(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024128000
(43)【公開日】2024-09-20
(54)【発明の名称】半導体装置
(51)【国際特許分類】
H01L 21/336 20060101AFI20240912BHJP
H01L 29/786 20060101ALI20240912BHJP
H01L 21/8234 20060101ALI20240912BHJP
【FI】
H01L29/78 617S
H01L29/78 618B
H01L29/78 617T
H01L29/78 619A
H01L27/06 102A
【審査請求】有
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2024108289
(22)【出願日】2024-07-04
(62)【分割の表示】P 2020503103の分割
【原出願日】2019-02-21
(31)【優先権主張番号】P 2018037162
(32)【優先日】2018-03-02
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】山崎 舜平
(72)【発明者】
【氏名】栃林 克明
(72)【発明者】
【氏名】岡本 悟
(57)【要約】
【課題】オン電流が大きい半導体装置を提供する。
【解決手段】第1の絶縁体と、第1の絶縁体上の第1の酸化物と、第1の酸化物上に互いに離間して設けられた第1の導電体、および第2の導電体と、第1の絶縁体、第1の酸化物、第1の導電体、および第2の導電体を覆う第2の絶縁体と、第2の絶縁体上の第3の絶縁体と、第1の導電体、第2の導電体の側面、第2の絶縁体の側面、および第3の絶縁体の側面に接する第4の絶縁体と、第1の酸化物上、かつ第4の絶縁体の内側に設けられた第5の絶縁体と、第5の絶縁体の内側に設けられた第3の導電体と、第4の絶縁体の上面に接し、かつ第3の絶縁体、第5の絶縁体、および第3の導電体上に設けられた第6の絶縁体を有し、第4の絶縁体は、第1の酸化物上で、互いに離間している半導体装置。
【選択図】
図1
【特許請求の範囲】
【請求項1】
第1の絶縁体と、
前記第1の絶縁体上の第1の酸化物と、
前記第1の酸化物上に互いに離間して設けられた第1の導電体、および第2の導電体と、
前記第1の絶縁体、前記第1の酸化物、前記第1の導電体および前記第2の導電体を覆う第2の絶縁体と、
前記第2の絶縁体上の第3の絶縁体と、
前記第1の導電体の側面の一部、前記第2の導電体の側面の一部、前記第2の絶縁体の側面および前記第3の絶縁体の側面に接する第4の絶縁体と、
前記第1の酸化物と接し、前記第4の絶縁体の内側、前記第1の導電体の側面の一部および前記第2の導電体の側面の一部と接する第2の酸化物と、
前記第2の酸化物の内側に設けられた第5の絶縁体と、
前記第5の絶縁体の内側に設けられた第3の導電体と、
前記第4の絶縁体の上面に接し、かつ前記第3の絶縁体、前記第2の酸化物、前記第5の絶縁体および前記第3の導電体上に設けられた第6の絶縁体と、
前記第3の絶縁体および前記第6の絶縁体に設けられた第1の開口部において、前記第3の絶縁体の側面および前記第6の絶縁体の側面に接する第7の絶縁体と、
前記第3の絶縁体および前記第6の絶縁体に設けられた第2の開口部において、前記第3の絶縁体の側面および前記第6の絶縁体の側面に接する第8の絶縁体と、
前記第7の絶縁体の内側に設けられた第4の導電体と、
前記第8の絶縁体の内側に設けられた第5の導電体と、を有し、
前記第4の絶縁体は第3の開口部を有し、
前記第3の開口部は、前記第1の導電体および前記第2の導電体と重ならず、
前記第3の導電体は、前記第1の導電体および前記第2の導電体と重ならず、
前記第4の導電体は、前記第7の絶縁体の第4の開口部において前記第1の導電体と電気的に接続され、
前記第5の導電体は、前記第8の絶縁体の第5の開口部において前記第2の導電体と電気的に接続される、半導体装置。
【請求項2】
請求項1において、
前記第1の酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有する、半導体装置。
【請求項3】
請求項1または請求項2において、
前記第4の絶縁体は、ハフニウム、およびアルミニウムの一方、または両方を含む、半導体装置。
【請求項4】
請求項1乃至請求項3のいずれか一項において、
前記第7の絶縁体および前記第8の絶縁体は、酸化アルミニウムまたは酸化ハフニウムを含む、半導体装置。
【請求項5】
請求項1乃至請求項4のいずれか一項において、
前記第2の絶縁体は、第1の層、および第2の層を含む積層構造を有し、
前記第1の層は、前記第1の絶縁体と接し、
前記第2の層は、前記第3の絶縁体と接する、半導体装置。
【請求項6】
請求項5において、
前記第1の層は、窒化シリコンを含み、
前記第2の層は、酸化アルミニウムを含む、半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュール、および電子機器に関する。
【0002】
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、および電子機器などは、半導体装置を有すると言える場合がある。
【0003】
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
【背景技術】
【0004】
トランジスタに適用可能な半導体薄膜として、シリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。酸化物半導体としては、例えば、酸化インジウム、酸化亜鉛などの一元系金属の酸化物のみでなく、多元系金属の酸化物も知られている。多元系金属の酸化物の中でも、特に、In-Ga-Zn酸化物(以下、IGZOとも呼ぶ。)に関する研究が盛んに行われている。
【0005】
IGZOに関する研究により、酸化物半導体において、単結晶でも非晶質でもない、CAAC(c-axis aligned crystalline)構造およびnc(nanocrystalline)構造が見出された(非特許文献1乃至非特許文献3参照。)。非特許文献1および非特許文献2では、CAAC構造を有する酸化物半導体を用いてトランジスタを作製する技術も開示されている。さらに、CAAC構造およびnc構造よりも結晶性の低い酸化物半導体でさえも、微小な結晶を有することが、非特許文献4および非特許文献5に示されている。
【0006】
さらに、IGZOを活性層として用いたトランジスタは極めて低いオフ電流を持ち(非特許文献6参照。)、その特性を利用したLSIおよびディスプレイが報告されている(非特許文献7および非特許文献8参照。)。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】S. Yamazaki et al., “SID Symposium Digest of Technical Papers”, 2012, volume 43, issue 1, p.183-186
【非特許文献2】S. Yamazaki et al., “Japanese Journal of Applied Physics”, 2014, volume 53, Number 4S, p.04ED18-1-04ED18-10
【非特許文献3】S. Ito et al., “The Proceedings of AM-FPD’13 Digest of Technical Papers”, 2013, p.151-154
【非特許文献4】S. Yamazaki et al., “ECS Journal of Solid State Science and Technology”, 2014, volume 3, issue 9, p.Q3012-Q3022
【非特許文献5】S. Yamazaki, “ECS Transactions”,2014, volume 64, issue 10, p.155-164
【非特許文献6】K. Kato et al., “Japanese Journal of Applied Physics”, 2012, volume 51, p.021201-1-021201-7
【非特許文献7】S. Matsuda et al., “2015 Symposium on VLSI Technology Digest of Technical Papers”, 2015, p.T216-T217
【非特許文献8】S. Amano et al., “SID Symposium Digest of Technical Papers”, 2010, volume 41, issue 1, p.626-629
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一つとする。または、本発明の一態様は、高い周波数特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。
【0009】
本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、情報の書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。
【0010】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
【課題を解決するための手段】
【0011】
本発明の一態様は、第1の絶縁体と、第1の絶縁体上の第1の酸化物と、第1の酸化物上に互いに離間して設けられた第1の導電体、および第2の導電体と、第1の絶縁体、第1の酸化物、第1の導電体、および第2の導電体を覆う第2の絶縁体と、第2の絶縁体上の第3の絶縁体と、第1の導電体、第2の導電体の側面、第2の絶縁体の側面、および第3の絶縁体の側面に接する第4の絶縁体と、第1の酸化物上、かつ第4の絶縁体の内側に設けられた第5の絶縁体と、第5の絶縁体の内側に設けられた第3の導電体と、第4の絶縁体の上面に接し、かつ第3の絶縁体、第5の絶縁体、および第3の導電体上に設けられた第6の絶縁体を有し、第4の絶縁体は、第1の酸化物上で、互いに離間している半導体装置である。
【0012】
本発明の一態様は、第1の絶縁体と、第1の絶縁体上の第1の酸化物と、第1の酸化物上に互いに離間して設けられた第1の導電体、および第2の導電体と、第1の絶縁体、第1の酸化物、第1の導電体、および第2の導電体を覆う第2の絶縁体と、第2の絶縁体上の第3の絶縁体と、第1の導電体、第2の導電体の側面、第2の絶縁体の側面、および第3の絶縁体の側面に接する第4の絶縁体と、第1の酸化物と接し、かつ第4の絶縁体の内側と接する第2の酸化物と、第2の酸化物の内側に設けられた第5の絶縁体と、第5の絶縁体の内側に設けられた第3の導電体と、第4の絶縁体の上面に接し、かつ第3の絶縁体、第2の酸化物、第5の絶縁体、および第3の導電体上に設けられた第6の絶縁体を有する半導体装置である。
【0013】
上記において、第4の絶縁体は、第1の導電体の側面、および第2の導電体の側面と接することが好ましい。
【0014】
上記において、第4の絶縁体は、第1の酸化物と接することが好ましい。
【0015】
上記において、第1の酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有することが好ましい。
【0016】
上記において、第4の絶縁体は、ハフニウム、およびアルミニウムの一方、または両方を含むことが好ましい。
【0017】
上記において、第6の絶縁体は、第3の導電体と接することが好ましい。
【0018】
上記において、第2の絶縁体は、第1の層、および第2の層を含む積層構造を有し、第1の層は、第1の絶縁体と接し、第2の層は、第3の絶縁体と接することが好ましい。
【0019】
上記において、第1の層は、窒化シリコンを含み、第2の層は、酸化アルミニウムを含むことが好ましい。
【発明の効果】
【0020】
本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、高い周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
【0021】
または、長期間においてデータの保持が可能な半導体装置を提供することができる。または、データの書き込み速度が速い半導体装置を提供することができる。または、設計自由度が高い半導体装置を提供することができる。または、消費電力を抑えることができる半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
【0022】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
【図面の簡単な説明】
【0023】
【
図1】本発明の一態様に係る半導体装置の上面図および断面図。
【
図2】本発明の一態様に係る半導体装置の上面図および断面図。
【
図3】本発明の一態様に係る半導体装置の上面図および断面図。
【
図5】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図6】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図7】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図8】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図9】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図10】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図11】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図12】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図13】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図14】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図15】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図16】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図17】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図18】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図19】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図20】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図21】本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
【
図22】本発明の一態様に係る記憶装置の構成を示す断面図。
【
図23】本発明の一態様に係る記憶装置の構成を示す断面図。
【
図24】本発明の一態様に係る記憶装置の構成例を示す図。
【
図25】本発明の一態様に係る記憶装置の構成例を示す回路図。
【
図26】本発明の一態様に係る電子部品の一例を説明する図。
【
図27】本発明の一態様に係る電子機器の一例を説明する図。
【
図28】本発明の一態様に係る記憶装置の応用例を説明する図。
【発明を実施するための形態】
【0024】
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
【0025】
また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするため、図に反映しないことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
【0026】
また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
【0027】
また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
【0028】
また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
【0029】
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。
【0030】
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
【0031】
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
【0032】
なお、本明細書等において、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
【0033】
このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
【0034】
本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
【0035】
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
【0036】
なお、本明細書等において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものである。
【0037】
また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
【0038】
また、本明細書等において、「平行」とは、二つの直線が-10度以上10度以下の角度で配置されている状態をいう。したがって、-5度以上5度以下の場合も含まれる。また、「概略平行」とは、二つの直線が-30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「概略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
【0039】
なお、本明細書において、バリア膜とは、水、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、当該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。
【0040】
本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む。)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう。)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETあるいはOSトランジスタと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。
【0041】
また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりの電流が、室温において1×10-20A以下、85℃において1×10-18A以下、または125℃において1×10-16A以下であることをいう。
【0042】
(実施の形態1)
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
【0043】
<半導体装置の構成例>
図1(A)、
図1(B)、
図1(C)、および
図1(D)は、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。
【0044】
図1(A)は、トランジスタ200を有する半導体装置の上面図である。また、
図1(B)、
図1(C)、および
図1(D)は、当該半導体装置の断面図である。ここで、
図1(B)は、
図1(A)にA1-A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、
図1(C)は、
図1(A)にA3-A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、
図1(D)は、
図1(A)にA5-A6の一点鎖線で示す部位の断面図であり、トランジスタ200の導電体240bとの接続部における断面図でもある。なお、
図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
【0045】
本発明の一態様の半導体装置は、トランジスタ200と、トランジスタ200上の絶縁体274、および絶縁体281を有する。また、トランジスタ200と電気的に接続し、プラグとして機能する導電体240(導電体240a、および導電体240b)とを有する。
【0046】
また、導電体240は、絶縁体256(絶縁体256a、および絶縁体256b)、絶縁体280、絶縁体274、および絶縁体281の開口の内壁に接して導電体240の第1の導電体が形成され、さらに内側に導電体240の第2の導電体が形成されている。ここで、導電体240の上面の高さと、絶縁体281の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
【0047】
[トランジスタ200]
図1に示すように、トランジスタ200は、基板(図示しない。)の上に配置された絶縁体214と、絶縁体214の上に配置された絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230bの上に配置された導電体242(導電体242a、および導電体242b)と、絶縁体224、酸化物230a、酸化物230b、および導電体242を覆う絶縁体256と、絶縁体256の上に配置され、開口を有する絶縁体280と、該開口内で酸化物230bと、導電体242の側面と、絶縁体256の側面と、絶縁体280の側面と、に接するように設けられた絶縁体273と、酸化物230bと接し、かつ絶縁体273の内側に設けられた酸化物230cと、酸化物230cの内側に設けられた絶縁体250と、絶縁体250の内側に設けられた導電体260aと、導電体260aの内側に埋め込まれるように設けられた導電体260bと、を有する。また、絶縁体280と、絶縁体273と、酸化物230cと、絶縁体250と、導電体260aと、導電体260bの上には、絶縁体274が設けられ、絶縁体274の上には、絶縁体281が設けられる。
【0048】
なお、絶縁体256は、絶縁体224、酸化物230aの側面、酸化物230bの側面、導電体242の上面および側面を覆うように設けられることが好ましい。また、絶縁体256と絶縁体273が接していることが好ましい。また、絶縁体273と絶縁体274が接していることが好ましい。このような構造とすることで、絶縁体280は、絶縁体256、絶縁体273、および絶縁体274に囲まれるため、絶縁体280に含まれる水素や水などの不純物の、酸化物230(酸化物230a、酸化物230b、および酸化物230c)や、ゲート絶縁膜として機能する絶縁体224、および絶縁体250への拡散を抑制することができる。
【0049】
また、トランジスタ200が有する絶縁体224、酸化物230、および絶縁体250は、絶縁体222、絶縁体256、絶縁体273、および絶縁体274に囲まれているため、絶縁体224、酸化物230、および絶縁体250が有する酸素の、絶縁体216、絶縁体280、絶縁体281、およびトランジスタ200より外方への拡散を抑制することができる。
【0050】
なお、トランジスタ200では、チャネルが形成される領域(以下、チャネル形成領域ともいう。)と、その近傍において、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bの単層構造、酸化物230a、および酸化物230bの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ200では、導電体260を2層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体260が、単層構造でも、3層以上の積層構造であってもよい。
【0051】
ここで、導電体260(導電体260a、および導電体260b)は、トランジスタのゲート電極として機能し、導電体242aおよび導電体242bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体260は、絶縁体280の開口、および導電体242aと導電体242bに挟まれた領域に、絶縁体273、酸化物230c、および絶縁体250を介して、埋め込まれるように形成される。ここで、導電体260、導電体242aおよび導電体242bの配置は、絶縁体280の開口に対して、自己整合的に選択される。つまり、トランジスタ200において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体260を位置合わせのマージンを設けることなく形成することができるので、トランジスタ200の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
【0052】
さらに、導電体260が、導電体242aと導電体242bの間の領域に自己整合的に形成されるので、導電体260は、導電体242aまたは導電体242bと重畳する領域を有さない。これにより、導電体260と導電体242aおよび導電体242bとの間に形成される寄生容量を低減することができる。よって、トランジスタ200のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
【0053】
また、トランジスタ200は、チャネル形成領域を含む酸化物230(酸化物230a、酸化物230b、および酸化物230c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。
【0054】
チャネル形成領域に酸化物半導体を用いたトランジスタ200は、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタ200に用いることができる。
【0055】
例えば、酸化物230として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物230として、In-Ga酸化物、In-Zn酸化物を用いてもよい。
【0056】
ここで、酸化物230は、水素、窒素、または金属元素などの不純物が存在すると、キャリア密度が増大し、低抵抗化する場合がある。また、酸化物230に含まれる酸素濃度が低下すると、キャリア密度が増大し、低抵抗化する場合がある。
【0057】
酸化物230上に接するように設けられ、ソース電極やドレイン電極として機能する導電体242(導電体242a、および導電体242b)が、酸化物230の酸素を吸収する機能を有する場合、または酸化物230に水素、窒素、または金属元素などの不純物を供給する機能を有する場合、酸化物230には、部分的に低抵抗領域が形成される場合がある。
【0058】
また、導電体242の、チャネル形成領域側の側面を絶縁体273で覆うことにより、導電体242の該側面の酸化を抑制することが可能となり好ましい。導電体242の酸化により、その抵抗値が増加すると、導電体242の内、ソース電極、またはドレイン電極として機能する領域は縮小してしまう。すなわち、ソース電極とドレイン電極の間の距離が、意図した距離よりも長くなってしまう場合がある。しかしながら、導電体242の側壁に絶縁体273を設けることで、導電体242の酸化は抑制され、導電体242の、ソース電極、またはドレイン電極として機能する領域の縮小を抑制することができる。
【0059】
また、絶縁体273を設けることにより、酸化物230bと、導電体260の間の距離に対して、導電体242と、導電体260の間の距離を大きくすることができる。このような構造とすることで、導電体260と導電体242の間の寄生容量をさらに低減し、より高い周波数特性を有するトランジスタ200を提供することができる。さらに、酸化物230bと、導電体260の間の距離が短いので、ゲート電極からの電界が弱まることもないので、良好な電気特性を有するトランジスタ200を提供することができる。
【0060】
絶縁体256は、酸化物230の側面が絶縁体280と直接触れないように設けられている。また、導電体242の酸化を抑制するために設けられている。ただし、導電体242が、耐酸化性材料、または酸素を吸収しても導電性が著しく低下することがない場合は、絶縁体256が導電体242の酸化を抑制する効果を有する必要はない。
【0061】
絶縁体256を設けることで、絶縁体280が有する酸素が酸化物230の側面から注入されるのを抑制することができる。
【0062】
ここで、
図1(B)におけるチャネル形成領域近傍の拡大図を
図4に示す。
【0063】
図4に示すように、酸化物230上に接するように導電体242が設けられ、酸化物230の、導電体242との界面とその近傍には、低抵抗領域として、領域253(領域253a、および領域253b)が形成されている。酸化物230は、トランジスタ200のチャネル形成領域として機能する領域234と、領域253を含み、ソース領域またはドレイン領域として機能する領域231(領域231a、および領域231b)と、領域234と領域231の間の領域232(領域232a、および領域232b)と、を有する。
【0064】
ソース領域またはドレイン領域として機能する領域231において、特に領域253は、酸素濃度が低い、または水素や、窒素や、金属元素などの不純物を含む、ことでキャリア濃度が増加し、低抵抗化した領域である。すなわち、領域231は、領域234と比較して、キャリア密度が高く、低抵抗な領域である。また、チャネル形成領域として機能する領域234は、領域231のうち、特に領域253よりも、酸素濃度が高い、または不純物濃度が低いため、キャリア密度が低い高抵抗領域である。また、領域232の酸素濃度は、領域231の酸素濃度と同等、またはそれよりも高く、領域234の酸素濃度と同等、またはそれよりも低いことが好ましい。または、領域232の不純物濃度は、領域231の不純物濃度と同等、またはそれよりも低く、領域234の不純物濃度と同等、またはそれよりも高いことが好ましい。
【0065】
すなわち、領域232は、そこに含まれる酸素の濃度や、不純物の濃度により、領域231と同程度の抵抗値を有する低抵抗領域、領域234と同程度の抵抗値を有するオフセット領域、あるいは、領域231より高抵抗であり、かつ領域234より低抵抗である、低抵抗領域として機能する場合がある。特に、酸化物230の一部が、後述するCAAC-OSを有する場合、領域231に含まれる不純物は、a-b面方向に拡散しやすく、領域232は低抵抗化する場合がある。
【0066】
なお、低抵抗領域である領域253が金属元素を含む場合、領域253は、酸化物230の他に、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を有することが好ましい。
【0067】
また、
図4では、領域253が、酸化物230bの膜厚方向において、酸化物230bの導電体242との界面近傍に形成されているが、これに限られない。例えば、領域253は、酸化物230bの膜厚と概略同じ厚さを有していてもよいし、酸化物230aにも、形成されていてもよい。また、
図4では、領域253が領域231のみに形成されているが、本実施の形態は、これに限らない。上述の通り、不純物がa-b面方向に拡散する場合、領域253は、領域231、および領域232に形成されていてもよいし、領域231と、領域232の一部と、に形成されていてもよいし、領域231と、領域232と、領域234の一部と、に形成されていてもよい。
【0068】
また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう。)していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。
【0069】
酸化物230を、選択的に低抵抗化するには、導電体242として、例えば、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの導電性を高める金属元素、および不純物の少なくとも一を含む材料を用いることが好ましい。または、導電体242となる導電膜242Aの形成において、酸化物230に、酸素欠損を形成する元素、または酸素欠損に捕獲される元素などの不純物が注入される材料や成膜方法などを用いればよい。例えば、当該元素として、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、希ガス等が挙げられる。また、希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、およびキセノン等がある。
【0070】
ここで、酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となりやすい。したがって、チャネルが形成される領域234中の酸素欠損はできる限り低減されていることが好ましい。
【0071】
トランジスタのノーマリーオン化を抑制するには、酸化物230と近接する絶縁体250が、化学量論的組成を満たす酸素よりも多くの酸素(過剰酸素ともいう。)を含むことが好ましい。絶縁体250が有する酸素は、酸化物230へと拡散し、酸化物230の酸素欠損を低減し、トランジスタのノーマリーオン化を抑制することができる。
【0072】
つまり、絶縁体250が有する酸素が、酸化物230の領域234へと拡散することで、酸化物230の領域234における酸素欠損を低減することができる。このとき、少なくとも絶縁体280の側面、好ましくは絶縁体280の側面、および導電体242の側面に絶縁体273を設けることで、絶縁体250が有する酸素が、絶縁体280、あるいは導電体242に拡散することを抑制でき、酸化物230の領域234へ酸素を効率よく供給することができる。
【0073】
以上のような構造とすることで、酸化物230への酸素の供給量を制御でき、信頼性が高く、ノーマリーオン化が抑制されたトランジスタが得られる。
【0074】
また、酸化物230、絶縁体250、および絶縁体224が有する酸素の、トランジスタ200より外方への拡散を抑制するために、絶縁体222、絶縁体256、絶縁体273、および絶縁体274などが設けられることが好ましい。これら絶縁体として、酸素が透過しにくい材料を用いることが好ましい。例えば、アルミニウム、およびハフニウムの一方を含む酸化物や、シリコンの窒化物などを用いることができる。さらに、これら絶縁膜は、水素、水、窒素、金属元素などの不純物が透過しにくい材料であることが好ましい。このような材料を用いることで、トランジスタ200の外方から、トランジスタ200への不純物の混入を抑制することができる。
【0075】
また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。また、チャネル形成領域に酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流(オフ電流)が小さいため、低消費電力の半導体装置を提供できる。
【0076】
以上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。
【0077】
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。
【0078】
導電体260は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
【0079】
なお、導電体205は、
図1(A)に示すように、酸化物230、および導電体260と重なるように配置する。また、導電体205は、絶縁体216に埋め込まれて設けることが好ましい。また、導電体205は、酸化物230における領域234よりも、大きく設けるとよい。特に、
図1(C)に示すように、チャネル幅方向において、導電体205は、酸化物230の領域234の端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。
【0080】
上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
【0081】
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S-channel)構造とよぶ。
【0082】
また、導電体205は、絶縁体216の開口の内壁、および絶縁体214に接して導電体205aが形成され、さらに内側に導電体205bが形成され、さらに内側に導電体205cが形成されている。ここで、導電体205a、導電体205b、および導電体205cの上面の高さと、絶縁体216の上面の高さは同程度にできる。なお、トランジスタ200では、導電体205a、導電体205b、および導電体205cを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205は、単層構造としてもよいし、2層、または4層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
【0083】
ここで、導電体205aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一またはすべての拡散を抑制する機能とする。
【0084】
導電体205aが酸素の拡散を抑制する機能を持つことにより、導電体205cが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。したがって、導電体205aとしては、上記導電性材料を単層または積層とすればよい。これにより、絶縁体216や、絶縁体214より下層に含まれる水素や水などの不純物が、導電体205を通じて、トランジスタ200側に拡散するのを抑制することができる。
【0085】
また、導電体205bは、チタン、または窒化チタンを主成分とする導電性材料を用いることが好ましく、導電体205cは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。
【0086】
絶縁体214は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。
【0087】
例えば、絶縁体214として、酸化アルミニウムや窒化シリコンなどを用いることが好ましい。これにより、水素、水などの不純物が絶縁体214よりも基板側からトランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体214よりも基板側に、拡散するのを抑制することができる。
【0088】
また、層間膜として機能する絶縁体216、絶縁体280、および絶縁体281は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
【0089】
例えば、絶縁体216、絶縁体280、および絶縁体281として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO3)または(Ba,Sr)TiO3(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン、または窒化シリコンを積層して用いてもよい。
【0090】
絶縁体222、絶縁体224、および絶縁体250は、ゲート絶縁体としての機能を有する。
【0091】
絶縁体224は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。このように酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性が低下することなく、ノーマリーオン化を抑制することができる。
【0092】
酸素を含む絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm3以上、好ましくは1.0×1019atoms/cm3以上、さらに好ましくは2.0×1019atoms/cm3以上、または3.0×1020atoms/cm3以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
【0093】
また、絶縁体224が、酸素を含む場合、絶縁体222は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。
【0094】
絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、酸化物230が有する酸素は、絶縁体216側へ拡散することがなく、好ましい。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。
【0095】
絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO3)または(Ba,Sr)TiO3(BST)などのいわゆるhigh-k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh-k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
【0096】
特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。
【0097】
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
【0098】
また、絶縁体224は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high-k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体224を得ることができる。
【0099】
なお、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。例えば、絶縁体222は、絶縁体224として用いることができる材料と、不純物、および酸素などの拡散を抑制する機能を有する絶縁性材料との積層構造を有していてもよい。
【0100】
酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
【0101】
なお、酸化物230は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。例えば、酸化物230として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物230として、In-Ga酸化物、In-Zn酸化物を用いてもよい。具体的には、酸化物230a、および酸化物230cに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230a、および酸化物230cに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230a、および酸化物230cに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
【0102】
また、酸化物230a、および酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230a、および酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。
【0103】
ここで、酸化物230a、酸化物230b、および酸化物230cそれぞれの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物230a、および酸化物230bの接合部、および酸化物230b、および酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
【0104】
具体的には、酸化物230a、酸化物230b、および酸化物230cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn-Ga-Zn酸化物の場合、酸化物230a、および酸化物230cとして、In-Ga-Zn酸化物、Ga-Zn酸化物、酸化ガリウムなどを用いるとよい。
【0105】
このとき、キャリアの主たる経路は酸化物230bとなる。酸化物230a、および酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流を得られる。
【0106】
また、酸化物230は、領域231および領域234を有する。なお、領域231の少なくとも一部は、導電体242と接する領域を有する。
【0107】
なお、トランジスタ200をオンさせると、領域231a、または領域231bは、ソース領域、またはドレイン領域として機能する。一方、領域234の少なくとも一部は、チャネルが形成される領域として機能する。
【0108】
酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。例えば、領域234となる金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
【0109】
酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。
【0110】
酸化物230b上には、ソース電極、およびドレイン電極として機能する導電体242(導電体242a、および導電体242b)が設けられる。導電体242としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
【0111】
酸化物230と接するように上記導電体242を設けることで、領域231の酸素濃度が低減する場合がある。また、領域231に導電体242に含まれる金属と、酸化物230の成分とを含む金属化合物層が形成される場合がある。このような場合、領域231のキャリア密度が増加し、領域231は、低抵抗領域となる。
【0112】
ここで、導電体242aと導電体242bの間の領域は、絶縁体280の開口に重畳して形成される。これにより、導電体242aと導電体242bの間に導電体260を自己整合的に配置することができる。
【0113】
絶縁体256は、導電体242および酸化物230を覆うように設けられ、酸化物230の側面が絶縁体280と接するのを防いでいる。また、絶縁体256は、導電体242の酸化を抑制する。このとき、絶縁体256は、絶縁体224と接するように設けられることが好ましい。
【0114】
絶縁体256として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体256として、シリコンを含む窒化物や酸化物を用いることができる。
【0115】
特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。絶縁体256により、絶縁体280に含まれる酸素が、酸化物230の側面から酸化物230内に拡散することを抑制している。なお、導電体242が耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない場合、絶縁体256は、導電体242の酸化を抑制する機能を必ずしも有する必要はない。
【0116】
絶縁体256は、絶縁体256a、および絶縁体256bを含む積層構造を有していてもよい。例えば、絶縁体256aとして、窒化シリコンや酸化シリコンを用いることが好ましく、絶縁体256bとして、酸化アルミニウムや酸化ハフニウムを用いることが好ましい。
【0117】
酸化物230aの側面、酸化物230bの側面、および上面、導電体242の側面、絶縁体256の側面、および絶縁体280の側面と接するように、絶縁体273が配置される。また、絶縁体280、絶縁体256、導電体242の加工において、絶縁体224も加工される場合がある。このとき、絶縁体273は、
図1(C)に示すように、絶縁体224の側面と接する場合がある。また、絶縁体273は、絶縁体222と接する場合がある。絶縁体273は、酸素や、水素、水、および金属元素などの不純物の透過を抑制する機能を有する。絶縁体273として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。または、窒化シリコンや、窒化酸化シリコンなどのシリコン窒化物を用いることができる。
【0118】
特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。
【0119】
絶縁体273を、少なくとも導電体242の側面、絶縁体256の側面、および絶縁体280の側面と接するよう設けるには、絶縁体280、および絶縁体256に形成された開口内部、導電体242の側面、および絶縁体280上に絶縁膜を設け、該絶縁膜に対して異方性エッチングを行うことで、該開口の内壁、および導電体242の側面に絶縁体273を設けることができる。
【0120】
酸化物230cは、絶縁体273の内側に接して配置することが好ましい。また、酸化物230cは、酸化物230a、または酸化物230bに用いることができる材料を用いることができる。また、酸化物230cは、積層構造を有していてもよく、酸化物230bに用いることができる材料の上に、酸化物230aに用いることができる材料を積層して酸化物230cを設けてもよい。
【0121】
絶縁体250は、酸化物230cの内側に接して配置することが好ましい。
【0122】
絶縁体250として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
【0123】
絶縁体250は、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
【0124】
第1のゲート電極として機能する導電体260は、
図1では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。例えば、導電体260が、2層構造である場合、導電体260aは、導電体205aと同様に、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N
2O、NO、NO
2など)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、導電体205bと同様の導電性材料を用いることが好ましい。
【0125】
導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。または、チタンや、窒化チタンを主成分とする導電性材料を用いることが好ましい。
【0126】
また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。
【0127】
また、
図1(C)に示すように、チャネル幅方向において、導電体205が、酸化物230の端部よりも外側の領域において、延伸している場合、導電体260は、当該領域において、絶縁体250を介して、重畳していることが好ましい。つまり、酸化物230の側面の外側において、導電体205と、絶縁体250と、導電体260とは、積層構造を形成することが好ましい。
【0128】
上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
【0129】
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。
【0130】
絶縁体280は、絶縁体256を介して、導電体242上に設けられる。絶縁体280は、酸素を有することが好ましい。例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。なお、絶縁体280中は、水または水素などの不純物濃度が低減されていることが好ましい。
【0131】
また、絶縁体280の上に、絶縁体274を設けることが好ましい。絶縁体274は、絶縁体222や、絶縁体256などと同様に、酸素や不純物の拡散を抑制する機能を有することが好ましい。また、絶縁体274を、酸素を含む雰囲気で形成することで、酸化物230c、絶縁体250、および絶縁体280の少なくとも一つに、酸素を供給できる場合がある。このような絶縁体の形成方法として、酸素を含む雰囲気下で行うスパッタリング法が挙げられる。例えば、絶縁体274として酸化アルミニウムを用いる場合、絶縁体274は、酸素を含む雰囲気下において、アルミニウムを含むターゲットを用いたスパッタリング法により形成することができる。
【0132】
また、絶縁体274の上に、層間膜として機能する絶縁体281を設けることが好ましい。絶縁体281は、絶縁体224や、絶縁体280などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
【0133】
また、
図1(B)、および
図1(D)に示すように、絶縁体281、絶縁体280、および絶縁体256に形成された開口に、導電体240aおよび導電体240bを配置する。導電体240a、および導電体240bは、導電体260を挟んで対向して設ける。また、導電体240aおよび導電体240bは、導電体242a、および導電体242bそれぞれと電気的に接続する。なお、導電体240aおよび導電体240bの上面は、絶縁体281の上面と、同一平面上にしてもよい。
【0134】
なお、絶縁体281、絶縁体280、および絶縁体256の開口の内壁に接して、導電体240aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242aが位置しており、導電体240aが導電体242aと接する。同様に、絶縁体281、絶縁体280、および絶縁体256の開口の内壁に接して、導電体240bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242bが位置しており、導電体240bが導電体242bと接する。なお、絶縁体281、絶縁体280、および絶縁体256の開口の内壁に接して、絶縁体241(絶縁体241a、および絶縁体241b)を設けてもよい。該絶縁体は、絶縁体256、または絶縁体273と同様の材料を用いることができる。絶縁体241は、該開口内部および絶縁体281上に絶縁膜を設け、該絶縁膜に対して異方性エッチングを行うことで、該開口の内壁のみに絶縁体241を設けることができる。絶縁体241を設けることで、絶縁体280、および絶縁体281に含まれる酸素が導電体240に吸収されることを抑制することができる。
【0135】
導電体240aおよび導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240aおよび導電体240bは積層構造としてもよい。
【0136】
また、導電体240を積層構造とする場合、水または水素などの不純物の透過を抑制する機能を有する導電性材料と、上記導電性材料との積層構造を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどの導電性材料の上に、タングステン、銅、またはアルミニウムを主成分とする導電性材料を設けた積層構造を用いることが好ましい。また、水または水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体281より上層から水素、水などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。
【0137】
また、図示しないが、導電体240aの上面、および導電体240bの上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。なお、当該導電体は、導電体205などと同様に、絶縁体に設けられた開口に埋め込むように形成してもよい。
【0138】
<半導体装置の構成材料>
以下では、半導体装置に用いることができる構成材料について説明する。
【0139】
<<基板>>
トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
【0140】
また、基板として、可撓性基板を用いてもよい。なお、可撓性基板上にトランジスタを設ける方法としては、非可撓性の基板上にトランジスタを作製した後、トランジスタを剥離し、可撓性基板である基板に転置する方法もある。その場合には、非可撓性基板とトランジスタとの間に剥離層を設けるとよい。また、基板が伸縮性を有してもよい。また、基板は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板を薄くすると、トランジスタを有する半導体装置を軽量化することができる。また、基板を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板上の半導体装置に加わる衝撃などを緩和することができる。すなわち、丈夫な半導体装置を提供することができる。
【0141】
可撓性基板である基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。また、基板として、繊維を編み込んだシート、フィルムまたは箔などを用いてもよい。可撓性基板である基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。可撓性基板である基板としては、例えば、線膨張率が1×10-3/K以下、5×10-5/K以下、または1×10-5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可撓性基板である基板として好適である。
【0142】
<<絶縁体>>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
【0143】
例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high-k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
【0144】
また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
【0145】
また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
【0146】
また、特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定である。そのため、例えば、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。また、例えば、酸化シリコン、および酸化窒化シリコンは、比誘電率の高い絶縁体と組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
【0147】
また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。
【0148】
水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、または酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
【0149】
例えば、絶縁体256、または絶縁体273として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、シリコンの窒化物や、酸素を含むシリコンの窒化物、すなわち、窒化シリコンや、窒化酸化シリコンなどを用いることができる。
【0150】
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。また、酸化ハフニウムは、酸化アルミニウムよりもバリア性が低いが、膜厚を厚くすることによりバリア性を高めることができる。
【0151】
絶縁体224は、酸素を含む絶縁体であることが好ましい。例えば、酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
【0152】
また、例えば、ゲート絶縁体の一部として機能する絶縁体222において、アルミニウム、ハフニウム、およびガリウムの一種または複数種の酸化物を含む絶縁体を用いることができる。特に、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
【0153】
絶縁体222は、絶縁体224が有する酸素が絶縁体220側に拡散するのを抑制する機能を有することが好ましい。
【0154】
上記積層構造とすることで、ゲート電極からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、ゲート絶縁体の物理的な厚みにより、ゲート電極と、チャネルが形成される領域との間の距離を保つことで、ゲート電極とチャネル形成領域との間のリーク電流を抑制することができる。
【0155】
絶縁体216、絶縁体280、および絶縁体281は、比誘電率の低い絶縁体を有することが好ましい。例えば、絶縁体216、絶縁体280、および絶縁体281は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。または、絶縁体216、絶縁体280、および絶縁体281は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、またはアクリルなどがある。
【0156】
絶縁体214、絶縁体256、絶縁体273、および絶縁体274としては、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。絶縁体214、絶縁体256、絶縁体273、および絶縁体274、としては、例えば、酸化アルミニウム、酸化ハフニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、または酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いればよい。
【0157】
<<導電体>>
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
【0158】
また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
【0159】
なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
【0160】
特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
【0161】
導電体260、導電体205、導電体242、および導電体240としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
【0162】
<<金属酸化物>>
酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
【0163】
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
【0164】
ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn-M-Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、またはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
【0165】
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
【0166】
[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud-Aligned Composite)-OSの構成について説明する。
【0167】
なお、本明細書等において、CAAC(c-axis aligned crystal)、およびCAC(Cloud-Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
【0168】
CAC-OSまたはCAC-metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC-OSまたはCAC-metal oxideを、トランジスタの半導体層に用いる場合、導電性の機能は、キャリアとなる電子(または正孔)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OSまたはCAC-metal oxideに付与することができる。CAC-OSまたはCAC-metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
【0169】
また、CAC-OSまたはCAC-metal oxideは、導電性領域、および絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
【0170】
また、CAC-OSまたはCAC-metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
【0171】
また、CAC-OSまたはCAC-metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC-OSまたはCAC-metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC-OSまたはCAC-metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、および高い電界効果移動度を得ることができる。
【0172】
すなわち、CAC-OSまたはCAC-metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
【0173】
[金属酸化物の構造]
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC-OS(c-axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc-OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)、および非晶質酸化物半導体などがある。
【0174】
CAAC-OSは、c軸配向性を有し、かつa-b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
【0175】
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC-OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
【0176】
また、CAAC-OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
【0177】
CAAC-OSは結晶性の高い金属酸化物である。一方、CAAC-OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損(VO:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。したがって、CAAC-OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC-OSを有する金属酸化物は熱に強く、信頼性が高い。
【0178】
nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶質酸化物半導体と区別が付かない場合がある。
【0179】
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム-ガリウム-亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
【0180】
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a-like OSは、鬆または低密度領域を有する。すなわち、a-like OSは、nc-OSおよびCAAC-OSと比べて、結晶性が低い。
【0181】
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。
【0182】
[金属酸化物を有するトランジスタ]
続いて、上記金属酸化物をトランジスタのチャネル形成領域に用いる場合について説明する。
【0183】
なお、上記金属酸化物をトランジスタのチャネル形成領域に用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
【0184】
ここで、金属酸化物の電気伝導の仮説の一例について説明する。
【0185】
固体中の電気伝導は、散乱中心と呼ばれる散乱源によって阻害される。例えば、単結晶シリコンの場合、格子散乱とイオン化不純物散乱が、主な散乱中心であることが知られている。換言すると、格子欠陥および不純物の少ない本質的な状態のとき、固体中の電気伝導の阻害要因がなく、キャリアの移動度は高い。
【0186】
上記のことは、金属酸化物に対しても、あてはまると推測される。例えば、化学量論的組成よりも酸素の量が少ない金属酸化物では、酸素欠損が多く存在すると考えられる。この酸素欠損周りに存在する原子は、本質的な状態よりも、歪んだ場所に位置する。この酸素欠損による歪みが散乱中心となっている可能性がある。
【0187】
また、例えば、化学量論的組成よりも酸素の量が少ない金属酸化物では、過剰酸素が存在する。金属酸化物中で遊離した状態で存在する過剰酸素は、電子を受け取ることで、O-やO2-になる。O-やO2-となった過剰酸素が散乱中心になる可能性がある。
【0188】
以上のことから、金属酸化物が、化学量論的組成を満たす酸素を含む本質的な状態を有する場合、キャリアの移動度は高いと考えられる。
【0189】
インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム-ガリウム-亜鉛酸化物(以下、IGZO)は、とくに、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。これは、大きな結晶を形成するよりも、小さな結晶同士が連結する方が、歪みエネルギーが緩和されるためと考えられる。
【0190】
なお、小さな結晶同士が連結する領域においては、該領域の歪みエネルギーを緩和するために、欠陥が形成される場合がある。したがって、該領域に欠陥を形成することなく、歪みエネルギーを緩和させることで、キャリアの移動度を高くすることができる。
【0191】
また、トランジスタには、キャリア密度の低い金属酸化物を用いることが好ましい。金属酸化物膜のキャリア密度を低くする場合においては、金属酸化物膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。例えば、金属酸化物は、キャリア密度が8×1011/cm3未満、好ましくは1×1011/cm3未満、さらに好ましくは1×1010/cm3未満であり、1×10-9/cm3以上とすればよい。
【0192】
また、高純度真性または実質的に高純度真性である金属酸化物膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
【0193】
また、金属酸化物のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い金属酸化物をチャネル形成領域に有するトランジスタは、電気特性が不安定となる場合がある。
【0194】
したがって、トランジスタの電気特性を安定にするためには、金属酸化物中の不純物濃度を低減することが有効である。また、金属酸化物中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
【0195】
[不純物]
ここで、金属酸化物中における各不純物の影響について説明する。
【0196】
金属酸化物において、第14族元素の一つであるシリコンや炭素が含まれると、金属酸化物において欠陥準位が形成される。このため、金属酸化物におけるシリコンや炭素の濃度と、金属酸化物との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm3以下、好ましくは2×1017atoms/cm3以下とする。
【0197】
また、金属酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm3以下、好ましくは2×1016atoms/cm3以下にする。
【0198】
また、金属酸化物において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。したがって、当該金属酸化物において、チャネル形成領域の窒素はできる限り低減されていることが好ましい。例えば、金属酸化物中の窒素濃度は、SIMSにおいて、5×1019atoms/cm3未満、好ましくは5×1018atoms/cm3以下、より好ましくは1×1018atoms/cm3以下、さらに好ましくは5×1017atoms/cm3以下とする。
【0199】
また、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。したがって、水素が含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。
【0200】
また、金属酸化物に含まれる水素は、金属酸化物中に浅い欠陥準位(sDOS:shallow level Density of States)を形成する場合がある。浅い欠陥準位とは、伝導帯下端の近くに位置する界面準位を指す。浅い欠陥準位は、金属酸化物中の高密度領域と低密度領域の境界近傍に存在することが推定される。ここでは、金属酸化物中の高密度領域と低密度領域は、領域に含まれる水素の量で区別する。すなわち、低密度領域と比較して、高密度領域は、水素をより多く含む領域とする。金属酸化物中の高密度領域と低密度領域の境界近傍は、両領域間の応力歪によって、微小なクラックが生じやすく、当該クラック近傍に酸素欠損およびインジウムのダングリングボンドが発生し、ここに、水素または水などの不純物が局在することで、浅い欠陥準位が形成されるものと推定される。
【0201】
また、上記金属酸化物中の高密度領域は、低密度領域よりも結晶性が高くなる場合がある。また、上記金属酸化物中の高密度領域は、低密度領域よりも膜密度が高くなる場合がある。また、上記金属酸化物が、インジウムと、ガリウムと、亜鉛と、有する組成の場合、高密度領域は、インジウムと、ガリウムと、亜鉛と、を有し、低密度領域は、インジウムと、亜鉛と、を有する場合がある。別言すると、低密度領域は、高密度領域よりもガリウムの割合が少ない場合がある。
【0202】
なお、上記浅い欠陥準位は、酸素欠損に起因すると推定される。金属酸化物中の酸素欠損が増えると、浅い欠陥準位密度とともに深い欠陥準位密度(dDOS:deep level Density of States)も増えると推定される。これは、深い欠陥準位も酸素欠損によるものだと考えられるためである。なお、深い欠陥準位とは、バンドギャップの中央付近に位置する欠陥準位を指す。
【0203】
したがって、金属酸化物中の酸素欠損を抑制することで、浅い欠陥準位及び深い欠陥準位の双方の準位密度を低減させることが可能となる。また、浅い欠陥準位については、金属酸化物の成膜時の温度を調整することで、ある程度制御できる可能性がある。具体的には、金属酸化物の成膜時の温度を、170℃またはその近傍、好ましくは130℃またはその近傍、さらに好ましくは室温とすることで、浅い欠陥準位密度を低減することができる。
【0204】
また、金属酸化物の浅い欠陥準位は、金属酸化物を半導体層に用いたトランジスタの電気特性に影響を与える。すなわち、浅い欠陥準位によって、トランジスタのドレイン電流-ゲート電圧(Id-Vg)特性において、ゲート電圧Vgに対するドレイン電流Idの変化が緩やかとなり、トランジスタのオフ状態からオン状態への立ち上がり特性の良し悪しの目安の1つである、S値(Subthreshold Swing、SSとも言う。)が悪化する。これは浅い欠陥準位に電子がトラップされたためと考えられる。
【0205】
このため、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm3未満、好ましくは1×1019atoms/cm3未満、より好ましくは5×1018atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満とする。
【0206】
不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
【0207】
[真空ベークの効果]
ここでは、金属酸化物に含まれる、弱いZn-O結合について説明し、該結合を構成する酸素原子および亜鉛原子を低減する方法の一例について示す。
【0208】
金属酸化物を用いたトランジスタにおいて、トランジスタの電気特性の不良に繋がる欠陥の一例として酸素欠損がある。例えば、膜中に酸素欠損が含まれている金属酸化物を用いたトランジスタは、しきい値電圧がマイナス方向に変動しやすく、ノーマリーオン特性となりやすい。これは、金属酸化物に含まれる酸素欠損に起因したドナーが生成され、キャリア濃度が増加するためである。トランジスタがノーマリーオン特性を有すると、動作時に動作不良が発生しやすくなる、または非動作時の消費電力が高くなるなどの、様々な問題が生じる。
【0209】
また、モジュールを作製するための接続配線を形成する工程における熱履歴(サーマルバジェット)により、しきい値電圧の変動、寄生抵抗の増大、などのトランジスタの電気特性の劣化、該電気特性の劣化に伴う電気特性のばらつきの増大、などの問題がある。これらの問題は、製造歩留りの低下に直結するため、対策の検討は重要である。また、長期間の使用によって起こるトランジスタの特性変化(経年変化)を短時間で評価することができるストレス試験でも電気特性の劣化が生じる。該電気特性の劣化は、製造の過程で行われる高温処理、またはストレス試験時に与えられる電気的なストレスによって金属酸化物中の酸素が欠損することに起因すると推測される。
【0210】
金属酸化物中には、金属原子との結合が弱く、酸素欠損となりやすい酸素原子が存在する。特に、金属酸化物がIn-Ga-Zn酸化物である場合は、亜鉛原子と酸素原子とが弱い結合(弱いZn-O結合、ともいう)を形成しやすい。ここで、弱いZn-O結合とは、製造の過程で行われる高温処理、またはストレス試験時に与えられる電気的なストレスによって切断される程度の強さで結合した、亜鉛原子と酸素原子の間に生じる結合である。弱いZn-O結合が金属酸化物中に存在すると、該金属酸化物にかかる熱または電流ストレスによって、該結合が切断され、酸素欠損が形成される。酸素欠損が形成されることにより、熱履歴に対する耐性、ストレス試験における耐性などといった、トランジスタの安定性が低下する。
【0211】
亜鉛原子と多く結合している酸素原子と、該亜鉛原子との間に生じる結合は、弱いZn-O結合である場合がある。ガリウム原子と比べて、亜鉛原子は、酸素原子との結合が弱い。したがって、亜鉛原子と多く結合している酸素原子は欠損しやすい。すなわち、亜鉛原子と酸素原子との間に生じる結合は、その他の金属との結合よりも弱いと推測される。
【0212】
また、金属酸化物中に不純物が存在する場合、弱いZn-O結合が形成されやすいと推測される。金属酸化物中の不純物としては、例えば、水分子や水素がある。金属酸化物中に水分子や水素が存在することで、水素原子が、金属酸化物を構成する酸素原子と結合する(OH結合ともいう。)場合がある。金属酸化物を構成する酸素原子は、In-Ga-Zn酸化物が単結晶である場合、金属酸化物を構成する金属原子4つと結合している。しかしながら、水素原子と結合した酸素原子は、2つまたは3つの金属原子と結合している場合がある。酸素原子に結合している金属原子の数が減少することで、該酸素原子は欠損しやすくなる。なお、OH結合を形成している酸素原子に亜鉛原子が結合している場合、該酸素原子と該亜鉛原子との結合は弱いと推測される。
【0213】
また、弱いZn-O結合は、複数のナノ結晶が連結する領域に存在する歪みに形成される場合がある。ナノ結晶は六角形を基本とするが、該歪みにおいて、五角形、および七角形などの格子配列を有する。該歪みでは、原子間の結合距離が一様でないため、弱いZn-O結合が形成されていると推測される。
【0214】
また、弱いZn-O結合は、金属酸化物の結晶性が低い場合に形成されやすいと推測される。金属酸化物の結晶性が高い場合、金属酸化物を構成する亜鉛原子は、酸素原子4つまたは5つと結合している。しかし、金属酸化物の結晶性が低くなると、亜鉛原子と結合する酸素原子の数が減少する傾向がある。亜鉛原子に結合する酸素原子の数が減少すると、該亜鉛原子は欠損しやすくなる。すなわち、亜鉛原子と酸素原子との間に生じる結合は、単結晶で生じる結合よりも弱いと推測される。
【0215】
上記の弱いZn-O結合を構成する酸素原子および亜鉛原子を低減することで、熱処理または電流ストレスによる酸素欠損の形成を抑制し、トランジスタの安定性を向上させることができる。なお、弱いZn-O結合を構成する酸素原子のみを低減し、弱いZn-O結合を構成する亜鉛原子が減少しない場合、該亜鉛原子近傍に酸素原子を供給すると、弱いZn-O結合が再形成される場合がある。したがって、弱いZn-O結合を構成する亜鉛原子および酸素原子を低減することが好ましい。
【0216】
弱いZn-O結合を構成する酸素原子および亜鉛原子を低減する方法の一つとして、金属酸化物を成膜した後、真空ベークを実施する方法が挙げられる。真空ベークとは、真空雰囲気下で行う加熱処理のことである。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。なお、処理室の圧力は、1×10-2Pa以下、好ましくは1×10-3Pa以下とすればよい。また、加熱処理時の基板の温度は、300℃以上、好ましくは400℃以上とすればよい。
【0217】
真空ベークを実施することで、弱いZn-O結合を構成する酸素原子および亜鉛原子を低減することができる。また、真空ベークによって金属酸化物に熱が与えられるため、弱いZn-O結合を構成する酸素原子および亜鉛原子を低減した後、金属酸化物を構成する原子が再配列することで、4つの金属原子と結合している酸素原子が増える。したがって、弱いZn-O結合を構成する酸素原子および亜鉛原子を低減するとともに、弱いZn-O結合が再形成されるのを抑制することができる。
【0218】
また、金属酸化物中に不純物が存在する場合、真空ベークを実施することで、金属酸化物中の水分子または水素を放出し、OH結合を低減することができる。金属酸化物中のOH結合が減少することで、4つの金属原子と結合している酸素原子の割合が増える。また、水分子または水素が放出される際、金属酸化物を構成する原子が再配列することで、4つの金属原子と結合している酸素原子が増える。したがって、弱いZn-O結合が再形成されるのを抑制することができる。
【0219】
以上のように、金属酸化物を成膜した後、真空ベークを実施することで、弱いZn-O結合を構成する酸素原子および亜鉛原子を低減することができる。したがって、該工程により、トランジスタの安定性を向上することができる。また、トランジスタの安定性が向上することで、材料や形成方法の選択の自由度が高くなる。
【0220】
<半導体装置の作製方法>
次に、本発明に係るトランジスタ200を有する半導体装置について、作製方法を
図5乃至
図14を用いて説明する。また、
図5乃至
図14において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1-A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3-A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。各図の(D)は、(A)にA5-A6の一点鎖線で示す部位に対応する断面図であり、トランジスタ200の導電体240bとの接続部における断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
【0221】
まず、基板(図示しない。)を準備し、当該基板上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、またはALD(Atomic Layer Deposition)法などを用いて行うことができる。
【0222】
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
【0223】
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
【0224】
また、ALD法も、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。また、ALD法は、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)を用いて行うことができる。
【0225】
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
【0226】
CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整にかかる時間を要さない分、成膜にかかる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
【0227】
本実施の形態では、絶縁体214として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体214は、多層構造としてもよい。例えば、スパッタリング法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、ALD法によって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。
【0228】
次に絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、CVD法によって酸化シリコンを成膜する。
【0229】
次に、絶縁体216に、絶縁体214に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成にはウェットエッチング法を用いてもよいが、ドライエッチング法を用いるほうが微細加工には好ましい。また、絶縁体214は、絶縁体216をエッチングして開口を形成する際のエッチングストッパとして機能する絶縁体を選択することが好ましい。例えば、開口を形成する絶縁体216に酸化シリコンを用いた場合は、絶縁体214は、エッチングストッパとして機能する絶縁体として、窒化シリコン、酸化アルミニウム、酸化ハフニウムを用いるとよい。
【0230】
開口の形成後に、導電体205aとなる導電膜を成膜する。当該導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが好ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
【0231】
本実施の形態では、導電体205aとなる導電膜として、スパッタリング法によって窒化タンタルを成膜する。導電体205aとしてこのような金属窒化物を用いることにより、後述する導電体205cで銅など拡散しやすい金属を用いても、当該金属が導電体205aから外に拡散するのを抑制することができる。
【0232】
次に、導電体205aとなる導電膜上に、導電体205bとなる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、導電体205bとなる導電膜として、チタンや窒化チタンなどの導電性材料を成膜する。
【0233】
次に、導電体205bとなる導電膜上に、導電体205cとなる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、導電体205cとなる導電膜として、タングステン、アルミニウム、または銅など、導電体205a、および導電体205bより低抵抗な導電性材料を成膜する。
【0234】
次に、CMP処理を行うことで、導電体205aとなる導電膜、導電体205bとなる導電膜、ならびに導電体205cとなる導電膜の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205aとなる導電膜、導電体205bとなる導電膜、ならびに導電体205cとなる導電膜が残存する。これにより、上面が平坦な、導電体205a、導電体205b、および導電体205cを含む導電体205を形成することができる(
図5参照。)。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
【0235】
次に、絶縁体216、および導電体205上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、酸素に対するバリア性を有することで、絶縁体224、およびその上方に含まれる酸素が絶縁体216側に拡散することが抑制され、酸化物230に効率よく酸素を供給することができる。また、絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。
【0236】
絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
【0237】
次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体224として、CVD法によって酸化窒化シリコンを成膜する。
【0238】
続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
【0239】
本実施の形態では、加熱処理として、絶縁体224の成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体224に含まれる水素や水などの不純物を除去することなどができる。
【0240】
また、加熱処理は、絶縁体222の成膜後に行ってもよい。当該加熱処理は、上述した加熱処理条件を用いることができる。
【0241】
ここで、絶縁体224に酸素を添加するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えば、マイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率良く絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水素や水などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。
【0242】
次に、絶縁体224上に、酸化物230aとなる酸化膜230Aと、酸化物230bとなる酸化膜230Bを順に成膜する(
図5参照。)。なお、上記酸化膜は、大気環境に晒さずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。
【0243】
酸化膜230A、および酸化膜230Bの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
【0244】
例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、例えば、In-M-Zn酸化物ターゲットを用いることができる。
【0245】
特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、酸化膜230Aのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
【0246】
また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。
【0247】
本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]、あるいはIn:Ga:Zn=1:1:0.5[原子数比](2:2:1[原子数比])のターゲットを用いて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]、In:Ga:Zn=4:2:2[原子数比]、4:2:1[原子数比]、あるいは4:2:0[原子数比](In:Ga=4:2[原子数比])のターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。
【0248】
次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、および酸化膜230B中の水素や水などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。
【0249】
次に、酸化膜230B上に導電膜242Aを形成する(
図5参照。)。導電膜242Aは、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。なお、導電膜242Aの形成は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
【0250】
次に、導電膜242Aを加工して、酸化膜230A、および酸化膜230Bを加工するためのハードマスクを形成する。
【0251】
なお、導電膜242Aの加工はリソグラフィー法を用いて行えばよい。また、当該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
【0252】
リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、レジスト上に直接描画を行うため、上述のレジスト露光用のマスクは不要となる。なお、レジストマスクは、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行う、などで、除去することができる。
【0253】
次に、レジストマスクを用いて、導電膜242Aをエッチングすることでハードマスクとして機能する導電体242Bを形成する(
図6参照。)。導電体242B形成後は、レジストマスクを除去してから酸化膜の加工を行ってもよいし、レジストマスクを残したまま行ってもよい。後者の場合、エッチング中にレジストマスクが消失することがある。上記酸化膜のエッチング後にハードマスクをエッチングにより除去してもよいが、本実施の形態では、導電体242Bをさらに加工して、ソース電極、およびドレイン電極を形成するため、導電体242Bは除去しない。
【0254】
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
【0255】
次に、導電体242Bをハードマスクとして用い、酸化膜230A、および酸化膜230Bを島状に加工して、酸化物230a、および酸化物230bを形成する(
図6参照。)。なお、当該加工処理にて、絶縁体224の一部が除去される場合がある。
【0256】
ここで、酸化物230a、および酸化物230bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、および酸化物230bの側面は、絶縁体222の上面、または基板の上面に対し、テーパー形状を有することが好ましい。酸化物230a、および酸化物230bの側面が、絶縁体222の上面、または基板の上面に対し、テーパー形状を有することで、後工程において酸化物230a、および酸化物230bの側面に形成される膜の被覆性が向上する。一方、後工程で酸化物230a、および酸化物230bの側面に形成される膜を被覆性が優れたALD法や、CVD法等を用いる場合、該側面は垂直形状でもよい。
【0257】
また、酸化物230a、酸化物230b、および導電体242Bの側面と、導電体242Bの上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、導電体242Bの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とする。端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。
【0258】
なお、当該酸化膜の加工は、導電体242Bをハードマスクに用い、ドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
【0259】
また、上記ドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が、酸化物230a、および酸化物230bなどの側面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。
【0260】
上記の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液など用いたウエット洗浄、プラズマを用いたプラズマ処理、または熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。
【0261】
ウエット洗浄としては、シュウ酸、リン酸、過酸化水素水、またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。本実施の形態では、純水または炭酸水を用いた超音波洗浄を行う。
【0262】
続いて、加熱処理を行ってもよい。加熱処理の条件は、前述の加熱処理の条件を用いることができる。ただし、該加熱処理により、導電体242Bの酸化が懸念される場合、該加熱処理は、酸素を含まない雰囲気で行われることが好ましい。一方、導電体242Bが、耐酸化性材料を含む場合、該加熱処理を、酸素を含む雰囲気で行ってもよい。
【0263】
次に、絶縁体224、酸化物230a、酸化物230b、および導電体242B上に絶縁体256A、および絶縁体256Bを順次成膜する(
図7参照。)。なお、絶縁体256A、および絶縁体256Bは、絶縁性バリアとして機能することが好ましく、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。または、絶縁性バリアとして機能する絶縁体として、窒化シリコンや、窒化酸化シリコンを用いることができる。バリア性を有する絶縁体256A、および絶縁体256Bにより、酸化物230の側面を覆うことで、酸化物230側面からの酸素や、水素および水などの不純物の侵入を抑制することができる。また、絶縁体256A、および絶縁体256Bにより、導電体242Bの酸化を抑制することができ、導電体242に用いることができる材料の選択肢が拡がる。また、絶縁体256Aとして酸化シリコンを用いることができる。絶縁体256A、および絶縁体256Bの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
【0264】
なお、絶縁体256A、および絶縁体256Bは、大気環境に晒さずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁体256A、および絶縁体256B上に大気環境からの不純物または水分が付着することを防ぐことができ、絶縁体256Aと絶縁体256Bとの界面近傍を清浄に保つことができる。本実施の形態では、絶縁体256Aとして、ALD法を用いて窒化シリコンを形成し、絶縁体256Bとして、ALD法を用いて酸化アルミニウムを形成する。あるいは、絶縁体256Aとして、スパッタリング法を用いて窒化シリコンを形成し、絶縁体256Bとして、スパッタリング法を用いて酸化アルミニウムを形成する。また、絶縁体256Aとして、上記の方法を用いて、酸化シリコンを形成してもよい。
【0265】
次に、絶縁体256Bの上に、絶縁体280を成膜する(
図7参照。)。絶縁体280は、酸素を有することが好ましい。また、絶縁体280は、比誘電率の低い絶縁体を有することが好ましい。例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、空孔を有する酸化シリコンを絶縁体280に用いると、後の工程で絶縁体280中に容易に酸素を添加できるため好ましい。また、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。絶縁体280の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法、またはカーテンコーター法などを用いて行うことができる。本実施の形態では、絶縁体280として、CVD法によって酸化窒化シリコンを成膜する。
【0266】
なお、絶縁体280は、上面が平坦性を有するように形成することが好ましい。例えば、絶縁体280は、成膜した直後に上面が平坦性を有していてもよい。または、例えば、絶縁体280は、成膜後に基板裏面などの基準面と平行になるよう絶縁体などを上面から除去していくことで平坦性を有してもよい。このような処理を、平坦化処理と呼ぶ。平坦化処理としては、CMP処理、ドライエッチング処理などがある。本実施の形態では、平坦化処理として、CMP処理を用いる。ただし、絶縁体280の上面は必ずしも平坦性を有さなくてもよい。
【0267】
次に、リソグラフィー法を用いて、少なくとも導電体205と重なる領域を有するように、絶縁体280、絶縁体256A、および絶縁体256Bに対して加工処理を行い、開口263、絶縁体256a、および絶縁体256bを形成する(
図8参照。)。絶縁体280の加工にはウェットエッチング法を用いてもよいが、微細加工が可能な点、また絶縁体280の側面を概略垂直に加工できる点からドライエッチング法を用いるほうが好ましい。
【0268】
絶縁体280の加工において、絶縁体256Bは、エッチングストッパとして機能することが好ましい。すなわち、絶縁体280のエッチングレートに対して、絶縁体256Bのエッチングレートが十分低い条件にて絶縁体280を加工することが好ましい。このようにすることで、絶縁体280に対するオーバーエッチングによる絶縁体256Bの消失を抑制することができる。さらに、絶縁体256Bの加工において、絶縁体256Aは、エッチングストッパとして機能することが好ましい。絶縁体256Bの加工には、ドライエッチング法、またはウェットエッチング法を用いることができる。あるいはこれらを組み合わせてもよい。絶縁体256Aの加工には、ドライエッチング法、またはウェットエッチング法を用いることができる。あるいはこれらを組み合わせてもよい。
【0269】
次に、開口263内部で露出した導電体242Bを加工し、導電体242a、および導電体242bを形成する(
図9参照。)。導電体242Bの加工には、ドライエッチングを用いることが好ましい。また、上記加工により露出する導電体242a、および導電体242bの側面の酸化を抑制するため、上記加工には、酸素を含まない条件を用いることが好ましい。さらに、加工前後においてもエッチング処理室(エッチングチャンバ)内に酸素を導入しないことが好ましい。例えば、静電チャックを用いて基板を処理室のステージに吸着する場合、加工後の基板に対する除電ステップにおいても、酸素を含むガスや、酸素を含むプラズマなどを用いないことが好ましい。例えば、窒素を主成分とするプラズマにより除電ステップを行い、ステージから基板を取り除けばよい。
【0270】
ここで、加熱処理を行うことが好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気で行う。一方、導電体242が耐酸化性を有する導電体の場合、該加熱処理を、酸素を含む雰囲気で行ってもよい。また、加熱処理は減圧状態で行ってもよい。また、加熱処理は、処理室の圧力を1×10-2Pa以下に減圧した真空状態で加熱処理を行う、真空ベークでもよい。真空ベークを行うことで、弱いZn-O結合を構成する亜鉛原子および酸素原子を低減することができ、トランジスタの電気特性、特にトランジスタ作製時、およびモジュール作製時における熱履歴による劣化を低減することができる。真空ベークは、絶縁体273Aを形成する処理室にて行ってもよい。この場合、真空ベーク後に該処理室にて絶縁体273Aを形成することができる。例えば、加熱処理として、窒素雰囲気にて400℃の温度で1時間の処理を行う。
【0271】
該加熱処理により、酸化物230a、および酸化物230bに含まれる水素や水などの不純物を除去することができる。また、上記加工におけるドライエッチングにて酸化物230a、または酸化物230bに生じたダメージを回復することができる。また、酸素を含む雰囲気で加熱処理を行った場合、酸化物230a、および酸化物230bに酸素を添加することができる。
【0272】
また、上記加熱処理により、導電体242に含まれる金属元素が酸化物230へ拡散し、酸化物230に金属元素が添加される場合がある。また、酸化物230の酸素が導電体242に吸収される場合がある。その結果、酸化物230の導電体242との近傍が金属化合物となり、低抵抗化する。なお、その際、酸化物230の一部と、上述した金属元素とが、合金化してもよい。酸化物230の一部と金属元素が、合金化することで、酸化物230に添加された金属元素は、比較的安定な状態となるため、信頼性の高い半導体装置を提供することができる。なお、
図9(B)では、酸化物230の上記低抵抗化領域の一例として、点線にて領域253(領域253a、および領域253b)を示している。
【0273】
領域253a、および領域253bは、酸化物230b、および酸化物230aにおいて、導電体242から深さ方向に拡散するように設けられる例を示しているが、本発明はこれに限らない。領域253a、および領域253bは、深さ方向において、酸化物230bの導電体242近傍のみに形成されていてもよいし、酸化物230b全体に形成されていてもよいし、酸化物230bだけでなく、酸化物230aの少なくとも一部にも形成されていてもよい。また、領域253a、および領域253bは、水平方向において、導電体242と重なる領域のみに形成される例を示しているが、本発明はこれに限らない。領域253a、および領域253bは、水平方向に拡散してもよく、それぞれ
図4に示す領域232a、および領域232bに拡散するように形成されてもよいし、後工程で形成される導電体260の一部と重なる領域にも形成されてもよい。
【0274】
また、酸化物230中の水素は、領域253に拡散し、領域253に存在する酸素欠損の中に入った場合、比較的安定な状態となる。また、
図4に示す領域234に存在する酸素欠損中の水素は、250℃以上の熱処理によって、酸素欠損から抜け出し、領域253に拡散し、領域253に存在する酸素欠損の中に入り、比較的安定な状態となる。したがって、熱処理によって、領域253は、より低抵抗化し、領域234は、高純度化(水、水素などの不純物の低減)し、より高抵抗化する。
【0275】
また、窒素または不活性ガス雰囲気で加熱処理した後に、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。該加熱処理により、酸化物230中の領域234に酸素が添加されることが好ましい。
【0276】
なお、導電膜242Aの成膜後、または、導電体242の形成後の加熱処理において、導電膜242Aまたは導電体242に、酸化物230の領域253の酸素が吸収されることで、領域253に酸素欠損が生じる場合がある。酸化物230中の水素が、当該酸素欠損に入ることで、領域253のキャリア密度は、増加する。したがって、酸化物230の領域253は、n型となり、低抵抗化される。
【0277】
領域253の酸素濃度は、領域234の酸素濃度より低い場合がある。また、領域253の水素濃度は、領域234の酸素濃度より高い場合がある。
【0278】
次に、開口263内部、および絶縁体280上に絶縁体273Aを形成する(
図10参照。)。絶縁体273Aは、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、シリコンの窒化物や、酸素を含むシリコンの窒化物、すなわち、窒化シリコンや、窒化酸化シリコンなどを用い、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて形成することができる。
【0279】
ここで、酸化物230、および絶縁体280に酸素を添加してもよい。酸素の添加には、イオン注入法、イオンドーピング法、プラズマ処理、およびプラズマイマージョンイオンインプランテーション法から選ばれた一、または複数の方法を用いることができる。特に、イオン化された原料ガスを質量分離して添加するイオン注入法を用いることで、酸化物230、および絶縁体280に制御よく酸素を供給できるため、好ましい。酸化物230に酸素を添加することで、領域234の酸素濃度が増加し、酸素欠損が低減するため、領域234はより高抵抗化する。また、絶縁体280に酸素を添加することで、絶縁体280に含まれる水素は、添加された酸素により捕獲され、水分子を形成し、後工程で行われる加熱処理により絶縁体280から放出される場合がある。このため、絶縁体280に含まれる水素濃度が低減し、不純物の少ない良好な絶縁体280が得られる。
【0280】
酸素の添加において、酸素(酸素原子、酸素分子、酸素を含む分子、およびこれらのイオン、またはラジカル)の衝突により、酸化物230の結晶性が崩れる恐れがある。このため、酸化物230への酸素の添加は、絶縁体273Aの形成後に行われることが好ましい。この場合、酸素は、絶縁体273Aを通り抜けて酸化物230、および絶縁体280に添加される。一方、酸化物230の結晶性、またはトランジスタの特性に影響を及ぼさない場合は、絶縁体273Aの形成前に酸素の添加を行ってもよい。
【0281】
続いて、絶縁体273Aを異方性エッチングし、開口263底部の絶縁体273A、および絶縁体280上の絶縁体273Aなどを除去し、絶縁体273を形成する(
図11参照。)。絶縁体273は、酸化物230bの上面に接し、かつ絶縁体280の側面、絶縁体256の側面、および導電体242の側面を覆うように設けられる。また、
図11(A)に示すように、絶縁体273は、開口263の側面に沿って形成されるため、酸化物230a、および酸化物230bのA3側、およびA4側の側面の一部に接するように設けられる。
【0282】
絶縁体273の形成後に、前述した、酸化物230、および絶縁体280へ酸素の添加を行ってもよい。
【0283】
また、絶縁体273の形成後に、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280の水分濃度および水素濃度を低減させることができる。
【0284】
次に、絶縁体273を介して開口263の内部、および絶縁体280上に酸化膜230C、絶縁体250A、導電膜260A、および導電膜260Bを形成する(
図12参照。)。
【0285】
酸化膜230Cは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。酸化膜230Cとして、スパッタリング法により、In:Ga:Zn=1:3:4[原子数比]、あるいはIn:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。また、酸化膜230Cは、積層構造を有していてもよく、スパッタリング法により、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて形成した酸化膜上に、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて酸化膜を形成してもよい。
【0286】
絶縁体250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁体250Aとして、CVD法により、酸化窒化シリコンを成膜することが好ましい。なお、絶縁体250Aを成膜する際の成膜温度は、350℃以上450℃未満、特に400℃前後とすることが好ましい。絶縁体250Aを、400℃で成膜することで、不純物が少ない絶縁体を成膜することができる。
【0287】
導電膜260A、および導電膜260Bは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。導電膜260Aとして、窒化チタンを成膜し、導電膜260Bとして、タングステンを成膜してもよい。
【0288】
導電膜260Aとして、CVD法、またはスパッタリング法により、金属窒化物を形成するとよい。導電膜260Aに金属窒化物を用いることにより、絶縁体250Aが有する酸素により、導電膜260Bが酸化して導電率が低下することを防ぐことができる。
【0289】
また、導電膜260Bとして、低抵抗の金属膜を積層することで、駆動電圧が小さなトランジスタを提供することができる。
【0290】
続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。また、酸化膜230C、および絶縁体250Aの一方、または両方の形成後に加熱処理を行ってもよい。なお、加熱処理は行わなくてもよい場合がある。本加熱処理により、酸化物230bに低抵抗領域(領域253)が形成される場合がある。
【0291】
次に、導電膜260B、導電膜260A、絶縁体250A、および酸化膜230Cを加工して、それぞれから、導電体260b、導電体260a、絶縁体250、および酸化物230cを形成する(
図13参照。)。該加工には、CMP法や、エッチバック法を用いることができる。
【0292】
このとき、導電体260(導電体260a、および導電体260b)は、少なくとも一部が、導電体205、酸化物230a、および酸化物230bと重なるように形成される。導電体260のチャネル長方向の幅は、絶縁体280に設けられる開口263の幅と、絶縁体273の厚さと、酸化物230cの厚さと、絶縁体250の厚さにより、決定される。トランジスタ200、または半導体装置に要求される性能に応じて、上記の幅や厚さを調整し、所望の幅を有する導電体260を形成することができる。
【0293】
このようにして、導電体260は、絶縁体280の開口、および導電体242aと導電体242bに挟まれた領域に、埋め込まれるように形成される。導電体260の形成は、リソグラフィー法を用いることなく自己整合的に行われるので、導電体260の位置合わせのマージンを設ける必要がない。よって、トランジスタ200の占有面積の縮小を図り、半導体装置の微細化、高集積化を図ることができる。また、リソグラフィー工程が不要となるので工程簡略化による生産性の向上が見込まれる。
【0294】
また、半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体260の導電性が下がらないようにする必要がある。そのために導電体260の膜厚を大きくすると、導電体260はアスペクト比が高い形状となりうる。本実施の形態では、導電体260を絶縁体280の開口に埋め込むように設けるため、導電体260をアスペクト比の高い形状にしても、工程中に導電体260を倒壊させることなく、形成することができる。
【0295】
ここで、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体273、酸化物230c、絶縁体250、または導電体260の形成による酸化物230bのダメージを回復することができる。また、本加熱処理により、酸化物230に低抵抗領域(領域253)が形成される場合がある。
【0296】
次に、絶縁体280、絶縁体273、酸化物230c、絶縁体250、導電体260a、および導電体260bを覆うように絶縁体274を形成する(
図14参照。)。絶縁体274の形成により絶縁体280に酸素が供給されることが好ましく、本実施の形態では、絶縁体274として、スパッタリング法にて酸化アルミニウムを形成する。絶縁体274を、酸素を含むガスを用いて、あるいは酸素を含むターゲットを用いて形成することで、絶縁体280に酸素を供給することができる。また、絶縁体274形成後に加熱処理を行うことで、絶縁体274に含まれる酸素を絶縁体280に供給してもよい。加熱処理は、絶縁体274形成後に行われればよく、絶縁体281形成後に行ってもよい。
【0297】
次に、絶縁体274上に、絶縁体281を形成する(
図14参照。)。絶縁体281は、絶縁体280と同様の装置を用い、同様の材料を用いて形成することができる。例えば、CVD法を用いて、酸化窒化シリコンを含む絶縁体281を形成する。
【0298】
次に、図示しないが、絶縁体256、絶縁体280、絶縁体274および絶縁体281に、導電体242aおよび導電体242bに達する開口を形成する。該開口の形成は、リソグラフィー法を用いて行えばよい。
【0299】
次に、
図1に示す絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウム膜を成膜することが好ましい。また、ALD法やCVD法を用いて、窒化シリコン膜を成膜してもよい。ALD法を用いて窒化シリコン膜を成膜する場合、シリコンおよびハロゲンを含むプリカーサや、アミノシラン類のプリカーサを用いることができる。シリコンおよびハロゲンを含むプリカーサとして、SiCl
4、SiH
2Cl
2、Si
2Cl
6、Si
3Cl
8等を用いることができる。また、アミノシラン類のプリカーサとして、1価、2価、または3価のアミノシラン類を用いることができる。また、窒化ガスとしてアンモニアや、ヒドラジンを用いることができる。また、異方性エッチングは、例えばドライエッチング法などを行えばよい。開口の側壁部をこのような構成とすることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bから、水、水素などの不純物が外部に拡散することを防ぐことができる。
【0300】
次に、
図1に示す導電体240aおよび導電体240bとなる導電膜を成膜する。該導電膜は、水、水素など不純物の拡散を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
【0301】
次に、CMP処理を行うことで、該導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口内部のみに、該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(
図1参照。)。なお、当該CMP処理により、絶縁体281の一部が除去される場合がある。
【0302】
以上により、
図1に示すトランジスタ200を有する半導体装置を作製することができる。
図5乃至
図14に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200を作製することができる。
【0303】
本発明の一態様により、オン電流の大きい半導体装置を提供することができる。または、本発明の一態様により、高い周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
【0304】
<半導体装置の変形例1>
以下では、
図2を用いて、先の<半導体装置の構成例>で示したものとは異なる、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
【0305】
図2(A)は、トランジスタ200を有する半導体装置の上面図である。また、
図2(B)、
図2(C)、および
図2(D)は、当該半導体装置の断面図である。ここで、
図2(B)は、
図2(A)にA1-A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、
図2(C)は、
図2(A)にA3-A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、
図2(D)は、
図2(A)にA5-A6の一点鎖線で示す部位の断面図であり、トランジスタ200の導電体240bとの接続部における断面図でもある。なお、
図2(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
【0306】
なお、
図2に示す半導体装置において、<半導体装置の構成例>に示した半導体装置(
図1参照。)を構成する構造と同機能を有する構造には、同符号を付記する。
【0307】
以下、トランジスタ200の構成について、それぞれ
図2を用いて説明する。なお、本項目においても、トランジスタ200の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。
【0308】
図2に示す半導体装置は、<半導体装置の構成例>に示した半導体装置(
図1参照。)とは、絶縁体256、および絶縁体280の側面に接するように設けられる絶縁体273が、導電体242a、および導電体242bの上面に接するように設けられている点が異なる。
【0309】
なお、
図2(A)、
図2(B)、および
図2(C)に示すように、絶縁体273は、絶縁体280に形成される開口の側面に沿って形成されるため、酸化物230a、酸化物230b、および導電体242のA3側、およびA4側の側面の一部に接するように設けられる。
【0310】
絶縁体273は、少なくとも絶縁体256、および絶縁体274と接するように設けられる。このため、絶縁体256、絶縁体273、および絶縁体274により絶縁体280を囲うことができ、絶縁体280に含まれる水素や水などの不純物の、酸化物230や、ゲート絶縁膜として機能する絶縁体224、および絶縁体250への拡散を抑制することができる。
【0311】
次に
図2に示すトランジスタ200の作製方法について説明する。なお、先の<半導体装置の作製方法>と重複する説明は省略する。
【0312】
図8に示したように、絶縁体280、絶縁体256A、および絶縁体256Bに対して加工処理を行い、開口263を形成するまでは、先の<半導体装置の作製方法>を参照することができ、その説明は省略する。
【0313】
次に、開口263内部、および絶縁体280上に絶縁体273Aを形成する(
図15参照。)。なお、絶縁体273Aに用いることができる材料、およびその作製方法は、先の<半導体装置の作製方法>を参照することができる。
【0314】
続いて、絶縁体273Aを異方性エッチングし、開口263底部の絶縁体273A、および絶縁体280上の絶縁体273Aなどを除去し、絶縁体273を形成する(
図16参照。)。絶縁体273は、導電体242Bの上面に接し、かつ絶縁体280の側面、および絶縁体256の側面を覆うように設けられる。また、
図16(A)に示すように、絶縁体273は、開口263の側面に沿って形成されるため、導電体242B、酸化物230a、および酸化物230bのA3側、およびA4側の側面の一部に接するように設けられる。
【0315】
次に、開口263内部で絶縁体273から露出した導電体242Bを加工し、導電体242a、および導電体242bを形成する(
図17参照。)。導電体242Bの加工方法は、先の<半導体装置の作製方法>を参照することができる。また、導電体242a、および導電体242bの形成後に、領域253(領域253a、および領域253b)が形成される場合がある。
【0316】
次に、絶縁体273を介して開口263の内部、および絶縁体280上に酸化膜230C、絶縁体250A、導電膜260A、および導電膜260Bを形成する。以降の工程は、
図12乃至
図14、および先の<半導体装置の作製方法>を参照することができる。また、酸化物230、および絶縁体280への酸素の添加を適宜行ってもよい。
【0317】
<半導体装置の変形例2>
以下では、
図3を用いて、先の<半導体装置の構成例>で示したものとは異なる、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
【0318】
図3(A)は、トランジスタ200を有する半導体装置の上面図である。また、
図3(B)、
図3(C)、および
図3(D)は、当該半導体装置の断面図である。ここで、
図3(B)は、
図3(A)にA1-A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、
図3(C)は、
図3(A)にA3-A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、
図3(D)は、
図3(A)にA5-A6の一点鎖線で示す部位の断面図であり、トランジスタ200の導電体240bとの接続部における断面図でもある。なお、
図3(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
【0319】
なお、
図3に示す半導体装置において、<半導体装置の構成例>に示した半導体装置(
図1参照。)を構成する構造と同機能を有する構造には、同符号を付記する。
【0320】
以下、トランジスタ200の構成について、それぞれ
図3を用いて説明する。なお、本項目においても、トランジスタ200の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。
【0321】
図3に示す半導体装置は、<半導体装置の構成例>に示した半導体装置(
図1参照。)とは、絶縁体256、および絶縁体280の側面に接するように設けられる絶縁体273が、導電体242a、および導電体242bの上面、および側面の一部に接するように設けられている点が異なる。このとき、導電体242aは、導電体242bと向かい合う側面に段差部を有している。導電体242aは、絶縁体256と重畳する第1の領域において第1の膜厚を有し、絶縁体256と重畳しない第2の領域において第2の膜厚を有している。ここで、第2の膜厚は、第1の膜厚より小さい。絶縁体273は、第2の領域の上面、および第1の領域の導電体242b側の側面と接する。また、導電体242bは、導電体242aと向かい合う側面に段差部を有している。導電体242bは、絶縁体256と重畳する第3の領域において第1の膜厚を有し、絶縁体256よりも導電体242a側の第4の領域において第2の膜厚を有している。絶縁体273は、第4の領域の上面、および第3の領域の導電体242a側の側面と接する。
【0322】
なお、
図3(A)、
図3(B)、および
図3(C)に示すように、絶縁体273は、絶縁体280に形成される開口の側面に沿って形成されるため、酸化物230a、酸化物230b、および導電体242のA3側、およびA4側の側面の一部に接するように設けられる。
【0323】
絶縁体273は、少なくとも絶縁体256、および絶縁体274と接するように設けられる。このため、絶縁体256、絶縁体273、および絶縁体274により絶縁体280を囲うことができ、絶縁体280に含まれる水素や水などの不純物の、酸化物230や、ゲート絶縁膜として機能する絶縁体224、および絶縁体250への拡散を抑制することができる。
【0324】
次に
図3に示すトランジスタ200の作製方法について説明する。なお、先の<半導体装置の作製方法>と重複する説明は省略する。
【0325】
図7に示したように、絶縁体224、酸化物230a、酸化物230b、および導電体242B上に絶縁体256A、絶縁体256B、および絶縁体280を形成するまでは、先の<半導体装置の作製方法>を参照することができ、その説明は省略する。
【0326】
次に、リソグラフィー法を用いて、少なくとも導電体205と重なる領域を有するように、絶縁体280、絶縁体256A、および絶縁体256Bに対して加工処理を行い、開口263を形成する。このとき、開口内部において導電体242Bの一部もエッチングされる場合がある(
図18参照。)。導電体242Bの一部は、絶縁体256Aの加工中、あるいは絶縁体256A加工後のオーバーエッチングによりエッチングされると考えられる。
【0327】
次に、開口263内部、および絶縁体280上に絶縁体273Aを形成する(
図19参照。)。なお、絶縁体273Aに用いることができる材料、およびその作製方法は、先の<半導体装置の作製方法>を参照することができる。
【0328】
続いて、絶縁体273Aを異方性エッチングし、開口263底部の絶縁体273A、および絶縁体280上の絶縁体273Aなどを除去し、絶縁体273を形成する(
図20参照。)。絶縁体273は、導電体242Bの上面に接し、かつ絶縁体280の側面、および絶縁体256の側面を覆うように設けられる。また、
図20(A)に示すように、絶縁体273は、開口263の側面に沿って形成されるため、導電体242B、酸化物230a、および酸化物230bのA3側、およびA4側の側面の一部に接するように設けられる。
【0329】
次に、開口263内部で絶縁体273から露出した導電体242Bを加工し、導電体242a、および導電体242bを形成する(
図21参照。)。導電体242Bの加工方法は、先の<半導体装置の作製方法>を参照することができる。また、導電体242a、および導電体242bの形成後に、領域253(領域253a、および領域253b)が形成される場合がある。
【0330】
次に、絶縁体273を介して開口263の内部、および絶縁体280上に酸化膜230C、絶縁体250A、導電膜260A、および導電膜260Bを形成する。以降の工程は、
図12乃至
図14、および先の<半導体装置の作製方法>を参照することができる。また、酸化物230、および絶縁体280への酸素の添加を適宜行ってもよい。
【0331】
以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態や実施例に示す構成、構造、方法などと適宜組み合わせて用いることができる。
【0332】
(実施の形態2)
本実施の形態では、半導体装置の一形態を、
図22および
図23を用いて説明する。
【0333】
[記憶装置1]
本発明の一態様である容量素子を使用した、半導体装置(記憶装置)の一例を
図22に示す。本発明の一態様の半導体装置は、トランジスタ200がトランジスタ300の上方に設けられ、容量素子100がトランジスタ300、およびトランジスタ200の上方に設けられている。なお、トランジスタ200として、先の実施の形態で説明したトランジスタ200などを用いることができる。
【0334】
トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
【0335】
図22に示す半導体装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200の第1のゲートと電気的に接続され、配線1006はトランジスタ200の第2のゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。
【0336】
また、
図22に示す記憶装置は、マトリクス状に配置することで、メモリセルアレイを構成することができる。
【0337】
<トランジスタ300>
トランジスタ300は、基板311上に設けられ、ゲート電極として機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部からなる半導体領域313、およびソース領域として機能する低抵抗領域314a、およびドレイン領域として機能する低抵抗領域314bを有する。トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
【0338】
ここで、
図22に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
【0339】
なお、
図22に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
【0340】
<容量素子100>
容量素子100は、トランジスタ200の上方に設けられる。容量素子100は、第1の電極として機能する導電体110と、第2の電極として機能する導電体120、および誘電体として機能する絶縁体130とを有する。
【0341】
また、例えば、導電体240上に設けた導電体112と、導電体110は、同時に形成することができる。なお、導電体112は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。
【0342】
図22では、導電体112、および導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
【0343】
また、絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。
【0344】
例えば、絶縁体130には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high-k)材料との積層構造を用いることが好ましい。当該構成により、容量素子100は、高誘電率(high-k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
【0345】
なお、高誘電率(high-k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
【0346】
一方、絶縁耐力が大きい材料(低い比誘電率の材料)としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。
【0347】
<配線層>
各構造体の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。ここで、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
【0348】
例えば、基板311上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。なお、絶縁体315、および導電体316は、絶縁体320に埋め込まれるように設けられている。また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。
【0349】
また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
【0350】
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、
図22において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。
【0351】
絶縁体354、および導電体356上には、絶縁体210、絶縁体212、絶縁体214、および絶縁体216が順に積層して設けられている。また、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、及びトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。さらに、導電体120、および絶縁体130上には、絶縁体150が設けられている。
【0352】
層間膜として用いることができる絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
【0353】
例えば、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
【0354】
例えば、絶縁体212、絶縁体352、および絶縁体354等には、比誘電率の低い絶縁体を有することが好ましい。例えば、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
【0355】
また、導電体112、または導電体120上に設けられる絶縁体130、および絶縁体150の一方、または両方を抵抗率が1.0×1012Ωcm以上1.0×1015Ωcm以下、好ましくは5.0×1012Ωcm以上1.0×1014Ωcm以下、より好ましくは1.0×1013Ωcm以上5.0×1013Ωcm以下の絶縁体とすることが好ましい。絶縁体130、および絶縁体150の一方、または両方を上記のような抵抗率を有する絶縁体とすることで、当該絶縁体は、絶縁性を維持しつつ、トランジスタ200、トランジスタ300、容量素子100、および導電体112や導電体120等の配線間に蓄積される電荷を分散し、該電荷によるトランジスタ、該トランジスタを有する記憶装置の特性不良や静電破壊を抑制することができ、好ましい。このような絶縁体として、窒化シリコン、または窒化酸化シリコンを用いることができる。
【0356】
また、上記のような抵抗率を有する絶縁体として、絶縁体140を導電体112の下層に設けてもよい。この場合、絶縁体281上に絶縁体140を形成し、絶縁体140、絶縁体281、絶縁体274、絶縁体280、および絶縁体256などに開口部を形成し、当該開口部内に絶縁体241の形成や、トランジスタ200、導電体218などと電気的に接続する導電体240の形成を行えばよい。絶縁体140は、絶縁体130、または絶縁体150と同様の材料を用いることができる。
【0357】
また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。従って、絶縁体210、および絶縁体350等には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。
【0358】
水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
【0359】
配線、プラグに用いることができる導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
【0360】
例えば、導電体328、導電体330、導電体356、導電体218、導電体112、導電体110、および導電体120等としては、上記の材料で形成される金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
【0361】
<<酸化物半導体が設けられた層の配線、またはプラグ>>
なお、トランジスタ200に、酸化物半導体を用いる場合、酸化物半導体の近傍に過剰酸素領域を有する絶縁体が設けられることがある。その場合、該過剰酸素領域を有する絶縁体と、該過剰酸素領域を有する絶縁体に設ける導電体との間に、バリア性を有する絶縁体を設けることが好ましい。
【0362】
例えば、
図22では、絶縁体224と、導電体240との間に、絶縁体241を設けるとよい。特に、絶縁体241は、過剰酸素領域を有する絶縁体224を挟む絶縁体222と、絶縁体256に接して設けられることが好ましい。絶縁体241と、絶縁体222、および絶縁体256とが接して設けられることで、絶縁体224は、バリア性を有する絶縁体により、封止する構造とすることができる。さらに、絶縁体241は、絶縁体280、および絶縁体281の一部とも接することが好ましい。絶縁体241が、絶縁体280、および絶縁体281まで延在していることで、酸素や不純物の拡散を、より抑制することができる。
【0363】
つまり、絶縁体241を設けることで、絶縁体224が有する過剰酸素が、導電体240に吸収されることを抑制することができる。また、絶縁体241を有することで、不純物である水素が、導電体240を介して、トランジスタ200へ拡散することを抑制することができる。
【0364】
なお、絶縁体241としては、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
【0365】
以上が構成例についての説明である。本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
【0366】
[記憶装置2]
本発明の一態様である半導体装置を使用した、記憶装置の一例を
図23に示す。
図23に示す記憶装置は、
図22で示したトランジスタ200、トランジスタ300、および容量素子100を有する半導体装置に加え、トランジスタ400を有している。
【0367】
トランジスタ400は、トランジスタ200の第2のゲート電圧を制御することができる。例えば、トランジスタ400の第1のゲート及び第2のゲートをソースとダイオード接続し、トランジスタ400のソースと、トランジスタ200の第2のゲートを接続する構成とする。当該構成でトランジスタ200の第2のゲートの負電位を保持するとき、トランジスタ400の第1のゲート-ソース間の電圧および、第2のゲート-ソース間の電圧は、0Vになる。トランジスタ400において、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流が非常に小さいため、トランジスタ200およびトランジスタ400に電源供給をしなくても、トランジスタ200の第2のゲートの負電位を長時間維持することができる。これにより、トランジスタ200、およびトランジスタ400を有する記憶装置は、長期にわたり記憶内容を保持することが可能である。
【0368】
図23において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200のゲートと電気的に接続され、配線1006はトランジスタ200のバックゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。配線1007はトランジスタ400のソースと電気的に接続され、配線1008はトランジスタ400のゲートと電気的に接続され、配線1009はトランジスタ400のバックゲートと電気的に接続され、配線1010はトランジスタ400のドレインと電気的に接続されている。ここで、配線1006、配線1007、配線1008、及び配線1009が電気的に接続されている。
【0369】
また、
図23に示す記憶装置は、
図22に示す記憶装置と同様に、マトリクス状に配置することで、メモリセルアレイを構成することができる。なお、1個のトランジスタ400は、複数のトランジスタ200の第2のゲート電圧を制御することができる。そのため、トランジスタ400は、トランジスタ200よりも、少ない個数を設けるとよい。
【0370】
<トランジスタ400>
トランジスタ400は、トランジスタ200と、同じ層に形成されており、並行して作製することができるトランジスタである。トランジスタ400は、第1のゲート電極として機能する導電体460(導電体460a、および導電体460b)と、第2のゲート電極として機能する導電体405と、ゲート絶縁層として機能する絶縁体222、絶縁体224、および絶縁体450と、チャネルが形成される領域を有する酸化物430cと、絶縁体473と、ソースまたはドレインの一方として機能する導電体442a、領域453a、酸化物431a、および酸化物431bと、ソースまたはドレインの他方として機能する導電体442b、領域453b、酸化物432a、および酸化物432bと、導電体440(導電体440a、および導電体440b)と、を有する。
【0371】
トランジスタ400において、導電体405は、導電体205と、同じ層である。酸化物431a、および酸化物432aは、酸化物230aと、同じ層であり、酸化物431b、および酸化物432bは、酸化物230bと、同じ層である。導電体442a、および導電体442bは、導電体242a、および導電体242bと、同じ層である。領域453aおよび領域453bは、領域253aおよび領域253bと同じ工程で形成される層である。酸化物430cは、酸化物230cと同じ層である。絶縁体450は、絶縁体250と、同じ層である。絶縁体473は、絶縁体273と、同じ層である。導電体460a、および導電体460bは、それぞれ導電体260a、および導電体260bと、同じ層である。
【0372】
なお、同じ層に形成された構造体は、同時に形成することができる。例えば、酸化物430cは、酸化物230cとなる酸化膜を加工することで、形成することができる。
【0373】
トランジスタ400の活性層として機能する酸化物430cは、酸化物230などと同様に、酸素欠損が低減され、水素または水などの不純物が低減されている。これにより、トランジスタ400のしきい値電圧を0Vより大きくし、オフ電流を低減し、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流を非常に小さくすることができる。
【0374】
<<ダイシングライン>>
以下では、大面積基板を半導体素子ごとに分断することによって、複数の半導体装置をチップ状で取り出す場合に設けられるダイシングライン(スクライブライン、分断ライン、又は切断ラインと呼ぶ場合がある)について説明する。分断方法としては、例えば、まず、基板に半導体素子を分断するための溝(ダイシングライン)を形成した後、ダイシングラインにおいて切断し、複数の半導体装置に分断(分割)する場合がある。
【0375】
ここで、例えば、
図23に示すように、絶縁体256(絶縁体256a)と、絶縁体222とが接する領域をダイシングラインとなるように設計することが好ましい。つまり、複数のトランジスタ200を有するメモリセル、およびトランジスタ400の外縁に設けられるダイシングラインとなる領域近傍において、絶縁体224に開口を設ける。また、絶縁体224の側面を覆うように、絶縁体256を設ける。
【0376】
つまり、上記絶縁体224に設けた開口において、絶縁体222と、絶縁体256とが接する。例えば、このとき、絶縁体222と、絶縁体256とを同材料及び同方法を用いて形成してもよい。絶縁体222、および絶縁体256を、同材料、および同方法で設けることで、密着性を高めることができる。例えば、酸化アルミニウム、または酸化ハフニウムを用いることが好ましい。
【0377】
当該構造により、絶縁体222、絶縁体256、絶縁体273、絶縁体473、および絶縁体274で、絶縁体224、トランジスタ200、およびトランジスタ400を包み込むことができる。絶縁体222、絶縁体256、絶縁体273、絶縁体473、および絶縁体274は、酸素、水素、及び水の拡散を抑制する機能を有しているため、本実施の形態に示す半導体素子が形成された回路領域ごとに、基板を分断することにより、複数のチップに加工しても、分断した基板の側面方向から、水素又は水などの不純物が混入し、トランジスタ200、およびトランジスタ400に拡散することを防ぐことができる。
【0378】
また、当該構造により、絶縁体224の過剰酸素が絶縁体256、および絶縁体222の外部に拡散することを防ぐことができる。従って、絶縁体224の過剰酸素は、効率的にトランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物に供給される。当該酸素により、トランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物の酸素欠損を低減することができる。これにより、トランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200、またはトランジスタ400の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
【0379】
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
【0380】
(実施の形態3)
本実施の形態では、
図24および
図25を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある。)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある。)について説明する。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
【0381】
<記憶装置の構成例>
図24(A)にOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、コントロールロジック回路1460を有する。
【0382】
列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、および書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。
【0383】
記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、WDATAは書き込み回路に入力される。
【0384】
コントロールロジック回路1460は、外部からの入力信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
【0385】
メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCと、複数の配線を有する。なお、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。
【0386】
なお、
図24(A)において、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、
図24(B)に示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。
【0387】
図25に上述のメモリセルMCに適用できるメモリセルの構成例について説明する。
【0388】
[DOSRAM]
図25(A)乃至(C)に、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。
図25(A)に示す、メモリセル1471は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、ゲート(フロントゲートと呼ぶ場合がある。)、及びバックゲートを有する。
【0389】
トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
【0390】
配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。
【0391】
また、メモリセルMCは、メモリセル1471に限定されず、回路構成の変更を行うことができる。例えば、メモリセルMCは、
図25(B)に示すメモリセル1472のように、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、
図25(C)に示すメモリセル1473ように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。
【0392】
上記実施の形態に示す半導体装置をメモリセル1471等に用いる場合、トランジスタM1としてトランジスタ200を用い、容量素子CAとして容量素子100を用いることができる。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1471、メモリセル1472、メモリセル1473に対して多値データ、又はアナログデータを保持することができる。
【0393】
また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
【0394】
[NOSRAM]
図25(D)乃至(H)に、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。
図25(D)に示す、メモリセル1474は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある。)、及びバックゲートを有する。本明細書等において、トランジスタM2にOSトランジスタを用いたゲインセル型のメモリセルを有する記憶装置を、NOSRAM(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
【0395】
トランジスタM2の第1端子は、容量素子CBの第1端子と接続され、トランジスタM2の第2端子は、配線WBLと接続され、トランジスタM2のゲートは、配線WOLと接続され、トランジスタM2のバックゲートは、配線BGLと接続されている。容量素子CBの第2端子は、配線CALと接続されている。トランジスタM3の第1端子は、配線RBLと接続され、トランジスタM3の第2端子は、配線SLと接続され、トランジスタM3のゲートは、容量素子CBの第1端子と接続されている。
【0396】
配線WBLは、書き込みビット線として機能し、配線RBLは、読み出しビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CBの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、データの読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。
【0397】
また、メモリセルMCは、メモリセル1474に限定されず、回路の構成を適宜変更することができる。例えば、メモリセルMCは、
図25(E)に示すメモリセル1475のように、トランジスタM2のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、
図25(F)に示すメモリセル1476のように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM2で構成されたメモリセルとしてもよい。また、例えば、メモリセルMCは、
図25(G)に示すメモリセル1477のように、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。
【0398】
上記実施の形態に示す半導体装置をメモリセル1474等に用いる場合、トランジスタM2としてトランジスタ200を用い、トランジスタM3としてトランジスタ300を用い、容量素子CBとして容量素子100を用いることができる。トランジスタM2としてOSトランジスタを用いることによって、トランジスタM2のリーク電流を非常に低くすることができる。これにより、書き込んだデータをトランジスタM2によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1474に多値データ、又はアナログデータを保持することができる。メモリセル1475乃至1477も同様である。
【0399】
なお、トランジスタM3は、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタと呼ぶ場合がある)であってもよい。Siトランジスタの導電型は、nチャネル型としてもよいし、pチャネル型としてもよい。Siトランジスタは、OSトランジスタよりも電界効果移動度が高くなる場合がある。よって、読み出しトランジスタとして機能するトランジスタM3として、Siトランジスタを用いてもよい。また、トランジスタM3にSiトランジスタを用いることで、トランジスタM3の上に積層してトランジスタM2を設けることができるので、メモリセルの占有面積を低減し、記憶装置の高集積化を図ることができる。
【0400】
また、トランジスタM3はOSトランジスタであってもよい。トランジスタM2、M3にOSトランジスタを用いた場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
【0401】
また、
図25(H)に3トランジスタ1容量素子のゲインセル型のメモリセルの一例を示す。
図25(H)に示すメモリセル1478は、トランジスタM4乃至M6、および容量素子CCを有する。容量素子CCは適宜設けられる。メモリセル1478は、配線BIL、RWL、WWL、BGL、およびGNDLに電気的に接続されている。配線GNDLは低レベル電位を与える配線である。なお、メモリセル1478を、配線BILに代えて、配線RBL、WBLに電気的に接続してもよい。
【0402】
トランジスタM4は、バックゲートを有するOSトランジスタであり、バックゲートは配線BGLに電気的に接続されている。なお、トランジスタM4のバックゲートとゲートとを互いに電気的に接続してもよい。あるいは、トランジスタM4はバックゲートを有さなくてもよい。
【0403】
なお、トランジスタM5、M6はそれぞれ、nチャネル型Siトランジスタまたはpチャネル型Siトランジスタでもよい。或いは、トランジスタM4乃至M6がOSトランジスタでもよい、この場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
【0404】
上記実施の形態に示す半導体装置をメモリセル1478に用いる場合、トランジスタM4としてトランジスタ200を用い、トランジスタM5、M6としてトランジスタ300を用い、容量素子CCとして容量素子100を用いることができる。トランジスタM4としてOSトランジスタを用いることによって、トランジスタM4のリーク電流を非常に低くすることができる。
【0405】
なお、本実施の形態に示す、周辺回路1411、およびメモリセルアレイ1470等の構成は、上記に限定されるものではない。これらの回路、および当該回路に接続される配線、回路素子等の、配置または機能は、必要に応じて、変更、削除、または追加してもよい。
【0406】
本実施の形態に示す構成は、他の実施の形態などに示す構成と適宜組み合わせて用いることができる。
【0407】
(実施の形態4)
本実施の形態は、上記実施の形態に示す記憶装置などが組み込まれた電子部品および電子機器の一例を示す。
【0408】
<電子部品>
まず、上記実施の形態に示す記憶装置が組み込まれた電子部品の例を、
図26(A)、(B)を用いて説明を行う。
【0409】
図26(A)に電子部品700および電子部品700が実装された基板(実装基板704)の斜視図を示す。
図26(A)に示す電子部品700はICチップであり、リードおよび回路部710を有する。電子部品700は、例えばプリント基板702に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
【0410】
回路部710には、上記実施の形態で示した各種の回路が1のダイに設けられている。回路部710は、先の実施の形態に示すように、積層構造をもち、Siトランジスタ層712、配線層714、OSトランジスタ層716に大別される。OSトランジスタ層716をSiトランジスタ層712に積層して設けることができるため、電子部品700の小型化が容易である。
【0411】
電子部品700の回路部710として、上記実施の形態に示した記憶装置が設けられている。
図26(A)では、電子部品700のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。
【0412】
図26(B)に電子部品730の斜視図を示す。電子部品730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、および複数の回路部710が設けられている。
【0413】
電子部品730では、回路部710として、上記実施の形態に示す記憶装置を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU、GPU、FPGAなどの集積回路(半導体装置)を用いることができる。
【0414】
パッケージ基板732は、セラミック基板、プラスチック基板、またはガラスエポキシ基板などを用いることができる。インターポーザ731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
【0415】
インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
【0416】
インターポーザ731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
【0417】
HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
【0418】
また、シリコンインターポーザを用いたSiPやMCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
【0419】
また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、回路部710と半導体装置735の高さを揃えることが好ましい。
【0420】
電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。
図26(B)では、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
【0421】
電子部品730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J-leaded package)、またはQFN(Quad Flat Non-leaded package)などの実装方法を用いることができる。
【0422】
<電子機器>
次に、上記電子部品を備えた電子機器の例について
図27を用いて説明を行う。
【0423】
ロボット7100は、照度センサ、マイクロフォン、カメラ、スピーカ、ディスプレイ、各種センサ(赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなど)、および移動機構などを備える。電子部品730はプロセッサなどを有し、これら周辺機器を制御する機能を有する。例えば、電子部品700はセンサで取得されたデータを記憶する機能を有する。
【0424】
マイクロフォンは、使用者の音声および環境音などの音響信号を検知する機能を有する。また、スピーカは、音声および警告音などのオーディオ信号を発する機能を有する。ロボット7100は、マイクロフォンを介して入力されたオーディオ信号を解析し、必要なオーディオ信号をスピーカから発することができる。ロボット7100において、は、マイクロフォン、およびスピーカを用いて、使用者とコミュニケーションをとることが可能である。
【0425】
カメラは、ロボット7100の周囲を撮像する機能を有する。また、ロボット7100は、移動機構を用いて移動する機能を有する。ロボット7100は、カメラを用いて周囲の画像を撮像し、画像を解析して移動する際の障害物の有無などを察知することができる。
【0426】
飛行体7120は、プロペラ、カメラ、およびバッテリなどを有し、自律して飛行する機能を有する。電子部品730はこれら周辺機器を制御する機能を有する。
【0427】
例えば、カメラで撮影した画像データは、電子部品700に記憶される。電子部品730は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、電子部品730によってバッテリの蓄電容量の変化から、バッテリ残量を推定することができる。
【0428】
掃除ロボット7140は、上面に配置されたディスプレイ、側面に配置された複数のカメラ、ブラシ、操作ボタン、各種センサなどを有する。図示されていないが、掃除ロボット7300には、タイヤ、吸い込み口等が備えられている。掃除ロボット7300は自走し、ゴミを検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
【0429】
例えば、電子部品730は、カメラが撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシに絡まりそうな物体を検知した場合は、ブラシの回転を止めることができる。
【0430】
自動車7160は、エンジン、タイヤ、ブレーキ、操舵装置、カメラなどを有する。例えば、電子部品730は、ナビゲーション情報、速度、エンジンの状態、ギアの選択状態、ブレーキの使用頻度などのデータに基づいて、自動車7160の走行状態を最適化するための制御を行う。例えば、カメラで撮影した画像データは電子部品700に記憶される。
【0431】
電子部品700および/または電子部品730は、TV装置7200(テレビジョン受像装置)、スマートフォン7210、PC7220(パーソナルコンピュータ)、7230、ゲーム機7240、ゲーム機7260等に組み込むことができる。
【0432】
例えば、TV装置7200に内蔵された電子部品730は画像エンジンとして機能させることができる。例えば、電子部品730は、ノイズ除去、解像度アップコンバージョンなどの画像処理を行う。
【0433】
スマートフォン7210は、携帯情報端末の一例である。スマートフォン7210は、マイクロフォン、カメラ、スピーカ、各種センサ、および表示部を有する。電子部品730によってこれら周辺機器が制御される。
【0434】
PC7220、PC7230はそれぞれノート型PC、据え置き型PCの例である。PC7230には、キーボード7232、およびモニタ装置7233が無線または有線により接続可能である。ゲーム機7240は携帯型ゲーム機の例である。ゲーム機7260は据え置き型ゲーム機の例である。ゲーム機7260には、無線または有線でコントローラ7262が接続されている。コントローラ7262に、電子部品700および/または電子部品730を組み込むこともできる。
【0435】
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
【0436】
(実施の形態5)
本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータや、ノート型のコンピュータや、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。
図28にリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
【0437】
図28(A)はUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。基板1104のメモリチップ1105などに先の実施の形態に示す半導体装置を組み込むことができる。
【0438】
図28(B)はSDカードの外観の模式図であり、
図28(C)は、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。基板1113のメモリチップ1114などに先の実施の形態に示す半導体装置を組み込むことができる。
【0439】
図28(D)はSSDの外観の模式図であり、
図28(E)は、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。基板1153のメモリチップ1154などに先の実施の形態に示す半導体装置を組み込むことができる。
【0440】
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
【符号の説明】
【0441】
200:トランジスタ、205:導電体、210:絶縁体、212:絶縁体、214:絶縁体、216:絶縁体、218:導電体、220:絶縁体、222:絶縁体、224:絶縁体、230:酸化物、231:領域、232:領域、234:領域、240:導電体、241:絶縁体、242:導電体、250:絶縁体、253:領域、256:絶縁体、260:導電体、263:開口、273:絶縁体、274:絶縁体、280:絶縁体、281:絶縁体