(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024123150
(43)【公開日】2024-09-10
(54)【発明の名称】新無線/新無線-無認可(NR/NR-U)における最初のアクセスおよびチャネルアクセス
(51)【国際特許分類】
H04W 74/0833 20240101AFI20240903BHJP
H04W 56/00 20090101ALI20240903BHJP
H04W 16/28 20090101ALI20240903BHJP
【FI】
H04W74/0833
H04W56/00 130
H04W16/28
【審査請求】有
【請求項の数】20
【出願形態】OL
(21)【出願番号】P 2024099792
(22)【出願日】2024-06-20
(62)【分割の表示】P 2022169006の分割
【原出願日】2018-11-27
(31)【優先権主張番号】62/590,936
(32)【優先日】2017-11-27
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/630,692
(32)【優先日】2018-02-14
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.3GPP
2.WCDMA
(71)【出願人】
【識別番号】510030995
【氏名又は名称】インターデイジタル パテント ホールディングス インコーポレイテッド
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】パン、カイル ジュンリン
(72)【発明者】
【氏名】シュ、フェンジュン
(72)【発明者】
【氏名】イェ、チュンシュアン
(57)【要約】
【課題】可能なランダムアクセスチャネル(RACH)オケージョンの衝突に対処する。
【解決手段】ワイヤレス送受信ユニット(WTRU)は、残存最小システム情報(RMSI)中でRACHオケージョンの構成を含む半静的UL/DL情報の表示と1つまたは複数の実際に送信される同期信号(SS)ブロックの表示とを受信し得る。WTRUは、次いで、構成情報に基づいてRACHオケージョンがあるのかどうかを評価し、RACHオケージョンのいずれかが有効であるのかどうかを決定する。RACHオケージョンは、RACHオケージョンが示されたすべての実際に送信されるSSブロックの後であること、および/またはSSブロックオーバーライドが使用不可にされているかどうかまたは使用可能にされているかどうかに基づいて有効であり得る。WTRUは、有効であると決定されているRACHオケージョンのうちの1つまたは複数中でRACHを送信し得る。
【選択図】
図2C
【特許請求の範囲】
【請求項1】
ワイヤレス送受信ユニット(WTRU)によって実装される方法であって、
構成情報を受信することであって、前記構成情報は、複数の物理ランダムアクセスチャネル(PRACH)プリアンブルが複数のPRACHプリアンブルサブセットに分割されており、各PRACHプリアンブルサブセットがそれぞれの同期信号(SS)ブロックインデックスに関連付けられており、前記複数のPRACHプリアンブルのプリアンブルインデックスが前記複数のPRACHプリアンブルをそれぞれ対応する前記PRACHプリアンブルサブセットの一つにマッピングするため用いられることを示す、ことと、
ランダムアクセスチャネル(RACH)オケージョンにおいて第1のPRACHプリアンブルを送信することであって、前記第1のPRACHプリアンブルは、前記WTRUが前記RACHオケージョンに関連付けられた第1のSSブロックインデックスを選択していることを示す、ことと、
を備えた、方法。
【請求項2】
第1のSSブロックに基づいて前記RACHオケージョンを選択することであって、各SSブロックインデックスがそれぞれのRACHオケージョンのセットと関連付けられている、ことをさらに備える、請求項1に記載の方法。
【請求項3】
前記RACHオケージョンが有効かどうかを決定することであって、少なくとも、前記RACHオケージョンに関連付けられたスロットにおいて送信される1つまたは複数のSSブロックに続く前記RACHオケージョンに基づいて、前記RACHオケージョンが有効であると決定される、ことをさらに備える、請求項1に記載の方法。
【請求項4】
前記第1のSSブロックインデックスを受信することと、
前記第1のSSブロックインデックスを選択することと、
前記第1のSSブロックインデックスを選択することに基づいて、前記第1のPRACHプリアンブルを選択することと、
をさらに備える、請求項1に記載の方法。
【請求項5】
前記第1のPRACHプリアンブルは、前記構成情報により前記第1のSSブロックインデックスに関連付けられていると示されたPRACHプリアンブルサブセットに含まれるPRACHプリアンブルのうちの1つである、請求項1に記載の方法。
【請求項6】
対応する前記PRACHプリアンブルサブセットの各々は、他のPRACHプレアンブルサブセットに含まれるPRACHプレアンブルとは異なる前記PRACHプリアンブルを含む、請求項1に記載の方法。
【請求項7】
第1のSSブロックが第1の送信ビームに関連付けられている、請求項1に記載の方法。
【請求項8】
前記RACHオケージョンにおいて送信される前記第1のPRACHプリアンブルが第2の送信ビームに関連付けられ、前記第2の送信ビームが第1の送信ビームと関連付けられる、請求項1に記載の方法。
【請求項9】
複数のSSブロックの各々がそれぞれの送信ビームと関連付けられる、請求項1に記載の方法。
【請求項10】
ワイヤレス送受信ユニット(WTRU)であって、
プロッセッサおよびメモリを備え、前記プロッセッサおよび前記メモリは、
構成情報を受信し、前記構成情報は、複数の物理ランダムアクセスチャネル(PRACH)プリアンブルが複数のPRACHプリアンブルサブセットに分割されており、各PRACHプリアンブルサブセットがそれぞれの同期信号(SS)ブロックインデックスに関連付けられており、前記複数のPRACHプリアンブルのプリアンブルインデックスが前記複数のPRACHプリアンブルをそれぞれ対応する前記PRACHプリアンブルサブセットの一つにマッピングするため用いられることを示し、
ランダムアクセスチャネル(RACH)オケージョンにおいて第1のPRACHプリアンブルを送信し、前記第1のPRACHプリアンブルは、前記WTRUが前記RACHオケージョンに関連付けられた第1のSSブロックインデックスを選択していることを示す、
ように構成されている、WTRU。
【請求項11】
前記プロッセッサおよび前記メモリは、
前記第1のSSブロックインデックスを受信し、
第1のSSブロックインデックスを選択し、
前記第1のSSブロックインデックスを選択することに基づいて、第1のPRACHプリアンブルを選択する、
ようにさらに構成されている、請求項10に記載のWTRU。
【請求項12】
前記第1のPRACHプリアンブルは、前記構成情報により前記第1のSSブロックインデックスに関連付けられていると示された前記PRACHプリアンブルサブセットに含まれるPRACHプリアンブルのうちの1つである、請求項10に記載のWTRU。
【請求項13】
前記プロッセッサおよび前記メモリは、
第1のSSブロックに基づいて前記RACHオケージョンを選択し、各SSブロックインデックスがそれぞれのRACHオケージョンのセットと関連付けられている、
ようにさらに構成されている、請求項10に記載のWTRU。
【請求項14】
前記プロッセッサおよび前記メモリは、
前記RACHオケージョンが有効かどうかを決定し、少なくとも、前記RACHオケージョンに関連付けられたスロットにおいて送信される1つまたは複数のSSブロックに続く前記RACHオケージョンに基づいて、前記RACHオケージョンが有効であると決定される、
ようにさらに構成されている、請求項10に記載のWTRU。
【請求項15】
対応する前記PRACHプリアンブルサブセットの各々は、他のPRACHプレアンブルサブセットに含まれるPRACHプレアンブルとは異なる前記PRACHプリアンブルを含む、請求項10に記載のWTRU。
【請求項16】
第1のSSブロックが第1の送信ビームに関連付けられている、請求項10に記載のWTRU。
【請求項17】
前記RACHオケージョンにおいて送信される前記第1のPRACHプリアンブルが第2の送信ビームに関連付けられ、前記第2の送信ビームが第1の送信ビームと関連付けられる、請求項10に記載のWTRU。
【請求項18】
複数のSSブロックの各々がそれぞれの送信ビームと関連付けられる、請求項10に記載のWTRU。
【請求項19】
ネットワークノーでであって、
プロッセッサおよびメモリを備え、前記プロッセッサおよび前記メモリは、
ワイヤレス送受信ユニット(WTRU)へ構成情報を送信し、前記構成情報は、複数の物理ランダムアクセスチャネル(PRACH)プリアンブルが複数のPRACHプリアンブルサブセットに分割されており、各PRACHプリアンブルサブセットがそれぞれの同期信号(SS)ブロックインデックスに関連付けられており、前記複数のPRACHプリアンブルのプリアンブルインデックスが前記複数のPRACHプリアンブルをそれぞれ対応する前記PRACHプリアンブルサブセットの一つにマッピングするため用いられることを示し、
ランダムアクセスチャネル(RACH)オケージョンにおいて第1のPRACHプリアンブルを受信し、前記第1のPRACHプリアンブルは、前記WTRUが前記RACHオケージョンに関連付けられた第1のSSブロックインデックスを選択していることを示す、
ように構成されている、ネットワークノード。
【請求項20】
前記プロッセッサおよび前記メモリは、
前記WTRUが前記第1のSSブロックインデックスを選択したことは前記RACHオケージョンにおける前記第1のPRACHプリアンブルを受信することに基づくと決定する
ようにさらに構成されている、請求項19に記載のネットワークノード。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、新無線/新無線-無認可(NR/NR-U)における最初のアクセスおよびチャネルアクセスに関する。
【背景技術】
【0002】
関連出願の相互参照
本出願は、その内容が参照により本明細書に組み込まれる、2017年11月27日に出願された米国特許仮出願第62/590,936号、および2018年2月14日に出願された米国特許仮出願第62/630,692号の利益を主張する。
【0003】
第5世代(5G)ワイヤレスシステムは、第4世代(4G)規格を越えた次の電気通信規格である。5Gは、概して、4Gよりも高い容量を意図しており、より高い密度のモバイルブロードバンドユーザ、より高い信頼性、ならびにデバイスツーデバイスおよび大量の機械通信をサポートすることを可能にする。国際電気通信連合無線通信(ITU-R)、次世代モバイルネットワーク(NGMN)、および第3世代パートナーシッププロジェクト(3GPP)によって提示される一般的な要件に基づいて、5Gシステムのための使用事例の広い分類は、拡張モバイルブロードバンド(eMBB)、大規模マシン型通信(mMTC)、および超高信頼および低レイテンシ通信(URLLC)を含み得る。これらの使用事例は、高データレート、高スペクトル効率、低電力および高エネルギー効率、低レイテンシ、ならびに高信頼性などの異なる要件に焦点を当て得る。700MHzから80GHzまでにわたる広範囲のスペクトル帯域が様々なこれらの展開シナリオのために検討され得る。
【0004】
キャリア周波数が増加するにつれて、厳しい経路損失が、ワイヤレスデバイスの十分なカバレージを保証するのに重大な制限になり得る。たとえば、ミリメートル波システムにおける送信は、回折損失、浸透損失、酸素吸収損、群葉損失などの非見通し線損失に悩まされ得る。最初のアクセス中に、基地局(BS)とワイヤレス送受信ユニット(WTRU)とは、これらの高経路損失を克服し、互いを発見する必要があり得る。5Gワイヤレスシステムにおいてビームフォーミングされた信号を生成するために数十または数百ものアンテナ要素を利用することは、有意なビームフォーミング利得を与えることによって深刻な経路損失を補償する有効なやり方である。しかしながら、これらのビームフォーミングされた信号は、最初のアクセスまたはランダムアクセスプロシージャ中に互いに衝突し得る。たとえば、同期信号(SS)ブロック、ランダムアクセスチャネル(RACH)リソース、制御チャネル(DL/UL)および/またはデータチャネル(DL/UL)は、5Gシナリオにおいて互いに衝突し得る。
【発明の概要】
【0005】
可能なランダムアクセスチャネル(RACH)オケージョンの衝突に対処するための方法、システム、およびデバイスが提供される。ワイヤレス送受信ユニット(WTRU)は、PBCHを介して残存最小システム情報(RMSI)中でRACHオケージョンの構成を含む半静的UL/DL情報の表示と1つまたは複数の実際に送信される同期信号(SS)ブロックの表示とを受信し得る。WTRUは、次いで、構成情報に基づいてRACHオケージョンがあるのかどうかを評価し、RACHオケージョンのいずれかが有効であるのかどうかを決定することであって、ここにおいて、RACHオケージョンは、RACHオケージョンが示されたすべての実際に送信されるSSブロックの後にあること、および/またはSSブロックオーバーライドが使用不可にされているかまたは使用可能にされているかどうかに基づいて有効であり得る、決定することを行い得る。WTRUは、有効であると決定されているRACHオケージョンのうちの1つまたは複数中でRACHを送信し得る。
【図面の簡単な説明】
【0006】
より詳細な理解は、添付の図面と併せて例として与えられる以下の説明から得ることができ、ここにおいて、図中の同様の参照番号は同様の要素を示す。
【0007】
【
図1A】1つまたは複数の開示する実施形態が実装され得る例示的な通信システムを示すシステム概略図である。
【
図1B】一実施形態による、
図1Aに示す通信システム内で使用され得る例示的なワイヤレス送信/受信ユニット(WTRU)を示すシステム概略図である。
【
図1C】一実施形態による、
図1Aに示す通信システム内で使用され得る例示的な無線アクセスネットワーク(RAN)と例示的なコアネットワーク(CN)とを示すシステム概略図である。
【
図1D】一実施形態による、
図1Aに示す通信システム内で使用され得るさらなる例示的なRANとさらなる例示的なCNとを示すシステム概略図である。
【
図2A】RACH/PRACH送信の一例を示す概略図である。
【
図2B】本明細書で説明される1つまたは複数の実施形態に基づくSSブロック衝突なしのRACH送信のための例示的なプロセスを示すフローチャートである。
【
図2C】本明細書で説明される1つまたは複数の実施形態に基づくSSブロック衝突なしのPRACH送信の一例を示す概略図である。
【
図3】プリアンブルと同期信号(SS)ブロックとの例示的な重複を示す概略図である。
【
図4】プリアンブルおよびSSブロックの関連付けの例示的な方法を示す概略図である。
【
図5】RACHオケージョン(またはRACHリソース)およびSSブロックの関連付けの例示的な方法を示す概略図である。
【
図6】SSブロックの関連付けおよびRACHへのマッピングの例示的な方法を示す概略図である。
【
図7】SSブロックの関連付けおよびRACHへのマッピングの別の例示的な方法を示す概略図である。
【
図8】ランダムアクセスチャネル(RACH)オケージョンタイプのウィンドウ長がRACH構成期間と同じである各RACHオケージョンタイプのためのウィンドウ長の例示的な構成を示す概略図である。
【
図9】ランダムアクセスチャネル(RACH)オケージョンタイプのウィンドウ長がRACH構成期間の2倍である各RACHオケージョンタイプのためのウィンドウ長の例示的な構成を示す概略図である。
【
図10】ランダムアクセスチャネル(RACH)オケージョンタイプのウィンドウ長がRACH構成期間よりも短い各RACHオケージョンタイプのためのウィンドウ長の例示的な構成を示す概略図である。
【
図11】SSビーム報告に基づくプリアンブルの例示的な冗長バージョンを示す概略図である。
【発明を実施するための形態】
【0008】
図1Aは、1つまたは複数の開示する実施形態が実装され得る例示的な通信システム100を示す図である。通信システム100は、複数のワイヤレスユーザに音声、データ、ビデオ、メッセージング、ブロードキャストなどのコンテンツを与える多元接続システムであり得る。通信システム100は、ワイヤレス帯域幅を含むシステムリソースの共有を通してそのようなコンテンツに複数のワイヤレスユーザがアクセスすることを可能にし得る。たとえば、通信システム100は、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交FDMA(OFDMA)、シングルキャリアFDMA(SC-FDMA)、ゼロテールユニークワードDFT拡散OFDM(ZT UW DTS-s OFDM:zero-tail unique-word DFT-Spread OFDM)、ユニークワードOFDM(UW-OFDM:unique word OFDM)、リソースブロックフィルタ処理済みOFDM(resource block-filtered OFDM)、フィルタバンクマルチキャリア(FBMC:filter bank multicarrier)などの1つまたは複数のチャネルアクセス方法を採用し得る。
【0009】
図1Aに示すように、通信システム100は、ワイヤレス送信/受信ユニット(WTRU)102a、102b、102c、102dと、RAN104/113と、CN106/115と、公衆交換電話網(PSTN)108と、インターネット110と、他のネットワーク112とを含み得るが、開示する実施形態が、任意の数のWTRU、基地局、ネットワーク、および/またはネットワーク要素を企図することを諒解されよう。WTRU102a、102b、102c、102dの各々は、ワイヤレス環境において動作および/または通信するように構成された任意のタイプのデバイスであり得る。例として、いずれかが「局」および/または「STA」と呼ばれることがあるWTRU102a、102b、102c、102dは、ワイヤレス信号を送信および/または受信するように構成され得、ユーザ機器(UE)、移動局、固定またはモバイル加入者ユニット、サブスクリプションベースのユニット、ページャ、セルラー電話、携帯情報端末(PDA)、スマートフォン、ラップトップ、ネットブック、パーソナルコンピュータ、ワイヤレスセンサ、ホットスポットまたはMi-Fiデバイス、モノのインターネット(IoT)デバイス、ウォッチまたは他のウェアラブルなもの、ヘッドマウントディスプレイ(HMD)、ビークル、ドローン、医療デバイスおよびアプリケーション(たとえば、遠隔手術)、産業用デバイスおよびアプリケーション(たとえば、産業および/または自動処理チェーンコンテキストで動作するロボットおよび/または他のワイヤレスデバイス)、家庭用電子機器デバイス、商用および/または産業用ワイヤレスネットワーク上で動作するデバイスなどを含み得る。WTRU102a、102b、102cおよび102dのいずれかは、互換的にUEと呼ばれることがある。
【0010】
通信システム100はまた、基地局114aおよび/または基地局114bを含み得る。基地局114a、114bの各々は、CN106/115、インターネット110、および/または他のネットワーク112などの1つまたは複数の通信ネットワークへのアクセスを容易にするためにWTRU102a、102b、102c、102dのうちの少なくとも1つとワイヤレスにインターフェースするように構成された任意のタイプのデバイスであり得る。例として、基地局114a、114bは、送受信基地局(BTS)、ノードB、eノードB、ホームノードB、ホームeノードB、gNB、NRノードB、サイトコントローラ、アクセスポイント(AP)、ワイヤレスルータなどであり得る。基地局114a、114bが単一の要素として示されているが、基地局114a、114bが任意の数の相互接続された基地局および/またはネットワーク要素を含み得ることを諒解されよう。
【0011】
基地局114aは、他の基地局および/または基地局コントローラ(BSC)、無線ネットワークコントローラ(RNC)、リレーノードなどのネットワーク要素(図示せず)をも含み得るRAN104/113の一部であり得る。基地局114aおよび/または基地局114bは、セル(図示せず)と呼ばれることがある1つまたは複数のキャリア周波数上でワイヤレス信号を送信および/または受信するように構成され得る。これらの周波数は、認可スペクトル、無認可スペクトル、または認可スペクトルと無認可スペクトルとの組合せ中にあり得る。セルは、比較的固定され得るか、または時間とともに変化し得る特定の地理的エリアにワイヤレスサービスのためのカバレージを与え得る。セルは、セルセクタにさらに分割され得る。たとえば、基地局114aに関連するセルは、3つのセクタに分割され得る。したがって、一実施形態では、基地局114aは、3つのトランシーバ、すなわち、セルのセクタごとに1つを含み得る。一実施形態では、基地局114aは、多入力多出力(MIMO)技術を採用し得、セルのセクタごとに複数のトランシーバを利用し得る。たとえば、所望の空間的方向で信号を送信および/または受信するために、ビームフォーミングが使用され得る。
【0012】
基地局114a、114bは、任意の好適なワイヤレス通信リンク(たとえば、無線周波数(RF)、マイクロ波、センチメートル波、マイクロメートル波、赤外線(IR)、紫外線(UV)、可視光など)であり得るエアインターフェース116を介してWTRU102a、102b、102c、102dのうちの1つまたは複数と通信し得る。エアインターフェース116は、任意の好適な無線アクセス技術(RAT)を使用して確立され得る。
【0013】
より詳細には、上記のように、通信システム100は、多元接続システムであり得、CDMA、TDMA、FDMA、OFDMA、SC-FDMAなどの1つまたは複数のチャネルアクセス方式を採用し得る。たとえば、RAN104/113中の基地局114aおよびWTRU102a、102b、102cは、広帯域CDMA(WCDMA)を使用してエアインターフェース115/116/117を確立し得るユニバーサル移動体(電話)通信システム(UMTS)地上波無線アクセス(UTRA)などの無線技術を実装し得る。WCDMAは、高速パケットアクセス(HSPA)および/または発展型HSPA(HSPA+)などの通信プロトコルを含み得る。HSPAは、高速ダウンリンク(DL)パケットアクセス(HSDPA)および/または高速アップリンク(UL)パケットアクセス(HSUPA)を含み得る。
【0014】
一実施形態では、基地局114aおよびWTRU102a、102b、102cは、ロングタームエボリューション(LTE)および/またはLTEアドバンスト(LTE-A)および/またはLTEアドバンストプロ(LTE-A Pro)を使用してエアインターフェース116を確立し得る発展型UMTS地上波無線アクセス(E-UTRA)などの無線技術を実装し得る。
【0015】
一実施形態では、基地局114aおよびWTRU102a、102b、102cは、新無線(NR)を使用してエアインターフェース116を確立し得るNR無線アクセスなどの無線技術を実装し得る。
【0016】
一実施形態では、基地局114aおよびWTRU102a、102b、102cは、複数の無線アクセス技術を実装し得る。たとえば、基地局114aおよびWTRU102a、102b、102cは、たとえば、デュアル接続性(DC)原理を使用してLTE無線アクセスとNR無線アクセスとを一緒に実装し得る。したがって、WTRU102a、102b、102cによって利用されるエアインターフェースは、複数のタイプの無線アクセス技術および/または複数のタイプの基地局(たとえば、eNBおよびgNB)との間で送られる送信によって特徴づけられ得る。
【0017】
他の実施形態では、基地局114aおよびWTRU102a、102b、102cは、IEEE802.11(すなわち、ワイヤレスフィデリティー(WiFi)、IEEE802.16(すなわち、ワールドワイドインターオペラビリティフォーマイクロウェーブアクセス(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、Interim Standard2000(IS-2000)、Interim Standard95(IS-95)、Interim Standard856(IS-856)、グローバルシステムフォーモバイルコミュニケーションズ(GSM)、GSM進化型高速データレート(EDGE)、GSM EDGE(GERAN)などの無線技術を実装し得る。
【0018】
図1A中の基地局114bは、たとえば、ワイヤレスルータ、ホームノードB、ホームeノードB、またはアクセスポイントであり得、職場、家庭、ビークル、構内、産業設備、(たとえば、ドローンが使用するための)空中回廊、道路などの局所的エリアでのワイヤレス接続性を容易にすることのために任意の好適なRATを利用し得る。一実施形態では、基地局114bおよびWTRU102c、102dは、ワイヤレスローカルエリアネットワーク(WLAN)を確立するためにIEEE802.11などの無線技術を実装し得る。一実施形態では、基地局114bおよびWTRU102c、102dは、ワイヤレスパーソナルエリアネットワーク(WPAN)を確立するためにIEEE802.15などの無線技術を実装し得る。また別の実施形態中で、基地局114bおよびWTRU102c、102dは、ピコセルまたはフェムトセルを確立するためにセルラーベースのRAT(たとえば、WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NRなど)を利用し得る。
図1Aに示すように、基地局114bは、インターネット110への直接接続を有し得る。したがって、基地局114bは、CN106/115を介してインターネット110にアクセスする必要がないことがある。
【0019】
RAN104/113は、WTRU102a、102b、102c、102dのうちの1つまたは複数に音声、データ、アプリケーション、および/またはボイスオーバーインターネットプロトコル(VoIP)サービスを与えるように構成された任意のタイプのネットワークであり得るCN106/115と通信していることがある。データは、異なるスループット要件、レイテンシ要件、誤り耐性要件、信頼性要件、データスループット要件、モビリティ要件などの変動するサービス品質(QoS)要件を有し得る。CN106/115は、呼の制御、課金サービス、モバイルロケーションベースのサービス、プリペイド発呼、インターネット接続性、ビデオ配信などを与え、および/またはユーザ認証などの高レベルなセキュリティ関数を実行し得る。
図1Aには示されていないが、RAN104/113および/またはCN106/115が、RAN104/113と同じRATまたは異なるRATを採用する他のRANと直接的または間接的に通信していることがあることを諒解されよう。たとえば、NR無線技術を利用していることがあるRAN104/113に接続されることに加えて、CN106/115はまた、GSM、UMTS、CDMA2000、WiMAX、E-UTRA、またはWiFi無線技術を採用する別のRAN(図示せず)と通信していることがある。
【0020】
CN106/115はまた、PSTN108、インターネット110、および/または他のネットワーク112にアクセスするためにWTRU102a、102b、102c、102dのためのゲートウェイとして働き得る。PSTN108は、簡易電話サービス(POTS)を与える回線交換電話網を含み得る。インターネット110は、TCP/IPインターネットプロトコルスイート中で伝送制御プロトコル(TCP)、ユーザデータグラムプロトコル(UDP)および/またはインターネットプロトコル(IP)などの共通の通信プロトコルを使用する相互接続されたコンピュータネットワークおよびデバイスのグローバルシステムを含み得る。ネットワーク112は、他のサービスプロバイダによって所有および/または動作されるワイヤードおよび/またはワイヤレス通信ネットワークを含み得る。たとえば、ネットワーク112は、RAN104/113と同じRATまたは異なるRATを採用し得る1つまたは複数のRANに接続された別のCNを含み得る。
【0021】
通信システム100中でWTRU102a、102b、102c、102dの一部または全部は、マルチモード能力を含み得る(たとえば、WTRU102a、102b、102c、102dは、異なるワイヤレスリンクを介して異なるワイヤレスネットワークと通信するための複数のトランシーバを含み得る)。たとえば、
図1Aに示すWTRU102cは、セルラーベースの無線技術を採用し得る基地局114aと通信し、IEEE802無線技術を採用し得る基地局114bと通信するように構成され得る。
【0022】
図1Bは、例示的なWTRU102を示すシステム概略図である。
図1Bに示すように、WTRU102は、特に、プロセッサ118、トランシーバ120、送信/受信要素122、スピーカ/マイクロフォン124、キーパッド126、ディスプレイ/タッチパッド128、取外し不能メモリ130、取外し可能メモリ132、電源134、全地球測位システム(GPS)チップセット136、および/または他の周辺機器138を含み得る。WTRU102が、実施形態に一致したままでありながら、上記の要素の任意の部分組合せを含み得ることを諒解されよう。
【0023】
プロセッサ118は、汎用プロセッサ、専用プロセッサ、従来のプロセッサ、デジタル信号プロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアに関連する1つまたは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)回路、他のタイプの集積回路(IC)、状態機械などであり得る。プロセッサ118は、信号コーディング、データ処理、電力制御、入出力処理、および/またはWTRU102がワイヤレス環境において動作することを可能にする任意の他の機能を実行し得る。プロセッサ118は、送信/受信要素122に結合され得るトランシーバ120に結合され得る。
図1Bに、別個の構成要素としてプロセッサ118とトランシーバ120とを示しているが、プロセッサ118とトランシーバ120とが電子パッケージまたはチップ中で一緒に統合され得ることを諒解されよう。
【0024】
送信/受信要素122は、エアインターフェース116を介して基地局(たとえば、基地局114a)に信号を送信し、それから信号を受信するように構成され得る。たとえば、一実施形態では、送信/受信要素122は、RF信号を送信および/または受信するように構成されたアンテナであり得る。一実施形態では、送信/受信要素122は、たとえば、IR、UV、または可視光信号を送信および/または受信するように構成されたエミッタ/検出器であり得る。また別の実施形態では、送信/受信要素122は、RF信号と光信号との両方を送信および/または受信するように構成され得る。送信/受信要素122が、ワイヤレス信号の任意の組合せを送信および/または受信するように構成され得ることを諒解されよう。
【0025】
送信/受信要素122が単一の要素として
図1Bに示されているが、WTRU102は任意の数の送信/受信要素122を含み得る。より詳細には、WTRU102は、MIMO技術を採用し得る。したがって、一実施形態では、WTRU102は、エアインターフェース116を介してワイヤレス信号を送信および受信するための2つ以上の送信/受信要素122(たとえば、複数のアンテナ)を含み得る。
【0026】
トランシーバ120は、送信/受信要素122によって送信されるべきである信号を変調し、送信/受信要素122によって受信された信号を復調するように構成され得る。上記のように、WTRU102は、マルチモード能力を有し得る。したがって、トランシーバ120は、WTRU102が、たとえば、NRおよびIEEE802.11などの複数のRATを介して通信することを可能にするための複数のトランシーバを含み得る。
【0027】
WTRU102のプロセッサ118は、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128(たとえば、液晶ディスプレイ(LCD)ディスプレイユニットまたは有機発光ダイオード(OLED)ディスプレイユニット)に結合され得、それらからユーザ入力データを受信し得る。プロセッサ118はまた、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128にユーザデータを出力し得る。さらに、プロセッサ118は、取外し不能メモリ130および/または取外し可能メモリ132などの任意のタイプの好適なメモリから情報にアクセスし、それの中にデータを記憶し得る。取外し不能メモリ130は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、ハードディスク、または他のタイプのメモリストレージデバイスを含み得る。取外し可能メモリ132は、加入者識別モジュール(SIM)カード、メモリスティック、セキュアデジタル(SD)メモリカードなどを含み得る。他の実施形態では、プロセッサ118は、サーバまたはホームコンピュータ(図示せず)上など、WTRU102上に物理的に位置しないメモリからの情報にアクセスし、その中にデータを記憶し得る。
【0028】
プロセッサ118は、電源134から電力を受電し得、WTRU102中の他の構成要素に電力を分散および/または制御するように構成され得る。電源134は、WTRU102に電力供給するための任意の好適なデバイスであり得る。たとえば、電源134は、1つまたは複数の乾電池バッテリ(たとえば、ニッケルカドミウム(NiCd)、ニッケル亜鉛(NiZn)、ニッケル水素(NiMH)、リチウムイオン(Li-ion)など)、太陽電池、燃料電池などを含み得る。
【0029】
プロセッサ118はまた、WTRU102の現在のロケーションに関するロケーション情報(たとえば、経度および緯度)を与えるように構成され得るGPSチップセット136に結合され得る。GPSチップセット136からの情報に加えて、または、それの代わりに、WTRU102は、基地局(たとえば、基地局114a、114b)からエアインターフェース116を介してロケーション情報を受信し、および/または2つ以上の近くの基地局から受信している信号のタイミングに基づいてそれのロケーションを決定し得る。WTRU102が、実施形態に一致したままでありながら、任意の好適なロケーション決定方法によってロケーション情報を捕捉し得ることを諒解されよう。
【0030】
プロセッサ118は、追加の特徴、機能および/またはワイヤードもしくはワイヤレス接続性を与える1つまたは複数のソフトウェアおよび/またはハードウェアモジュールを含み得る他の周辺機器138にさらに結合され得る。たとえば、周辺機器138は、加速度計、eコンパス、衛星トランシーバ、(写真および/またはビデオのための)デジタルカメラ、ユニバーサルシリアルバス(USB)ポート、振動デバイス、テレビジョントランシーバ、ハンズフリーヘッドセット、Bluetooth(登録商標)モジュール、周波数変調(FM)無線ユニット、デジタル音楽プレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザ、バーチャルリアリティおよび/または拡張現実(VR/AR)デバイス、アクティビティトラッカなどを含み得る。周辺機器138は、1つまたは複数のセンサを含み得、センサは、ジャイロスコープ、加速度計、ホール効果センサ、磁力計、向きセンサ、近接センサ、温度センサ、時間センサ、ジオロケーションセンサ、高度計、光センサ、タッチセンサ、磁力計、気圧計、ジェスチャセンサ、生体センサ、および/または湿度センサのうちの1つまたは複数であり得る。
【0031】
WTRU102は、((たとえば、送信のための)アップリンク(UL)と(たとえば、受信のための)ダウンリンク(DL)との両方のための特定のサブフレームに関連する)信号の一部または全部の送信および受信が並列および/または同時であり得る全二重無線を含み得る。全二重無線は、ハードウェア(たとえば、チョーク)またはプロセッサ(たとえば、別個のプロセッサ(図示せず)またはビアプロセッサ118)を介した信号処理のいずれかを介して自己干渉を低減するかまたは実質的に除去するために干渉管理ユニット139を含み得る。一実施形態では、WTRU102は、((たとえば、送信のための)ULまたは(たとえば、受信のための)DLのいずれかのための特定のサブフレームに関連する)信号の一部または全部の送信および受信のための半二重無線を含み得る。
【0032】
図1Cは、一実施形態による、RAN104およびCN106を示すシステム概略図である。上記のように、RAN104は、エアインターフェース116を介してWTRU102a、102b、102cと通信するためにE-UTRA無線技術を採用し得る。RAN104はまた、CN106と通信していることがある。
【0033】
RAN104は、eノードB160a、160b、160cを含み得るが、RAN104が、実施形態に一致したままでありながら、任意の数のeノードBを含み得ることを諒解されよう。eノードB160a、160b、160cはそれぞれ、エアインターフェース116を介してWTRU102a、102b、102cと通信するための1つまたは複数のトランシーバを含み得る。一実施形態では、eノードB160a、160b、160cは、MIMO技術を実装し得る。したがって、eノードB160aは、たとえば、WTRU102aにワイヤレス信号を送信するおよび/またはそれからワイヤレス信号を受信するために複数のアンテナを使用し得る。
【0034】
eノードB160a、160b、160cの各々は、特定のセル(図示せず)に関連付けられ得、無線リソース管理決定、ハンドオーバ決定、ULおよび/またはDLにおけるユーザのスケジューリングなどを扱うように構成され得る。
図1Cに示すように、eノードB160a、160b、160cは、X2インターフェースを介して互いと通信し得る。
【0035】
図1Cに示すCN106は、モビリティ管理エンティティ(MME)162と、サービングゲートウェイ(SGW)164と、パケットデータネットワーク(PDN)ゲートウェイ(またはPGW)166とを含み得る。上記の要素の各々がCN106の一部として示されているが、これらの要素のいずれかがCNオペレータ以外のエンティティによって所有および/または動作され得ることを諒解されよう。
【0036】
MME162は、S1インターフェースを介してRAN104中のeノードB162a、162b、162cの各々に接続され得、制御ノードとして働き得る。たとえば、MME162は、WTRU102a、102b、102cのユーザを認証すること、ベアラのアクティブ化/非アクティブ化、WTRU102a、102b、102cの初期アタッチ(initial attach)中に特定のサービングゲートウェイを選択することなどを担当し得る。MME162は、RAN104とGSMおよび/またはWCDMAなどの他の無線技術を採用する他のRAN(図示せず)との間で切り替えるための制御プレーン機能を与え得る。
【0037】
SGW164は、S1インターフェースを介してRAN104中のeノードB160a、160b、160cの各々に接続され得る。SGW164は、概して、WTRU102a、102b、102cとの間でユーザデータパケットをルーティングおよび転送し得る。SGW164は、eノードB間のハンドオーバ中にユーザプレーンをアンカリングすること、DLデータがWTRU102a、102b、102cのために利用可能であるときにページングをトリガすること、WTRU102a、102b、102cのコンテキストを管理および記憶することなどの他の機能を実行し得る。
【0038】
SGW164は、WTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にするためにインターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cに与え得るPGW166に接続され得る。
【0039】
CN106は、他のネットワークとの通信を容易にし得る。たとえば、CN106は、WTRU102a、102b、102cと従来の固定通信デバイスとの間の通信を容易にするためにPSTN108などの回線交換ネットワークへのアクセスをWTRU102a、102b、102cに与え得る。たとえば、CN106は、CN106とPSTN108との間のインターフェースとして働くIPゲートウェイ(たとえば、IPマルチメディアサブシステム(IMS)サーバ)を含み得るかまたはそれと通信し得る。さらに、CN106は、他のサービスプロバイダによって所有および/または動作される他のワイヤードおよび/またはワイヤレスネットワークを含み得る他のネットワーク112へのアクセスをWTRU102a、102b、102cに与え得る。
【0040】
WTRUがワイヤレス端末として
図1A~
図1Dに記載されているが、そのような端末が(たとえば、一時的にまたは永続的に)使用し得るいくつかの代表的な実施形態では、ワイヤード通信が通信ネットワークとインターフェースすると考えられる。
【0041】
代表的な実施形態では、他のネットワーク112は、WLANであり得る。
【0042】
インフラストラクチャ基本サービスセット(BSS)モードのWLANは、BSSのためのアクセスポイント(AP)とAPに関連する1つまたは複数の局(STA)とを有し得る。APは、配信システム(DS)またはBSSを出入りするトラフィックを搬送する別のタイプのワイヤード/ワイヤレスネットワークへのアクセスまたはインターフェースを有し得る。BSSの外部から発信するSTAへのトラフィックは、APを通して到着し得、STAに送出され得る。BSS外の宛先にSTAから発信されたトラフィックは、それぞれの宛先に配信されるためにAPに送られ得る。BSS内のSTA間のトラフィックは、APを通して送られることがあり、たとえば、ここで、ソースSTAはAPにトラフィックを送り得、APは、宛先STAにトラフィックを送出し得る。BSS内のSTA間のトラフィックは、ピアツーピアトラフィックと見なされるおよび/またはそう呼ばれることがある。ピアツーピアトラフィックは、ダイレクトリンクセットアップ(DLS)を用いてソースSTAと宛先STAとの間で(たとえば、それらの間で直接)送られ得る。いくつかの代表的な実施形態では、DLSは、802.11e DLSまたは802.11zトンネリングされたDLS(TDLS:tunneled DLS)を使用し得る。独立BSS(IBSS)モードを使用するWLANはAPを有しないことがあり、IBSS内のまたはそれを使用するSTA(たとえば、STAのすべて)は互いに直接通信し得る。IBSS通信モードは、時々、本明細書では「アドホック」通信モードと呼ぶことがある。
【0043】
802.11acインフラストラクチャ動作モードまたは同様の動作モードを使用するとき、APは、1次チャネルなどの固定チャネル上でビーコンを送信し得る。1次チャネルは、固定幅(たとえば、20MHz幅の帯域幅)であるか、またはシグナリングを介して動的に設定された幅であり得る。1次チャネルは、BSSの動作チャネルであり得、APとの接続を確立するためにSTAによって使用され得る。いくつかの代表的な実施形態では、キャリア検知多重アクセス/衝突回避(CSMA/CA)が、たとえば、802.11システム中に実装され得る。CSMA/CAでは、APを含むSTA(たとえば、あらゆるSTA)が1次チャネルを感知し得る。1次チャネルが特定のSTAによって感知/検出されるおよび/またはビジーであると決定される場合、特定のSTAはバックオフし得る。1つのSTA(たとえば、ただ1つの局)が、所与のBSS中で所与の時間に送信し得る。
【0044】
高スループット(HT)のSTAは、40MHz幅のチャネルを形成するために、たとえば、隣接するまたは隣接していない20MHzのチャネルとの1次の20MHzのチャネルの組合せを介した通信のために40MHz幅のチャネルを使用し得る。
【0045】
極高スループット(VHT)のSTAは、20MHz、40MHz、80MHz、および/または160MHz幅のチャネルをサポートし得る。40MHzおよび/または80MHzのチャネルは、連続する20MHzのチャネルを組み合わせることによって形成され得る。160MHzのチャネルは、8つの連続する20MHzのチャネルを組み合わせることによって、または80+80構成と呼ばれることがある2つの不連続の80MHzのチャネルを組み合わせることによって形成され得る。80+80構成では、データは、チャネル符号化後に、2つのストリームにデータを分割し得るセグメントパーサを通してパスされ得る。逆高速フーリエ変換(IFFT)処理と時間領域処理とが別々に各ストリームに対して行われ得る。ストリームは、2つの80MHzのチャネル上にマッピングされ得、データは、送信STAによって送信され得る。受信STAの受信機では、80+80構成について上記で説明した動作が逆行され得、組み合わされたデータが媒体アクセス制御(MAC)に送られ得る。
【0046】
802.11afおよび802.11ahによってサブ1GHz動作モードがサポートされる。チャネル動作帯域幅およびキャリアは、802.11nおよび802.11acで使用されるものと比較して802.11afおよび802.11ahでは低減される。802.11afは、TVホワイトスペース(TVWS)スペクトル中の5MHz、10MHz、および20MHzの帯域幅をサポートし、802.11ahは、非TVWSスペクトルを使用して1MHz、2MHz、4MHz、8MHz、および16MHzの帯域幅をサポートする。代表的な実施形態によれば、802.11ahは、マクロカバレージエリア中のMTCデバイスなどのメータ型制御/マシン型通信をサポートし得る。MTCデバイスは、いくつかの能力、たとえば、いくつかのおよび/または限定された帯域幅のサポート(たとえば、それだけのサポート)を含む限定された能力を有し得る。MTCデバイスは、(たとえば、非常に長いバッテリ寿命を維持するために)しきい値を上回るバッテリ寿命をもつバッテリを含み得る。
【0047】
802.11n、802.11ac、802.11af、および802.11ahなどの複数のチャネルおよびチャネル帯域幅をサポートし得るWLANシステムは、1次チャネルとして指定され得るチャネルを含む。1次チャネルは、BSS中のすべてのSTAによってサポートされる最大の共通動作帯域幅に等しい帯域幅を有し得る。1次チャネルの帯域幅は、BSS中で動作するすべてのSTAの中から、最小の帯域幅動作モードをサポートするSTAによって設定および/または限定され得る。802.11ahの例では、APおよびBSS中の他のSTAが、2MHz、4MHz、8MHz、16MHz、および/または他のチャネル帯域幅動作モードをサポートする場合でも、1次チャネルは、1MHzモードをサポートする(たとえば、それだけをサポートする)STA(たとえば、MTCタイプのデバイス)について1MHz幅であり得る。キャリア検知および/またはネットワーク割振りベクトル(NAV)の設定は、1次チャネルのステータスに依存し得る。たとえば(1MHz動作モードだけをサポートする)STAのために1次チャネルがビジーである場合、周波数帯域の大部分がアイドルのままであり、利用可能であり得る場合であっても、APに利用可能な周波数帯域全体を送信することがビジーであると見なされ得る。
【0048】
米国では、802.11ahによって使用され得る利用可能な周波数帯域は、902MHzから928MHzまである。韓国では、利用可能な周波数帯域は、917.5MHzから923.5 MHzまである。日本では、利用可能な周波数帯域は、916.5MHzから927.5MHzまである。802.11ahのために利用可能な総帯域幅は、国コードに応じて6MHzから26MHzである。
【0049】
図1Dは、一実施形態による、RAN113およびCN115を示すシステム概略図である。上記のように、RAN113は、エアインターフェース116を介してWTRU102a、102b、102cと通信するためにNR無線技術を採用し得る。RAN113はまた、CN115と通信していることがある。
【0050】
RAN113は、gNB180a、180b、180cを含み得るが、RAN113が、実施形態に一致したままでありながら、任意の数のgNBを含み得ることを諒解されよう。gNB180a、180b、180cはそれぞれ、エアインターフェース116を介してWTRU102a、102b、102cと通信するための1つまたは複数のトランシーバを含み得る。一実施形態では、gNB180a、180b、180cは、MIMO技術を実装し得る。たとえば、gNB180a、108bは、gNB180a、180b、180cに信号を送信し、および/またはそれから信号を受信するためにビームフォーミングを利用し得る。したがって、gNB180aは、たとえば、WTRU102aにワイヤレス信号を送信し、および/またはそれからワイヤレス信号を受信するために複数のアンテナを使用し得る。一実施形態では、gNB180a、180b、180cは、キャリアアグリゲーション技術を実装し得る。たとえば、gNB180aは、WTRU102a(図示せず)に複数コンポーネントキャリアを送信し得る。これらのコンポーネントキャリアのサブセットは、無認可スペクトル上にあり得るが、残りのコンポーネントキャリアは、認可スペクトル上にあり得る。一実施形態では、gNB180a、180b、180cは、協調マルチポイント(CoMP)技術を実装し得る。たとえば、WTRU102aは、gNB180aおよびgNB180b(および/またはgNB180c)から協調送信を受信し得る。
【0051】
WTRU102a、102b、102cは、スケーラブルな数秘学に関連する送信を使用してgNB180a、180b、180cと通信し得る。たとえば、OFDMシンボル間隔および/またはOFDMサブキャリア間隔は、異なる送信、異なるセル、および/またはワイヤレス送信スペクトルの異なる部分ごとに変動し得る。WTRU102a、102b、102cは、(たとえば、様々な数のOFDMシンボルを含んでいるおよび/または変動する長さの絶対時間の間続く)様々なまたはスケーラブルな長さのサブフレームまたは送信時間間隔(TTI)を使用してgNB180a、180b、180cと通信し得る。
【0052】
gNB180a、180b、180cは、スタンドアロン構成および/または非スタンドアロン構成中のWTRU102a、102b、102cと通信するように構成され得る。スタンドアロン構成では、WTRU102a、102b、102cは、他のRAN(たとえば、eノードB160a、160b、160cなど)にアクセスすることもなしにgNB180a、180b、180cと通信し得る。スタンドアロン構成では、WTRU102a、102b、102cは、モビリティアンカーポイントとしてgNB180a、180b、180cのうちの1つまたは複数を利用し得る。スタンドアロン構成では、WTRU102a、102b、102cは、無認可帯域中の信号を使用してgNB180a、180b、180cと通信し得る。非スタンドアロン構成では、WTRU102a、102b、102cは、eノードB160a、160b、160cなどの別のRANとも通信しながら/それにも接続しながらgNB180a、180b、180cと通信し得る/それに接続し得る。たとえば、WTRU102a、102b、102cは、1つまたは複数のgNB180a、180b、180cおよび1つまたは複数のeノードB160a、160b、160cと実質的に同時に通信するためにDC原理を実装し得る。非スタンドアロン構成では、eノードB160a、160b、160cは、WTRU102a、102b、102cのためのモビリティアンカーとして働き得、gNB180a、180b、180cは、WTRU102a、102b、102cをサービスするための追加のカバレージおよび/またはスループットを与え得る。
【0053】
gNB180a、180b、180cの各々は、特定のセル(図示せず)に関連付けられ得、無線リソース管理の決定、ハンドオーバの決定、ULおよび/またはDLにおけるユーザのスケジューリング、ネットワークスライシングのサポート、デュアル接続性、NRとE-UTRAとの間の相互接続、ユーザプレーン機能(UPF)184a、184bに向けたユーザプレーンデータのルーティング、アクセスおよびモビリティ管理機能(AMF)182a、182bに向けた制御プレーン情報のルーティングなどを扱うように構成され得る。
図1Dに示すように、gNB180a、180b、180cは、Xnインターフェースを介して互いと通信し得る。
【0054】
図1Dに示すCN115は、少なくとも1つのAMF182a、182bと、少なくとも1つのUPF184a、184bと、少なくとも1つのセッション管理機能(SMF)183a、183bと、場合によっては、データネットワーク(DN)185a、185bとを含み得る。上記の要素の各々がCN115の一部として示されているが、これらの要素のいずれかがCNオペレータ以外のエンティティによって所有および/または動作され得ることを諒解されよう。
【0055】
AMF182a、182bは、N2インターフェースを介してRAN113中のgNB180a、180b、180cのうちの1つまたは複数に接続され得、制御ノードとして働き得る。たとえば、AMF182a、182bは、WTRU102a、102b、102cのユーザを認証すること、ネットワークスライシング(たとえば、異なる要件をもつ異なるPDUセッションの扱い)のサポート、特定のSMF183a、183bを選択すること、登録エリアの管理、NASシグナリングの終了、モビリティ管理などを担当し得る。ネットワークスライシングは、利用されたWTRU102a、102b、102cであるサービスのタイプに基づいてWTRU102a、102b、102cのCNのサポートをカスタマイズするために、AMF182a、182bによって使用され得る。たとえば、異なるネットワークスライスは、高信頼低遅延(URLLC)アクセスに依拠するサービス、拡張大規模モバイルブロードバンド(eMBB)アクセスに依拠するサービス、マシン型通信(MTC)アクセスのサービスなどの異なる使用事例のために確立され得る。AMF162は、RAN113とLTE、LTE-A、LTE-A Pro、および/またはWiFiなどの非3GPPアクセス技術などの他の無線技術を採用する他のRAN(図示せず)との間で切り替えるための制御プレーン機能を与え得る。
【0056】
SMF183a、183bは、N11インターフェースを介してCN115中のAMF182a、182bに接続され得る。SMF183a、183bはまた、N4インターフェースを介してCN115中のUPF184a、184bに接続され得る。SMF183a、183bは、UPF184a、184bを選択および制御し、UPF184a、184bを通してトラフィックのルーティングを構成し得る。SMF183a、183bは、UEのIPアドレスを管理し、割り振ること、PDUセッションを管理すること、ポリシーの強制およびQoSを制御すること、DLデータの通知を与えることなどの他の機能を実行し得る。PDUセッションのタイプは、IPベースのもの、非IPベースのもの、イーサネットベースのものなどであり得る。
【0057】
UPF184a、184bは、WTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にするためにインターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cに与え得るN3インターフェースを介してRAN113中のgNB180a、180b、180cのうちの1つまたは複数に接続され得る。UPF184、184bは、パケットをルーティングおよび転送すること、ユーザプレーンのポリシーを強制すること、マルチホームPDUセッションをサポートすること、ユーザプレーンQoSを扱うこと、DLパケットをバッファリングすること、モビリティアンカリングを与えることなどの他の機能を実行し得る。
【0058】
CN115は、他のネットワークとの通信を容易にし得る。たとえば、CN115は、CN115とPSTN108との間のインターフェースとして働くIPゲートウェイ(たとえば、IPマルチメディアサブシステム(IMS)サーバ)を含み得るかまたはそれと通信し得る。さらに、CN115は、他のサービスプロバイダによって所有および/または動作される他のワイヤードおよび/またはワイヤレスネットワークを含み得る他のネットワーク112へのアクセスをWTRU102a、102b、102cに与え得る。一実施形態では、WTRU102a、102b、102cは、UPF184a、184bへのN3インターフェースとUPF184a、184bとDN185a、185bとの間のN6インターフェースとを介してUPF184a、184bを通してローカルデータネットワーク(DN)185a、185bに接続され得る。
【0059】
図1A~
図1Dおよび
図1A~
図1Dの対応する説明に鑑みて、WTRU102a~d、基地局114a~b、eノードB160a~c、MME162、SGW164、PGW166、gNB180a~c、AMF182a~b、UPF184a~b、SMF183a~b、DN185a~b、および/または本明細書で説明する任意の他のデバイスのうちの1つまたは複数に関して本明細書で説明する機能のうちの1つもしくは複数またはすべては、1つまたは複数のエミュレーションデバイス(図示せず)によって実行され得る。エミュレーションデバイスは、本明細書で説明する機能のうちの1つもしくは複数またはすべてをエミュレートするように構成された1つまたは複数のデバイスであり得る。たとえば、エミュレーションデバイスは、他のデバイスをテストする、ならびに/またはネットワークおよび/もしくはWTRU機能をシミュレートするために使用され得る。
【0060】
エミュレーションデバイスは、ラボ環境でおよび/またはオペレータネットワーク環境で他のデバイスの1つまたは複数のテストを実施するように設計され得る。たとえば、1つまたは複数のエミュレーションデバイスは、通信ネットワーク内の他のデバイスをテストするためにワイヤードおよび/またはワイヤレス通信ネットワークの一部として完全にまたは部分的に実装および/または展開されながら、1つもしくは複数またはすべての機能を実行し得る。1つまたは複数のエミュレーションデバイスは、ワイヤードおよび/またはワイヤレス通信ネットワークの一部として一時的に実装/展開されながら、1つもしくは複数またはすべての機能を実行し得る。エミュレーションデバイスは、オーバージエアワイヤレス通信を使用してテストするおよび/またはテストを実行するために別のデバイスに直接結合され得る。
【0061】
1つまたは複数のエミュレーションデバイスは、ワイヤードおよび/またはワイヤレス通信ネットワークの一部として実装/展開されることなしに、すべてを含む1つまたは複数の機能を実行し得る。たとえば、エミュレーションデバイスは、1つまたは複数の構成要素のテストを実施するために試験所ならびに/または展開されていない(たとえば、テスト用の)ワイヤードおよび/もしくはワイヤレス通信ネットワーク中のテストシナリオで利用され得る。1つまたは複数のエミュレーションデバイスは、テスト機器であり得る。データを送信および/または受信するためにエミュレーションデバイスによって、直接RF結合および/または(たとえば、1つまたは複数のアンテナを含み得る)RF回路を介したワイヤレス通信が使用され得る。
【0062】
無線アクセスネットワーク(RAN)は、それのコアネットワーク(CN)への接続をもつワイヤレス送受信ユニット(WTRU)を与えるモバイル電気通信システムの部分であり得る。第5世代(5G)または次世代(NG)のワイヤレスシステムでは、RANは、新無線(NR)RANまたは次世代RANと呼ばれることがある。ITU-R、NGMNおよび3GPPによって提示される一般的な要件に基づいて、NRのための使用事例の広い分類は、拡張モバイルブロードバンド(eMBB)、大規模マシン型通信(mMTC)、および超信頼性低遅延通信(URLLC)であり得る。異なる使用事例は、より高いデータレート、より高いスペクトル効率、低電力およびより高いエネルギー効率、より低いレイテンシ、ならびにより高い信頼性などの異なる要件に焦点を当て得る。700MHzから80GHzまでにわたる広範囲のスペクトル帯域が様々な展開シナリオのために検討され得る。
【0063】
キャリア周波数が増加するにつれて、厳しい経路損失が、十分なカバレージを保証するのに重大な制限になり得る。ミリメートル波システムにおける送信は、さらに、非見通し線損失、たとえば、回折損失、浸透損失、酸素吸収損、群葉損失などに悩まされ得る。最初のアクセス中に、基地局とWTRUとは、これらの高い経路損失を克服し、各々を発見する必要があり得るか、またはWTRUは、別のWTRUを発見する必要があり得る。ビームフォーミングされた信号を生成するために数十または数百ものアンテナ要素を利用することは、有意なビームフォーミング利得を与えることによって深刻な経路損失を補償する有効な方法である。ビームフォーミング技法は、デジタルビームフォーミングと、アナログビームフォーミングと、ハイブリッドビームフォーミングとを含み得る。
【0064】
ロングタームエボリューション(LTE)および他のワイヤレスシステムは、初期同期およびブロードキャストチャネルを使用し得る。セル探索は、セル内で時間および周波数同期を取得し、そのセルのセルIDを検出するためにWTRUによって使用され得る。LTEなどの同期信号は、あらゆる無線フレームの第0および第5のサブフレーム中で送信され得、初期化中に時間および周波数同期のために使用され得る。システム収集プロセスの一部として、WTRUは、同期信号に基づいてOFDMシンボル、スロット、サブフレーム、ハーフフレーム、および/または無線フレームに連続的に同期させ得る。1次同期信号(PSS)と2次同期信号(SSS)との2つの同期信号があり得る。PSSは、スロット、サブフレーム、およびハーフフレーム境界を取得するために使用され得る。それはまた、セル識別情報グループ内に物理レイヤセル識別情報(PCI)を与え得る。SSSは、無線フレーム境界を取得するために使用され得る。それはまた、WTRUが0から167にわたり得るセル識別情報グループを決定することを可能にし得る。
【0065】
成功した同期およびPCI収集に続いて、WTRUは、セル固有基準信号(CRS)の助けをかりて物理ブロードキャストチャネル(PBCH)などのチャネルを復号し、システム帯域幅、システムフレーム番号(SFN)およびPHICH構成に関するマスタ情報ブロック(MIB)情報を取得し得る。LTE同期信号およびPBCHは、規格化された周期に従って連続的に送信され得る。
【0066】
LTEおよび他のワイヤレスシステムは、ランダムアクセス(RA)プロシージャを利用し得る。基地局(たとえば、eノードB、eNB、gNB)および/またはWTRUは、(たとえば、セルまたはeNBへの)WTRUの最初のアクセス、(たとえば、いくつかのセルに対してWTRUのULタイミングをリセットするかまたは整合させるための)ULタイミングのリセット、ならびに/または(たとえば、ハンドオーバターゲットセルに対してWTRUのタイミングをリセットするかまたは整合させるための)ハンドオーバ中のタイミングのリセットのうちの少なくとも1つのためにランダムアクセスプロシージャを使用し得る。WTRUは、ある電力物理ランダムアクセスチャネル(PRACH)においてあるPRACHプリアンブルシーケンスを送信し得、これは、構成されたパラメータおよび/または測定に基づき得、WTRUは、ある時間周波数リソースを使用してプリアンブルを送信し得る。eNBによって与えられるかまたは構成され得る構成されたパラメータは、最初のプリアンブル電力(たとえば、preambleInitialReceivedTargetPower)、プリアンブルフォーマットベースのオフセット(たとえば、deltaPreamble)、ランダムアクセス応答ウィンドウ(たとえば、ra-ResponseWindowSize)、電力ランピングファクタ(たとえば、powerRampingStep)、および/または再送信の最大数(たとえば、preambleTransMax)のうちの1つまたは複数を含み得る。プリアンブルもしくはプリアンブルのセットおよび/またはプリアンブル送信のために使用され得る時間/周波数リソースを含み得るPRACHリソースは、eNBによって与えられ得るかまたは構成され得る。測定は、経路損失を含み得る。時間周波数リソースは、許可されたセットからWTRUによって選定され得るか、またはeNBによって選定され、WTRUにシグナリングされ得る。プリアンブルのWTRUの送信に続いて、eNBは、プリアンブルを検出する場合、ランダムアクセス応答(RAR)で応答し得る。WTRUが、割り当てられた時間(たとえば、ra-ResponseWindowSize)内に(たとえば、あるプリアンブルインデックスおよび/または時間/周波数リソースに対応し得る)送信されたプリアンブルのためのRARを受信しない場合、WTRUは、(たとえば、powerRampingStepによる前のプリアンブル送信より高い)より高い電力で後の時間に別のプリアンブルを送り得、ここで、送信電力は、最大電力、たとえば、全体としてWTRUのためのものであり得るWTRUによって構成された最大電力(たとえば、PCMAX)、またはWTRUのあるサービングセルのためのWTRUによって構成された最大電力(たとえば、PCMAX,c)によって制限され得る。WTRUは、eNBからのRARの受信を再び待ち得る。送信し、待つことのこのシーケンスは、eNBがRARで応答し得るまで、またはランダムアクセスプリアンブル送信の最大数(たとえば、preambleTransMax)に達するまで続き得る。eNBは、単一のプリアンブル送信に応答してRARを送信し得、WTRUは、それを受信し得る。
【0067】
ランダムアクセスプロシージャは、競合ベースであり得るか、または無競合であり得る。無競合プロシージャは、たとえば、eNBからの要求によって開始され得る。要求は、PDCCH命令などの物理レイヤシグナリングを介してまたはモビリティ制御情報を含み得るRRC再構成メッセージ(たとえば、RRC接続再構成メッセージ)などの上位レイヤシグナリングによって受信され得、たとえば、ハンドオーバ要求を示すか、またはそれに対応し得る。サブフレームn中にPDCCH命令によって開始される無競合プロシージャの場合、PRACHプリアンブルは、第1のサブフレームまたはPRACHのために利用可能な第1のサブフレームn+k2中で送信され得、ここで、k2は6以上(すなわち、k2≧6)であり得る。RRCコマンドによって開始されるとき、指定され得る他の遅延があり得る(たとえば、最小および/または最大要求または許容遅延があり得る)。WTRUは、例として、最初のアクセス、UL同期の復元、および/または無線リンク障害から復元することを含む理由のために競合ベースのプロシージャを自律的に開始し得る。無線リンク障害からの回復以外のイベントなどのいくつかのイベントの場合、そのようなイベントの後にどのくらいの時間の間WTRUがPRACHプリアンブルを送り得るのかは定義または指定されないことがある。
【0068】
無競合ランダムアクセス(RA)プロシージャの場合、ネットワークによってシグナリングされたPRACHプリアンブルは、たとえば、WTRUによって使用され得る。競合ベースのランダムアクセスプロシージャの場合、WTRUは、プリアンブルを自律的に選定し得、ここで、プリアンブル送信のために利用可能なプリアンブルフォーマットおよび/または時間/周波数リソースは、eNBによって与えられ得るかまたはシグナリングされ得る表示またはインデックス(たとえば、PRACH構成インデックス)に基づき得る。
【0069】
漸進的により高い送信電力で送信されるプリアンブルのうちの1つがeNBによって検出され得る。RARは、その1つの検出されたプリアンブルに応答してeNBによって送られ得る。PRACHプリアンブルは、PRACHリソースと見なされ得る。たとえば、PRACHリソースは、PRACHプリアンブル、時間リソース、および/または周波数リソースを含み得る。RACHリソースとPRACHリソースという用語は、本明細書では互換的に使用され得る。また、RA、RACH、およびPRACHという用語は、本明細書では互換的に使用され得る。
【0070】
NR中でなどの経路損失のいくつかの状況では、同期信号(SS)ブロック(SSB)、RACHリソース、制御チャネル(DL/UL)および/またはデータチャネル(DL/UL)は互いと衝突し得る。WTRUが最初のアクセスを実行すること、チャネルアクセスを実行すること、システム動作を維持すること、および/またはシステム効率を最大化することを行うために、衝突が発生するときにこれらおよび他の状況を回避、緩和、または処理するためにルールが必要とされ得る。また、他の状況では、WTRU送信は、ランダムアクセス中に別のWTRU送信と衝突し得る。たとえば、PRACHプリアンブルは、マルチビームシステムが使用される場合などに互いと衝突し得る。ビームベースのシステムにおける衝突低減に対する拡張は、これらおよび他の経路損失状況に対処するために必要とされ得る。さらに、ビームスイープのために多数のビームをサポートするのに、PRACHプリアンブルフォーマットは、限られた数のシンボルにより十分でないことがある。したがって、多数のビームをサポートする手法を有することが望ましいことがある。1つまたは複数の実施形態では、PRACHリソース、DL/UL制御、および/またはSS/PBCHブロックは、本明細書で説明される問題になる状況に対処するために処理され得る。
【0071】
図2Aは、RACH/PRACH送信の一例を示す。概して、第1のDL203は、第1のSSブロックであり得、第2のDL205は、第2のSSブロックであり得る。スロットは、DL部分(203および205)とUL部分206との両方を有する可能性がある。さらに、フレキシブルなまたは未知の部分X204が、スロット中で使用される可能性があり、DLまたはULとして構成される可能性がある。DL信号/チャネル203は、スロット202の第1のK
1個のOFDMシンボルを占有し得、ここで、Kは、何らかの非負整数である。未知の/フレキシブルな部分X204は、K
2個のOFDMシンボルを占有し得る。第2のDL信号/チャネル205は、K
3個のOFDMシンボルを占有し得、これは、第1のDL信号/チャネル203と同じであるか、または異なり得る(たとえば、DL信号/チャネル203は、第1のSS/PBCHブロックであり得、DL205は、第2のSS/PBCHブロックであり得るDL信号/チャネル205であり得る)。UL信号/チャネル206は、スロット202の最後のK
4個のOFDMシンボルを占有し得る。SSブロックおよびSS/PBCHブロックは、本明細書で説明されるように交換可能であり得る。スロット202は、それぞれのまたは一部のシンボルロケーションが特定のタイプのコンテンツを含み得るように構成され得、
図2Aに示される例では、DL信号/チャネル203、K
1、は、最初の4つのシンボルであり得、UL信号/チャネル206、K
4は、最後の2つのシンボルであり得る。周期はまた、衝突を回避するようにgNBによって構成され得るが、PRACHがSSブロックと衝突するとき/場合、ブロック、信号、および/またはチャネルドロッピングルールなどのいくつかの所定のまたはあらかじめ定義されたルールが使用され得る。SSブロック、DL/UL制御、およびPRACHは、それらが互いに衝突するときにそれに対してこれらの問題を処理するためにWTRUが実装し得るあらかじめ定義されたルールを有し得る。
【0072】
SS/PBCHブロックとRACHリソースとが衝突するとき、WTRUは、この問題に対処するために、WTRUがPRACHをドロップし、SSブロックを受信するか、またはWTRUがSSブロックをドロップし、PRACHを送信するなどの1つまたは複数の行為を取り得る。WTRUはまた、PRACHを部分的に送信するか、またはSSブロックを部分的に受信し得る。衝突処理のためのこれらのオプションは、実際に送信されるSSブロックもしくは最大SSブロック、レイテンシ要件、サービスタイプ(たとえば、URLLC、eMBB、mMTCなど)、あらかじめ定義されたもしくは所定のルール(たとえば、SSブロックを常に送信するかもしくはPRACHを常に送信し、他のチャネルをドロップする)、チャネルの優先度、ここで、優先度はあらかじめ定義され得るか、もしくは構成され得る、プリエンプション表示、何を送信すべきかおよび何をドロップすべきかに関するgNBから受信された表示、レートマッチングまたはパンクチャリングを使用して衝突が発生するときに部分的なもしくはすべてのチャネルを送信すること、ならびに/または上述の手法の組合せのうちの少なくとも1つに基づき得る。
【0073】
WTRUが実際に送信されるSSブロックの表示を受信する場合、WTRUは、衝突を処理するために実際に送信されるSSブロック位置を使用し得る。たとえば、長いシーケンス(たとえば、PRACHのための長いプリアンブルシーケンス)の場合、WTRUは、衝突があるときにRACHをドロップし得る。そうでない場合、WTRUは、RACHを送信し得る。短いシーケンスの場合(たとえば、PRACHのための短いプリアンブルシーケンスの場合)、WTRUは、非スロット(たとえば、2つのシンボル、4つのシンボル)中でRACHを送信し得、ここで、シンボルは、SSブロックによって占有されない。本明細書で説明されるように、非スロットは、任意の不定期な長さのスロット(たとえば、ミニスロット)であり得る。また、短いシーケンスの場合、WTRUは、非スロット(たとえば、2つのシンボル、4つのシンボル)中で部分RACHを送信し得、ここで、シンボルは、SSブロックによって部分的に占有される。SSブロックは、実際に送信されるSSブロックであり得るか、またはSSブロックは、候補SSブロックロケーションであり得る。
【0074】
WTRUが実際に送信されたSSブロックの表示を受信しない場合、WTRUは、衝突を処理するためにSSブロック位置の最大数Lを使用し得る。たとえば、WTRUは、3GHz未満の場合にL=4のSSブロックを使用し、6GHz未満および3GHzより上の場合にL=8のSSブロックを使用し、6GHzより上の場合にL=64を使用し得る。
【0075】
本明細書で説明されるように、RACHリソースまたはRACHオケージョンとSSブロックとの間で衝突があるかまたはある可能性がある状況があり得る。本明細書で説明されるように、RACHオケージョンへの言及は、RACHリソースと交換可能であり得、RACHオケージョンは、RACH/PRACHが送られ得るスロット中の1つまたは複数のシンボルであり得る。SSブロックをもつスロット、非スロット、またはミニスロットは、RACH構成表に従ってRACHオケージョンとして構成され得る。衝突がRACHオケージョンとSSブロックとの間で発生する場合、WTRUは、SSブロックによって占有されたシンボルをスキップすることによって、PRACHプリアンブルまたはRACHメッセージ3を依然として送信し得る。gNBは、PRACHプリアンブルに対して偏相関を実行するか、またはRACHメッセージ3 PUSCHに対してレートマッチングを実行し得る。SSブロックの数は変化し得る。たとえば、SSブロックの数は、4から2に変化し得る。2つのSSブロックが第1のSSブロックスロットを占有し得る。代替的に、2つのSSブロックの位置は、依然として、4つのSSブロックがあるときと同じであり得る。
【0076】
本明細書で説明されるように、UL制御チャネルとRACHリソースとの衝突があるかまたはある可能性がある状況があり得る。そのような状況に対処するために、WTRUは、PRACHをドロップし、UL制御チャネルを送信し得る。代替/追加として、WTRUは、UL制御チャネルをドロップし、PRACHを送信し得る。代替/追加として、WTRUは、PRACHを部分的に送信するか、またはUL制御を部分的に送信し得る。これらのおよび同様の状況のための衝突処理は、UL制御チャネル(たとえば、それが周期UL制御チャネルであるのかもしくは非周期UL制御チャネルであるか)、レイテンシ要件、サービスタイプ(たとえば、URLLC、eMBB、mMTCなど)、あらかじめ定義されたもしくは所定のルール(たとえば、UL制御チャネルを常に送信するかもしくはPRACHを常に送信し、他のチャネルをドロップする)、チャネルの優先度、ここで、優先度はあらかじめ定義され得るか、もしくは構成され得る、プリエンプション表示、何を送信すべきかおよび何をドロップすべきかに関するgNBから受信された表示、衝突が発生するときに両方のもしくはすべてのチャネルを送信すること、ならびに/または上述の手法の任意の組合せのうちの少なくとも1つに基づき得る。
【0077】
gNBは、UL制御チャネルとPRACHとの間の衝突を回避するようにPRACHを構成し得る。PRACHがアップリンク制御と衝突する場合、WTRUは、RACHをドロップするか、またはUL制御をドロップし得る。
【0078】
本明細書で説明されるように衝突を処理するためにあらかじめ定義されたルールが使用され得る。たとえば、PRACHとUL制御チャネルとが衝突するとき、WTRUは、UL制御をドロップし、PRACHのみを送信し得、またその逆も同様である。
【0079】
1つまたは複数の状況では、衝突を処理するために表示が使用され得る。WTRUは、衝突のどの要素がドロップされるべきであるのかとどれが送信されるべきであるのかとに関する表示を受信し得る。たとえば、WTRUは、PRACHをドロップし、UL制御チャネルを送信するように示され得るか、またはWTRUは、UL制御チャネルをドロップし、PRACHを送信するように示され得る。
【0080】
1つまたは複数の状況では、衝突を処理するために暗黙的表示が使用され得る。WTRUは、サービスタイプに基づいて衝突のどの要素がドロップされるべきであるのかとどれが送信されるべきであるのかとを決定し得る。たとえば、WTRUに提供されたサービスがURLLCである場合、WTRUは、アップリンク制御チャネルをドロップし、PRACHを送信し得、またその逆も同様である。
【0081】
1つまたは複数の場合では、gNBは、同時に送受信し得る。gNBがSSブロックを送信しているとき、gNBはまた、同じまたは異なるキャリアにおいて特定のRxビームを使用して受信していることがある。次いで、たとえgNBがSSブロックを送信しているとしても、PRACHが送信され得る。
【0082】
RACHオケージョンと半静的スケジューリングおよび/または動的スロットフォーマットインジケータ(SFI)との間の衝突があり得る。半静的DL/UL割当てにおけるダウンリンクおよび/またはアップリンク信号および/またはチャネルは、他の方向に上書きされ得ない。動的SFI中のDLおよび/またはUL信号および/またはチャネルは、WTRU固有の制御またはデータチャネルによって上書きされ得ない。動的SFIと衝突する可能性があるRACHオケージョンがドロップされ得る。半静的DL/UL割当てとイズ衝突し得るRACHオケージョンがドロップされ得る。
【0083】
gNBとWTRUとは、SSブロックをもつスロットにマッピングするRACHオケージョン、半静的DLおよびUL、動的SFI、ならびに/またはULおよび/もしくはDLスケジューリングのうちの少なくとも1つに基づいて有効なRACHオケージョン(VRO)を導出し得る。有効なRACHオケージョンは、衝突が発生しないであろうことがあらかじめ決定または決定されている時間増分(すなわち、スロットの1つまたは複数のシンボル)中で送信するためのオケージョンであり得る。
【0084】
いくつかの状況では、DL制御チャネルとRACHリソースとの間に衝突があり得る。これらの状況では、WTRUは、PRACHをドロップし、DL制御チャネルを受信し得る。さらに/代替的に、WTRUは、DL制御チャネルをドロップし、PRACHを送信し得る。さらに/代替的に、WTRUは、PRACHを部分的に送信するか、またはDL制御を部分的に受信し得る。衝突処理は、レイテンシ要件、サービスタイプ(たとえば、URLLC、eMBB、mMTCなど)、あらかじめ定義されたもしくは所定のルール(たとえば、DL制御チャネルを常に受信するかもしくはPRACHを常に送信し、他のチャネルをドロップする)、チャネルの優先度、ここで、優先度はあらかじめ定義され得るか、もしくは構成され得る、プリエンプション表示、何を送信すべきかおよび何をドロップすべきかに関するgNBから受信された表示、衝突が発生するときに部分的なもしくはすべてのチャネルを送信すること、ならびに/または上述の手法のいくつかの組合せのうちの少なくとも1つに基づき得る。
【0085】
gNBは、DL制御チャネルとPRACHとの間の衝突を回避するようにPRACHを構成し得る。PRACHがDL制御チャネルと衝突する場合、WTRUは、PRACHをドロップするか、またはDL制御チャネルをドロップし得る。
【0086】
衝突を処理するためにあらかじめ定義されたルールが使用され得る。たとえば、PRACHとDL制御チャネルとが衝突するとき、WTRUは、DL制御をドロップし、PRACHのみを送信し得、またその逆も同様である。
【0087】
1つまたは複数の場合では、衝突を処理するために表示が使用され得る。WTRUは、衝突におけるどの要素がドロップされるべきであるのかとどれが送信されるべきであるのかとを示し得る。たとえばWTRUは、PRACHをドロップし、DL制御チャネルを受信するという表示を受信し得るか、またはWTRUは、DL制御チャネルをドロップし、PRACHを送信するという表示を受信し得る。
【0088】
1つまたは複数の場合では、衝突を処理するために暗黙的表示が使用され得る。WTRUは、サービスタイプに基づいて衝突におけるどの要素をドロップすべきかとどれを送信すべきかとを決定し得る。たとえば、WTRUによって提供されたサービスがURLLCである場合、WTRUは、DL制御チャネルをドロップし、PRACHを送信し得、またその逆も同様である。
【0089】
WTRUは、NR-PDCCHが存在するのか、構成された探索空間があるのか、またはRACHリソースと衝突し得る構成された制御リソースセット(CORESET)があるのかに関する表示を受信し得る。
【0090】
gNBとWTRUとは、半静的DLおよびUL、動的SFI、ならびに/またはULおよび/もしくはDLスケジューリングのうちの少なくとも1つに基づいてDL制御チャネルのための有効なRACHオケージョンを決定または導出し得る。
【0091】
衝突をもつ1つまたは複数の状況では、衝突に対処するためにルールとRACHリソースとが使用され得る。本明細書で説明されるように、RACHリソースまたはRACHオケージョンは、DL部分またはUL部分のいずれかと衝突し得る。RACHリソースまたはRACHオケージョンはまた、DL部分またはUL部分として構成され得る未知の部分と衝突し得る。DL部分は、SSブロック、DL制御チャネル、他のDL制御チャネル、信号、送信などであり得る。UL部分は、UL制御チャネル、他のUL制御チャネル、信号、送信などであり得る。WTRUは、半静的UL/DL構成とRACH構成とに関する表示を同時に受信し得る。WTRUはまた、RACH構成の前に半静的UL/DL構成のための表示を受信し得る。WTRUは、RACH構成と同時にまたはRACH構成の前に半静的UL/DL構成のための表示を受信する場合、およびRACHオケージョンがDL部分と衝突する場合、DL部分と衝突するRACHオケージョンは送信されないことがあるが、UL部分内のRACHオケージョンは送信され得る。WTRUが、RACH構成後に半静的UL/DL構成について示され、RACHオケージョンが送信されるときにWTRUが半静的UL/DL構成に気づいていない場合、WTRUは、RACHオケージョンがDL部分と衝突しないことになると仮定し得、したがって、RACHオケージョンは、送信のために使用され得、有効である。未知の部分が構成されない場合、または未知の部分がRACH送信のためのULとして構成される場合、RACHリソースまたはRACHオケージョンは、未知の部分(すなわち、部分X)中で使用または送信され得る。
【0092】
可能な衝突を回避するために、WTRUは、DL/UL構成をチェックし得る。WTRUは、UL部分中でRACHを送信し得る。DL部分が使用されない場合、WTRUは、DL部分中でRACHを送信し得る。DL部分が使用されるのかどうかに関する表示がWTRUにおいて受信され得る。DL部分が「使用される」(たとえば、実際に送信されるSSブロックとして示されたSSブロックのための使用される)ように示される場合、WTRUは、それらのDL部分中でRACHを送信しないことがある。代替または追加として、WTRUは、それが使用されるのかどうかにかかわらず、いかなるDL部分中でもRACHを送信しないことがある。そのような代替形態または異なる代替形態が構成され得る。
【0093】
一実施形態では、WTRUは、SSブロックのロケーションまたはSSブロック送信に応じてRACHリソースをどこに送信すべきか、および/またはそれを送信すべきなのかどうかを決定し得る。たとえば、WTRUが、SSブロックが特定のロケーション(たとえば、スロット、サブフレームなどの特定のロケーション)中で送信されるという表示から知る場合、1つまたは複数のRACHオケージョン(たとえば、RACHオケージョンの一部または全部)が送信され得るか、または送信されないことがある。追加/代替として、所与の増分について、RACHは、SSブロックの前に送信されないことがあるが、RACHは、SSブロックの後に送信され得る。RACHオケージョンまたはRACHリソースは、SSブロックの前にないことがあり、RACHオケージョンまたはRACHリソースは、SSブロックの後にあり得る。追加/代替として、SSブロックが、スロットの前の部分中に位置するか、またはその中で送信される場合、スロットの後の部分中のRACHオケージョン/リソースが送信され得、SSブロックの前のRACHは送信されないことがある。SSブロックがスロットの後の部分中に位置するかまたはその中で送信される場合、スロットの前の部分中のRACHは送信されないことがある。
【0094】
WTRUは、スロット中のSSブロックと衝突することになるかまたは衝突し得るRACHを送信しないことがあるが、WTRUは、スロット中のSSブロックと衝突しないかまたは衝突しないことになるRACHを依然として送信し得る。代替/追加として、スロット中の1つまたは複数のRACHオケージョンがSSブロックと衝突し得る場合、WTRUは、スロット中のRACHオケージョンのすべてを送信しないことがある。WTRUは、SSブロックとの衝突条件に基づいてRACHを送信するか、またはRACHオケージョンを使用し得る。追加/代替として、WTRUは、(たとえば、時間または周波数における)ロケーションに基づいてRACHを送信することも送信しないこともあり、またはRACHオケージョンを使用することも使用しないこともあり、ここで、SSブロックは、送信されるように構成されるか、示されるか、またはスケジュールされる。ある場合には、ある時間、または周波数、ロケーションにおけるRACHオケージョンが、SSブロックと衝突する場合でも、使用され得る。別の場合には、ある時間、または周波数、ロケーションにおけるRACHオケージョンが、SSブロックと衝突する場合に使用されないことがある。
【0095】
半静的UL/DL構成の表示は、新無線-物理ブロードキャストチャネル(NR-PBCH)、残存最小システム情報(RMSI)、他のシステム情報(OSI)、ページングなどの中にあり得る。さらに、WTRUが、動的UL/DL構成について示される場合、動的UL/DL構成は半静的UL/DL構成をオーバーライドし得る。動的UL/DL構成が、RACH構成と同時にまたはRACH構成の前に示され、動的UL/DL構成が、半静的UL/DL構成をオーバーライドする場合、WTRUは、動的UL/DL構成におけるDL部分とUL部分とに従い得る。WTRUは、次いで、本明細書で説明されるようにRACHオケージョン送信のためのルールに従い得る。
【0096】
図2Bは、本明細書で説明される1つまたは複数の実施形態に基づくSSブロック衝突なしのRACH送信のための例示的なプロセスを示す。260において、WTRUは、RMSI中などで半静的UL/DLスロット構成を受信し得る。262において、WTRUは、構成情報に基づいてスロットの異なる部分(すなわち、DL/X/DL/UL)のためのROを決定し得る。264において、WTRUは、実際に送信される(Txed)SSブロックのDL表示を受信し得る。場合によっては、WTRUはまた、SSブロックがオーバーライドを使用可能/使用不可にする表示を受信し得、これにより、WTRUは、SSブロックが示されたロケーション中にROを有することが可能/不可能になり得る。受信された情報の全部または一部に基づいて、266において、WTRUは、所与のシンボルがRACHが送られ得るオケージョン(すなわち、RO)であるのかどうかを評価し得る。268において、WTRUは、スロットのROを評価し、それらが予想される衝突がない有効なROであるのかどうかを決定し得、任意のルールまたは表示は、RACHが実際に送られ得る/スケジュールされ得るように見なされる。270において、WTRUは、前に決定された有効なRO中でRACHを送信し得る。
【0097】
図2Cは、本明細書で説明される1つまたは複数の実施形態に基づくSSブロック衝突なしのPRACH送信の一例を示す。各概略図(200、220、240)は、
図2Bで説明されたプロセスの任意の順序での1つまたは複数のステージの結果、ならびに、本明細書で説明される衝突に対処するためのルールまたは条件のいずれかであり得る。この例では、DL制御部分中にSSブロックがある場合、WTRUは、これらのシンボルのいずれの中でもRACHを送信しないことがある。また、オケージョンが示されたSSブロックの前ではなく後にある場合、ROは有効であり得る。概して、送信例は、DL213、X214、DL215、およびUL216に割り振られ得る様々な数のシンボル(すなわち、OFDM)をもつ部分に分解されたただ1つのスロットを示す。各シンボルは、何がそのリソースを占有するのかまたはそうするように示されるのかに対応する特定の陰影を有し得、たとえば、RO208などのそれぞれの可能なROは、左上から右下に向かう線を有する。陰影無しは、そのリソースのために使用されないまたはその予定がないことを意味し得る。
【0098】
概略
図200では、WTRUは、260、262、および264を完了していることがある。WTRUは、SSブロック(SSブロック)207がスロット202のDL制御213部分の一部分を占有すると決定していることがあり、したがって、DL制御部分213は、いかなるROも含んでいないことがある。さらに、スロットの残りは、RMSIなどによって構成されたいくつかのRO(208、209、210、211)を有し得る。図示されていないROのための表があり得る。表のエントリを指すインデックスは、ROを示し得る。WTRUは、RMSI中のインデックスによって示され、受信されたインデックスとWTRUに知られている表とに基づいてROを決定し得る。
【0099】
概略
図220は、プロセス266、ROが送信する有効な機会(すなわち、VRO)であるのかどうかの評価を示し、SSブロック229がWTRUに示され得ることを除いて概略
図200と同様であり得、これは、この例では、WTRUは、示されたSSブロックの後にのみ有効なROを有し得るので、潜在的なROであったX部分224は、有効になり得ないのでUL部分226のみが有効なROを有することを生じる。
【0100】
概略
図240は、プロセス266を示し、DL245について示されたSSブロックがないことを除いて概略
図200と同様であり得、これは、DL制御部分243の後のあらゆるROが有効なROであることにつながり得る。
【0101】
1つまたは複数の実施形態では、重複するプリアンブルサブセットが使用され得る。SSブロックインデックスは、RA-RNTI中に埋め込まれ得る。RA-RNTIは、SSブロックインデックスの関数であり得る。代替または追加として、SSブロックインデックスは、ランダムアクセス応答(RAR)中に含まれ得る。さらに、重複するプリアンブルのためのSSブロックインデックスは、RA-RNTI中に埋め込まれ、RAR中に含まれ得る。たとえば、(たとえば、重複するプリアンブルのための)SSブロックインデックスは、(たとえば、異なるSSブロックインデックスのために異なるRNTIを使用して、または異なるSSブロックインデックスのために異なるCRCマスキングを使用して)RA-RNTI中に埋め込まれ得、同時に、(たとえば、重複するプリアンブルのための)同じSSブロックインデックスがRAR中に含まれ得る。
【0102】
図3は、本明細書で説明される1つまたは複数の実施形態によるプリアンブルと同期信号(SS)ブロックとの例示的な重複を示す。いくつかの状況では、SSブロックとRACHリソースとの間の関連付けは重複し得る。すなわち、複数のSSブロックが、同じRACHリソースおよび/またはPRACHプリアンブルに関連付けられ得るか、または1つのSSブロックが、複数のRACHリソースおよび/またはPRACHプリアンブルに関連付けられ得る。重複するプリアンブルのためのSSブロックインデックスは、RA-RNTI中に埋め込まれ得る。RA-RNTIは、SSブロックインデックスの関数であり得る。代替または追加として、重複するプリアンブルのためのSSブロックインデックスは、ランダムアクセス応答(RAR)中に含まれ得る。そうすることによって、WTRUの間の衝突が重複の結果として回避され得る。さらに、重複するプリアンブルのためのSSブロックインデックスは、RA-RNTI中に埋め込まれ、RAR中に含まれ得る。WTRUは、RA-RNTI中で取得されたSSブロックインデックスとRAR中で取得されたSSブロックインデックスとを収集し得る。WTRUは、RA-RNTI中で取得されたSSブロックインデックスとRAR中で取得されたSSブロックインデックスとを比較し、最終SSブロックインデックスを決定し得る。
【0103】
gNBのRx/Txビーム対応を用いる場合、1つのRACHスロット中の異なるSSブロックに対応するプリアンブルサブセットは、最初のアクセスとランダムアクセスとの容量を増加させるために重複し得る。
【0104】
gNBのRx/Tx対応を用いない場合、1つのRACHスロット中の異なるSSブロックに対応するプリアンブルサブセットが重複される場合、gNBは、異なるSSブロックに関連するTAを正しく分離しないことがあるので、同じ重複するプリアンブルを送る異なるSSブロックを用いる複数のWTRUは衝突し得る。
【0105】
gNBのRx/Tx対応とgNBのTxビーム間の重複とを用いる場合、1つのRACHスロット中の異なるSSブロックに対応するプリアンブルサブセットが重複する場合、同じ重複するプリアンブルを送る異なるSSブロックを用いる複数のWTRUは、RAR内でSSブロックインデックスを送るgNBによって分離され得、これは、それらのWTRUの間での衝突を回避し得る。
【0106】
gNBのRx/Tx対応とgNBのTx/RXビーム間の重複無しとを用いる場合、1つのRACHスロット中の異なるSSブロックに対応するプリアンブルサブセットが重複する場合、同じ重複するプリアンブルを送る異なるSSブロックを用いる複数のWTRUは、gNBのRx/Txビームによって地理的に分離され得、gNBは、RAR内でSSブロックインデックスを送る必要がないことがある。
【0107】
gNBは、アンテナ構造、ビーム構成、および/またはビーム対応に基づいてSSブロックインデックスをRAR中に含めるべきかまたはRA-RNTI中に含めるべきかを構成し得る。
【0108】
図3に示されるように、プリアンブルサブセットと呼ばれる1つまたは複数のサブセットに区分され得るPRACHプリアンブルのセットまたはプール301{1,2,3}があり得る。304のSSブロック1または306のSSブロック2などのSSブロックが1つまたは複数のプリアンブルサブセットに関連付けられ得る。プリアンブルサブセットは、互いに重複することも重複しないこともある。プリアンブルサブセットは、同じプリアンブルを共有することも共有しないこともある。一例では、RACH構成により、1つのRACHオケージョン(RO)内で、プリアンブル1および2が304のSSブロック1に関連付けられるか、またはそれにマッピングされ、サブセット{1,2}を作成し得、プリアンブル2および3が306のSSブロック2に関連付けられるか、またはそれにマッピングされ、サブセット{2,3}を作成し得ることが可能になり得る。第1のプリアンブルサブセット{1,2}は、304のSSブロック1に関連付けられるか、またはそれにマッピングされ得、一方、第2のプリアンブルサブセット{2,3}は、306のSSブロック2に関連付けられるか、またはそれにマッピングされ得る。この例の通り、プリアンブルサブセットは互いに重複し得る。プリアンブル2は、304のSSブロック2および306のSSブロック2によって共有され得る。
【0109】
gNBにおいて、305のTxビーム1は、304のSSブロック1に関連付けられ得、307のTxビーム2は、306のSSブロック2に関連付けられ得る。
【0110】
場合1では、305のTxビーム1と307のTxビーム2とは重複し得、これは、WTRUが305のTxビーム1と307のTxビーム2とからの信号の両方を受信し得ることを意味する。場合2では、305のTxビーム1と307のTxビーム2とは重複せず、これは、WTRUがTxビーム1またはTxビーム2のいずれかからの信号のみを受信し得、両方を受信し得ないことを意味する。これらの場合1および場合2が与えられれば、シナリオ1、場合1-gNBのTx/Rxビーム対応なし、シナリオ2、場合2-gNBのTx/Rxビーム対応なし、シナリオ3、場合1-gNBのTx/Rxビーム対応あり、およびシナリオ4、場合2-gNBのTx/Rxビーム対応ありの4つのシナリオが考慮され得る。
【0111】
一実施形態では、WTRU Aは、SSブロックを測定し、304のSSブロック1を選択し得、304のSSブロック1に関連するプリアンブルサブセット中でプリアンブルをランダムに選定し得る。WTRUは、プリアンブル2を選択し得る。WTRU Bは、SSブロックを測定し、306のSSブロック2を選択し得、プリアンブルをランダムに選定し得る。WTRU Bはまた、プリアンブル2を選定し得る。
【0112】
gNBは、両方のWTRU(WTRU AおよびWTRU B)から単一のプリアンブル(すなわち、プリアンブル2)を受信し得る。gNBがプリアンブル2を受信するとき、gNBは、SSブロック(304のSSブロック1および306のSSブロック2)が検出されたプリアンブル(プリアンブル2)に関連付けられると決定し得る。gNBは、2つのRAR、305のTxビーム1中のRAR1と307のTxビーム2中のRAR2とを送り得る。RAR1は、RA-RNTIを用いてSSブロックインデックス1を搬送し得、RAR2は、同じRA-RNTIを用いてSSブロックインデックス2を搬送し得る。両方のWTRUは、相応して同じRA-RNTIを復号し、RARを復号し得る。WTRU Aは、(305のTxビーム1中で送られた)RAR1中でSSブロックインデックスを取得し得、WTRU Bは、(307のTxビーム2中で送られた)RAR2中でSSブロックインデックスを取得し得、各WTRUは、受信されたSSブロックインデックスとそれ自体の選択されたSSブロックとを比較し得る(304のSSブロック1の場合WTRU Aおよび306のSSブロック2の場合WTRU B)。それらが一致する場合、各WTRUは、RARがそれ自体を対象としていると仮定し、それ自体のRAR中で受信された許可に基づいてメッセージ3を送り得る。そうでない場合、各WTRUは、受信されたRARを破棄し得る。WTRU AとWTRU Bとの両方が304のSSブロック1(または306のSSブロック2)を選択する場合、WTRU AおよびBは、RAR1(またはRAR2)中でSSブロックインデックスを取得し得、衝突が発生し得る。潜在的な衝突を低減または除去するために、冗長バージョンのプリアンブル方法が使用され得る。
【0113】
gNBがTx/Rxビーム対応を有するとき、タイミングアドバンス(TA)が、RARを送信するビームのためにRAR中に含まれ得る。そのような状況では、SSブロック固有のTAおよび/またはビーム固有のTAが使用され得る。gNBが、異なるSSブロックのために異なるRxビームからプリアンブルを受信し得るので、同じプリアンブルが両方のWTRUによって送られるが、gNBは、RxビームごとにTAを推定し得る。RAR1では、WTRU AのためのTA1が、304のSSブロック1に関連する305のTxビーム1中で送られるRAR1中に含まれ得る。WTRU BのためのTA2はまた、306のSSブロック2に関連する307のTxビーム2中で送られるRAR2中に含まれ得る。
【0114】
いくつかの状況では、gNBは、Tx/Rxビーム対応を有しないことがある。たとえば、WTRU Aのプリアンブル2とWTRU Bのプリアンブル2とが同じRxビームから受信されることも、受信されないこともある。それらが同じRxビームから受信される場合、gNBは、それが同じプリアンブルであるが、2つの異なるWTRUsによって送られたとわかることができないことがある。それらが異なるRxビームからのものである場合、gNBは、このプリアンブルが2つの異なるRxビーム中で2つの異なるWTRUから送られるということを知り、2つのWTRUに対応するTAが推定され得る。Tx/Rx対応がないので、gNBは、どのTAが304のSSブロック1のためのものであり、どれが306のSSブロック2のためのものであるのかを知らないことがある。したがって、TAは、ビーム対応の関数であり得る。
【0115】
Tx/Rx対応を用いるシナリオ3の場合、gNBは、304のSSブロック1のためのプリアンブル2のTAを知り、それがRAR 1中に含まれ得ることを知り得る。gNBはまた、プリアンブル2のTAを知り、それがRAR 2中に含まれ得ることを知り得る。
【0116】
シナリオ1または2の場合、TAは、一例ではWTRUのために正しく推定されないことがある。
【0117】
シナリオ3の場合、TAは、正しく推定され得る。WTRU Aは、RA-RNTIを用いてCORESETを通してRAR1を受信し、プリアンブルインデックス(プリアンブル2)とSSブロックインデックス(304のSSブロック1)とが自体のためのものであることをチェックし得る。同様に、WTRU Bは、RA-RNTIを用いてCORESETを通してRAR2を受信し、プリアンブルインデックス(プリアンブル2)とSSブロックインデックス(SSブロック2)とが自体のためのものであることをチェックし得る。
【0118】
シナリオ1または3の場合、WTRU Aは、同じく、RAR2を受信し得るが、RAR2中のSSブロックインデックス(306のSSブロック2)は、それがSSブロック(304のSSブロック1)のために選択したものと一致しないことがあり、したがって、WTRU Aは、RAR2を破棄し得る。同様に、WTRU Bは、同じく、RAR1を受信し得るが、RAR1中のSSブロックインデックス(304のSSブロック1)は、それがSSブロック(306のSSブロック2)のために選択したものと一致しないことがあり、したがって、WTRU Bは、RAR1を破棄し得る。
【0119】
シナリオ4の場合、WTRU Aは、それ自体のためのRARのみを受信し得、WTRU Bは、それ自体のためのRARのみを受信し得る。gNBは、RAR中にSSブロックインデックスを含める必要がないことがある。
【0120】
gNBは、RAR中にSSブロックインデックスを含めるか、またはRAR中にSSブロックインデックスを含めないように構成され得る。さらに、gNBは、RARおよび/またはRA-RNTI中にSSブロックインデックスを含めるか、またはそれを埋め込むように構成され得る。gNBは、RARとRA-RNTIとのいずれかの中にSSブロックインデックスを含めないか、またはそれを埋め込まないように構成され得る。RARおよび/またはRA-RNTI中へのSSブロックインデックスの包含のための構成は、NR-PBCH、RMSI、OSI、ページングなどに示され得る。
【0121】
WTRUは、gNBのビーム対応(BC)に関するBC表示をgNBから受信し得る。BC表示が、「BC」とPRACHプリアンブルサブセットとの重複が構成されることを示す場合、WTRUは、SSブロックインデックスがRARまたはRA-RNTI中に存在すると仮定し得る。そうでない場合、WTRUは、SSブロックインデックスがRARまたはRA-RNTI中に存在しないと仮定し得る。RAR、NR-PBCH、残存最小システム情報(RMSI)などの中のSSブロックインデックスの存在/不在を示すために、フラグまたは1ビットのインジケータが使用され得る。
【0122】
シナリオ3のRACH構成の場合、WTRUは、304のSSブロック1を選択し、プリアンブル2を送り得、gNBは、Rxビーム1を用いてプリアンブル2を受信し、相応してTAを推定し得る。ビーム対応により、TAが304のSSブロック1について知られ得る。gNBは、304のSSブロック1に対応するプリアンブル2のためのランダムアクセスプリアンブルID(RAPID)ならびに対応するTAおよびRACH Msg3許可をもつRA-RNTIおよびRARを用いてRARを送り得る。WTRUは、RARを正常に受信し、RACH Msg3許可を取得し得る。
【0123】
一実施形態では、WTRU Aは、304のSSブロック1を選択し、プリアンブル2を送り得る。同時に、WTRU Bは、306のSSブロック2を選択し、プリアンブル2を送り得る。gNBは、Rxビーム1を用いてプリアンブル2を受信し、TA1を推定し得、gNBは、Rxビーム2を用いてプリアンブル2を受信し、TA2を取得し得る。ビーム対応によれば、TA1は、304のSSブロック1のためのものであり得、TA2は、306のSSブロック2のためのものであり得る。gNBは、プリアンブル2についての情報、304のSSブロック1、TA1、およびMsg3許可をもつRA-RNTIを用いてgNB305のTxビーム1中でRAR1を送り得る。gNBはまた、プリアンブル2についての情報、304のSSブロック2、TA2、および別のMsg3許可をもつRA-RNTIを用いてgNB307のTxビーム2中でRAR2を送り得る。RAR1中のSSブロックインデックスがWTRU Aを対象としているので、WTRU AはRAR1を受信し得る。RAR2中のSSブロックインデックスがWTRU Bを対象としているので、WTRU BはRAR2を受信し得る。
【0124】
3つのWTRU(図示せず)のための一実施形態では、WTRU A、B、およびCは、同時にプリアンブル2を送り得る。WTRU AおよびCは、SSブロック1を選択し得、WTRU Bは、SSブロック2を選択し得る。gNBは、Rxビーム1および2の両方によってプリアンブルを受信し得、それぞれ、RAR1およびRAR2を送り得る。RAR1中のSSブロックインデックスは1であるので、WTRU AとWTRU CとはRAR1を受信し得、両方のWTRUは、同じUL許可を使用し、TA1を適用してRACH Msg3を送り得る。WTRU Bは、TA2を適用することによってRAR2を受信し、RACH Msg3を送り得る。WTRU AおよびWTRU CのRACH Msg3は、互いと衝突し得、gNBは、TAが正しいWTRUのうちの1つからただ1つのRACH Msg3を正常に受信し得、他のRACH Msg3を復号するのに失敗し得る(すなわち、gNBは両方のRACH Msg3を受信することができないことがある)。
【0125】
1つまたは複数の実施形態では、プリアンブルタイプは、SSブロックとRACHとの階層的な関連付けに基づき得る。SSブロックは、RACHオケージョンに関連付けられ得る。たとえば、1つのSSブロックが、1つのRACHオケージョンに関連付けられ得る。RACHオケージョンのためのすべてのプリアンブルインデックスが、同じSSブロックに関連付けられ得る。WTRUは、任意の1つのプリアンブルをランダムに選択し、WTRUがgNBに搬送したいと望み得る選択されたSSブロックに関連するRACHオケージョン中で選択されたプリアンブルを送信し得る。
【0126】
一代替では、SSブロックは、RACHオケージョンとプリアンブルとの両方に関連付けられ得る。複数のSSブロックがまた、1つのRACH送信オケージョンに関連付けられ得、階層的な関連付けが使用され得る。SSブロック(たとえば、実際に送信されるSSブロック)は、グループ(たとえば、K個のグループ)に分割され得、ここで、Kは、何らかの非負整数である。SSブロックグループは、RACHオケージョンに関連付けられ得る。各RACHオケージョン内で、SSブロックグループ内のSSブロックは、対応するRACHオケージョンに属するプリアンブルに関連付けられ得る。SSブロックは、RACHオケージョンとプリアンブルインデックスとの組合せに関連付けられ得る。RACHオケージョンのためのプリアンブルインデックスが、SSブロックに関連付けられ得る。RACHオケージョン内の1つまたは複数のプリアンブルインデックスが、SSブロックに関連付けられ得る。各SSブロックのためのプリアンブルインデックスは、連続的にまたは非連続的にマッピングされ得る。非連続マッピングの場合、各SSブロックのためのプリアンブルインデックスは、インターリーブされた様式または分散様式でマッピングされ得る。WTRUは、gNBに送られるべき選択されたSSブロックに関連するプリアンブルを選択し、これらの複数のSSブロックに関連するRACHオケージョン中で選択されたプリアンブルを送信し得る。
【0127】
1つまたは複数の場合では、SSブロックは、実際に送信されるSSブロックであり得る。代替または追加として、SSブロックは、候補SSブロック、公称SSブロック、または送信されるもしくは送信されないSSブロックを含むすべてのSSブロックであり得る。WTRUが実際に送信されるSSブロックについて示される場合、WTRUは、RACHオケージョンまたはリソースとの関連付けのために実際に送信されるSSブロックを使用し得る。WTRUが実際に送信されるSSブロックについて示されない場合、WTRUは、候補SSブロック、公称SSブロックまたはRACHオケージョンもしくはリソースとの関連付けのために送信されるもしくは送信されないSSブロックを含むすべてのSSブロックを使用し得る。WTRUが、RACHオケージョンまたはリソースに関連するために候補SSブロック、公称SSブロック、またはすべてのSSブロックを使用するように示されるまたは構成される場合、WTRUが実際に送信されるSSブロックについて示され得る場合でも、これは、実際に送信されるSSブロックを使用する場合をオーバーライドし得る。たとえば、そのようなオーバーライド表示または関連付け構成がRRCシグナリングまたはNR-PBCH中にあり得る。実際に送信されるSSブロックは、RMSIまたはOSI中で示され得る。
【0128】
本明細書で説明される技法は、競合ベースのランダムアクセスまたは無競合のランダムアクセスのいずれかに適用され得、および/または、同じく、競合ベースのランダムアクセスと無競合のランダムアクセスとの両方に適用され得る。
【0129】
図4は、プリアンブルおよびSSブロックの関連付けの一例を示す。図示のように、プリアンブルは、2つ以上のタイプをもつ複数のサブセットA、B、およびCに区分されうる401。第1のタイプのプリアンブルサブセットは、1つのSSブロックに関連付けられ得る。第2のタイプのプリアンブルサブセットは、2つ以上のSSブロックに関連付けられ得る。たとえば、プリアンブルサブセットAおよびBはそれぞれ、それぞれSSブロック402およびSSブロック404などの1つのSSブロックに関連付けられ得る第1のタイプのプリアンブルサブセットであり得る。プリアンブルサブセットCは、SSブロック402および404などの1つ以上のSSブロックに関連付けられ得る第2のタイプのプリアンブルサブセットであり得る。
【0130】
ある場合には、SSブロック402とSSブロック404とは、それらの関連する送信されたビームに関して互いに隣接し得る。SSブロック402は、インデックスmを有し得、SSブロック404は、インデックスnを有し得る。この場合、mはn+1またはn-1である。
【0131】
図5は、RACHリソースおよびSSブロックの関連付けの例示的な方法を示す。説明のために、RACHリソースとRACHオケージョンとは適切なときに交換可能であり得る。図示のように、RACHリソースは、2つ以上のタイプをもつ複数のサブセットA、B、およびCに区分され得る501。第1のタイプのRACHリソースサブセットは、1つのSSブロックに関連付けられ得る。第2のタイプのRACHリソースサブセットは、2つ以上のSSブロックに関連付けられ得る。たとえば、RACHリソースサブセットAおよびBはそれぞれ、それぞれSSブロック502およびSSブロック504などの1つのSSブロックに関連付けられ得る第1のタイプのプリアンブルサブセットであり得る。RACHリソースサブセットCは、SSブロック503とSSブロック504との両方などの2つ以上のSSブロックに関連付けられ得る第2のタイプのプリアンブルサブセットであり得る。
【0132】
ある場合には、SSブロック502とSSブロック504とは、それらの関連する送信されたビームに関して互いに隣接し得る。SSブロック402は、インデックスmを有し得、SSブロック404は、インデックスnを有し得る。この場合、mはn+1またはn-1である。
【0133】
図6は、SSブロックの関連付けおよびRACHへのマッピングの例示的なプロセスを示す。WTRUは、開示されるように、ステージのうちの1つまたは複数を実施し得る。602において、実際に送信されるSSブロック(SSブロック)がWTRUに示され得る。604において、実際に送信されるSSブロックが、SSブロックグループに区分され得る。606において、SSブロックまたはSSブロックグループは、ROまたはRACHリソースにマッピングされる。608において、ROまたはRACHリソースごとに2つ以上のSSブロックがある場合、612において、SSブロックが、ROまたはRACHリソースごとにプリアンブルにマッピングされ得、その後、614のプリアンブルタイプベースのまたは非プリアンブルタイプベースのプリアンブルサブセット区分およびマッピングがあり得る。608に従ってROまたはRACHリソースごとに2つ以上のSSブロックがない場合、プロセスは610において停止し得る。
【0134】
図7は、SSブロックの関連付けおよびRACHへのマッピングの別の例示的な方法を示す概略図である。WTRUは、この例の1つまたは複数のステージを実行し得る。702において、実際に送信されるSSブロックの数がWTRUに示され得る。704において、ROごとのSSブロックごとのプリアンブルの数がWTRUに示され得る。706において、ROごとのSSブロックの数がWTRUに示され得る。708において、周波数領域中のRO(FDM RO)の数がWTRUに示され得る。710において、スロット中のRO(TDM RO)の数がWTRUに示され得る。712において、RACHのためのスロットの数がWTRUに示され得る。714において、プリアンブルにSSブロックをマッピングするプリアンブル第1マッピングがあり得る。716において、周波数領域RO(FDM RO)にSSブロックをマッピングする周波数第2マッピングがあり得る。718において、時間領域RO(TDM RO)にSSブロックをマッピングする時間第3マッピングがあり得る。717において、スロット内で時間領域ROにSSブロックをマッピングする同一スロット第1マッピングがあり得る。719において、スロットにわたって時間領域ROにSSブロックをマッピングするクロススロット第2マッピングがあり得る。同一スロットマッピングが十分な場合、クロススロットマッピングは必要とされないことがある。同一スロットマッピングが十分でない(たとえば、ROにマッピングされる必要がある多くのSSBがある)場合、クロススロットマッピングが実行され得る。720において、すべてのROについてマッピングサイクルが完了される場合、724に進み、停止する。720において、ROについてマッピングサイクルが完了されない場合、722において残りのROを破棄する。
【0135】
1つまたは複数の実施形態では、PRACHリソースパッケージベースのビームスイープがあり得る。PRACHプリアンブルフォーマット中のOFDMシンボルの数またはPRACHプリアンブルフォーマットの繰り返し数は、gNBのRxビームの数より小さくなり得る。gNBは、複数のRACHオケージョンを使用してPRACHのためのRxビームをスイープし得る。複数のRACHオケージョンは、1つまたは複数のRACHリソース(たとえば、1つまたは複数のスロット、非スロット、ミニスロットまたはOFDMシンボル)からなり得る。複数のRACHオケージョンは、連続であることも、連続でないこともある。複数のRACHオケージョンが1つのWTRUに構成され得る。ある場合には、WTRUは、パッケージとして複数のRACHオケージョンがあり得ると仮定し得る。WTRUは、すべてのビームがスイープされるまで第1のRACHオケージョン、第2のRACHオケージョン、第3のRACHオケージョン以下同様を使用してPRACHプリアンブル送信を開始し得る。実際に送信されるSSブロックの数またはgNBにおけるビームの数に応じて、K個のOFDMシンボルをもつ(パッケージとしての)複数のRACHオケージョンが、gNBにおけるK個の実際に送信されるSSブロックまたはビームのためにWTRUに構成され得る。gNBのRxビームスイープに加えてWTRUのTxビームスイープをさらにサポートするために、WTRUがM個のTxビームを有する場合、K個×M個のOFDMシンボルをもつ(パッケージとしての)複数のRACHオケージョンがWTRUに構成され得る。プリアンブルフォーマットA、Bおよび/またはCなどの異なるPRACHプリアンブルフォーマットが使用され得る。たとえば、PRACHプリアンブルフォーマットAは、A0、A1、A2、A3であり得、プリアンブルフォーマットBは、B1、B2、B3およびB4であり得る。プリアンブルフォーマットCは、C0およびC1であり得る。SSブロックの数は、Lとして記号で表され得る。gNBのRxビームの数は、Nrxとして記号で表され得る。構成されたプリアンブルフォーマットの繰り返し数は、Nrpとして記号で表され得る。
【0136】
ビーム対応がない場合、gNBがWTRUから複数のRACHトライアルを受信するためにすべてのRxビームをスイープすることができることを保証するために、gNBは、RACHオケージョンの天井
【0137】
【0138】
個のタイプを構成し得る。すべてのgNBのRxビームは、「RACHオケージョンパッケージ」によってスイープされ得る。これは、SSブロックごとにまたはすべてのSSブロックのために構成され得る。異なるタイプのRACHオケージョンは、異なるNrp個のgNBのRxビームに対応し得る。RACHオケージョンの天井
【0139】
【0140】
個のタイプは、「RACHオケージョンパッケージ」として定義され得る。
【0141】
RACH Msg1の再送信の場合、WTRUは、gNBのRxビームスイープを完了するために前のRACH Msg1(再)送信において使用されなかった異なるRACHオケージョンタイプをピックアップし得る。
【0142】
RACH Msg1の再送信の場合、WTRUのUL Txビームを変更すべきかどうか、電力をランプアップすべきかどうか、またはRACHオケージョンのタイプを変更すべきかどうかについて決定するようにWTRUによって構成または決定され得る。
【0143】
図8は、ランダムアクセスチャネル(RACH)オケージョンの806および808などのウィンドウ長が804などのRACH構成期間と同じであり得るRACHオケージョンタイプごとのウィンドウ長の例示的な構成を示す。RACHオケージョンタイプごとのウィンドウ長は、すべてのRACHオケージョンタイプのウィンドウ長が同じになるように構成され得る。たとえば、ウィンドウ長806は、RACH構成期間804と同じであり得る。代替または追加として、すべてのRACHオケージョンタイプのウィンドウ長は、N個×RACH構成期間(図示せず)であり得、ここで、Nは、残存最小システム情報(RMSI)中に構成され得る。一例では、Nは、1よりも大きい整数であり得る。
【0144】
図9は、ランダムアクセスチャネル(RACH)オケージョンのウィンドウ長がRACH構成期間の2倍であるRACHオケージョンタイプごとのウィンドウ長の例示的な構成を示す。図示のように、RACHオケージョンタイプのためのウィンドウ長906は、RACH構成期間904の2倍になるように構成される。
【0145】
図10は、ランダムアクセスチャネル(RACH)オケージョンのウィンドウ長がRACH構成期間よりも短いRACHオケージョンタイプごとのウィンドウ長の例示的な構成を示す。図示のように、RACHオケージョンタイプごとのウィンドウ長1006は、RACH構成期間1004よりも短くなり得る。すべてのRACHオケージョンタイプは、RACH構成期間内にあり得る。いくつかの実施形態では、異なるRACHオケージョンタイプのウィンドウ長は異なり得る。ウィンドウ長のあらかじめ定義されたパターンが使用され得る。WTRUは、RMSI中で1つのパターンで構成され得る。
【0146】
RACHオケージョンタイプの数Qは、NR-PBCHまたはRMSI中でWTRUに示され得る。ビーム対応によっては、Qは、異なる値を有し得る。たとえば、ビーム対応なしのgNBの場合、Y=天井
【0147】
【0148】
である。ビーム対応をもつgNBの場合、Y=1である。部分ビーム対応をもつgNBの場合、Y=天井
【0149】
【0150】
であり、ここで、
【0151】
【0152】
は、SSブロックに対応するgNBのTxビームとの重複を有するgNBのRxビームの数である。たとえば、Nrx=4であり、Nrp=2であり、L=4である。SSブロックごとに2つのタイプのRACHオケージョンがあり得る。タイプ1のRACHオケージョンは、gNBのRxビーム0および1によって受信され得る。タイプ2のRACHオケージョンは、gNBのRxビーム2および3によって受信され得る。
【0153】
一実施形態では、Nrxは64に設定され得、Nrpは12に設定され得、Lは、64に設定され得る(すなわちNrx=64であり、Nrp=12であり、L=64である)。SSブロックごとに6つのタイプのRACHオケージョンがあり得る。各タイプのRACHオケージョンは、12個のgNBのRxビームによって受信され得、gNBのRxビームのサブセットは、異なるタイプのRACHオケージョンごとに異なり得る。
【0154】
別の実施形態では、Nrxは2に設定され得、Nrpは2に設定され得る(すなわちNrx=2であり、Nrp=2である)。この実施形態では、ただ1つのタイプのRACHオケージョンがあり得る。
【0155】
図11は、SSビーム報告に基づくプリアンブルの例示的な冗長バージョンを示す。WTRU1106は、リッスンビフォアトーク(LBT)を実行し、RACHプリアンブルを送信し得る。gNB1101は、LBTを実行し、RARを送信し得る。gNB1101は、1104のビーム1中でLBTに失敗する場合、1104のビーム1中でRARを送信しないことがある。WTRU1106が、ただ1つのビーム(たとえば、1104のビーム1)を報告する場合、WTRU1106は、gNB1101のLBTの失敗によりRARを受信しないことがある。
【0156】
一実施形態では、WTRU1106は、1104のビーム1および1105のビーム2などの(特に、ビームの重複エリアにある)2つ以上のビームを報告し得る。WTRU1106は、他のビームのためのSSブロックとともに最も強いビームのためのSSブロックを報告し得る。WTRU1106は、LBTを実行し、SSブロック#1(たとえば、1104のビーム1)およびSSブロック#2(たとえば、1106のビーム2)に関連し得るRACHプリアンブルを送信し得る。gNB1101は、2つ以上のビーム(たとえば、1104のビーム1および1106のビーム2)に対してLBTを実行し得、相応してRARを送信し得る。gNB1101は、1104のビーム1中でLBTに失敗する場合、他のビーム(たとえば、1106のビーム2)中でRARを送信し得る。一方、gNB1101は、1106のビーム2中でLBTに失敗する場合、他のビーム(たとえば、1104のビーム1)中でRARを送信し得る。gNB1101が両方のまたはすべてのビーム中でLBTに失敗しない限り、RARを送信する前にチャネルがクリアになるまでgNB1101はLBTを実行する続ける必要があり得る。これは、有意な遅延および高いレイテンシを生じ得る。WTRU1106から2つ以上のSSブロックを報告することによって、gNB1101は、遅延なしでRARを送信することが可能であり得る。プリアンブルとSSブロックとの関連付けは、1つのプリアンブル対多くのSSブロックであり得る。たとえば、プリアンブル#1はSSブロック#1および#2に関連付けられ得、プリアンブル#2はSSブロック#3および#4に関連付けられ得、以下同様に行われ得る。
【0157】
しかしながら、2つ以上のWTRUがビームの同じ重複するエリア中にあるとき、複数のWTRUは、同じプリアンブルを報告し得、これは、衝突を生じる(図示せず)。NRまたはNR-無認可では、ビームの同じ重複するエリア中のWTRUは同じプリアンブルを報告し得、これは、WTRUが同じRACHオケージョンを選択する場合にプリアンブル衝突を生じ得る。
【0158】
一実施形態では、冗長バージョンベースのSSブロック報告が使用され得、gNBは、遅延なしでRARを送信することが可能であり得る。プリアンブルおよびSSブロックの関連付けは、プリアンブルの冗長性に基づき得る。
【0159】
一実施形態では、プリアンブル関連付けの冗長バージョンが使用され得、ここで、プリアンブルおよびSSブロックの関連付けは、1つのプリアンブル対多くのSSブロックであり得、プリアンブルおよびSSブロックの同じ関連付けの冗長バージョンが使用され得る。たとえば、プリアンブル#1がSSブロック#1および#2に関連付けられる場合、プリアンブル#2は、プリアンブル#1の冗長バージョンであり得、やはり同じSSブロック(たとえば、SSブロック#1および#2)に関連付けられ得る。ビームの同じ重複するエリア中のWTRUが同じプリアンブルを報告しないことがあるので、これは、WTRUの衝突を除去または低減し得る。
【0160】
ある場合には、WTRUは、プリアンブルまたはRACH Msg3を使用して2つ以上のSSブロックを報告し得る。プリアンブルベースのSSブロック報告が使用される場合、1つのプリアンブルが複数のSSブロックにマッピングされ得る(たとえば、プリアンブル#1が、SSブロック#1およびSSブロック#2にマッピングされる)。さらに衝突を低減するために、同じマッピングが別のプリアンブルに対して繰り返され得る。たとえば、プリアンブル#1の冗長バージョンがプリアンブル#3のために生成され得る。別の例では、プリアンブル#1の冗長バージョンは、同じSSブロック(たとえば、SSブロック#1およびSSブロック#2)にマッピングされ得るプリアンブル#2、もしくは同じSSブロック(たとえば、SSブロック#1およびSSブロック#2)にマッピングされ得るプリアンブル#3の1つであり得る。gNBは、指向性LBTを実行し、RARを送り得る。LBTがSSブロック1中で失敗する場合、gNBは、SSブロック2中でRARを送る柔軟性を有し得る。
【0161】
RACH Msg3ベースのSSブロック報告が使用される場合、RACH Msg 3は、プリアンブル#1がSSブロック#1とSSブロック#2とにマッピングされ得、プリアンブル#2がSSブロック#1とSSブロック#2とにマッピングされ得、および/またはプリアンブル#3がSSブロック#1およびSSブロック#2とにマッピングされ得るようにそれのペイロード中にマッピングのための冗長バージョンを含め得る。
【0162】
プリアンブルベースのSSブロック報告の冗長バージョンは、ランダムアクセス、データのためのビーム管理、ならびに/または制御、モビリティ、および/あるいは他の使用事例およびシナリオを含む最初のアクセスおよびチャネルアクセスに適用され得る。プリアンブルベースのSSブロック報告の冗長バージョンは、NR認可帯域または無認可帯域ならびにスタンドアロンまたは非スタンドアロンシステムに適用され得る。
【0163】
本発明の特徴および要素が特定の組合せで好ましい実施形態で説明されているが、各特徴または要素は、好ましい実施形態の他の特徴および要素なしに単独で使用されるか、または本発明の他の特徴および要素ありでもしくはなしで様々な組合せで使用され得る。
【0164】
本明細書で説明される実施形態がLTE、LTE-A、新無線(NR)または5Gに固有のプロトコルについて考えるが、本明細書で説明される実施形態が、このシナリオに制限されず、他のワイヤレスシステムにも適用可能であることを理解されたい。
【0165】
特徴および要素について、特定の組合せで上記で説明したが、各特徴または要素が単独でまたは他の特徴および要素との任意の組合せで使用され得ることを、当業者は諒解されよう。さらに、本明細書で説明する方法は、コンピュータまたはプロセッサが実行するためのコンピュータ可読媒体に組み込まれたコンピュータプログラム、ソフトウェア、またはファームウェアで実装され得る。コンピュータ可読媒体の例は、(ワイヤードまたはワイヤレス接続を介して送信される)電子信号およびコンピュータ可読記憶媒体を含む。コンピュータ可読記憶媒体の例は、限定はしないが、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、レジスタ、キャッシュメモリ、半導体メモリデバイス、内蔵ハードディスクおよびリムーバブルディスクなどの磁気メディア、光磁気メディア、ならびにCD-ROMディスクおよびデジタル多用途ディスク(DVD)などの光メディアを含む。ソフトウェアに関連するプロセッサは、WTRU、UE、端末、基地局、RNC、または任意のホストコンピュータにおいて使用するための無線周波数トランシーバを実装するために使用され得る。