許出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載されている態様を含むことができ、上述したように、これらは各々参照によってその全体が組み込まれる。
【0086】
2.2 システム-ガントリ
[00100]
図1A~
図1C、
図2A及び
図2C~
図2Dに示すように、システム100は、デッキ110に結合されたガントリ170を含むことができ、ガントリ170は、一連の軸に沿って、デッキ110の要素と様々な相互作用のための1以上のツールを支持する及び/又は1以上のツールの作動を可能にするように機能する。変形例では、ガントリ170は、3次元空間(例えば、デッキの第1側によって境界付けられる3次元ボリューム)において、以下に記載するピペットインタフェースを有するピペッタ174などの移動ツールのための1以上のレール/トラックを提供する。変形例では、ガントリ170を使用して作動されるツールは、デッキ110によって支持された異なるコンポーネント間で物質(例えば、細胞、試薬、粒子、など)を移送するために、サンプル処理カートリッジ130、試薬カートリッジ120、ツール容器140又は他の要素に対して移動させられることができる。追加又は代替として、ガントリ170によって支持されたツールは、デッキ110によって支持される様々なディスポーザブル品に関連するバーコードの読み取りに使用されることができる(例えば、実行の適切なセットアップの識別に関連して、在庫管理に関連して、など)。ガントリ170は、好ましくは、試薬カートリッジ120、サンプル処理カートリッジ130及びツール容器140の広い表面に平行な1以上の軸(例えば、
図2Aに示すX軸及びY軸)に沿った、及び追加として、広い表面に垂直な軸(例えば、
図2Aに示すZ軸)に沿った、1以上のツールの移動を可能にする。ガントリ170は、追加又は代替として、これらの方向のサブセットに沿った、又は、他の任意の適切な方向に沿った移動を可能にすることができる。移動を可能にするため、ガントリ170は、1以上のモータ(例えば、各軸又は移動方向のためのモータ)、各軸又は移動方向の位置識別のための1以上のエンコーダ、及び/又は、ガントリ170を制御するための1以上のスイッチ(例えば、各軸の光スイッチ)(例えば、スイッチが、以下のベース180に関連して記載する制御回路と電気的に結合されている場合)を含む又はに他の方法で結合される。
【0087】
[00101]
図2Aに示すように、ガントリ170は、ピペッタ174を含む及び/又はピペッタ174と相互作用するように構成されることができ、ピペッタ174は、任意の数のチップ又は他のツール、例えば、上述したツール容器140を保持する、移動させる及び/又は他の方法で相互作用するように機能する。変形例では、ピペッタ174アセンブリは、流体の送達及び吸引のための圧力差を提供するためのポンプ(例えば、容積型ポンプ)、ピペッティング圧力を検知するための圧力センサ、ピペッタ174内の流体レベルを検知するためのレベルセンサ、チップ検出器(例えば、ピペッタ174に結合されたチップの有無の決定を可能にするため)、及び、ピペッタ174からチップを除去するためのチップエジェクタに結合されたチップ排出モータ、のうちの1以上を含むことができる。
図2Aに示すように、ピペッタ174は、ガントリ170のZレール173に結合されることができる;しかしながら、他の変形例では、ピペッタ174は、追加又は代替として、ガントリ170の他の部分に結合されることができる。
【0088】
[00102] ピペッタ174は、好ましくは、自動で動作可能であり(例えば、電動の、機械式の、自動の、など)、かつ、容量(例えば、正確な容量を分配する、正確な容量を吸引する)、各物質が分配されるウェルの上方の高さ(例えば、プライミングバッファは各ウェルの上部から0.25~0.3ミリメートルの高さで分配される、細胞懸濁液は各ウェルの上部から0.25ミリメートルの高さで分配される、など)の既定のパラメータのいずれか又はすべてを制御するように構成されることができ、又は、任意の適切なパラメータに従って任意の他の適切な特性を制御することができる。追加又は代替として、ピペッタ174は、手動で(例えば、ユーザによる、ユーザ介入を伴う、ユーザによって保持及び使用される、など)、又は、任意の適切な方法で動作するように構成されることができる。さらに別の実施形態では、ピペッタ174が使用されて、機械ツール、磁気ツール、光学ツール及び任意の他の適切なツールのいずれか又はすべてなど、ツール容器に関連する1以上のツールをピックアップしてもよい。ツールは、ピペッタ174によって試薬カートリッジ及び/又はマイクロウェルカートリッジに移動させられることができ、その結果、ツールは、試薬カートリッジ又はマイクロウェルカートリッジの特定の内容物に関して特定の機械的/磁気的及び/又は光学的機能を実行することができる。
【0089】
[00103] ガントリ170は、追加又は代替として、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載されている態様を含むことができ、上述したように、これらは各々参照によってその全体が組み込まれる。
【0090】
2.3 システム-ベース
[00104]
図1Aに示すように、システム100は、上述したデッキ110及びガントリ170の要素に関連する制御及び処理アーキテクチャを支持するように機能するベース180を含むことができる。変形例では、ベース180は、以下を含む1以上のシステム機能のための制御及び処理アーキテクチャを支持することができる:サンプル処理カートリッジ130及び/又はピペッタ174全体を通じた流体送達のための圧力変更;(例えば、サンプル処理カートリッジ130の、ピペッタ174の、試薬カートリッジ120の様々な貯蔵容量の、など)流体レベル検知;サンプル処理カートリッジ130の蓋開放機構の作動;試薬カートリッジ120及び/又はサンプル処理カートリッジ130の熱サイクル及び/又は他の加熱機能;試薬カートリッジ120及び/又はサンプル処理カートリッジ130の冷却機能;分離機能(例えば、溶出、磁気分離、他の分離、など);ガントリ170を制御するための機能;センサ信号の受信及び出力の戻しに関連する機能;センサ信号の受信及び様々なアクションの実行に関連する機能;様々な状態(例えば、開状態、閉状態、ロック状態、ロック解除状態、など)間でシステムドアを移行するための機能;システム電源管理に関連する機能;システムステータス表示要素に関連する機能(例えば、ライト、オーディオ出力デバイス、ビジュアル出力デバイス、など);システム入力デバイスに関連する機能(例えば、ボタン、キーボード、キーパッド、マウス、ジョイスティック、スイッチ、タッチスクリーン、など);ディスプレイデバイスに関連する機能;システムデータストレージデバイスに関連する機能;システム伝送デバイス(例えば、有線伝送デバイス、無線伝送デバイス、など)に関連する機能;及び、他の適切な機能。
【0091】
[00105] したがって、変形例では、ベース180は、処理アーキテクチャ(例えば、システムに搭載されている、システムとは別のもの、など)に関連する電子サブシステム(例えば、PCB、電源、通信モジュール、エンコーダ、など)又は、任意の他の適切なコンポーネントを支持することができ、処理アーキテクチャは、プロセッサ(例えば、マイクロプロセッサ)、コントローラ(例えば、マイクロコントローラ)、メモリ、ストレージ、ソフトウェア、ファームウェア又は任意の他の適切なコンポーネントのいずれか又はすべてを含むことができる。追加として、処理サブシステムは、タグの読み取り、プロトコルの検証、エラー検出の実行(例えば、割り当てられたプロトコルに試薬が一致しないことの検出)、又は、任意の他の機能を実行する機能を有するマシンビジョンモジュールを含むことができる。
【0092】
[00106] 例えば、例示的な動作フローでは、オペレータは、(例えば、システムのボタンを押すことによって、システムのタッチセンサ式ディスプレイを相互作用させて選択を行うことによって、など)プロトコルの実行を開始することができる。バーコードリーダは、デッキ要素(例えば、試薬カートリッジ、サンプル処理カートリッジ、ツール容器、など)のタグをスキャンし、かつ、ユーザが選択したプロトコルと比較することによって、エラー検出プロトコルを実行し;選択されたプロトコルにタグが一致しない場合、ユーザに通知が送信されることができ、かつ、タグが正しい場合、プロトコルが開始することができる。この時点で、オペレータはもはや不要になり得る。その一部が以下のセクション3に記載される1以上のワークフローによれば、正確なタイプ及び容量の物質(例えば、試薬/サンプル)が、自動で正確な時間にサンプル処理カートリッジに追加又はサンプル処理カートリッジから除去される。プロトコルが完了すると、オペレータは、必要に応じてマイクロウェルカートリッジの内容物の収集及び/若しくは処理、並びに/又は、新しい実行の設定に進むことができる。システム100によって可能にされる方法及びワークフローの変形例は以下にさらに記載される。
【0093】
[00107] 制御及び処理アーキテクチャの実施形態、変形例及び例は、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載される態様を含むことができ、上述したように、これらは各々参照によってその全体が組み込まれる。
【0094】
3.方法
[00108]
図7に示すように、サンプル処理のための方法300の一実施形態は、サンプル処理システムのデッキに1以上のコンポーネント(例えば、試薬カートリッジ、ツール容器及びサンプル処理カートリッジ)を位置決めすることS310と、作業順序においてツール容器のツールを使用することによって、サンプル処理カートリッジ間で試薬カートリッジの内容物を渡すことS320と、サンプル処理カートリッジ及び/又は試薬カートリッジでサンプルを処理することS330と、内容物を渡すこと及びサンプルを処理することと連動して、サンプルに由来する内容物を照明し、かつ、サンプルに由来する内容物から放出されるシグナルを検出することS340と、を含む。
【0095】
[00109] 方法300は、単一細胞/粒子フォーマットの細胞(又は他の標的粒子)に由来する、mRNA、タンパク質及び/又は他の生物学的マーカのサンプル処理及び解析を自動化するように機能する。方法300は、定量的測定値(例えば、細胞あたりの多数のタンパク質、mRNA及び/又は他のバイオマーカ)の生成を自動化するためのステップを含むことができる。方法300は、好ましくは、ハードウェアプラットフォームサブシステム、ディスポーザブル品及び試薬を統合して、最初のサンプル受け取りから結果の生成までのサンプル処理を自動化するための、上述したシステム100の一実施形態、変形例又は例を使用して実施される。より詳細には、上述したシステムの態様に関連する方法処理ステップは、サンプル処理チップのウェルのセットで捕捉された細胞又は粒子が流体ポンピング中に流出しないように、使用されるすべての試薬の流体ポンピング圧力の最適化;プローブハイブリダイゼーション及びプローブ変性の両方のための加熱/インキュベーションパラメータの最適化;及び、励起に対するエミッタパワー及び画像取得タイミングなどの蛍光検出パラメータの開発、を含むことができる。この方法は、さらに好ましくは、少なくとも部分的に自動化される(例えば、ユーザが試薬を投入してプロトコルを選択することを必要とする、ユーザの介入を必要としない、など)が、1以上の部分が、追加又は代替として、(例えば、品質管理ステップのため、すべてのプロトコルのため、まれなプロトコルのため、など)手動で実行されることができる。
【0096】
[00110] 変形例では、その例が以下により詳細に記載されるが、方法300は、マイクロウェル内の単一細胞フォーマットで捕捉された単一細胞からの多数(例えば、数百、数千)のバイオマーカのリアルタイム検出のためのオリゴヌクレオチドタグシステム(例えば、タグ-抗体複合体)の開発によって、細胞由来タンパク質(例えば、免疫細胞で表現される表面タンパク質)の検出及び定量化のために使用されることができる。そうした方法の変形例は、数時間のオーダでの検出を迅速に可能にするために、連続的なプローブハイブリダイゼーション及び検出を実施する。追加又は代替として、変形例では、その例が以下により詳細に記載され、数時間のオーダのmRNA分子(例えば、上述したイメージングサブシステム190の一実施形態を使用する蛍光検出に基づいて)の定量化によって、複数の単一細胞からの(例えば、100以上のmRNA標的のパネルの)複数のmRNA標的を検出するために方法300が使用されることができる。
【0097】
[00111] 追加又は代替として、方法300は、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号;2020年3月12日に出願された米国出願第16/816,817号;2019年9月9日に出願された米国出願第16/564,375号;2018年8月28日に出願された米国出願第16/115,370号;2018年8月28日に出願された米国出願第16/115,059号;2018年7月27日に出願された米国出願第16/048,104号;2018年7月30日に出願された米国出願第16/049,057号;2017年9月29日に出願された米国出願第15/720,194号;2017年2月13日に出願された米国出願第15/430,833号;2017年11月22日に出願された米国出願第15/821,329号;2017年10月12日に出願された米国出願第15/782,270号;2018年7月30日に出願された米国出願第16/049,240号;及び、2017年11月16日に出願された米国出願第15/815,532号に記載される態様を含むことができ、上述したように、これらは各々参照によってその全体が組み込まれる。
【0098】
[00112] 上述した方法300及びシステム要素に関連する特定のワークフローは、以下のセクション3.2及び3.3にさらに詳細に記載され、サンプル(例えば、細胞由来の物質、タンパク質、mRNA、タンパク質及びmRNAを含むサンプル;各々多重化バーコードでタグ付けされた複数のサンプルを含むサンプル;細胞又は非細胞由来バイオマーカのいずれかからのカプセル化された粒子を含むサンプル、など)は、ワークフローに従って処理されることができる。こうしたワークフローを可能にする生化学的組成についてはセクション3.1に記載される。
【0099】
3.1 方法-生化学的組成物
[00113] 上述したように、標的の捕捉及び検出の可能化に関して、方法300は、標的にタグ付けし、かつ、連続的なプローブハイブリダイゼーション及び検出を可能にし、それによって、多数のバイオマーカの検出及び定量的測定を可能にする組成を実施することができる。
【0100】
[00114] 変形例では、
図8に示すように、組成物200は、シリカ(容易な蛍光イメージングを可能にする非蛍光性で透明な物質を提供する)又は別の適切な物質から構成されるコア基材210(例えば、ミクロスフェア、他の微粒子)を含むことができる。特定の例では、コア基材210のユニットは、ストレプトアビジンでコーティングされたシリカ粒子(例えば、直径2ミクロン、直径5ミクロン、など)を含むことができる。コア基材210は、異なる標的(例えば、抗体、mRNA、など)のためのバーコード化されたオリゴヌクレオチドタグ220の1以上のユニット(例えば、複数のバーコードセグメントを有する)に結合され、オリゴヌクレオチドタグ220は、短いオリゴヌクレオチドプローブ230の複数のセットにハイブリダイズされることができる。プローブ230のセットの各々は、F
Pのオーダで異なる標的の検出を可能にするフルオロフォア240のセットのフルオロフォアに結合されることができ、Fはフルオロフォアの数であり、Pはプローブの数である。そうした構成は、(例えば、免疫パネルについて、他のバイオマーカに関連する別のパネルについて)連続的な連続プローブハイブリダイゼーション及び検出を可能にすることができる。組成物200の多重化用途は、より多くのバーコードセクション、より多くのフルオロフォア関連色、他のシグナル放出セクション(例えば、非蛍光シグナル放出セクション)、及び/又は、フルオロフォア色あたりのより多くの融点設計を有することによって、拡張されることができる。タグ220は、非結合のタグを除去するための適切な洗浄ステップで、コア基材210(例えば、微粒子あたり>10
6タグ)に結合される。さらに、使用中、(例えば、イメージングサブシステムによる検出のため、フルオロフォアに関連する適切なシグナル出力の最適化に関連して)検出を容易にするために、プローブの濃度の希釈が実行されることができる。
【0101】
[00115] 抗体のタグ付け及び検出に関連する特定の例では、組成物200は、各オリゴヌクレオチドタグ220が3セットの短いオリゴヌクレオチド(~30塩基、変形例では他の適切な数の塩基を有する)プローブ230’に特異的にハイブリダイズされる異なる抗体のセットの各々について、一本鎖オリゴヌクレオチドタグ220を含むことができる。プローブの各々は、以下に記載する方法に従って、連続的なハイブリダイゼーション及び検出を使用して最大64(すなわち、4×4×4)の異なる抗体の検出を可能にする4つのフルオロフォア(例えば、上述した色素に対応するフルオロフォア)のうちの1つに結合される。異なる融点(例えば、色ごとに2つ、色ごとに3以上、など)でプローブを構成することによって、サンプル組成物200の変形例が使用されて、最大128(すなわち、64×2、又は、FP*M、Fはフルオロフォアの数であり、Pはプローブの数であり、Mは融点の数である)の異なる抗体(又は他の標的)を多重化することができる。同じマイクロウェルからの異なるタグの検出を混乱させないために、タグのセット(例えば、4~8セット)がシリカミクロスフェアのセットに特異的に結合され、使用中、それに応じて分散されることができる。例えば、上述したサンプル処理チップに関連して、機能性ミクロスフェアのセットは、サンプル処理チップのウェルのセット及び/又は第2基材全体に(例えば、サンプル処理チップ及び/又は第2基材のいずれかのサンプルのウェルのベースに)確率的に分散されることができ、それによって、抗体の各組み合わせについての組成物200の少なくとも1つのユニットがすべてのウェルに存在することを確実にする。
【0102】
[00116] mRNA捕捉に関連する別の特定の例では、組成物200は、異なる標的mRNAのセットの各々について一本鎖オリゴヌクレオチドタグ210を含むことができ、各オリゴヌクレオチドタグ210は、3セットの短いオリゴヌクレオチドプローブ230”(~15塩基、変形例では他の適切な数の塩基)の後に、mRNA遺伝子特異的リバースプライマ(~20塩基、変形例では他の適切な数の塩基)に特異的にハイブリダイズされる。プローブの各々は、4つのフルオロフォア(例えば、上述した色素に対応するフルオロフォア)のうちの1つに結合され、その1つは、連続的なハイブリダイゼーション及び検出を使用した最大64(すなわち、4×4×4)の異なる標的mRNAの検出を可能にする(例えば、第1mRNAを検出するため、第1タグは、フルオロフォア1を有する第1プローブ、フルオロフォア1を有する第2プローブ及びフルオロフォア2を有する第3プローブ、を有することができる;第2mRNAを検出するため、第2タグは、フルオロフォア1を有する第1プローブ、フルオロフォア2を有する第2プローブは及びフルオロフォア2を有する第3プローブ、を有することができる;第3mRNAを検出するため、第3タグは、フルオロフォア2を有する第1プローブ、第2フルオロフォア1を有する第2プローブ及びフルオロフォア2を有する第3プローブを有することができる、など)。
【0103】
[00117] 異なる融点(例えば、色ごとに2つ、色ごとに3以上、など)を有するプローブを構成することによって、例示的な組成物200”の変形例が使用されて、最大128(すなわち、64×2又はFP*M、Fはフルオロフォアの数であり、Pはプローブの数であり、Mは融点の数である)の異なるmRNA又は他の標的を多重化することができる。同じマイクロウェルからの異なるタグの検出を混乱させないために、タグのセット(例えば、4~8セット)は、シリカミクロスフェアのセットに特異的に結合され、かつ、使用中にそれに応じて分散されることができる。例えば、上述したサンプル処理チップに関連して、機能性ミクロスフェアのセットは、サンプル処理チップのウェルのセット及び/又は第2基材全体に(例えば、サンプル処理チップ又は第2基材のいずれかのウェルのベースに)確率的に分散されることができ、それによって、抗体の各組み合わせについての組成物200の少なくとも1つのユニットがすべてのウェルに存在することを確実にする。例えば、100個のmRNA検出を可能にするために、組成物200のユニットは、シリカのセットごとに固有の3セットのタグ(すなわち、34個のシリカ粒子×3個のタグ/シリカ粒子セット=102の組み合わせ)を有する34個の異なるシリカ微粒子のセットに結合するためのオリゴヌクレオチドタグ210で構成されることができる。その後、サンプル処理チップ及び/又は第2基材の製造中、これらのシリカ粒子はウェル内にランダムに埋め込まれることができる。代替として、100パネルのmRNA検出を可能にするため、組成物200”のユニットは、3セットのmRNAプライマを包含する33個のシリカ粒子と、1個のmRNAプライマのみを包含する1個のシリカ粒子として構成されることができる。
【0104】
[00118] 表1は、組成物の様々な構成(例えば、バーコードの数、フルオロフォアの数及び融点の数の設計に関連して)で可能な、特異的に検出可能な標的の組み合わせの例の数を提示する。
【0105】
[00119] 追加又は代替として、組成物200、200’、200”の実施形態、変形例及び例は、2019年12月6日に出願された米国出願第62/945,006号に記載された態様を含むことができ、この参照によりその全体が本明細書に組み込まれる。
【0106】
3.2 方法-抗体/タンパク質検出のワークフロー例
[00120]
図9A及び
図9Bに示すように、抗体/タンパク質を検出するように構成された方法300’の一変形例は、抗体/タンパク質検出プロトコルを実行するためのシステムを構成する実行準備作業を実行することS305’と;実行準備作業の完了時、システムのサンプル処理カートリッジをプライミングすることS310’と;(例えば、細胞の抗体/タンパク質のタグ付けによって)サンプル処理カートリッジに、単一細胞フォーマットで、サンプルの細胞のセットを捕捉することS315’と;機能性粒子のセットを保持するためのサンプル処理カートリッジ及び/又は第2基材で、細胞のセットと共に又はそれに近接する、(例えば、上述した組成物200、200’、200”の)機能性粒子のセットを捕捉することS320’と;(例えば、非結合及び/又は非標的内容物の機能性粒子の関連の洗浄、及び、単離物質による個々の捕捉ウェルの分配によって)放出された標的細胞内容物(例えば、タグ付けされた抗体、他の標的タンパク質)を機能性粒子のセットに結合させることによって細胞のセットを溶解することS325’と;逆転写作業を実行し、それによって、標的細胞内容物(例えば、抗体、他の標的タンパク質)の配列を、機能性粒子のセットの対応する領域(例えば、短いタグ)とリンクさせることS330’と;第2鎖合成作業を実行することS335’と;(例えば、上の組成物200の変形例の)検出可能なプローブのセットの各々を、機能性粒子のセット(例えば、サンプル処理カートリッジ及び/又は第2基材のウェル内)で第2鎖にハイブリダイズすることS340’と;検出可能なプローブのセットの各々について、サンプル処理カートリッジ及び/又は第2基材を照明することS345’と、(例えば、デハイブリダイゼーション及び以前の検出可能なプローブの洗浄によって)検出可能なプローブのセットの各々のフルオロフォアに対応する放出された光に関連する画像データセットを生成し、それによって、抗体/標的タンパク質の検出を可能にすることS350’と、を含むことができる。方法300’のブロックは、上述したシステム実施形態の制御要素及び処理要素と協調して実行される。
【0107】
[00121] 方法300’は、多数の抗体又は他のタンパク質の迅速な検出に使用されることができる(例えば、解析されるサンプルを提供する対象の免疫応答を特徴付けることに関連する)。変形例では、方法300’は、免疫応答試験に適合されることができる(例えば、COVID-19に関連して、重症急性呼吸器症候群コロナウイルス-2(SARS-CoV-2)に対する抗体の検出に関連して、他の抗体に関連して、など)。変形例では、検出される抗体は、IgM抗体、IgG抗体、IgD抗体、IgA抗体、IgE抗体又は他の抗体(例えば、非ヒト抗体)を含むことができる。
【0108】
[00122] より詳細には、実行準備作業を実行することS305’は:(例えば、抗体のタグ付けのためのオリゴヌクレオチドタグによる細胞のインキュベーションによって)細胞懸濁液を調製することと;(例えば、デッキに関連する、ガントリに関連する、ベースに関連する、など)システムサブシステムの動作チェックを初期化して実行することと;ガントリをホーム位置に戻すことと;試薬カートリッジから1以上のシールを取り外すこと、及び/又は、試薬を試薬カートリッジに投入することと;サンプル処理カートリッジユニットを位置決めすることと;デッキに位置決めされたツール容器から1以上のシールを取り外すことと;使用前に貯蔵容器内に細胞懸濁液を分配することと;カメラ(例えば、マシンビジョンカメラ)でディスポーザブル品のタグをスキャンする際に、プロトコルのためのディスポーザブル品の適切な位置決め及び状態(例えば、有効期限に関連する)を確認することと;(例えば、オペレータから)サンプル識別情報を受信することと;サンプルの実行を開始すること、のうちの1以上に関連するサブステップを含むことができる。S305”のステップは、システムによって自動的に及び/又はオペレータによって実施されることができる。さらに、様々なサブステップが、1回実行されることもできる又は推奨されるように繰り返されることができる。
【0109】
[00123] より詳細には、実行準備作業S310’の完了時、システムのサンプル処理カートリッジをプライミングすること、及び、サンプル処理カートリッジにサンプルの細胞のセットを単一細胞フォーマットで捕捉することS315’は:(例えば、気泡がサンプル処理カートリッジ内に格納されることを阻止する方法で)プライミング溶液をサンプル処理カートリッジの入口リザーバ内に分配することと;サンプル処理カートリッジ内でプライミング溶液をインキュベートすることと;1以上の洗浄液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理カートリッジの廃棄物格納領域に溶液を送ることと;細胞懸濁液をサンプル処理カートリッジの入口リザーバに分配し、かつ、サンプル処理カートリッジのウェル内に単一細胞フォーマットで細胞を捕捉することと;(例えば、抗体タグ付け物質によって)捕捉された細胞の抗体にタグ付けすることと;プライミング及び細胞捕捉に関連する他の適切なステップを実行することと、のうちの1以上を含むことができる。ポンピング圧力は、プロトコルで使用されるすべての試薬に対して最適化され、その結果、ウェルに捕捉された細胞又は粒子は流体ポンピング中に流出しない。ステップS310’及びS315’は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0110】
[00124] より詳細には、機能性粒子のセットを保持するためのサンプル処理カートリッジ及び/又は第2基材で、細胞のセットと共に(例えば、上述した組成物200、200’、200”の)機能性粒子のセットを捕捉することS320’は:機能性粒子のセットをサンプル処理カートリッジの入口リザーバに分配し、機能性粒子のセットを細胞のセットと同時捕捉することと;サンプル処理カートリッジのウェルの内容物をインキュベートすることと;サブステップに関連する様々なツールを(例えば、ピペットインタフェースに結合されたガントリによって)ピックアップ/リリースすることと;(例えば、サンプル処理カートリッジの蓋及び/又はアクセス領域を通じて)単一細胞フォーマットの細胞を含有するサンプル処理カートリッジのウェルと整列した機能性粒子のセットと共に、第2基材を位置決めすることと;(例えば、ヒドロゲル又は他の物質によって、など)機能性粒子のセットを所定の位置に保持することと;機能性粒子の捕捉及び位置決めに関連して他の適切なステップを実行することと、のうちの1以上を含むことができる。ポンピング圧力は、プロトコルで使用されるすべての試薬に対して最適化され、その結果、ウェルに捕捉された細胞又は粒子は流体ポンピング中に流出しない。ステップS320’は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることことができる又は推奨されるように繰り返されることができる。
【0111】
[00125] より詳細には、放出された標的細胞内容物(例えば、抗体、他の標的タンパク質)を機能性粒子のセットに結合させることによって(例えば、非結合及び/又は非標的内容物の機能性粒子の関連の洗浄、及び/又は、単離物質による個々の捕捉ウェルの分配によって)細胞のセットを溶解することS325’は:1以上の洗浄液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理カートリッジの廃棄物格納領域に溶液を送ることと;粒子結合緩衝液をサンプル処理カートリッジの入口リザーバに分配することと;(例えば、室温で、室温未満で、室温超で)溶解溶液をサンプル処理カートリッジの入口リザーバに分配する(例えば、1分未満、1分、1分超、など)ことと;(例えば、室温で、室温未満で、室温超で)溶解緩衝液とのインキュベーションを実行することと;サンプル処理カートリッジのウェルの上方の流体を油に置換し、それによって、ウェルの内容物を単離し、ウェル間での望ましくない物質の移動を阻止することと(例えば、この参照によってその全体が本明細書に組み込まれる2019年9月9日に出願された米国出願第16/564,375号のように);油を入口リザーバからの空気に置換することと;粒子結合洗浄緩衝液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理チップのウェルに対して第2基材を圧縮し、それによって、捕捉された細胞を包含するウェルのセットのウェルを分配することと;細胞溶解に関連する他の適切なステップを実行することと、のうちの1以上を含むことができる。ポンピング圧力は、プロトコルで使用されるすべての試薬に対して最適化され、その結果、ウェルに捕捉された細胞又は粒子が流体ポンピング中に流出しない。ステップS325’は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0112】
[00126] より詳細には、細胞のセットの溶解物によって逆転写作業を実行し、それによって、標的細胞内容物(例えば、抗体、他の標的タンパク質)の配列を、機能性粒子のセットの対応する領域(例えば、短いタグ)に連結することS330’は:1以上の洗浄液をサンプル処理カートリッジの入口リザーバに分配する(例えば、それによって、望ましくない溶解物を洗い流す)ことと;サンプル処理カートリッジの廃棄物格納領域に溶液を送ることと;粒子結合緩衝液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理カートリッジの入口リザーバにDTT溶液を分配することと;サンプル処理カートリッジの入口リザーバに溶解液を分配することと;サンプル処理カートリッジのウェルの上方の流体を油に置換し、それによって、ウェルの内容物を単離し、ウェル間での望ましくない物質の移動を阻止する(例えば、2019年9月9日に出願された米国出願第16/564,375号のように、この参照によってその全体が本明細書に組み込まれる);油を入口リザーバからの空気に置換することと;サンプル処理カートリッジの入口リザーバに粒子結合洗浄緩衝液を分配することと;サンプル処理カートリッジの入口リザーバにプレRT反応洗浄緩衝液を分配することと;サンプル処理カートリッジの入口リザーバにRTカクテルを分配することと;サンプル処理カートリッジの内容物をインキュベートすることと;インキュベーションステップを実行することと;第2基材をサンプル処理チップに向かって及び/又はサンプル処理チップから離れて移動させ、それによって、内容物を分配し及び/又は捕捉ウェルを横切る流体の流れを可能にすることと;サブステップに関連する様々なツールをピックアップ/リリースすることと、のうちの1以上を含むことができる。ポンピング圧力は、プロトコルで使用されるすべての試薬に対して最適化され、その結果、ウェルに捕捉された細胞又は粒子は流体ポンピング中に流出しない。ステップS330’は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0113】
[00127] より詳細には、内容物(例えば、望ましくない物質、溶解物、など)を除去するための1以上の洗浄ステップの実行による第2鎖合成作業を実行することS335’は:(例えば、試薬カートリッジの、サンプル処理カートリッジの)容器内の水酸化物溶液(例えば、水酸化ナトリウム溶液)と標的捕捉内容物を混合することと:(例えば、記載された磁気分離サブシステムによって)機能性磁性粒子を他の内容物から分離することと;廃棄物質を廃棄することと;標的内容物を洗浄することと;洗浄した標的内容物と第2鎖合成プライマ酵素を混合することと;(例えば、上述したサブシステムによる)分離ステップ及び洗浄ステップによって標的内容物を熱サイクルさせることと;サブステップに関連する様々なツールをピックアップ/リリースすることと、のうちの1以上を含むことができる。ステップS335’は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0114】
[00128] より詳細には、(例えば、上の組成物200、200’及び200”の変形例の)検出可能なプローブのセットの各々を、機能性粒子のセット(例えば、サンプル処理カートリッジ及び/又は第2基材のウェル内)で第2鎖にハイブリダイズすることS340’は:オリゴヌクレオチドプローブの溶液を、(例えば、上の組成物に関して記載するような)蛍光検出可能な部分と共に、機能性粒子のセットでの物質の対応の領域とのハイブリダイゼーションのために、サンプル処理カートリッジ(例えば、マイクロウェルチップのウェル内)、第2基材及び/又は試薬カートリッジに送ることと;(例えば、温度、ランプ及びサイクルに関して適切な加熱プロファイルによって)1以上のインキュベーションステップを実行することと;1以上の洗浄ステップを実行することと;サブステップに関連する様々なツールをピックアップ/リリースすることと、のうちの1以上を含むことができる。ステップS340’は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0115】
[00129] より詳細には、検出可能なプローブのセットの各々について、サンプル処理カートリッジ及び/又は第2基材を照明することS345’は、適切な電力設定で、光学部品を通じて、(例えば、プローブにハイブリダイズされた標的成分を含有する)捕捉されたサンプルに向かって光を透過させることと;(例えば、発光及び/又はサンプル支持コンポーネントの所定の位置への作動によって)光透過に関連する1以上のフォーカシング作業を実行することと;ブロックS350’で実行される画像キャプチャと照明のタイミングを調整することと;上の参照により組み込まれる、2014年3月13日に出願された米国出願第14/208,458号に記載される作業を実行することと;任意の他の適切な照明ステップを実行することと、を含むことができる。ステップS345’は、好ましくは、システム(例えば、上述したイメージングサブシステム/照明サブシステム)によって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0116】
[00130] より詳細には、検出可能なプローブのセットの各々のフルオロフォアに対応する放出光に関連する画像データセットを生成することS350’は:検出サブシステムに向かって、捕捉されたサンプル(例えば、プローブにハイブリダイズされる標的成分を包含する)から光学部品を通じて光を伝送することと;(例えば、光検出及び/又はサンプル支持コンポーネントを所定の位置に作動させることによって)光透過に関連して1以上のフォーカシング作業を実行することと;サンプル包含容器の基準に関連して1以上のフォーカシング作業を実行することと;捕捉基材(例えば、上述したサンプル処理チップ及び/又は第2基材)の組み立てられた画像を作成するために、複数の画像をスティッチングすることと;ブロックS345’で実行される照明と画像キャプチャとのタイミングを調整することと;上の参照により組み込まれる、2014年3月13日に出願された米国出願第14/208,458号に記載されるような作業を実行することと;任意の他の適切な検出ステップを実行することと、のうちの1以上を含むことができる。ステップS350’は、好ましくは、システム(例えば、上述したイメージングサブシステム/照明サブシステム)によって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0117】
[00131] プローブの複数のセット(例えば、上述した様々なフルオロフォアに対応する蛍光プローブのセット)のハイブリダイゼーション及び検出に関連して、ステップS340’、S345’及びS350’は、(例えば、熱による、化学反応による、光開裂による、など)デハイブリダイゼーションのためのステップと、デハイブリダイズされたプローブを洗浄して、それによって、所望の配列の抗体/標的タンパク質の検出を可能にするステップと、を含むことができる。したがって、バーコードプローブ及び蛍光プローブの第1セットは、機能性粒子のセットで捕捉された標的にハイブリダイズされ、その後、第1蛍光プロファイルの検出によって画像化されることができる。その後、バーコードプローブ及び蛍光プローブの第1セットがデハイブリダイズされることができる。その後、これらのプロセスがプローブのセットの各々について繰り返されることができ、事前に設定された閾値に基づいて画像解析を実行して、抗体(又は他のタンパク質)プロファイルに対する細胞のマップを作成することができる。したがって、こうした作業により、(例えば、複数のタイプのプローブが同時に標的成分にハイブリダイズされるシナリオに関して)シグナルクロストークを最小限に抑えながら、標的抗体/タンパク質の正確な検出が可能になる。
【0118】
[00132] 方法300’の実施形態、変形例及び例は、追加又は代替として、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号に記載されるステップを含むことができ、上の参照によって組み込まれる。
【0119】
3.3 方法-mRNAの検出及び定量化のためのワークフロー例
[00133]
図10A及び
図10Bに示すように、mRNA検出のために構成された方法300”の一変形例は、mRNA検出プロトコルを実行するためのシステムを構成する実行準備作業を実行することS305”と;実行準備作業の完了時、システムのサンプル処理カートリッジをプライミングすることS310”と;サンプル処理カートリッジに、単一細胞フォーマットで、サンプルの細胞のセットを捕捉することS315”と;機能性粒子のセットを保持するためのサンプル処理カートリッジ及び/又は第2基材で、細胞のセットと共に(例えば、上述した組成物200の)機能性粒子のセットを捕捉することとS320”と;(例えば、非結合及び/又は非標的内容物の機能性粒子の関連する洗浄、及び、単離物質による個々の捕捉の分配による)放出された標的細胞内容物(例えば、mRNA)を機能性粒子のセットに結合させることによって細胞のセットを溶解することS325”と;逆転写操作S330”を実行し、それによって、標的内容物(例えば、mRNA)の配列を、機能性粒子のセットの対応する領域(例えば、短いタグ)にリンクさせることS330”と;第2鎖合成作業を実行することS335”と;(例えば、上の組成物200、200’及び200”の変形例の)検出可能プローブのセットの各々を、機能性粒子のセット(例えば、サンプル処理カートリッジ及び/又は第2基材のウェル内)で第2鎖にハイブリダイズすることS340”と;検出可能プローブのセットの各々について、サンプル処理カートリッジ及び/又は第2基材を照明することS345”と、(例えば、デハイブリダイゼーション及び以前の検出可能プローブの洗浄によって)検出可能プローブのセットの各々のフルオロフォアに対応する放出光に関連する画像データセットを生成し、それによって、mRNAの検出を可能にすることS350”と、を含むことができる。方法300”の変形例は、検出された蛍光の正規化のための一連の作業を伴う、画像データセットを処理することS355”と;画像データセットに関連する光クロストークを軽減するための作業を実行することS360”と;画像データセットを使用したエンドポイントPCR検出に基づくmRNA定量化作業を実行することS365”と、のためのステップをさらに含むことができる。
【0120】
[00134] 方法300”は、自動で3時間以内に実行されるすべての単一細胞上の数百の転写物を迅速に(例えば、数時間以内に)検出するように機能することができる。例えば、上述したシステムの一実施形態を使用する方法300”の実施は、解析が発見、トランスレーショナル又は臨床段階であるかどうかに関わらず、単一細胞解析のためのエンドツーエンドの解決策を提供することができる。方法300”の拡張は、空間(例えば、マイクロウェルのセット全体、組織内、2D構造内、3D構造内、など)に分配された生物学的物質(例えば、細胞、組織)のmRNAの解析によって空間転写学に使用されることができる。
【0121】
[00135] より詳細には、実行準備作業を実行することS305”は:細胞懸濁液を調製することと;(例えば、デッキに関連する、ガントリに関連する、ベースに関連する、など)システムサブシステムの動作チェックを初期化して実行することと;ガントリをホーム位置に戻すことと;試薬カートリッジから1以上のシールを除去する、及び/又は、試薬カートリッジに試薬を投入することと;サンプル処理カートリッジユニットを位置決めすることと;デッキに位置決めされたツール容器から1以上のシールを除去することと;使用前に細胞懸濁液を貯蔵容器に分配することと;カメラ(例えば、マシンビジョンカメラ)でディスポーザブル品のタグをスキャンする際に、プロトコルのためのディスポーザブル品の適切な位置決め及び(例えば、有効期限に関連する)状態を確認することと;(例えば、オペレータから)サンプル識別情報を受信することと;サンプルの実行を開始することと、のうちの1以上に関連するサブステップを含むことができる。ステップS305”は、システムによって自動的に及び/又はオペレータによって実施されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0122】
[00136] より詳細には、実行準備作業の完了時、システムのサンプル処理カートリッジをプライミングすることS310”、及び、サンプル処理カートリッジに、単一細胞フォーマットで、サンプルの細胞のセットを捕捉することS315”は:(例えば、気泡がサンプル処理カートリッジ内に格納されるのを阻止する方法で)プライミング溶液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理カートリッジ内でプライミング溶液をインキュベートすることと;1以上の洗浄液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理カートリッジの廃棄物格納領域に溶液を送ることと;細胞懸濁液をサンプル処理カートリッジの入口リザーバに分配して、サンプル処理カートリッジのウェル内に単一細胞フォーマットで細胞を捕捉することと;(例えば、抗体タグ付け物質によって)捕捉された細胞の抗体にタグ付けすることと;プライミング及び細胞捕捉に関連する他の適切なステップを実行することと、のうちの1以上を含むことができる。ポンピング圧力は、プロトコルで使用されるすべての試薬に対して最適化され、その結果、ウェルに捕捉された細胞又は粒子は流体ポンピング中に流出しない。ステップS310”及びS315”は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0123】
[00137] より詳細には、機能性粒子のセットを保持するためのサンプル処理カートリッジ及び/又は第2基材で、細胞のセットによって(例えば、上述した組成物200の)機能性粒子のセットを捕捉することS320”は:機能性粒子のセットをサンプル処理カートリッジの入口リザーバに分配し、機能性粒子のセットを細胞のセットと同時捕捉することと;サンプル処理カートリッジのウェルの内容物をインキュベートすることと;(ピペットインタフェースに結合されたガントリによって、など)サブステップに関連する様々なツールをピックアップ/リリースすることと;(例えば、蓋及び/又はサンプル処理カートリッジのアクセス領域を通じて)単一細胞フォーマットの細胞を包含するサンプル処理カートリッジのウェルと整列した機能性粒子のセットによって、第2基材を位置決めすることと;(例えば、ヒドロゲル又は他の物質などによって)機能性粒子のセットを所定の位置に保持することと;機能性粒子の捕捉及び位置決めに関連して他の適切なステップを実行することと、のうちの1以上を含むことができる。ポンピング圧力は、プロトコルで使用されるすべての試薬に対して最適化され、その結果、ウェルに捕捉された細胞又は粒子が流体のポンピング中に流出しない。ステップS320”は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0124】
[00138] より詳細には、(例えば、非結合及び/又は非標的内容物の機能性粒子の関連する洗浄、及び、単離物質による個々の捕捉ウェルの分配による)放出された標的細胞内容物(例えば、mRNA)を機能性粒子のセットに結合させることによって細胞のセットを溶解させることS325”は:1以上の洗浄液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理カートリッジの廃棄物格納領域に溶液を送ることと;粒子結合緩衝液をサンプル処理カートリッジの入口リザーバに分配することと;溶解溶液を(例えば、室温で、室温未満で、室温超で)サンプル処理カートリッジの入口リザーバに分配することと(例えば、1分未満、1分、1分超、など);(例えば、室温で、室温未満で、室温超で)溶解緩衝液とのインキュベーションを実行することと;サンプル処理カートリッジのウェルの上方の流体を油で置換し、それによって、ウェルの内容物を単離し、ウェル間での望ましくない物質の移動を阻止することと(例えば、この参照によってその全体が本明細書に組み込まれる、2019年9月9日に出願された米国出願第16/564,375号のように);油を入口リザーバからの空気に置換することと;粒子結合洗浄緩衝液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理チップのウェルに対して第2基材を圧縮し、それによって、捕捉された細胞を包含するウェルのセットのウェルを分配することと;細胞溶解に関連する他の適切なステップを実行することと、のうちの1以上を含むことができる。ポンピング圧力は、プロトコルで使用されるすべての試薬に対して最適化され、その結果、ウェルに捕捉された細胞又は粒子は流体ポンピング中に流出しない。ステップS325”は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0125】
[00139] より詳細には、細胞のセットの溶解物によって逆転写作業を実行し、それによって、標的細胞内容物(例えば、mRNA)の配列を、機能性粒子のセットの対応する領域(例えば、遺伝子特異的又はmRNA特異的リバースプライマ)と連結することS330”は:1以上の洗浄液をサンプル処理カートリッジの入口リザーバに分配することであって(例えば、それによって、望ましくない溶解物を洗い流す)、洗浄は、サンプル処理チップから第2基材を離れるように変位させることと、洗浄緩衝液がサンプル処理チップのウェルと第2基材との間を流れることを可能にすることと、を包含することができる、分配することと;サンプル処理カートリッジの廃棄物格納領域に溶液を送ることと;粒子結合緩衝液をサンプル処理カートリッジの入口リザーバに分配することと;サンプル処理カートリッジの入口リザーバにDTT溶液を分配することと;サンプル処理カートリッジの入口リザーバに溶解液を分配することと;サンプル処理カートリッジのウェルの上方の流体を油で置換し、それによって、ウェルの内容物を単離してウェル間での望ましくない物質の移動を阻止することと(例えば、この参照によってその全体が本明細書に組み込まれる2019年9月9日に出願された米国出願第16/564,375号のように);油を入口リザーバからの空気に置換することと;サンプル処理カートリッジの入口リザーバに粒子結合洗浄緩衝液を分配することと;サンプル処理カートリッジの入口リザーバにプレRT反応洗浄緩衝液を分配することと;サンプル処理カートリッジの入口リザーバにRTカクテルを分配することと;フォワードプライマを分配することと;ヌクレオチドを分配することと;サンプル処理カートリッジの内容物をインキュベートすることと;インキュベーションステップを実行することと;第2基材をサンプル処理チップに向かって及び/又はサンプル処理チップから離れるように移動させ、それによって、内容物を分配し及び/又は捕捉ウェルを横切る流体の流れを可能にすることと;サブステップに関連する様々なツールをピックアップ/リリースすることと、のうちの1以上を含むことができる。ポンピング圧力は、プロトコルで使用されるすべての試薬に対して最適化され、その結果、ウェルに捕捉された細胞又は粒子は流体ポンピング中に流出しない。ステップS330’は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0126】
[00140] より詳細には、内容物(例えば、望ましくない物質、溶解物、など)を除去するための1以上の洗浄ステップの実行によって第2鎖合成作業を実行することS335”は:マイクロウェルカートリッジ内の水酸化溶液(例えば、水酸化ナトリウム溶液)と標的捕捉内容物を混合することと;廃棄物質を廃棄することと;標的内容物を洗浄することと;洗浄された標的内容物と第2鎖合成プライマ酵素とを混合することと;(例えば、上述したサブシステムによる)分離ステップ及び洗浄ステップによって標的内容物を熱サイクルさせることと;サブステップに関連する様々なツールをピックアップ/リリースすることと、のうちの1以上を含むことができる。ステップS335”は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0127】
[00141] 後続のステップでのハイブリダイゼーション及び解析の前に、ブロックS335”は、ブロックS335”の二本鎖結果を伴うPCR作業ステップの実行をさらに含むことができ、ブロックS335”の二本鎖結果を包含するウェルに1以上の溶液に送達することと(例えば、ポリメラーゼ、フォワードプライマ、ヌクレオチドを包含する、など);元のmRNAが捕捉された同じシリカミクロスフェア上にmRNAテンプレートの複数のコピーが作成されるように、1以上のPCRサイクルを実行することと;DNAを変性させることと;変性したDNAを洗い流し、機能性粒子のセットに一本鎖の標的オリゴヌクレオチドのみを残すことと、のうちの1以上を含む。
【0128】
[00142] より詳細には、(例えば、上の組成物200の変形例の)検出可能プローブのセットの各々を、(例えば、サンプル処理カートリッジ及び/又は第2基材のウェル内の)機能性粒子のセットで第2鎖にハイブリダイズすることS340”は、オリゴヌクレオチドプローブの溶液を、(例えば、上の組成物に関して記載されるような)蛍光検出可能な部分によって、機能性粒子のセットでの物質の対応する領域とのハイブリダイゼーションのため、サンプル処理カートリッジ(例えば、マイクロウェルチップのウェル内)、第2基材及び/又は試薬カートリッジに送ることと;(例えば、温度、ランプ及びサイクルに関して適切な加熱プロファイルによって)1以上のインキュベーションステップを実行することと;1以上の洗浄ステップを実行することと;サブステップに関連する様々なツールをピックアップ/リリースすることと、のうちの1以上を含むことができる。以下のmRNA定量化ステップに関連してさらに記載するように、追加又は代替として、各機能性粒子の各mRNAのテンプレート産物の数の推定を容易にするため、ブロックS340”は、捕捉された標的オリゴヌクレオチドへの遺伝子特異的プローブのハイブリダイゼーションを含むことができる。ステップS340”は、好ましくは、システムによって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0129】
[00143] より詳細には、検出可能プローブのセットの各々について、サンプル処理カートリッジ及び/又は第2基材を照明することS345”は:適切な電力設定で、光学部品を通じて、(例えば、プローブにハイブリダイズされた標的成分を含有する)捕捉されたサンプルに向かって光を透過させることと;(例えば、発光によって及び/又はサンプル支持コンポーネントを所定の位置に作動させることによって)光の透過に関連して1以上のフォーカシング動作を実行することと;照明のタイミングを、ブロックS350”で実行される画像キャプチャと調整することと;上の参照によって組み込まれる、2014年3月13日に出願された米国出願第14/208,458号に記載される作業を実行することと;他の任意の適切な照明ステップを実行することと、を含むことができる。ステップS345”は、好ましくは、システム(例えば、上述したイメージングサブシステム/照明サブシステム)によって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0130】
[00144] より詳細には、検出可能プローブのセットの各々のフルオロフォアに対応する放出光に関連する画像データセットを生成することS350”は:(例えば、プローブにハイブリダイズされた標的成分を包含する)捕捉されたサンプルから検出サブシステムに向かって光学部品を通じて光を透過させることと;(例えば、光検出及び/又はサンプル支持コンポーネントを所定の位置に作動させることによって)光の透過に関連して1以上のフォーカシング動作を実行することと;サンプル包含容器の基準に関連して1以上のフォーカシング動作を実行することと;捕捉基材(例えば、上述したサンプル処理チップ及び/又は第2基材)の組み立てられた画像を作成するために、複数の画像をともにスティッチングすることと;ブロックS345”で実行される照明と画像キャプチャのタイミングを調整することと;上の参照によって組み込まれる、2014年3月13日に出願された米国出願第14/208,458号に記載される作業を実行することと;他の任意の適切な検出ステップを実行することと、のうちの1以上を含むことができる。ステップS350’は、好ましくは、システム(例えば、上述したイメージングサブシステム/照明サブシステム)によって自動的に実行されるが、代替として、別の適切な方法で実行されることができる。さらに、様々なサブステップが、1回実行されることができる又は推奨されるように繰り返されることができる。
【0131】
[00145] 複数のプローブのセット(例えば、上述した様々なフルオロフォアに対応する蛍光プローブのセット)のハイブリダイゼーション及び検出に関連して、ステップS340”、S345”及びS350”は、デハイブリダイゼーション(例えば、熱による、化学反応による、光開裂による、など)及びデハイブリダイズされたプローブの洗浄のためのステップを含むことができ、それによって、所望の配列の抗体/標的タンパク質の検出を可能にする。したがって、バーコードプローブ及び蛍光プローブの第1セットは、機能性粒子のセットで捕捉された標的にハイブリダイズされ、その後、第1蛍光プロファイルの検出で画像化されることができる。その後、バーコードプローブ及び蛍光プローブの第1セットがデハイブリダイズされることができる。その後、これらのプロセスは、プローブのセットの各々について繰り返されることができ、事前に設定された閾値に基づいて画像解析を実行して、抗体(又は他のタンパク質)プロファイルに対する細胞のマップを作成する。したがって、こうした作業により、(例えば、複数のタイプのプローブが同時に標的成分にハイブリダイズされるシナリオに関連して)シグナルクロストークを最小限に抑えながら、標的抗体/タンパク質の正確な検出を可能にすることができる。
【0132】
[00146] 上述したように、方法300”は:検出された蛍光の正規化のための一連の作業で画像データセットを処理することS355”と;画像データセットに関連する光クロストークを軽減するための作業を実行することS360”と;画像データセットを使用したエンドポイントPCR検出に基づくmRNA定量化作業を実行することS365”と、のうちの1以上を含むことができる。
【0133】
[00147] より詳細には、検出された蛍光の正規化のための一連の作業で画像データセットを処理することS355”により、空間的に(例えば、マイクロウェルアレイ全体に)分布する標的(例えば、mRNA含有量、など)の検出を正規化するように機能することができる。例えば、空間内の第1位置にある1つの機能性粒子に関連するmRNAプローブによって放出される絶対蛍光は、空間内の第2位置にある別の機能性粒子に関連するmRNAプローブによって放出される絶対蛍光とは異なり得るが、それらは、同じ数のmRNAプローブをキャプチャさせ得る。したがって、変形例では、ブロックS355”は、それぞれのmRNAプローブの蛍光値を正規化するため、各機能性粒子のバーコードプローブに関連する平均色特異的蛍光を実施することを含むことができる。実行で使用されるすべての機能性粒子は、同じ製造ロット内にあるように選択されることができるので、各機能性粒子は、同じ数のオリゴヌクレオチドタグを有すると想定されることができる。すべての機能性粒子は、バーコードデコーディング中に同じ濃度のプローブ分子を有するものとして扱われるので、各機能性粒子が同じ数のバーコードタグを付けることも想定されることができる。機能性粒子のバーコードセクションに特定の色がない場合、ブロックS355”は、正規化のために隣接する機能性粒子からの値を実施することができる。しかしながら、正規化は別の適切な方法で実施されることができる。
【0134】
[00148] より詳細には、画像データセットに関連する光クロストークを軽減するための作業を実行することS360”は:画像化される様々な基材(例えば、サンプル処理チップ、他の基材)の個々の捕捉領域(例えば、ウェル)間の物理的障壁を実装することと;フィルタリング作業によって画像処理を実行することと;イメージング及び照明作業のタイミングを制御することと;他の適切なクロストーク軽減作業を実行することと、のうちの1以上を含むことができる。
【0135】
[00149] より詳細には、画像データセットを使用したエンドポイントPCR検出に基づくmRNA定量化作業を実行することS365”は、増幅ステップの前にテンプレートmRNA分子のみが機能性粒子に存在する、相対的に「純粋な」サンプル処理構成を利用するように機能することができる。特に、上述した処理ステップに関連して、ほとんどのPCR阻害剤(例えば、細胞溶解物タンパク質、脂質、など)は複数のステップで洗い流され、かつ最終的に、増幅されたテンプレートはそれぞれの機能性粒子に濃縮される。したがって、この濃縮効果により、ビーズ上にテンプレート分子が相対的に少数(例えば、~1000、1000未満、1000超、など)しかない場合でも、PCR産物の存在を検出することができる。したがって、ブロックS365”に関連して、PCR効率(例えば、90%のPCR効率)が、定量化のためのテンプレート分子の所望の増幅を生成するために必要なPCRサイクルの閾値数(例えば、1000倍増幅の場合は11サイクル)を導くことができると仮定する。したがって、定量的モデルが使用されて、キャプチャされた画像データから得られたエンドポイント(又は、PCRサイクルに関連する他のポイント)の蛍光値からテンプレートmRNA(又は他の標的)の初期濃度を推定することができる。定量的モデルは、単一細胞の解像度で、捕捉基材で捕捉されたすべての細胞の標的物質(例えば、mRNA)に適用されることがでる。
【0136】
[00150] しかしながら、方法300”の実施形態、変形例及び例は、追加又は代替として、上の参照によって組み込まれる、2020年5月5日に出願された米国特許出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号に記載されたステップを含むことができる。
【0137】
3.4 方法-拡張
[00151] 変形例において、記載された方法及び/又は関連のシステムコンポーネントは他の用途に適合されることができる。
【0138】
[00152] 例えば、方法300”の第1拡張において、細胞ごとに検出されるトランスクリプトームの数は、捕捉ウェル内で機能性粒子のスタッキングを可能にすることによって増やされることができる(例えば、~100から500超)。変形例では、
図11に示すように、ウェルのセットがより深くなるように構成され、その結果、複数の機能性粒子が各ウェル内にスタッキングされることができる。さらに、固有のバーコードの数を増やすため、検出用のオリゴヌクレオチドタグの数が(例えば、3から3超に)増やされることができ、それによって、上述したように多重化された組み合わせの総数を増やすことができる。スタッキングされた機能性粒子からの蛍光を検出及び分解するため、上述したイメージングシステムの実施形態が変更されて、サンプルの異なる平面を画像化するように構成された共焦点検出又は他の検出方法を実行することができる。
【0139】
[00153] 別の拡張では、方法は、組織又は他の構造の空間トランスクリプトーム解析に適合されることができる。一例では、
図12に示すように、第2基材を包含する流体マニホールドは、(例えば、上述したサンプル処理チップの実施形態に代えて)装着された組織スライドを包含するスライドと整列するように位置決めされることができる。したがって、この構成は、組織スライドの免疫表現型検査を実行し、続いて、上述と同様の方法で、溶解したmRNAを機能性粒子に移すことができる。その後、機能性粒子で捕捉されたmRNAは、PCRによって増幅されることができ、その後、多重化された検出及び定量化が行われる。したがって、上述した方法ステップの実施形態に関連して、方法は:サンプル処理基材のマイクロウェルのセットで、単一アレイフォーマットで機能性粒子のセットに近接する組織サンプルを捕捉することと;サンプル処理基材で組織サンプルの溶解を実行し、それによって、組織切片から機能性粒子のセットへの放出されたバイオマーカの結合を可能にすることと;サンプル処理基材のマイクロウェルのセットで、機能性粒子のセットに内容物が結合された状態で、逆転写作業を実行することと;逆転写作業の生成物によって、機能性粒子のセットに結合された内容物によって第2鎖合成作業を実行することと;第2鎖合成作業の生成物によって、機能性粒子のセットで増幅作業を実行することと;フルオロフォアのセットに対応するプローブのセットの各々を、増幅作業の産物にハイブリダイズすることと;プローブのセットによって放出された光の画像データセットを生成し、それによって、サンプルの標的のセットの検出を可能にすることと、のうちの1以上を含むことができる。
【0140】
[00154] 別の拡張では、方法は、単一細胞の表現型分類と、それに続く、次世代シーケンシングのための単一細胞トランスクリプトームライブラリ調製に適合されることができる(例えば、上の参照によって組み込まれる、2020年5月5日に出願された米国出願第16/867,235号;2020年5月5日に出願された米国出願第16/867,256号に記載されるような)。オリゴヌクレオチド粒子の多重バーコード検出によって、方法は、表現型情報を、配列決定中に生成されたトランスクリプトーム情報にリンクさせるためのプロセスによって拡張されることができる。
【0141】
[00155] 別の拡張では、方法は、第1機能性粒子タイプで幅広い非特異的バイオマーカを捕捉し、続いて、(例えば、
図13に示すような)第2粒子タイプで標的化された捕捉及び検出を行うための、単一細胞の連続処理に適合されることができる。
【0142】
[00156] 別の拡張では、システム及び/又は方法は、マイクロウェル設計を実施することができ、それによって、マイクロウェルは、ポスト15(例えば、中央に配置されたポスト又は複数のポスト)を有する、マイクロウェル2のベースに凹部14(例えば、星形凹部、楕円形凹部、多角形凹部、など)を含み、凹部14は、機能性粒子(例えば、上述した組成物200の実施形態)を保持するように構成され、かつ、ポスト15は、マイクロウェル2内で、機能性粒子に対して、捕捉された細胞を位置決めするように構成される。
図14は、凹部14を有するマイクロウェル2(
図14、左上)、凹部内に機能性粒子を有するマイクロウェル2(
図14、右上及び右下)、並びに、捕捉された細胞を有するマイクロウェル2(
図14、左下及び右下)の一例の上面図を示している。
【0143】
[00157] さらに、拡張は任意の適切な方法で組み合わせられることができる。例えば、
図15に示すように、
図14に示すシステムの一実施形態は、単一細胞を連続的に処理して、第1機能性粒子タイプで幅広い非特異的バイオマーカを捕捉し、続いて、第2粒子タイプで標的にされた捕捉及び検出する用途に使用されることができる。
【0144】
[00158] しかしながら、記載された方法は他の使用用途に拡張されることができる。
【0145】
4.結論
[00159] 図面は、好ましい実施形態、例示的な構成及びそれらの変形例に係る、システム、方法及びコンピュータプログラム製品の可能な実装のアーキテクチャ、機能及び動作を示している。これに関して、フローチャート又はブロック図の各ブロックは、特定された論理機能を実装するための1以上の実行可能命令を備える、モジュール、セグメント又はコードの一部を表し得る。ある代替の実装では、ブロックに示される機能が、図面に示される順序から外れて発生する可能性があることにも留意されたい。例えば、連続して示される2つのブロックは、実際には実質的に同時に実行される場合があり、又は、関連する機能に応じて、ブロックが逆の順序で実行される場合がある。ブロック図及び/又はフローチャート図の各ブロック、並びに、ブロック図及び/又はフローチャート図のブロックの組み合わせは、特定の機能又は動作を実行する専用のハードウェアベースのシステムによって、又は、専用ハードウェア及びコンピュータ命令の組み合わせによって、実装されることができることにも留意されたい。
【0146】
[00160] 当業者は、前述の詳細な説明及び図面及び特許請求の範囲から認識するように、以下の特許請求の範囲で定義される本発明の範囲から逸脱することなく、本発明の好ましい実施形態に修正及び変更が加えられることができる。
【手続補正書】
【提出日】2023-10-23
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
サンプルの標的のセットを検出するための方法であって、当該方法が:
サンプル処理基材に、機能性粒子のセットに近接する前記サンプルの細胞のセットを捕捉するステップと;
前記サンプル処理基材で前記細胞のセットの溶解を実行し、それによって、前記細胞のセットから前記機能性粒子のセットに、前記標的のセットを結合することを可能にするステップと;
前記サンプル処理基材で、前記機能性粒子のセットのオリゴヌクレオチドに結合された前記標的のセットによって、逆転写作業を実行するステップと;
前記逆転写作業の産物によって、前記機能性粒子のセットと共に、第2鎖合成作業を実行するステップと;
前記第2鎖合成作業で得られた第1の標的のサブセットへの第1プローブのハイブリダイゼーションを促進するステップと;
前記サンプル処理基材で、前記第1プローブを光学的に検出するステップであって、それによって、前記サンプルの前記第1の標的のサブセットの存在を特徴付けるステップと;
前記第1プローブを脱ハイブリダイズするステップと;
前記第2鎖合成作業で得られた第2の標的のサブセットへの第2プローブのハイブリダイゼーションを促進するステップと
を備えることを特徴とする方法。
【請求項2】
請求項1に記載の方法において、前記サンプル処理基板で前記第2プローブを光学的に検出するステップをさらに備え、それによって、前記サンプルの前記第2の標的のサブセットの存在を特徴付けることを特徴とする方法。
【請求項3】
請求項2に記載の方法において、前記第2プローブをデハイブリダイズするステップをさらに備えることを特徴とする方法。
【請求項4】
請求項2に記載の方法において、前記第1プローブおよび前記第2プローブの光学的検出から画像データセットを生成するステップをさらに備え、それによって、前記サンプルの前記第1の標的のサブセットおよび前記第2の標的のサブセットの分布を空間的に特徴付けることを特徴とする方法。
【請求項5】
請求項1に記載の方法において、前記第1プローブの光学的検出から画像データセットを生成するステップをさらに備え、それによって、前記サンプルの前記第1の標的のサブセットの分布を空間的に特徴付けることを特徴とする方法。
【請求項6】
請求項1に記載の方法において、前記機能性粒子のセットの各々が、バーコードおよびメッセンジャーRNA捕捉のための捕捉セグメントを含むオリゴヌクレオチドによって官能基化されたものであることを特徴とする方法。
【請求項7】
請求項1に記載の方法において、前記機能性粒子のセットの各々が、バーコードおよび前記標的のセットの標的遺伝子に対応する遺伝子特異的セグメントを含むオリゴヌクレオチドによって官能基化されたものであることを特徴とする方法。
【請求項8】
請求項1に記載の方法において、前記標的のセットはmRNA分子のパネルを含み、前記方法は、前記サンプル処理基材全体に分布された前記サンプルによって、前記mRNA分子のパネルの空間トランスクリプトーム解析を実行するステップをさらに備えることを特徴とする方法。
【請求項9】
請求項1に記載の方法において、前記標的のセットは、対象からの免疫応答の評価のための抗体のパネルを含み、前記抗体のパネルは、IgM抗体、IgG抗体、IgD抗体、IgA抗体及びIgE抗体のうちの1以上を含むことを特徴とする方法。
【請求項10】
請求項1に記載の方法において、第2鎖合成作業の実行は省略され、前記第1プローブは前記第1の標的のサブセットにハイブリダイズし、前記第1の標的のサブセットがcDNAを含むことを特徴とする方法。
【請求項11】
請求項1に記載の方法において、逆転写作業の実行は省略され、前記第1プローブは前記第1の標的のサブセットにハイブリダイズし、前記第1の標的のサブセットがRNAを含むことを特徴とする方法。
【請求項12】
サンプルの単一細胞のセットから得られた標的のセットを検出するための方法であって、当該方法が:
特徴のセットを含むサンプル処理基材で、前記特徴のセットに、細胞溶解物由来の前記標的のセットを結合するステップと;
前記サンプル処理基材で、前記特徴のセットに結合された前記標的のセットによって、逆転写作業を実行するステップと;
前記逆転写作業の産物によって、前記特徴のセットと共に、第2鎖合成作業を実行するステップと;
前記第2鎖合成作業で得られた第1の標的のサブセットへ第1プローブをハイブリダイズするステップと;
前記第1プローブを検出するステップであって、それによって、前記サンプルの前記第1の標的のサブセットの存在を単一細胞の解像度で特徴付けるステップと;
前記第1プローブをデハイブリダイズするステップと;
前記第2鎖合成作業で得られた第2の標的のサブセットへの第2プローブのハイブリダイゼーションを促進するステップと;
前記第2プローブを検出するステップであって、それによって、前記サンプルの前記第2の標的のサブセットの存在を単一細胞の解像度で特徴付けるステップと
を備えることを特徴とする方法。
【請求項13】
請求項12に記載の方法において、前記第1プローブおよび前記第2プローブの光学的検出から画像データセットを生成するステップをさらに備え、それによって、前記サンプルの前記第1の標的のサブセットおよび前記第2の標的のサブセットの分布を空間的に特徴付けることを特徴とする方法。
【請求項14】
請求項12に記載の方法において、前記第1プローブおよび前記第2プローブの検出から単一細胞表現型解析を生成するステップと、前記サンプルから単一細胞トランスクリプトームライブラリ調製を実行するステップとをさらに備えることを特徴とする方法。
【請求項15】
請求項12に記載の方法において、前記特徴のセットの各々は、バーコード、固有分子識別子(UMI)、およびメッセンジャーRNA捕捉のための捕捉セグメントを含むオリゴヌクレオチドによって官能基化されたものであることを特徴とする方法。
【請求項16】
請求項12に記載の方法において、前記標的のセットはmRNA分子のパネルを含み、前記方法は、前記サンプル処理基材全体に分布された前記サンプルによって、前記mRNA分子のパネルの空間トランスクリプトーム解析を実行するステップをさらに備えることを特徴とする方法。
【請求項17】
組織サンプルの標的のセットを検出するための方法であって、当該方法が:
基材の第1の特徴のセットに前記組織サンプルを整列させるステップであって、前記第1の特徴のセットが標的捕捉のために機能化されたものであるステップと;
前記第1の特徴のセットに、前記組織サンプル由来の前記標的のセットを結合するステップと;
前記基材で、前記標的のセットによって、逆転写作業を実行するステップと;
前記逆転写作業の産物によって、第2鎖合成作業を実行するステップと;
前記第2鎖合成作業のアウトプットにプローブのセットをハイブリダイズするステップであって、前記プローブのセットが、第1の標的のサブセットに対応する第1プローブおよび第2の標的のサブセットに対応する第2プローブを含むステップと;
前記第1プローブを検出するステップであって、それによって、前記組織サンプルの前記第1の標的のサブセットの存在を特徴付けるステップと;
前記第2プローブを検出するステップであって、それによって、前記組織サンプルの前記第2の標的のサブセットの存在を特徴付けるステップと
を備えることを特徴とする方法。
【請求項18】
請求項17に記載の方法において、前記組織サンプルを整列させるステップは、前記基材を有するマニホールドをスライド上にマウントされた前記組織サンプルと整列するよう位置決めするステップと、前記組織サンプルから前記第1の特徴のセットへの前記標的のセットの流れを促進するステップとを備えることを特徴とする方法。
【請求項19】
請求項17に記載の方法において、前記プローブのセットをハイブリダイズするステップは、第1フルオロフォアを含む前記第1プローブをハイブリダイズするステップ;前記第1プローブをデハイブリダイズして洗浄するステップ;および第2フルオロフォアを含む前記第2プローブをハイブリダイズするステップを備えることを特徴とする方法。
【請求項20】
請求項17に記載の方法において、前記第1の特徴のセットは、1,000個~10,000,000個の特徴を含むことを特徴とする方法。
【請求項21】
請求項17に記載の方法において、前記第1プローブおよび前記第2プローブの検出から生成された蛍光値のセットに基づいて、捕捉されたmRNAの初期濃度の推定によってmRNA定量化作業を実行するステップをさらに備えることを特徴とする方法。
【請求項22】
請求項17に記載の方法において、前記プローブのセットはプローブの数(P)を有し、前記プローブのセットは、各々が状態のセット(M)を有する、フルオロフォアの数(F)を有するフルオロフォアのセットを含み、それによって、前記組織サンプルのM
*
F
P
標的の多重化を可能にすることを特徴とする方法。
【外国語明細書】