(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024128034
(43)【公開日】2024-09-20
(54)【発明の名称】表示装置
(51)【国際特許分類】
H01L 29/786 20060101AFI20240912BHJP
H01L 21/822 20060101ALI20240912BHJP
G09F 9/30 20060101ALI20240912BHJP
H05B 33/14 20060101ALI20240912BHJP
H10K 59/123 20230101ALI20240912BHJP
H10K 59/131 20230101ALI20240912BHJP
G02F 1/1368 20060101ALN20240912BHJP
【FI】
H01L29/78 623A
H01L27/04 H
H01L29/78 618B
G09F9/30 348A
G09F9/30 338
H05B33/14 Z
H10K59/123
H10K59/131
G02F1/1368
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2024108940
(22)【出願日】2024-07-05
(62)【分割の表示】P 2022203063の分割
【原出願日】2013-11-27
(31)【優先権主張番号】P 2012260208
(32)【優先日】2012-11-28
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】山崎 舜平
(72)【発明者】
【氏名】木村 肇
(72)【発明者】
【氏名】三宅 博之
(72)【発明者】
【氏名】小山 潤
(57)【要約】
【課題】新規な表示装置を提供する。
【解決手段】画素部と、画素部の外側に配置された駆動回路部と、画素部または駆動回路
部のいずれか一方または双方に電気的に接続され、一対の電極を含む保護回路と、を有し
、画素部は、マトリクス状に配置された画素電極と、画素電極に電気的に接続されたトラ
ンジスタと、を有し、トランジスタは、窒素とシリコンを含む第1の絶縁層と、酸素と窒
素とシリコンを含む第2の絶縁層と、を有し、保護回路が、一対の電極の間に第1の絶縁
層を有する。
【選択図】
図6
【特許請求の範囲】
【請求項1】
画素部と、
前記画素部と電気的に接続された保護回路と、を有し、
前記画素部は、第1の酸化物半導体層を有するトランジスタと、前記トランジスタと電気的に接続された発光素子と、を有し、
前記第1の酸化物半導体層は、前記トランジスタのチャネルとして機能し、
前記保護回路は、第2の酸化物半導体層と、前記第2の酸化物半導体層上を覆う第1の絶縁層と、前記第1の絶縁層上の第1の導電層と、を有し、
前記第1の導電層は、前記第1の絶縁層が有する開口部を介して、前記第2の酸化物半導体層と接する、表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物、方法、製造方法、プロセス、マシーン、マニュファクチャー、または、
組成物(コンポジション オブ マター)に関する。特に、本発明は、例えば、半導体装
置、表示装置、発光装置、電子機器、それらの駆動方法、または、それらの製造方法に関
する。特に、本発明は、例えば、酸化物半導体を有する半導体装置、表示装置、電子機器
、または、発光装置に関する。
【0002】
なお、表示装置とは、表示素子を有する装置のことをいう。なお、表示装置は、複数の
画素を駆動させる駆動回路等を含む。なお、表示装置は、別の基板上に配置された制御回
路、電源回路、信号生成回路等を含む。
【背景技術】
【0003】
液晶表示装置に代表される表示装置は、近年の技術革新の結果、素子及び配線の微細化
が進み、量産技術も各段に進歩してきている。今後はより、製造歩留まりの向上を図るこ
とで、低コストを図ることが求められている。
【0004】
表示装置に静電気等によるサージ電圧が印加されると、素子が破壊してしまい、正常な
表示ができなくなる。そのため、製造歩留まりが悪化するおそれがある。その対策として
、表示装置には、サージ電圧を別の配線に逃がすための保護回路が設けられている(例え
ば特許文献1乃至7を参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010-92036号公報
【特許文献2】特開2010-92037号公報
【特許文献3】特開2010-97203号公報
【特許文献4】特開2010-97204号公報
【特許文献5】特開2010-107976号公報
【特許文献6】特開2010-107977号公報
【特許文献7】特開2010-113346号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
表示装置では、保護回路に代表されるように、信頼性の向上を目的とした構成が重要で
ある。
【0007】
そこで、本発明の一態様では、信頼性を向上しうる、新規な構成の表示装置を提供する
ことを課題の一とする。または、本発明の一態様では、静電破壊を低減することができる
、新規な構成の表示装置を提供することを課題の一とする。または、本発明の一態様では
、静電気の影響を低減することができる、新規な構成の表示装置を提供することを課題の
一とする。または、本発明の一態様では、壊れにくい、新規な構成の表示装置を提供する
ことを課題の一とする。または、本発明の一態様では、ラビング工程において、トランジ
スタに与える影響を低減することができる、新規な構成の表示装置を提供することを課題
の一とする。または、本発明の一態様では、検査工程において、トランジスタに与える影
響を低減することができる、新規な構成の表示装置を提供することを課題の一とする。ま
たは、本発明の一態様では、タッチセンサを使用したときの不具合の影響を低減すること
ができる、新規な構成の表示装置を提供することを課題の一とする。または、本発明の一
態様では、トランジスタの特性の変動または劣化を低減することができる、新規な構成の
表示装置を提供することを課題の一とする。または、本発明の一態様では、トランジスタ
のしきい値電圧の変動または劣化を低減することができる、新規な構成の表示装置を提供
することを課題の一とする。または、本発明の一態様では、トランジスタのノーマリオン
状態を低減することができる、新規な構成の表示装置を提供することを課題の一とする。
または、本発明の一態様では、トランジスタの製造歩留まりを向上することができる、新
規な構成の表示装置を提供することを課題の一とする。または、本発明の一態様では、ト
ランジスタをシールドすることができる、新規な構成の表示装置を提供することを課題の
一とする。または、本発明の一態様では、画素電極に溜まった電荷を放電することができ
る、新規な構成の表示装置を提供することを課題の一とする。または、本発明の一態様で
は、配線に溜まった電荷を放電することができる、新規な構成の表示装置を提供すること
を課題の一とする。または、本発明の一態様では、導電率の向上した酸化物半導体層を有
する、新規な構成の表示装置を提供することを課題の一とする。または、本発明の一態様
では、酸化物半導体層の導電率を制御することができる、新規な構成の表示装置を提供す
ることを課題の一とする。または、本発明の一態様では、ゲート絶縁膜の導電率を制御す
ることができる、新規な構成の表示装置を提供することを課題の一とする。または、本発
明の一態様では、正常な表示が出来やすくすることができる、新規な構成の表示装置を提
供することを課題の一とする。
【0008】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の
一態様は、これらの課題の全てを解決する必要はないものとする。なお、上記以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、上記以外の課題を抽出することが可能である。
【課題を解決するための手段】
【0009】
本発明の一態様は、画素部と、画素部の外側に配置された駆動回路部と、画素部または
駆動回路部のいずれか一方または双方に電気的に接続され、一対の電極を含む保護回路と
、を有し、画素部は、マトリクス状に配置された画素電極と、画素電極に電気的に接続さ
れたトランジスタと、を有し、トランジスタは、窒素とシリコンを含む第1の絶縁層と、
酸素と窒素とシリコンを含む第2の絶縁層と、を有し、保護回路が、一対の電極の間に第
1の絶縁層を有する表示装置である。
【発明の効果】
【0010】
本発明の一態様により、表示装置の信頼性を高めることができる。
【図面の簡単な説明】
【0011】
【
図1】表示装置の平面模式図、及び保護回路を説明する回路図。
【
図3】表示装置の平面模式図、及び保護回路を説明する回路図。
【
図4】保護回路、及び抵抗素子を説明する平面図及び断面図。
【
図13】表示装置に用いることのできる画素回路を説明する回路図。
【
図14】トランジスタの平面及び断面を説明する図。
【
図18】トランジスタの断面図、及び酸化物積層を説明する図。
【
図23】本発明の一態様である表示装置を用いた表示モジュールを説明する図。
【
図24】本発明の一態様である表示装置を用いた電子機器を説明する図。
【
図25】本発明の一態様である表示装置を用いた電子機器を説明する図。
【発明を実施するための形態】
【0012】
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異
なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態
及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は
、以下の実施の形態の記載内容に限定して解釈されるものではない。
【0013】
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている
場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を
模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズ
による信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧
、若しくは電流のばらつきなどを含むことが可能である。
【0014】
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含
む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイ
ン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間
にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流を流すこ
とができるものである。
【0015】
ここで、ソースとドレインとは、トランジスタの構造又は動作条件等によって変わるた
め、いずれがソースまたはドレインであるかを限定することが困難である。そこで、ソー
スとして機能する部分、及びドレインとして機能する部分を、ソース又はドレインと呼ば
ず、ソースとドレインとの一方を第1電極と表記し、ソースとドレインとの他方を第2電
極と表記する場合がある。
【0016】
また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の
混同を避けるために付したものであり、数的に限定するものではないことを付記する。
【0017】
また、本明細書において、AとBとが接続されている、とは、AとBとが直接接続され
ているものの他、電気的に接続されているものを含むものとする。ここで、AとBとが電
気的に接続されているとは、AとBとの間で、何らかの電気的作用を有する対象物が存在
するとき、AとBとの電気信号の授受を可能とするものをいう。
【0018】
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位
置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関
係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明し
た語句に限定されず、状況に応じて適切に言い換えることができる。
【0019】
また、図面におけるブロック図の各回路ブロックの配置は、説明のため位置関係を特定
するものであり、異なる回路ブロックで別々の機能を実現するよう示していても、実際の
回路や領域においては同じ回路や同じ領域内で別々の機能を実現しうるように設けられて
いる場合もある。また図面におけるブロック図の各回路ブロックの機能は、説明のため機
能を特定するものであり、一つの回路ブロックとして示していても、実際の回路や領域に
おいては一つの回路ブロックで行う処理を、複数の回路ブロックで行うよう設けられてい
る場合もある。
【0020】
また、画素とは、一つの色要素(例えばR(赤)G(緑)B(青)のいずれか1つ)の
明るさを制御できる表示単位に相当するものとする。従って、カラー表示装置の場合には
、カラー画像の最小表示単位は、Rの画素とGの画素とBの画素との三画素から構成され
るものとする。ただし、カラー画像を表示するための色要素は、三色に限定されず、三色
以上を用いても良いし、RGB以外の色を用いても良い。
【0021】
本明細書においては、本発明の実施の形態について図面を参照しながら説明する。なお
各実施の形態での説明は、以下の順序で行う。
1. 実施の形態1 (本発明の一態様に関する基本構成について)
2. 実施の形態2 (表示装置の各構成について)
3. 実施の形態3 (表示装置の作製方法について)
4. 実施の形態4 (画素回路の構成について)
5. 実施の形態5 (画素部の構成について)
6. 実施の形態6 (保護回路の変形例について)
7. 実施の形態7 (トランジスタの構成について)
8. 実施の形態8 (接続端子部の構成について)
9. 実施の形態9 (タッチセンサ、表示モジュールについて)
10.実施の形態10 (電子機器について)
【0022】
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について、
図1乃至
図5を用いて説明を
行う。
【0023】
図1(A)に示す表示装置は、画素の表示素子を有する領域(以下、画素部102とい
う)と、画素を駆動するための回路を有する回路部(以下、駆動回路部104という)と
、素子の保護機能を有する回路(以下、保護回路106という)と、端子部107と、を
有する。
【0024】
画素部102は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置され
た複数の表示素子を駆動するための回路(以下、画素回路108という)を有し、駆動回
路部104は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ
104aという)、画素の表示素子を駆動するための信号(データ信号)を供給するため
の回路(以下、ソースドライバ104bという)などの駆動回路を有する。
【0025】
ゲートドライバ104aは、シフトレジスタ等を有する。ゲートドライバ104aは、
端子部107を介して、シフトレジスタを駆動するための信号が入力され、信号を出力す
る。例えば、ゲートドライバ104aは、スタートパルス信号、クロック信号等が入力さ
れ、パルス信号を出力する。ゲートドライバ104aは、走査信号が与えられる配線(以
下、走査線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲート
ドライバ104aを複数設け、複数のゲートドライバ104aにより、走査線GL_1乃
至GL_Xを分割して制御してもよい。または、ゲートドライバ104aは、初期化信号
を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ10
4aは、別の信号を供給することも可能である。
【0026】
ソースドライバ104bは、シフトレジスタ等を有する。ソースドライバ104bは、
端子部107を介して、シフトレジスタを駆動するための信号の他、データ信号の元とな
る信号(画像信号)が入力される。ソースドライバ104bは、画像信号を元に画素回路
108に書き込むデータ信号を生成する機能を有する。また、ソースドライバ104bは
、スタートパルス信号、クロック信号等が入力されて得られるパルス信号に従って、デー
タ信号の出力を制御する機能を有する。また、ソースドライバ104bは、データ信号が
与えられる配線(以下、データ線DL_1乃至DL_Yという)の電位を制御する機能を
有する。または、ソースドライバ104bは、初期化信号を供給することができる機能を
有する。ただし、これに限定されず、ソースドライバ104bは、別の信号を供給するこ
とも可能である。
【0027】
ソースドライバ104bは、例えば複数のアナログスイッチなどを用いて構成される。
ソースドライバ104bは、複数のアナログスイッチを順次オン状態にすることにより、
画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを
用いてソースドライバ104bを構成してもよい。
【0028】
複数の画素回路108のそれぞれは、走査信号が与えられる複数の配線(以下、走査線
GLという)の一つを介してパルス信号が入力され、データ信号が与えられる複数の配線
(以下、データ線DLという)の一つを介してデータ信号が入力される。また、複数の画
素回路108のそれぞれは、ゲートドライバ104aによりデータ信号のデータの書き込
み及び保持が制御される。例えば、m行n列目の画素回路108は、走査線GL_m(m
はX以下の自然数)を介してゲートドライバ104aからパルス信号が入力され、走査線
GL_mの電位に応じてデータ線DL_n(nはY以下の自然数)を介してソースドライ
バ104bからデータ信号が入力される。
【0029】
保護回路106は、ゲートドライバ104aと画素回路108の間の配線である走査線
GLに接続される。または、保護回路106は、ソースドライバ104bと画素回路10
8の間の配線であるデータ線DLに接続される。または、保護回路106は、ゲートドラ
イバ104aと端子部107との間の配線に接続することができる。または、保護回路1
06は、ソースドライバ104bと端子部107との間の配線に接続することができる。
なお、端子部107は、外部の回路から表示装置に電源及び制御信号、及び画像信号を入
力するための端子が設けられた部分をいう。
【0030】
保護回路106は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該
配線と別の配線とを導通状態にする回路である。ただし、これに限定されず、保護回路1
06は、別の信号を供給することも可能である。
【0031】
図1(A)に示すように、画素部102と駆動回路部104にそれぞれ保護回路106
を設けることにより、ESD(Electro Static Discharge:静
電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。た
だし、保護回路106の構成はこれに限定されず、例えば、ゲートドライバ104aに保
護回路106を接続した構成、またはソースドライバ104bに保護回路106を接続し
た構成とすることもできる。あるいは、端子部107に保護回路106を接続した構成と
することもできる。
【0032】
また、
図1(A)においては、ゲートドライバ104aとソースドライバ104bによ
って駆動回路部104を形成している例を示しているが、この構成に限定されない。例え
ば、ゲートドライバ104aのみを形成し、別途用意されたソースドライバ回路が形成さ
れた基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実装
する構成としても良い。
【0033】
すなわち、保護回路106は、画素部102と、駆動回路部104のいずれか一方また
は双方に電気的に接続される。
【0034】
保護回路106は、例えば、抵抗素子などを用いて構成することができる。
図1(B)
に、具体的な保護回路の一例を示す。
【0035】
図1(B)に示す保護回路106は、配線110と、配線112との間に抵抗素子11
4が接続されている。また、配線110は、例えば、
図1(A)に示す走査線GLやデー
タ線DL、若しくは端子部107から駆動回路部104に引き回される配線である。
【0036】
また、配線112は、例えば、
図1(A)に示すゲートドライバ104a又はソースド
ライバ104bに電源を供給するための電源線の電位(VDD、VSSまたはGND)が
与えられる配線である。または、共通電位(コモン電位)が与えられる配線(コモン線)
である。一例としては、配線112は、ゲートドライバ104aに電源を供給するための
電源線、特に、低い電位を供給する配線と接続されることが好適である。なぜなら、走査
線GLは、殆どの期間において、低い電位となっている。したがって、配線112の電位
も低い電位となっていると、通常の動作時において、走査線GLから配線112へ漏れて
しまう電流を低減することが出来るからである。
【0037】
ここで、抵抗素子114として用いることのできる構成の一例について、
図2を用いて
説明を行う。
【0038】
図2(A)に示す抵抗素子114は、基板140上に形成された導電性を有する層(以
下、導電層142という)と、基板140及び導電層142上に形成された絶縁性を有す
る層(以下、絶縁層144という)と、絶縁層144上に形成された導電性を有する層(
以下、導電層148という)と、を有する。
【0039】
図2(B)に示す抵抗素子114は、基板140上に形成された導電層142と、基板
140及び導電層142上に形成された絶縁層144と、絶縁層144上に形成された絶
縁層146と、絶縁層144及び絶縁層146上に形成された導電層148と、を有する
。
【0040】
なお、
図1(B)に示した配線112が、導電層142で形成される配線に相当する。
また、
図1(B)に示した配線110が、導電層148で形成される配線に相当する。
【0041】
図2(A)、(B)に示す抵抗素子114は、換言すると、一対の電極間に絶縁層14
4を挟持した構造であり、絶縁層144の抵抗率(電気抵抗率、比抵抗ともいう)を制御
することによって、一対の電極の一方に過電流が流れた場合に、他方の電極に過電流の一
部または全部を逃がすことができる。
【0042】
しかし、一対の電極間に挟持された絶縁層の抵抗が高い場合、例えば、1018Ωcm
以上の絶縁層を用いた場合、一対の電極のいずれか一方に過電流が流れた際に、他方に過
電流を好適に逃がすことができない。
【0043】
そこで、本発明の一態様としては、一対の電極間に挟持された絶縁層144の抵抗率と
しては、例えば、1010Ωcm以上1018Ωcm未満、好適には1011Ωcm以上
1015Ωcm未満の絶縁膜を用いる。このような抵抗率を有する絶縁膜としては、例え
ば、窒素とシリコンを含む絶縁膜が挙げられる。
【0044】
また、抵抗素子114は、
図2(B)に示すように一対の電極の一方の電極の端部を覆
う絶縁層146を絶縁層144上に設ける構成としてもよい。絶縁層146は、絶縁層1
44よりも抵抗率が高い材料を用いて形成することができる。絶縁層146としては、例
えば、10
18Ωcm以上の絶縁膜を用いるとよい。このような抵抗率を有する絶縁膜と
しては、例えば、酸素と窒素とシリコンを含む絶縁膜が挙げられる。
【0045】
また、抵抗素子114の一対の電極として機能する導電層142、148、及び抵抗素
子114の絶縁層として機能する絶縁層144、146は、
図1(A)に示す表示装置の
画素部102、及び駆動回路部104を構成するトランジスタの作製工程と同時に形成す
ることができる。
【0046】
具体的には、例えば、導電層142は、上記トランジスタのゲート電極と同一工程で作
製することができ、導電層148は、上記トランジスタのソース電極またはドレイン電極
と同一工程で作製することができ、絶縁層144、146は、上記トランジスタのゲート
絶縁層と同一工程で作製することができる。
【0047】
このように
図1(A)に示す表示装置に保護回路106を設けることによって、画素部
102、及び駆動回路部104は、ESDなどにより発生する過電流に対する耐性を高め
ることができる。したがって、信頼性を向上しうる新規な表示装置を提供することができ
る。
【0048】
なお、画素部102は、一例としては、保護回路106と同一基板上に形成されている
ことが望ましい。これにより、部品数や端子数を減らすことが出来る。さらに、駆動回路
部104の一部、または全部は、一例としては、画素部102と同一基板上に形成されて
いることが望ましい。これにより、部品数や端子数を減らすことが出来る。駆動回路部1
04の一部、または全部が、画素部102と同一基板上に形成されていない場合には、駆
動回路部104の一部、または全部は、COGやTABによって、実装されている場合が
多い。
【0049】
次に、
図1(A)に示す表示装置の具体的な構成について、
図3を用いて説明を行う。
【0050】
図3に示す表示装置は、画素部102と、駆動回路部として機能するゲートドライバ1
04aと、ソースドライバ104bと、保護回路106_1と、保護回路106_2と、
保護回路106_3と、保護回路106_4と、を有する。
【0051】
なお、画素部102、ゲートドライバ104a、及びソースドライバ104bは、
図1
(A)に示す構成と同様である。
【0052】
保護回路106_1は、トランジスタ151、152、153、154と、抵抗素子1
71、172、173とを有する。また、保護回路106_1は、ゲートドライバ104
aと接続される配線181、182、183の間に設けられる。また、トランジスタ15
1は、ソース電極としての機能を有する第1端子と、ゲート電極としての機能を有する第
2端子とが接続され、ドレイン電極としての機能を有する第3端子と、配線183とが接
続されている。トランジスタ152は、ソース電極としての機能を有する第1端子と、ゲ
ート電極としての機能を有する第2端子とが接続され、ドレイン電極としての機能を有す
る第3端子と、トランジスタ151の第1端子とが接続されている。トランジスタ153
は、ソース電極としての機能を有する第1端子と、ゲート電極としての機能を有する第2
端子とが接続され、ドレイン電極としての機能を有する第3端子と、トランジスタ152
の第1端子とが接続されている。トランジスタ154は、ソース電極としての機能を有す
る第1端子と、ゲート電極としての機能を有する第2端子とが接続され、ドレイン電極と
しての機能を有する第3端子と、トランジスタ153の第1端子とが接続されている。ま
た、トランジスタ154の第1端子が配線183及び配線181と接続されている。また
、抵抗素子171、173は、配線183に設けられている。また、抵抗素子172は、
配線182と、トランジスタ152の第1端子及びトランジスタ153の第3端子との間
に設けられている。
【0053】
なお、配線181は、例えば、低電源電位VSSが与えられる電源線として用いること
ができる。また、配線182は、例えば、コモン線として用いることができる。また、配
線183は、例えば、高電源電位VDDが与えられる電源線として用いることができる。
【0054】
保護回路106_2は、トランジスタ155、156、157、158と、抵抗素子1
74、175とを有する。また、保護回路106_2は、ゲートドライバ104aと画素
部102との間に設けられる。また、トランジスタ155は、ソース電極としての機能を
有する第1端子と、ゲート電極としての機能を有する第2端子とが接続され、ドレイン電
極としての機能を有する第3端子と、配線185とが接続されている。トランジスタ15
6は、ソース電極としての機能を有する第1端子と、ゲート電極としての機能を有する第
2端子とが接続され、ドレイン電極としての機能を有する第3端子と、トランジスタ15
5の第1端子とが接続されている。トランジスタ157は、ソース電極としての機能を有
する第1端子と、ゲート電極としての機能を有する第2端子とが接続され、ドレイン電極
としての機能を有する第3端子と、トランジスタ156の第1端子とが接続されている。
トランジスタ158は、ソース電極としての機能を有する第1端子と、ゲート電極として
の機能を有する第2端子とが接続され、ドレイン電極としての機能を有する第3端子とト
ランジスタ157の第1端子が接続され、トランジスタ158の第1端子と配線184が
接続されている。また、抵抗素子174は、配線185と、トランジスタ156の第1端
子及びトランジスタ157の第3端子との間に設けられている。また、抵抗素子175は
、配線184と、トランジスタ156の第1端子及びトランジスタ157の第3端子との
間に設けられている。
【0055】
なお、配線184は、例えば、低電源電位VSSが与えられる電源線として用いること
ができる。また、配線185は、例えば、高電源電位VDDが与えられる電源線として用
いることができる。また、配線186は、例えば、ゲート線として用いることができる。
【0056】
保護回路106_3は、トランジスタ159、160、161、162と、抵抗素子1
76、177とを有する。また、保護回路106_3は、ソースドライバ104bと画素
部102との間に設けられる。また、トランジスタ159は、ソース電極としての機能を
有する第1端子と、ゲート電極としての機能を有する第2端子とが接続され、ドレイン電
極としての機能を有する第3端子と、配線190とが接続されている。トランジスタ16
0は、ソース電極としての機能を有する第1端子と、ゲート電極としての機能を有する第
2端子とが接続され、ドレイン電極としての機能を有する第3端子と、トランジスタ15
9の第1端子とが接続されている。トランジスタ161は、ソース電極としての機能を有
する第1端子と、ゲート電極としての機能を有する第2端子とが接続され、ドレイン電極
としての機能を有する第3端子と、トランジスタ160の第1端子とが接続されている。
トランジスタ162は、ソース電極としての機能を有する第1端子と、ゲート電極として
の機能を有する第2端子とが接続され、ドレイン電極としての機能を有する第3端子と、
トランジスタ161の第1端子とが接続されている。また、トランジスタ162の第1端
子が配線191と接続されている。また、抵抗素子176は、配線190と、トランジス
タ160の第1端子及びトランジスタ161の第3端子との間に設けられている。また、
抵抗素子177は、配線191と、トランジスタ160の第1端子及びトランジスタ16
1の第3端子との間に設けられている。
【0057】
なお、配線188は、例えば、コモン線またはソース線として用いることができる。ま
た、配線189、190は、例えば、高電源電位VDDが与えられる電源線として用いる
ことができる。また、配線191は、例えば、低電源電位VSSが与えられる電源線とし
て用いることができる。
【0058】
保護回路106_4は、トランジスタ163、164、165、166と、抵抗素子1
78、179、180とを有する。また、保護回路106_4は、ソースドライバ104
bと接続される配線187、188、189、190、191の間に設けられる。また、
トランジスタ163は、ソース電極としての機能を有する第1端子と、ゲート電極として
の機能を有する第2端子とが接続され、ドレイン電極としての機能を有する第3端子と、
配線187とが接続されている。トランジスタ164は、ソース電極としての機能を有す
る第1端子と、ゲート電極としての機能を有する第2端子とが接続され、ドレイン電極と
しての機能を有する第3端子と、トランジスタ163の第1端子とが接続されている。ト
ランジスタ165は、ソース電極としての機能を有する第1端子と、ゲート電極としての
機能を有する第2端子とが接続され、ドレイン電極としての機能を有する第3端子と、ト
ランジスタ164の第1端子とが接続されている。トランジスタ166は、ソース電極と
しての機能を有する第1端子と、ゲート電極としての機能を有する第2端子とが接続され
、ドレイン電極としての機能を有する第3端子と、トランジスタ165の第1端子と、が
接続されている。また、トランジスタ166の第1端子が配線189と接続されている。
また、抵抗素子178は、配線187と、配線188との間に設けられている。また、抵
抗素子179は、配線188に設けられ、トランジスタ164の第1端子及びトランジス
タ165の第3端子と接続されている。また、抵抗素子180は、配線188と、配線1
89との間に設けられている。
【0059】
また、配線187、191は、例えば、低電源電位VSSが与えられる電源線として用
いることができる。また、配線188は、例えば、コモン線またはソース線として用いる
ことができる。また、配線189、190は、例えば、高電源電位VDDが与えられる電
源線として用いることができる。
【0060】
なお、配線181乃至配線191は、
図3中に示す高電源電位VDD、低電源電位VS
S、コモン線CLに示す機能のみに限定されず、それぞれ独立して走査線、信号線、電源
線、接地線、容量線またはコモン線等の機能を有していても良い。
【0061】
また、保護回路106_1乃至106_4が有するトランジスタ151乃至166の半
導体層としては、酸化物半導体を用いることが好ましい。酸化物半導体を用いるトランジ
スタは、半導体層にシリコン等を用いるトランジスタと比較し、アバランシェブレークダ
ウンがないため電界に対する耐性が高い。また、トランジスタ151乃至166のトラン
ジスタ構造としては、例えば、プレーナ型及び逆スタガ型を用いることができる。
【0062】
このように、保護回路106_1乃至106_4は、複数のダイオード接続されたトラ
ンジスタと、複数の抵抗素子により、構成されている。すなわち、保護回路106_1乃
至106_4は、ダイオード接続されたトランジスタと抵抗素子を並列に組み合わせて用
いることができる。
【0063】
また、
図3に示すように保護回路106_1乃至保護回路106_4は、画素部102
とゲートドライバ104aとの間、ゲートドライバ104aと接続される配線との間、画
素部102とソースドライバ104bとの間、またはソースドライバ104bと接続され
る配線との間に設けることができる。
【0064】
また、一例として、
図3で説明した保護回路106_2に対応する平面図、及び抵抗素
子として機能する領域の断面図を
図4(A)、(B)に示す。
図4(A)に示す平面図に
おいて付した符号は、
図3で付した符号に対応する。また、
図4(B)は、
図4(A)の
切断線M-Nによる断面図である。
図4(A)、(B)に示すように本実施の形態で説明
する保護回路の抵抗素子は、配線に重畳する絶縁層の一部を除去して、配線間の絶縁層の
抵抗率を制御することにより、過電流を好適に逃がす抵抗素子として用いることができる
。
【0065】
また、
図5は、
図3で説明した保護回路とは異なる構成を示す回路図である。
図5に示
す回路図では、トランジスタ155A、156A、157A、158A、トランジスタ1
55B、156B、157B、158B、抵抗素子174A、175A、抵抗素子174
B、175B、抵抗素子199、配線184、配線185及び配線186を示している。
なお、
図5に示す回路図において付した符号は、
図3で説明した保護回路106_2と同
じ構成について、同じ符号を付して対応させている。
図5に示す回路図が
図3に示した保
護回路106_2と異なる点は、
図3の保護回路106_2に相当する回路を並べて配置
し、配線間に抵抗素子199を設けた点である。
【0066】
なお、
図5で示した保護回路106_2が有する抵抗素子199の抵抗率は、抵抗素子
174A、175A、抵抗素子174B、175Bの抵抗率が10
10Ωcm以上10
1
8Ωcm未満とするのに対して、10
3Ωcm以上10
6Ωcm未満と、より小さい値と
することが好ましい。
図5に示す回路図の構成とすることで、配線に与えられる信号の急
峻な変化を抑制することができる。
【0067】
このように表示装置に複数の保護回路を設けることによって、画素部102、及び駆動
回路部104(ゲートドライバ104a、ソースドライバ104b)は、ESDなどによ
り発生する過電流に対する耐性を、さらに高めることができる。したがって、信頼性を向
上しうる新規な表示装置を提供することができる。
【0068】
なお、本実施の形態において、保護回路、抵抗素子、トランジスタなどを設ける場合の
例について述べたが、本発明の実施形態の一態様は、これに限定されない。例えば、場合
によっては、保護回路などを設けないことも可能である。
【0069】
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いること
ができる。
【0070】
(実施の形態2)
本実施の形態では、実施の形態1で説明した保護回路を有する、縦電界方式の液晶素子
を用いる表示装置(液晶表示装置ともいう)の構成について
図6を用いて、説明する。
【0071】
図6に示す表示装置は、
図1(A)に示す表示装置の画素部102と、駆動回路部10
4と、保護回路106と、を有する。また、各導電層の接続している箇所として、接続部
109を例示している。接続部109は、第1層目の導電層と、第2層目の導電層と、の
接続構造を示している。このような接続構造は、駆動回路部104、または引き回し配線
等に適用することができる。
【0072】
なお、
図6に示す表示装置においては、駆動回路部104に保護回路106を接続する
構成について例示するが、これに限定されず、例えば、駆動回路部104と画素部102
との間に保護回路106を接続する構成とすることができる。
【0073】
本実施の形態に示す表示装置は、一対の基板(基板202と基板252)間に液晶素子
268が挟持されている。
【0074】
液晶素子268は、基板202の上方に形成された導電層220cと、導電層220c
上に形成された液晶層260と、液晶層260上に形成された導電層258と、を有する
。導電層220cは、液晶素子268の一方の電極として機能し、導電層258は、液晶
素子268の他方の電極として機能する。
【0075】
また、本実施の形態においては、液晶素子268が縦電界方式の液晶素子の場合につい
て、説明を行う。縦電界方式の液晶素子としては、例えば、TN(Twisted Ne
matic)モード、STN(Super Twisted Nematic)モード、
VA(Vertical Alignment)モードが代表的である。ただし、液晶素
子としては、これに限定されず、例えば横電界方式のIPS(In-Plane-Swi
tching)モード、及びFFS(Fringe Field Switching)
モード等を用いても良い。
【0076】
このように、液晶表示装置とは、液晶素子を有する装置のことをいう。なお、液晶表示
装置は、複数の画素を駆動させる駆動回路等を含む。また、液晶表示装置は、別の基板上
に配置された制御回路、電源回路、信号生成回路及びバックライトモジュール等を含み、
液晶モジュールと呼ぶこともある。
【0077】
液晶表示装置において、液晶表示装置が有する駆動回路部104、画素部102に設け
られたトランジスタは、本実施の形態に示すように保護回路106を設けることによって
、外部からの過電流に対する耐性を高めることができる。
【0078】
例えば、液晶素子を作製する際に行われるラビング処理によって、静電気が発生しうる
。しかし、保護回路106を設けることによって、画素部102及び駆動回路部104に
形成されたトランジスタには、上記静電気によって生じうる過電流が流れない、または抑
制される。したがって、トランジスタの静電破壊が抑制され、信頼性の高い表示装置とす
ることができる。
【0079】
ここで、
図6に示す表示装置のその他の構成要素について、以下説明を行う。
【0080】
基板202上には導電性を有する層(以下、導電層204a、204b、204c、2
04dという)が形成されている。導電層204aは、保護回路106に形成され、抵抗
素子の一対の電極の一方としての機能を有する。また、導電層204bは、駆動回路部1
04に形成され、駆動回路のトランジスタのゲートとしての機能を有する。また、導電層
204cは、画素部102に形成され、画素回路のトランジスタのゲートとしての機能を
有する。また、導電層204dは、接続部109に形成され、導電層212fと接続する
。
【0081】
また、基板202、及び導電層204a、204b、204c、204d上には、絶縁
性を有する層(以下、絶縁層206、208という)が形成されている。絶縁層206、
208は、駆動回路部104のトランジスタのゲート絶縁層、及び画素部102のトラン
ジスタのゲート絶縁層としての機能を有する。また、絶縁層206は、保護回路106の
抵抗素子(抵抗層)としての機能を有する。
【0082】
また、絶縁層208上には半導体特性を有する層(以下、半導体層210a、210b
という)が形成されている。半導体層210aは、導電層204bと重畳する位置に形成
され、駆動回路のトランジスタのチャネルとしての機能を有する。また、半導体層210
bは、導電層204cと重畳する位置に形成され、画素回路のトランジスタのチャネルと
しての機能を有する。
【0083】
また、絶縁層206、208、及び半導体層210a、210b上には、導電性を有す
る層(以下、導電層212a、212b、212c、212d、212e、212fとい
う)が形成されている。導電層212aは、保護回路106の抵抗素子の一対の電極の他
方としての機能を有する。また、導電層212bは、半導体層210aと電気的に接続さ
れ、駆動回路のトランジスタが有するソース及びドレインの一方としての機能を有する。
また、導電層212cは、半導体層210aと電気的に接続され、駆動回路のトランジス
タが有するソース及びドレインの他方としての機能を有する。また、導電層212dは、
半導体層210bと電気的に接続され、画素回路のトランジスタが有するソース及びドレ
インの一方としての機能を有する。また、導電層212eは、半導体層210bと電気的
に接続され、画素回路のトランジスタが有するソース及びドレインの他方としての機能を
有する。また、導電層212fは、接続部109に形成され、絶縁層206、208に設
けられた開口部を介して導電層204dと電気的に接続されている。
【0084】
また、絶縁層208、半導体層210a、210b、及び導電層212a、212b、
212c、212d、212e、212f上には、絶縁性を有する層(以下、絶縁層21
4、216という)が形成されている。絶縁層214、216は、トランジスタを保護す
る機能を有する。とくに、絶縁層214は、半導体層210a、210bを保護する機能
を有する。
【0085】
また、絶縁層216上には絶縁性を有する層(以下、絶縁層218という)が形成され
ている。絶縁層218は、平坦化層としての機能を有する。また、絶縁層218を形成す
ることにより、絶縁層218よりも下方に形成された導電層と、絶縁層218よりも上方
に形成された導電層と、の間で生じうる寄生容量の発生を抑制することができる。
【0086】
また、絶縁層218上には導電性を有する層(以下、導電層220a、220b、22
0cという)が形成されている。導電層220aは、絶縁層214、216、218を貫
通して形成された開口部により導電層212bと電気的に接続され、駆動回路部104の
導電層212bと他の配線とを電気的に接続する接続電極としての機能を有する。導電層
220bは、絶縁層214、216、218を貫通して形成された開口部により導電層2
12dと電気的に接続され、画素部102の導電層212dと他の配線とを電気的に接続
する接続電極としての機能を有する。また、導電層220cは、絶縁層214、216、
218を貫通して形成された開口部により導電層212eと電気的に接続され、画素部1
02の画素電極としての機能を有する。なお、導電層220cは、画素回路の液晶素子が
有する一対の電極の一方として機能することができる。
【0087】
また、基板252上には、有色性を有する層(以下、有色層254という)が形成され
ている。有色層254は、カラーフィルタとしての機能を有する。また、
図6においては
図示していないが、ブラックマトリクスとしての機能を有する遮光膜を有色層254に隣
接して形成してもよい。また、有色層254は、必ずしも設ける必要はなく、例えば、表
示装置が白黒の場合等によって、有色層254を設けない構成としてもよい。
【0088】
また、有色層254上には、絶縁性を有する層(以下、絶縁層256という)が形成さ
れている。絶縁層256は、平坦化層としての機能、または有色層254が含有しうる不
純物を液晶素子側へ拡散するのを抑制する機能を有する。
【0089】
また、絶縁層256上には、導電性を有する層(以下、導電層258という)が形成さ
れている。導電層258は、画素回路の液晶素子が有する一対の電極の他方としての機能
を有する。なお、導電層220a、220b、220c、及び導電層258上には、配向
膜としての機能を有する絶縁膜を別途形成してもよい。
【0090】
また、導電層220a、220b、220cと導電層258との間には、液晶層260
が形成されている。また液晶層260は、シール材(図示しない)を用いて、基板202
と基板252の間に封止されている。なお、シール材は、外部からの水分等の入り込みを
抑制するために、無機材料と接触する構成が好ましい。
【0091】
また、導電層220a、220b、220cと導電層258との間に液晶層260の厚
さ(セルギャップともいう)を維持するスペーサを設けても良い。
【0092】
なお、本実施の形態に示す表示装置は、画素部102、及び駆動回路部104が有する
トランジスタと、保護回路106と、を同時に形成することができる。したがって、製造
コスト等を増やさずに保護回路106を形成することが可能となる。
【0093】
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いること
ができる。
【0094】
(実施の形態3)
本実施の形態では、実施の形態2で説明した表示装置の作製方法について、
図7乃至図
12を用いて説明する。
【0095】
まず、基板202を準備する。基板202としては、アルミノシリケートガラス、アル
ミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料を用いる。量産する
上では、基板202は、第8世代(2160mm×2460mm)、第9世代(2400
mm×2800mm、または2450mm×3050mm)、第10世代(2950mm
×3400mm)等のマザーガラスを用いることが好ましい。マザーガラスは、処理温度
が高く、処理時間が長いと大幅に収縮するため、マザーガラスを使用して量産を行う場合
、作製工程の加熱処理は、好ましくは600℃以下、さらに好ましくは450℃以下、さ
らに好ましくは350℃以下とすることが望ましい。
【0096】
次に、基板202上に導電膜を形成し、該導電膜を所望の領域に加工することで、導電
層204a、204b、204c、204dを形成する。なお、導電層204a、204
b、204c、204dの形成は、所望の領域に第1のパターニングによるマスクの形成
を行い、該マスクに覆われていない領域をエッチングすることで形成することができる。
(
図7(A)参照)。
【0097】
導電層204a、204b、204c、204dとしては、アルミニウム、クロム、銅
、タンタル、チタン、モリブデン、タングステンから選ばれた金属元素、または上述した
金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成する
ことができる。また、導電層204a、204b、204c、204dは、単層構造でも
、二層以上の積層構造としてもよい。例えば、アルミニウム膜上にチタン膜を積層する二
層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン
膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を
積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその
上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、
タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた元素の膜、ま
たは複数組み合わせた合金膜、もしくは窒化膜を用いてもよい。また、導電層204a、
204b、204c、204dとしては、例えば、スパッタリング法を用いて形成するこ
とができる。
【0098】
また、上記工程により、保護回路106が有する導電層204aと、画素部102が有
する導電層204cと、駆動回路部104が有する導電層204bと、を同一平面上に形
成することができる。
【0099】
次に、基板202、及び導電層204a、204b、204c、204d上に絶縁層2
06、208を形成する(
図7(B)参照)。
【0100】
絶縁層206としては、例えば、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニ
ウム膜などを用いればよく、PE-CVD装置を用いて積層または単層で設ける。また、
絶縁層206を積層構造とした場合、第1の窒化シリコン膜として、欠陥が少ない窒化シ
リコン膜とし、第1の窒化シリコン膜上に、第2の窒化シリコン膜として、水素放出量及
びアンモニア放出量の少ない窒化シリコン膜を設けると好適である。この結果、絶縁層2
06に含まれる水素及び窒素が、半導体層210a、210bへの移動を抑制することが
可能である。
【0101】
絶縁層208としては、酸化シリコン膜、酸化窒化シリコン膜などを用いればよく、P
E-CVD装置を用いて積層または単層で設ける。なお、絶縁層206と絶縁層208は
真空中で連続して形成すると、絶縁層206と絶縁層208との界面に不純物の混入が少
ないため、好ましい。また、導電層204b、204cと重畳する領域の絶縁層206、
208は、ゲート絶縁層として機能することができ、例えば、絶縁層206として厚さ3
00nmの窒化シリコン膜を適用し、絶縁層208として厚さ50nmの酸化窒化シリコ
ン膜を適用することができる。
【0102】
なお、窒化酸化シリコンとは、窒素の含有量が酸素より大きい絶縁材料であり、他方、
酸化窒化シリコンとは、酸素の含有量が窒素より大きな絶縁材料のことをいう。
【0103】
ゲート絶縁層として、上記のような構成とすることで、例えば以下のような効果を得る
ことができる。窒化シリコン膜は、酸化シリコン膜と比較して比誘電率が高く、同等の静
電容量を得るのに必要な膜厚が大きいため、ゲート絶縁膜を物理的に厚膜化することがで
きる。よって、トランジスタの絶縁耐圧の低下を抑制、さらには絶縁耐圧を向上させて、
トランジスタの静電破壊を抑制することができる。
【0104】
次に、絶縁層208上に半導体膜を形成し、該半導体膜を所望の領域に加工することで
、半導体層210a、210bを形成する。なお、半導体層210a、210bの形成は
、所望の領域に第2のパターニングによるマスクの形成を行い、該マスクに覆われていな
い領域をエッチングすることで形成することができる。エッチングとしては、ドライエッ
チング、ウエットエッチング、または双方を組み合わせたエッチングを用いることができ
る(
図8(A)参照)。
【0105】
半導体層210a、210bとしては、例えば、酸化物半導体を用いることができる。
半導体層210a、210bに適用できる酸化物半導体は、少なくともインジウム(In
)、亜鉛(Zn)及びM(Al、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等
の金属)を含むIn-M-Zn酸化物で表記される層を含むことが好ましい。または、I
nとZnの双方を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電
気特性のばらつきを減らすため、それらと共に、スタビライザーを含むことが好ましい。
【0106】
スタビライザーとしては、ガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、ア
ルミニウム(Al)、またはジルコニウム(Zr)等がある。また、他のスタビライザー
としては、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(
Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム
(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビ
ウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等があ
る。
【0107】
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、In-Zn酸化
物、Sn-Zn酸化物、Al-Zn酸化物、Zn-Mg酸化物、Sn-Mg酸化物、In
-Mg酸化物、In-Ga酸化物、In-Ga-Zn酸化物、In-Al-Zn酸化物、
In-Sn-Zn酸化物、Sn-Ga-Zn酸化物、Al-Ga-Zn酸化物、Sn-A
l-Zn酸化物、In-Hf-Zn酸化物、In-La-Zn酸化物、In-Ce-Zn
酸化物、In-Pr-Zn酸化物、In-Nd-Zn酸化物、In-Sm-Zn酸化物、
In-Eu-Zn酸化物、In-Gd-Zn酸化物、In-Tb-Zn酸化物、In-D
y-Zn酸化物、In-Ho-Zn酸化物、In-Er-Zn酸化物、In-Tm-Zn
酸化物、In-Yb-Zn酸化物、In-Lu-Zn酸化物、In-Sn-Ga-Zn酸
化物、In-Hf-Ga-Zn酸化物、In-Al-Ga-Zn酸化物、In-Sn-A
l-Zn酸化物、In-Sn-Hf-Zn酸化物、In-Hf-Al-Zn酸化物を用い
ることができる。
【0108】
なお、ここで、例えば、In-Ga-Zn酸化物とは、InとGaとZnを主成分とし
て有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとG
aとZn以外の金属元素が入っていてもよい。また、本明細書等においては、In-Ga
-Zn酸化物で構成した膜をIGZO膜とも呼ぶ。
【0109】
また、InMO3(ZnO)m(m>0、且つ、mは整数でない)で表記される材料を
用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた一つの金属元素また
は複数の金属元素を示す。また、In2SnO5(ZnO)n(n>0、且つ、nは整数
)で表記される材料を用いてもよい。
【0110】
なお、酸化物半導体の成膜には、スパッタリング法を用いることが好ましい。スパッタ
リング法としては、RFスパッタリング法、DCスパッタリング法、ACスパッタリング
法等を用いることができる。特に、成膜時に発生するゴミを低減でき、かつ膜厚分布も均
一とすることからDCスパッタリング法を用いることが好ましい。
【0111】
ここで酸化物半導体膜の構造について説明する。
【0112】
酸化物半導体膜は、非単結晶酸化物半導体膜と単結晶酸化物半導体膜とに大別される。
非単結晶酸化物半導体膜とは、CAAC-OS(C Axis Aligned Cry
stalline Oxide Semiconductor)膜、多結晶酸化物半導体
膜、微結晶酸化物半導体膜、非晶質酸化物半導体膜などをいう。
【0113】
まずは、CAAC-OS膜について説明する。
【0114】
CAAC-OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである
。
【0115】
CAAC-OS膜を透過型電子顕微鏡(TEM:Transmission Elec
tron Microscope)によって観察すると、明確な結晶部同士の境界、即ち
結晶粒界(グレインバウンダリーともいう。)を確認することができない。そのため、C
AAC-OS膜は、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
【0116】
CAAC-OS膜を、試料面と概略平行な方向からTEMによって観察(断面TEM観
察)すると、結晶部において、金属原子が層状に配列していることを確認できる。金属原
子の各層は、CAAC-OS膜の膜を形成する面(被形成面ともいう。)または上面の凹
凸を反映した形状であり、CAAC-OS膜の被形成面または上面と平行に配列する。
【0117】
一方、CAAC-OS膜を、試料面と概略垂直な方向からTEMによって観察(平面T
EM観察)すると、結晶部において、金属原子が三角形状または六角形状に配列している
ことを確認できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られ
ない。
【0118】
断面TEM観察および平面TEM観察より、CAAC-OS膜の結晶部は配向性を有し
ていることがわかる。
【0119】
なお、本明細書において、「平行」とは、二つの直線が-10°以上10°以下の角度
で配置されている状態をいう。従って、-5°以上5°以下の場合も含まれる。また、「
垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。
従って、85°以上95°以下の場合も含まれる。
【0120】
また、CAAC-OS膜に含まれるほとんどの結晶部は、一辺が100nm未満の立方
体内に収まる大きさである。従って、CAAC-OS膜に含まれる結晶部は、一辺が10
nm未満、5nm未満または3nm未満の立方体内に収まる大きさの場合も含まれる。た
だし、CAAC-OS膜に含まれる複数の結晶部が連結することで、一つの大きな結晶領
域を形成する場合がある。例えば、平面TEM像において、2500nm2以上、5μm
2以上または1000μm2以上となる結晶領域が観察される場合がある。
【0121】
CAAC-OS膜に対し、X線回折(XRD:X-Ray Diffraction)
装置を用いて構造解析を行うと、例えばInGaZnO4の結晶を有するCAAC-OS
膜のout-of-plane法による解析では、回折角(2θ)が31°近傍にピーク
が現れる場合がある。このピークは、InGaZnO4の結晶の(009)面に帰属され
ることから、CAAC-OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に
概略垂直な方向を向いていることが確認できる。
【0122】
一方、CAAC-OS膜に対し、c軸に概略垂直な方向からX線を入射させるin-p
lane法による解析では、2θが56°近傍にピークが現れる場合がある。このピーク
は、InGaZnO4の結晶の(110)面に帰属される。InGaZnO4の単結晶酸
化物半導体膜であれば、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)
として試料を回転させながら分析(φスキャン)を行うと、(110)面と等価な結晶面
に帰属されるピークが6本観察される。これに対し、CAAC-OS膜の場合は、2θを
56°近傍に固定してφスキャンした場合でも、明瞭なピークが現れない。
【0123】
以上のことから、CAAC-OS膜では、異なる結晶部間ではa軸およびb軸の配向は
不規則であるが、c軸配向性を有し、かつc軸が被形成面または上面の法線ベクトルに平
行な方向を向いていることがわかる。従って、前述の断面TEM観察で確認された層状に
配列した金属原子の各層は、結晶のab面に平行な面である。
【0124】
なお、結晶部は、CAAC-OS膜を成膜した際、または加熱処理などの結晶化処理を
行った際に形成される。上述したように、結晶のc軸は、CAAC-OS膜の被形成面ま
たは上面の法線ベクトルに平行な方向に配向する。従って、例えば、CAAC-OS膜の
形状をエッチングなどによって変化させた場合、結晶のc軸がCAAC-OS膜の被形成
面または上面の法線ベクトルと平行にならないこともある。
【0125】
また、CAAC-OS膜中において、c軸配向した結晶部の分布が均一でなくてもよい
。例えば、CAAC-OS膜の結晶部が、CAAC-OS膜の上面近傍からの結晶成長に
よって形成される場合、上面近傍の領域は、被形成面近傍の領域よりもc軸配向した結晶
部の割合が高くなることがある。また、CAAC-OS膜に不純物を添加する場合、不純
物が添加された領域が変質し、部分的にc軸配向した結晶部の割合の異なる領域が形成さ
れることもある。
【0126】
なお、InGaZnO4の結晶を有するCAAC-OS膜のout-of-plane
法による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現
れる場合がある。2θが36°近傍のピークは、CAAC-OS膜中の一部に、c軸配向
性を有さない結晶が含まれることを示している。CAAC-OS膜は、2θが31°近傍
にピークを示し、2θが36°近傍にピークを示さないことが好ましい。
【0127】
CAAC-OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素
、シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリ
コンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸
化物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させ
る要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半
径(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜
の原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不
純物は、キャリアトラップやキャリア発生源となる場合がある。
【0128】
また、CAAC-OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化
物半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによっ
てキャリア発生源となることがある。
【0129】
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性また
は実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体
膜は、キャリア発生源が少ないため、キャリア密度を低くすることができる。従って、当
該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノ
ーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度
真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導体
膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる
。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要する
時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が高
く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定とな
る場合がある。
【0130】
また、CAAC-OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特
性の変動が小さい。
【0131】
次に、微結晶酸化物半導体膜について説明する。
【0132】
微結晶酸化物半導体膜は、TEMによる観察像では、明確に結晶部を確認することがで
きない場合がある。微結晶酸化物半導体膜に含まれる結晶部は、1nm以上100nm以
下、または1nm以上10nm以下の大きさであることが多い。特に、1nm以上10n
m以下、または1nm以上3nm以下の微結晶であるナノ結晶(nc:nanocrys
tal)を有する酸化物半導体膜を、nc-OS(nanocrystalline O
xide Semiconductor)膜と呼ぶ。また、nc-OS膜は、例えば、T
EMによる観察像では、結晶粒界を明確に確認できない場合がある。
【0133】
nc-OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以
上3nm以下の領域)において原子配列に周期性を有する。また、nc-OS膜は、異な
る結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。
従って、nc-OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かない
場合がある。例えば、nc-OS膜に対し、結晶部よりも大きい径のX線を用いるXRD
装置を用いて構造解析を行うと、out-of-plane法による解析では、結晶面を
示すピークが検出されない。また、nc-OS膜に対し、結晶部よりも大きいプローブ径
(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)
を行うと、ハローパターンのような回折パターンが観測される。一方、nc-OS膜に対
し、結晶部の大きさと近いか結晶部より小さいプローブ径(例えば1nm以上30nm以
下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、スポッ
トが観測される。また、nc-OS膜に対しナノビーム電子線回折を行うと、円を描くよ
うに(リング状に)輝度の高い領域が観測される場合がある。また、nc-OS膜に対し
ナノビーム電子線回折を行うと、リング状の領域内に複数のスポットが観測される場合が
ある。
【0134】
nc-OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。そ
のため、nc-OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし
、nc-OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc-
OS膜は、CAAC-OS膜と比べて欠陥準位密度が高くなる。
【0135】
なお、酸化物半導体膜は、例えば、非晶質酸化物半導体膜、微結晶酸化物半導体膜、C
AAC-OS膜のうち、二種以上を有する積層膜であってもよい。
【0136】
また、CAAC-OS膜を成膜するために、以下の条件を適用することが好ましい。
【0137】
成膜時の不純物混入を低減することで、不純物によって結晶状態が崩れることを抑制で
きる。例えば、成膜室内に存在する不純物(水素、水、二酸化炭素及び窒素など)を低減
すればよい。また、成膜ガス中の不純物を低減すればよい。具体的には、露点が-80℃
以下、好ましくは-100℃以下である成膜ガスを用いる。
【0138】
また、成膜時の基板加熱温度を高めることで、基板到達後にスパッタ粒子のマイグレー
ションが起こる。具体的には、基板加熱温度を100℃以上740℃以下、好ましくは2
00℃以上500℃以下として成膜する。成膜時の基板加熱温度を高めることで、平板状
のスパッタ粒子が基板に到達した場合、基板上でマイグレーションが起こり、スパッタ粒
子の平らな面が基板に付着する。
【0139】
また、成膜ガス中の酸素割合を高め、電力を最適化することで成膜時のプラズマダメー
ジを軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、好ましくは100
体積%とする。
【0140】
スパッタリング用ターゲットの一例として、In-Ga-Zn-O化合物ターゲットに
ついて以下に示す。
【0141】
InOX粉末、GaOY粉末及びZnOZ粉末を所定のモル数で混合し、加圧処理後、
1000℃以上1500℃以下の温度で加熱処理をすることで多結晶であるIn-Ga-
Zn-O化合物ターゲットとする。なお、X、Y及びZは任意の正数である。ここで、粉
末の種類、及びその混合するモル数比は、作製するスパッタリング用ターゲットによって
適宜変更すればよい。
【0142】
次に、第1の加熱処理を行うことが好ましい。第1の加熱処理は、250℃以上650
℃以下、好ましくは300℃以上500℃以下の温度で、不活性ガス雰囲気、酸化性ガス
を10ppm以上含む雰囲気、または減圧状態で行えばよい。また、第1の加熱処理の雰
囲気は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを
10ppm以上含む雰囲気で行ってもよい。第1の加熱処理によって、半導体層210a
、210bに用いる酸化物半導体の結晶性を高め、さらに絶縁層206、208、及び半
導体層210a、210bから水素や水などの不純物を除去することができる。なお、酸
化物半導体層を形成するエッチングの前に第1の加熱工程を行ってもよい。
【0143】
なお、酸化物半導体層をチャネルとするトランジスタに安定した電気特性を付与するた
めには、酸化物半導体層中の不純物濃度を低減し、酸化物半導体層を真性または実質的に
真性にすることが有効である。ここで、実質的に真性とは、酸化物半導体層のキャリア密
度が、1×1017/cm3未満であること、好ましくは1×1015/cm3未満であ
ること、さらに好ましくは1×1013/cm3未満であることを指す。
【0144】
また、酸化物半導体層において、水素、窒素、炭素、シリコン、及び主成分以外の金属
元素は不純物となる。例えば、水素及び窒素は、ドナー準位を形成し、キャリア密度を増
大させてしまう。また、シリコンは、酸化物半導体層中で不純物準位を形成する。当該不
純物準位はトラップとなり、トランジスタの電気特性を劣化させることがある。
【0145】
酸化物半導体層を真性または実質的に真性とするためには、SIMSにおける分析にお
いて、シリコン濃度を1×1019atoms/cm3未満、好ましくは5×1018a
toms/cm3未満、さらに好ましくは1×1018atoms/cm3未満とする。
また、水素濃度は、2×1020atoms/cm3以下、好ましくは5×1019at
oms/cm3以下、より好ましくは1×1019atoms/cm3以下、さらに好ま
しくは5×1018atoms/cm3以下とする。また、窒素濃度は、5×1019a
toms/cm3未満、好ましくは5×1018atoms/cm3以下、より好ましく
は1×1018atoms/cm3以下、さらに好ましくは5×1017atoms/c
m3以下とする。
【0146】
また、酸化物半導体層が結晶を含む場合、シリコンや炭素が高濃度で含まれると、酸化
物半導体層の結晶性を低下させることがある。酸化物半導体層の結晶性を低下させないた
めには、シリコン濃度を1×1019atoms/cm3未満、好ましくは5×1018
atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満とすれ
ばよい。また、炭素濃度を1×1019atoms/cm3未満、好ましくは5×101
8atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満とす
ればよい。
【0147】
また、上述のように高純度化された酸化物半導体層をチャネル形成領域に用いたトラン
ジスタのオフ電流は極めて小さく、トランジスタのチャネル幅で規格化したオフ電流は、
数yA/μm~数zA/μmにまで低減することが可能となる。
【0148】
また、酸化物半導体層は、層中の局在準位を低減することで、酸化物半導体層を用いた
トランジスタに安定した電気特性を付与することができる。なお、トランジスタに安定し
た電気特性を付与するためには、酸化物半導体層中のCPM測定(CPM:Consta
nt Photocurrent Method)で得られる局在準位による吸収係数は
、1×10-3/cm未満、好ましくは3×10-4/cm未満とすればよい。
【0149】
次に、絶縁層208上に第3のパターニングによるマスクの形成を行い、該マスクに覆
われていない領域をエッチングすることで、保護回路106上の絶縁層208の一部、及
び接続部109上の絶縁層206、208の一部を除去する。なお、開口部207a、2
07bの形成は、半導体層210a、210bの形成前に行っても良い(
図8(B)参照
)。
【0150】
なお、第3のパターニングによるマスクの形成は、多階調マスクを用いることができる
。多階調マスクとは、露光部分、中間露光部分、及び未露光部分に3つの露光レベルを行
うことが可能なマスクであり、透過した光が複数の強度となる露光マスクである。一度の
露光及び現像工程により、複数(代表的には二種類)の厚さの領域を有するレジストマス
クを形成することが可能である。このため、多階調マスクを用いることで、露光マスクの
枚数を削減することが可能である。多階調マスクとしては、例えばハーフトーンマスク、
またはグレートーンマスク等が挙げられる。
【0151】
第3のパターニングを、多階調マスクを用いることによって、開口部207a、207
bは、それぞれ深さ方向の違う開口部とすることができる。これにより、開口部207a
は、絶縁層206が露出し、開口部207bは、導電層204dが露出した構造とするこ
とができる。なお、開口部207a、207bの形成方法は、これに限定されず、例えば
、異なるマスクを用いてパターニングを行っても良い。
【0152】
これにより、画素部102、及び駆動回路部104に形成された絶縁層206、208
は、積層のゲート絶縁層として機能することができる。また、保護回路106に形成され
た絶縁層206は、抵抗素子として機能することができる。
【0153】
次に、絶縁層206、208、半導体層210a、210b、及び導電層204d上に
導電膜を形成し、該導電膜を所望の領域に加工することで、導電層212a、212b、
212c、212d、212e、212fを形成する。なお、導電層212a、212b
、212c、212d、212e、212fの形成は、所望の領域に第4のパターニング
によるマスクの形成を行い、該マスクに覆われていない領域をエッチングすることで、形
成することができる(
図9(A)参照)。
【0154】
また、上記工程により、保護回路106が有する導電層212aと、画素部102が有
する導電層212d、212eと、駆動回路部104が有する導電層212b、212c
と、を同一平面上に形成することができる。
【0155】
導電層212a、212b、212c、212d、212e、212fとしては、導電
材料として、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウ
ム、モリブデン、銀、タンタル、またはタングステンからなる単体金属、またはこれを主
成分とする合金を単層構造または積層構造として用いる。例えば、アルミニウム膜上にチ
タン膜を積層する二層構造、タングステン膜上にチタン膜を積層する二層構造、銅-マグ
ネシウム-アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜または窒化チタン
膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、
さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒
化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜
または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三
層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用
いてもよい。また、導電層212a、212b、212c、212d、212e、212
fとしては、例えば、スパッタリング法を用いて形成することができる。
【0156】
なお、本実施の形態では、導電層212b、212c、212d、212eを半導体層
210a、210b上に設けたが、絶縁層208と半導体層210a、210bの間に設
けても良い。
【0157】
次に、絶縁層208、半導体層210a、210b、及び導電層212a、212b、
212c、212d、212e、212fを覆うように、絶縁層214、216を形成す
る(
図9(B)参照)。
【0158】
絶縁層214としては、半導体層210a、210bとして用いる酸化物半導体との界
面特性を向上させるため、酸素を含む無機絶縁材料を用いることができる。また、絶縁層
216としては、半導体層210a、210bとして用いる酸化物半導体中に外部からの
不純物、例えば、水分等の入り込みが少ない材料を用いることが好ましく、例えば窒素を
含む無機絶縁材料を用いることができる。また、絶縁層214、216としては、例えば
、PE-CVD法を用いて形成することができる。
【0159】
一例としては、絶縁層214としては、厚さ150nm以上400nm以下の酸化シリ
コン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いることができ、絶縁層216
としては、厚さ150nm以上400nm以下の窒化シリコン膜、窒化酸化シリコン膜等
を用いることができる。本実施の形態においては、絶縁層214として、厚さ300nm
の酸化窒化シリコン膜を用い、絶縁層216として、厚さ150nmの窒化シリコン膜を
用いる。このとき窒化シリコン膜は、半導体層210a、210bへの水分の入り込みを
防止するブロック層としての機能を有する。該窒化シリコン膜は、ブロック性を高めるた
めに、高温で成膜されることが好ましく、例えば基板温度100℃以上基板の歪み点以下
、より好ましくは300℃以上400℃以下の温度で加熱して成膜することが好ましい。
また高温で成膜する場合は、半導体層210a、210bとして用いる酸化物半導体から
酸素が脱離し、キャリア濃度が上昇する現象が発生することがあるため、このような現象
が発生しない温度とする。
【0160】
次に、絶縁層216上に絶縁層218を形成する(
図10(A)参照)。
【0161】
絶縁層218としては、アクリル系樹脂、ポリイミド系樹脂、ベンゾシクロブテン系樹
脂、ポリアミド系樹脂、エポキシ系樹脂等の、耐熱性を有する有機材料を用いることがで
きる。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層218を
形成してもよい。絶縁層218を用いることにより、トランジスタ等の凹凸を平坦化させ
ることが可能となる。絶縁層218としては、例えば、スピンコート法を用いて形成する
ことができる。
【0162】
また、絶縁層218として用いることのできるアクリル系樹脂としては、例えば、吸水
性が低く、膜中からの脱ガス成分(例えば、H2O、C、Fなど)の放出が少ない材料を
用いると好適である。
【0163】
次に、絶縁層218上に第5のパターニングによるマスクの形成を行い、該マスクに覆
われていない領域をエッチングすることで、開口部219a、219b、219cを形成
する(
図10(B)参照)。
【0164】
なお、開口部219a、219b、219cは、それぞれ導電層212b、212d、
212eに達するように形成する。
【0165】
次に、開口部219a、219b、219cを充填するように導電膜を形成し、該導電
膜を所望の領域に加工することで、導電層220a、220b、220cを形成する。な
お、導電層220a、220b、220cの形成は、所望の領域に第6のパターニングに
よるマスクの形成を行い、該マスクに覆われていない領域をエッチングすることで形成す
ることができる(
図11参照)。
【0166】
導電層220a、220b、220cとしては、酸化タングステンを含むインジウム酸
化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化
物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。
)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有
する導電性材料を用いることができる。また、導電層220a、220b、220cとし
ては、例えば、スパッタリング法を用いて形成することができる。
【0167】
以上の工程で基板202上に形成されるトランジスタを有する画素部及び駆動回路部と
、保護回路と、を同一基板上に形成することができる。なお、本実施の形態に示す作製工
程においては、第1乃至第6のパターニング、すなわち6枚のマスクでトランジスタ、及
び保護回路を同時に形成することができる。
【0168】
次に、基板202に対向して設けられる基板252上に形成される構造について、以下
説明を行う。
【0169】
まず、基板252を準備する。基板252としては、基板202に示す材料を援用する
ことができる。次に、基板252上に有色層254、絶縁層256を形成する(
図12(
A)参照)。
【0170】
有色層254としては、特定の波長帯域の光を透過する有色層であればよく、例えば、
赤色の波長帯域の光を透過する赤色(R)のカラーフィルタ、緑色の波長帯域の光を透過
する緑色(G)のカラーフィルタ、青色の波長帯域の光を透過する青色(B)のカラーフ
ィルタなどを用いることができる。各カラーフィルタは、公知の材料を用いて、印刷法、
インクジェット法、フォトリソグラフィ技術を用いたエッチング方法などでそれぞれ所望
の位置に形成する。また、絶縁層256としては、例えば、アクリル系樹脂等の絶縁膜を
用いることができる。
【0171】
次に、絶縁層256上に導電層258を形成する(
図12(B)参照)。導電層258
としては、導電層220a、220b、220cに示す材料を援用することができる。
【0172】
次に、基板202と、基板252との間に液晶層260を形成する。液晶層260の形
成方法としては、ディスペンサ法(滴下法)や、基板202と基板252とを貼り合わせ
てから毛細管現象を用いて液晶を注入する注入法を用いることができる。
【0173】
以上の工程で、
図6に示す表示装置を作製することができる。
【0174】
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができ
る。
【0175】
(実施の形態4)
本実施の形態においては、
図1(A)に示す表示装置の画素回路108に用いることの
できる構成について、
図13を用いて説明を行う。
【0176】
図1(A)に示す表示装置において、画素回路108は、
図13(A)に示すような構
成とすることができる。
【0177】
図13(A)に示す画素回路108は、液晶素子130と、トランジスタ131_1と
、容量素子133_1と、を有する。
【0178】
液晶素子130の一対の電極の一方の電位は、画素回路108の仕様に応じて適宜設定
される。液晶素子130は、書き込まれるデータにより配向状態が設定される。なお、複
数の画素回路108のそれぞれが有する液晶素子130の一対の電極の一方に共通の電位
(コモン電位)を与えてもよい。また、各行の画素回路108毎の液晶素子130の一対
の電極の一方に異なる電位を与えてもよい。
【0179】
例えば、液晶素子130を備える表示装置の駆動方法としては、TNモード、STNモ
ード、VAモード、ASM(Axially Symmetric Aligned M
icro-cell)モード、OCB(Optically Compensated
Birefringence)モード、FLC(Ferroelectric Liqu
id Crystal)モード、AFLC(AntiFerroelectric Li
quid Crystal)モード、MVA(Multi-Domain Vertic
al Alignment)モード、PVA(Patterned Vertical
Alignment)モード、IPSモード、FFSモード、又はTBA(Transv
erse Bend Alignment)モードなどを用いてもよい。また、表示装置
の駆動方法としては、上述した駆動方法の他、ECB(Electrically Co
ntrolled Birefringence)モード、PDLC(Polymer
Dispersed Liquid Crystal)モード、PNLC(Polyme
r Network Liquid Crystal)モード、ゲストホストモードなど
がある。ただし、これに限定されず、液晶素子及びその駆動方式として様々なものを用い
ることができる。
【0180】
また、ブルー相(Blue Phase)を示す液晶とカイラル剤とを含む液晶組成物
により液晶素子を構成してもよい。ブルー相を示す液晶は、応答速度が1msec以下と
短く、光学的等方性であるため、配向処理が不要であり、視野角依存性が小さい。
【0181】
m行n列目の画素回路108において、トランジスタ131_1のソース及びドレイン
の一方は、データ線DL_nに電気的に接続され、他方は液晶素子130の一対の電極の
他方に電気的に接続される。また、トランジスタ131_1のゲートは、走査線GL_m
に電気的に接続される。トランジスタ131_1は、オン状態又はオフ状態になることに
より、データ信号のデータの書き込みを制御する機能を有する。
【0182】
容量素子133_1の一対の電極の一方は、電位が供給される配線(以下、電位供給線
VL)に電気的に接続され、他方は、液晶素子130の一対の電極の他方に電気的に接続
される。なお、電位供給線VLの電位の値は、画素回路108の仕様に応じて適宜設定さ
れる。容量素子133_1は、書き込まれたデータを保持する保持容量としての機能を有
する。
【0183】
例えば、
図13(A)の画素回路108を有する表示装置では、ゲートドライバ104
aにより各行の画素回路108を順次選択し、トランジスタ131_1をオン状態にして
データ信号のデータを書き込む。
【0184】
データが書き込まれた画素回路108は、トランジスタ131_1がオフ状態になるこ
とで保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
【0185】
また、
図13(B)に示す画素回路108は、トランジスタ131_2と、容量素子1
33_2と、トランジスタ134と、発光素子135と、を有する。
【0186】
トランジスタ131_2のソース及びドレインの一方は、データ信号が与えられる配線
(以下、データ線DL_nという)に電気的に接続される。さらに、トランジスタ131
_2のゲートは、ゲート信号が与えられる配線(以下、走査線GL_mという)に電気的
に接続される。
【0187】
トランジスタ131_2は、オン状態またはオフ状態になることにより、データ信号の
データの書き込みを制御する機能を有する。
【0188】
容量素子133_2の一対の電極の一方は、電源が与えられる配線(以下、電源線VL
_aという)に電気的に接続され、他方は、トランジスタ131_2のソース及びドレイ
ンの他方に電気的に接続される。
【0189】
容量素子133_2は、書き込まれたデータを保持する保持容量としての機能を有する
。
【0190】
トランジスタ134のソース及びドレインの一方は、電源線VL_aに電気的に接続さ
れる。さらに、トランジスタ134のゲートは、トランジスタ131_2のソース及びド
レインの他方に電気的に接続される。
【0191】
発光素子135のアノード及びカソードの一方は、電源線VL_bに電気的に接続され
、他方は、トランジスタ134のソース及びドレインの他方に電気的に接続される。
【0192】
発光素子135としては、例えば有機エレクトロルミネセンス素子(有機EL素子とも
いう)などを用いることができる。ただし、発光素子135としては、これに限定されず
、無機材料からなる無機EL素子を用いても良い。
【0193】
なお、電源線VL_a及び電源線VL_bの一方には、高電源電位VDDが与えられ、
他方には、低電源電位VSSが与えられる。
【0194】
図13(B)の画素回路108を有する表示装置では、ゲートドライバ104aにより
各行の画素回路108を順次選択し、トランジスタ131_2をオン状態にしてデータ信
号のデータを書き込む。
【0195】
データが書き込まれた画素回路108は、トランジスタ131_2がオフ状態になるこ
とで保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ13
4のソースとドレインの間に流れる電流量が制御され、発光素子135は、流れる電流量
に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
【0196】
なお、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素
子、及び発光素子を有する装置である発光装置は、様々な形態を用いること、又は様々な
素子を有することが出来る。表示素子、表示装置、発光素子又は発光装置の一例としては
、EL(エレクトロルミネッセンス)素子(有機物及び無機物を含むEL素子、有機EL
素子、無機EL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど
)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電
子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレ
イパネル(PDP)、デジタルマイクロミラーデバイス(DMD)、圧電セラミックディ
スプレイ、カーボンナノチューブ、など、電気磁気的作用により、コントラスト、輝度、
反射率、透過率などが変化する表示媒体を有するものがある。EL素子を用いた表示装置
の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例と
しては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプ
レイ(SED:Surface-conduction Electron-emitt
er Display)などがある。液晶素子を用いた表示装置の一例としては、液晶デ
ィスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプ
レイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク又は
電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。
【0197】
EL素子の一例としては、陽極と、陰極と、陽極と陰極との間に挟まれたEL層と、を
有する素子などがある。EL層の一例としては、1重項励起子からの発光(蛍光)を利用
するもの、3重項励起子からの発光(燐光)を利用するもの、1重項励起子からの発光(
蛍光)を利用するものと3重項励起子からの発光(燐光)を利用するものとを含むもの、
有機物によって形成されたもの、無機物によって形成されたもの、有機物によって形成さ
れたものと無機物によって形成されたものとを含むもの、高分子の材料を含むもの、低分
子の材料を含むもの、又は高分子の材料と低分子の材料とを含むもの、などがある。ただ
し、これに限定されず、EL素子として様々なものを用いることができる。
【0198】
液晶素子の一例としては、液晶の光学的変調作用によって光の透過又は非透過を制御す
る素子がある。その素子は一対の電極と液晶層により構造されることが可能である。なお
、液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界又は斜め方
向の電界を含む)によって制御される。なお、具体的には、液晶素子の一例としては、ネ
マチック液晶、コレステリック液晶、スメクチック液晶、ディスコチック液晶、サーモト
ロピック液晶、リオトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PD
LC)、強誘電液晶、反強誘電液晶、主鎖型液晶、側鎖型高分子液晶、プラズマアドレス
液晶(PALC)、バナナ型液晶などを挙げることができる。
【0199】
電子ペーパーの表示方法の一例としては、分子により表示されるもの(光学異方性、染
料分子配向など)、粒子により表示されるもの(電気泳動、粒子移動、粒子回転、相変化
など)、フィルムの一端が移動することにより表示されるもの、分子の発色/相変化によ
り表示されるもの、分子の光吸収により表示されるもの、又は電子とホールが結合して自
発光により表示されるものなどを用いることができる。具体的には、電子ペーパーの表示
方法の一例としては、マイクロカプセル型電気泳動、水平移動型電気泳動、垂直移動型電
気泳動、球状ツイストボール、磁気ツイストボール、円柱ツイストボール方式、帯電トナ
ー、電子粉流体、磁気泳動型、磁気感熱式、エレクトロウェッテイング、光散乱(透明/
白濁変化)、コレステリック液晶/光導電層、コレステリック液晶、双安定性ネマチック
液晶、強誘電性液晶、2色性色素・液晶分散型、可動フィルム、ロイコ染料による発消色
、フォトクロミック、エレクトロクロミック、エレクトロデポジション、フレキシブル有
機ELなどがある。ただし、これに限定されず、電子ペーパー及びその表示方法として様
々なものを用いることができる。ここで、マイクロカプセル型電気泳動を用いることによ
って、泳動粒子の凝集、沈殿を解決することができる。電子粉流体は、高速応答性、高反
射率、広視野角、低消費電力、メモリ性などのメリットを有する。
【0200】
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができ
る。
【0201】
(実施の形態5)
本実施の形態においては、
図6に示す表示装置の画素部102に用いることのできる構
成について、
図14を用いて説明を行う。
【0202】
図14(A)は、画素部102に用いることのできるトランジスタの構成の一部を示す
上面図であり、
図14(B)は、
図14(A)に示す一点鎖線A1-A2の断面に相当す
る図である。また、
図14(C)は、画素部102に用いることのできるトランジスタの
構成の一部を示す上面図であり、
図14(D)は、
図14(C)に示す一点鎖線B1-B
2の断面に相当する図である。また、先の実施の形態で説明した部分と同様の機能を有す
る部分については、同様の符号、及び同様のハッチングを付し、その詳細な説明は省略す
る。
【0203】
なお、
図14(A)、(C)に示す上面図においては、絶縁層206、208、214
、216、218等は、図面の煩雑をさけるため、省略して図示してある。
【0204】
図14(A)、(B)に示す画素部102に用いることのできるトランジスタは、基板
202上に形成された導電層204aと、基板202、及び導電層204a上に形成され
た絶縁層206、208と、絶縁層208上に形成された半導体層210aと、半導体層
210aと電気的に接続された導電層212d、212eと、を有する構成である。
【0205】
また、上記トランジスタの上方には、絶縁層214、216、218が形成され、絶縁
層214、216、218に設けられた開口部を介して導電層212eと、導電層220
cが電気的に接続されている。
【0206】
図14(A)、(B)に示す構造は、
図6に示す構造と導電層220cの位置が異なる
。具体的には、
図14(A)、(B)に示す構造は、半導体層210aと一部が重畳する
領域に導電層220cが配置される。
【0207】
図14(A)、(B)に示す構成とすることで、画素部102に用いるトランジスタの
上方からの過電流に対して、導電層220cを用いて過電流を逃がすことができる。
【0208】
図14(C)、(D)に示す画素部102に用いることのできるトランジスタは、基板
202上に形成された導電層204aと、基板202、及び導電層204a上に形成され
た絶縁層206、208と、絶縁層208上に形成された半導体層210aと、半導体層
210aと電気的に接続された導電層212d、212eと、を有する構成である。
【0209】
また、上記トランジスタ上には、絶縁層214、216、218が形成され、絶縁層2
14、216、218に設けられた開口部を介して導電層212eと、導電層220cが
電気的に接続されている。
【0210】
図14(C)、(D)に示す構造は、
図6に示す構造と絶縁層208の位置が異なる。
具体的には、
図14(C)、(D)に示す構造は、半導体層210aの側端部と、絶縁層
208の側端部と、概略同様の位置に形成されている。例えば、半導体層210aの形成
時のマスクを利用して、絶縁層208の一部をエッチングすることで、
図14(C)、(
D)に示す構成とすることができる。
【0211】
図14(C)、(D)に示す構成とすることで、例えば、導電層220cに帯電した電
荷を導電層212e及び絶縁層206を介して、導電層204aに逃がすことができる。
【0212】
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができ
る。
【0213】
(実施の形態6)
本実施の形態においては、
図1に示す保護回路106として用いることのできる構成に
ついて、
図15乃至
図17を用いて説明を行う。
【0214】
図15(A)、(B)は、保護回路106として用いることのできる素子の上面図を示
しており、
図15(C)は、
図15(A)に示す一点鎖線C1-C2、C3-C4の断面
に相当する図であり、
図15(D)は、
図15(B)に示す一点鎖線D1-D2、D3-
D4の断面に相当する図である。
【0215】
図15(A)、(C)は、保護回路106として用いることのできる抵抗素子を表して
いる。また、
図15(A)、(C)に示す抵抗素子は、基板202上に形成された絶縁層
206、208と、絶縁層208上に形成された半導体層210cと、半導体層210c
と電気的に接続された導電層212g、212hとを有する。
【0216】
図15(B)、(D)は、保護回路106として用いることのできる抵抗素子を表して
いる。また、
図15(B)、(D)に示す抵抗素子は、基板202上に形成された絶縁層
206、208と、絶縁層208上に形成された半導体層210c、及び導電層212g
、212hと、絶縁層208、半導体層210c、導電層212g、212h上に形成さ
れた絶縁層214、216、218と、絶縁層218上に形成され、導電層212gと半
導体層210cを電気的に接続する導電層220dと、絶縁層218上に形成され、導電
層212hと半導体層210cを電気的に接続する導電層220eとを有する。
【0217】
上記抵抗素子は、半導体層210cを抵抗素子として用いることができる。また、半導
体層210cを、
図15(A)、(B)に示すような構成とすることで、抵抗率を制御す
ることができる。
【0218】
また、
図16(A)、(B)、(C)は、保護回路106として用いることのできる回
路構成の一例を示している。
【0219】
図16(A)に示す回路構成は、配線451、452、481とトランジスタ402、
404と、を有する構成である。
【0220】
トランジスタ402は、ソース電極として機能する第1端子がゲート電極として機能す
る第2端子と電気的に接続されており、ドレイン電極として機能する第3端子が配線45
1と電気的に接続されている。また、トランジスタ402の第1端子は、配線481と電
気的に接続されている。トランジスタ404は、ソース電極として機能する第1端子がゲ
ート電極として機能する第2端子と電気的に接続されており、ドレイン電極として機能す
る第3端子が配線452と電気的に接続されている。また、トランジスタ404の第1端
子は、配線481と電気的に接続されている。
【0221】
図16(B)に示す回路構成は、配線453、454、482、483、484と、ト
ランジスタ406、408、410、412とを有する構成である。
【0222】
トランジスタ406は、ソース電極として機能する第1端子がゲート電極として機能す
る第2端子と電気的に接続されており、ドレイン電極として機能する第3端子が配線48
3と電気的に接続されている。また、トランジスタ406の第1端子は、配線482と電
気的に接続されている。
【0223】
トランジスタ408は、ソース電極として機能する第1端子がゲート電極として機能す
る第2端子と電気的に接続されており、ドレイン電極として機能する第3端子が配線48
4と電気的に接続されている。また、トランジスタ408の第1端子は、配線483と電
気的に接続されている。
【0224】
トランジスタ410は、ソース電極として機能する第1端子がゲート電極として機能す
る第2端子と電気的に接続されており、ドレイン電極として機能する第3端子が配線48
2と電気的に接続されている。また、トランジスタ410の第1端子は、配線483と電
気的に接続されている。
【0225】
トランジスタ412は、ソース電極として機能する第1端子がゲート電極として機能す
る第2端子と電気的に接続されており、ドレイン電極として機能する第3端子が配線48
3と電気的に接続されている。また、トランジスタ412の第1端子は、配線484と電
気的に接続されている。
【0226】
図16(C)に示す回路構成は、配線455、456、485、486と、トランジス
タ414、416とを有する構成である。
【0227】
トランジスタ414は、ソース電極として機能する第1端子がゲート電極として機能す
る第2端子と電気的に接続されており、ドレイン電極として機能する第3端子が配線48
5と電気的に接続されている。また、トランジスタ414の第1端子は、配線486と電
気的に接続されている。
【0228】
トランジスタ416は、ソース電極として機能する第1端子がゲート電極として機能す
る第2端子と電気的に接続されており、ドレイン電極として機能する第3端子が配線48
6と電気的に接続されている。また、トランジスタ416の第1端子は、配線485と電
気的に接続されている。
【0229】
本発明の一態様に用いることのできる保護回路106は、
図16(A)、(B)、(C
)に示す回路構成のようにダイオード接続されたトランジスタを使用することもできる。
【0230】
また、
図16(A)、(B)、(C)に示す回路構成において、ソース電極として機能
する第1端子と、ゲート電極として機能する第2端子との接続は、
図17に示す構成とす
ることで、任意に抵抗率を制御することが可能となる。
【0231】
図17(A)は、保護回路106として用いることのできる抵抗素子を表している。ま
た、
図17(A)に示す抵抗素子は、基板202上に形成された導電層204eと、基板
202及び導電層204e上に形成された絶縁層206、208と、絶縁層208上に形
成された半導体層210dと、半導体層210dと電気的に接続された導電層212iと
、絶縁層208、半導体層210d、導電層212i上に形成された絶縁層214、21
6、218と、絶縁層218上に形成され、半導体層210dと導電層204eを電気的
に接続させる導電層220fとを有する。
【0232】
図17(B)は、保護回路106として用いることのできる抵抗素子を表している。ま
た、
図17(B)に示す抵抗素子は、基板202上に形成された導電層204eと、基板
202及び導電層204e上に形成された絶縁層206、208と、絶縁層208上に形
成された半導体層210d、及び導電層212jと、絶縁層208、半導体層210d、
及び導電層212j上に形成された絶縁層214、216、218と、絶縁層218上に
形成され、導電層212jと半導体層210dと、を電気的に接続させる導電層220g
と、絶縁層218上に形成され、導電層204eと半導体層210dと、を電気的に接続
させる導電層220hとを有する。
【0233】
図17(C)は、保護回路106として用いることのできる抵抗素子を表している。ま
た、
図17(C)に示す抵抗素子は、基板202上に形成された導電層204eと、基板
202及び導電層204e上に形成された絶縁層206、208と、絶縁層208上に形
成された半導体層210d、導電層212jと、半導体層210dと電気的に接続された
導電層212kと、絶縁層208、半導体層210d、導電層212j、及び導電層21
2k上に形成された絶縁層214、216、218と、絶縁層218上に形成され、導電
層212jと半導体層210dと、を電気的に接続させる導電層220iと、絶縁層21
8上に形成され、導電層212kと導電層204eと、を電気的に接続させる導電層22
0jとを有する。
【0234】
図15乃至
図17で説明した抵抗素子に用いる半導体層210c、210dは、先の実
施の形態に示す半導体層210a、210bに記載の材料を援用して用いることができる
。また、半導体層210c、210dは、半導体層210a、210bの形成と同一工程
にて形成することができる。
【0235】
また、
図15乃至
図17で説明した抵抗素子に用いる導電層212g、212h、21
2i、212j、212kは、先の実施の形態に示す導電層212a、212b、212
c、212d、212e、212fに記載の材料を援用して用いることができる。また、
導電層212g、212hは、導電層212a、212b、212c、212d、212
e、212fの形成と同一工程にて形成することができる。
【0236】
また、
図15乃至
図17で説明した抵抗素子に用いる導電層220d、220e、22
0f、220g、220h、220i、220jは、先の実施の形態に示す導電層220
a、220b、220cに記載の材料を援用して用いることができる。また、導電層22
0d、220eは、導電層220a、220b、220cの形成と同一工程にて形成する
ことができる。
【0237】
このように、保護回路に用いる導電層としては、トランジスタのゲート電極として機能
する導電層と、トランジスタのソース電極及びドレイン電極として機能する導電層等を用
いることができる。例えば、
図17(B)に示す保護回路106の構成を別言すると、以
下のように表すことができる。
【0238】
図17(B)に示す保護回路106は、ゲート電極と同一表面上に形成された第1の導
電層(導電層204e)と、第1の導電層(導電層204e)上の第1の絶縁層(絶縁層
206、208)と、第1の絶縁層(絶縁層206、208)上に形成され、第1の導電
層(導電層204e)と重畳する位置の酸化物半導体層(半導体層210d)と、酸化物
半導体層(半導体層210d)上の第2の絶縁層(絶縁層214、216、218)と、
第2の絶縁層(絶縁層214、216、218)上の第2の導電層(導電層220g、2
20h)と、を有し、第2の導電層(導電層220g、220h)は、第2の絶縁層(絶
縁層214、216、218)に設けられた開口部において、酸化物半導体層(半導体層
210d)と電気的に接続される。
【0239】
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができ
る。
【0240】
(実施の形態7)
本実施の形態においては、実施の形態1の
図1(A)に示す表示装置の画素部102、
及び駆動回路部104に用いることのできるトランジスタの構成について
図18を用いて
以下説明を行う。
【0241】
図18(A)に示すトランジスタは、基板202上に形成された導電層204cと、基
板202及び導電層204c上に形成された絶縁層206、208と、絶縁層208上に
形成された酸化物積層211と、絶縁層208及び酸化物積層211上に形成された導電
層212d、212eと、を有する。また、
図18(A)に示すトランジスタは、該トラ
ンジスタ上、より詳しくは、絶縁層208、酸化物積層211、及び導電層212d、2
12e上に形成された絶縁層214、216、218を含む構成としても良い。
【0242】
なお、導電層212d、212eに用いる導電膜の種類によっては、酸化物積層211
の一部から酸素を奪い、または混合層を形成し、酸化物積層211中にn型領域209を
形成することがある。
図18(A)において、n型領域209は、酸化物積層211中の
導電層212d、212eと接する界面近傍の領域に形成されうる。なお、n型領域20
9は、ソース領域及びドレイン領域として機能することができる。
【0243】
また、
図18(A)に示すトランジスタは、導電層204cがゲート電極として機能し
、導電層212dがソース電極またはドレイン電極として機能し、導電層212eがソー
ス電極またはドレイン電極として機能する。
【0244】
また、
図18(A)に示すトランジスタは、導電層204cと重畳する領域の酸化物積
層211の導電層212dと導電層212eとの間隔をチャネル長という。また、チャネ
ル形成領域とは、酸化物積層211において、導電層204cと重畳し、且つ導電層21
2dと導電層212eに挟まれる領域をいう。また、チャネルとは、チャネル形成領域に
おいて、電流が主として流れる領域をいう。
【0245】
ここで、酸化物積層211の詳細について、
図18(B)を用いて詳細に説明を行う。
【0246】
図18(B)は、
図18(A)に示す酸化物積層211の破線で囲まれた領域の拡大図
である。酸化物積層211は、酸化物半導体層211aと、酸化物層211bと、を有す
る。
【0247】
酸化物半導体層211aは、少なくともインジウム(In)、亜鉛(Zn)及びM(A
l、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)を含むIn-M-Z
n酸化物で表記される層を含むことが好ましい。なお、酸化物半導体層211aは、先の
実施の形態に示す半導体層210a、210bに用いることのできる酸化物半導体材料、
または形成方法等を適宜援用することができる。
【0248】
酸化物層211bは、酸化物半導体層211aを構成する元素の一種以上から構成され
、伝導帯下端のエネルギーが酸化物半導体層211aよりも0.05eV以上、0.07
eV以上、0.1eV以上又は0.15eV以上、かつ2eV以下、1eV以下、0.5
eV以下又は0.4eV以下真空準位に近い酸化物膜である。このとき、ゲート電極とし
て機能する導電層204cに電界を印加すると、酸化物積層211のうち、伝導帯下端の
エネルギーが小さい酸化物半導体層211aにチャネルが形成される。すなわち、酸化物
半導体層211aと絶縁層214との間に酸化物層211bを有することによって、トラ
ンジスタのチャネルを絶縁層214と接しない酸化物半導体層211aに形成することが
できる。また、酸化物半導体層211aを構成する元素の一種以上から酸化物層211b
が構成されるため、酸化物半導体層211aと酸化物層211bとの間において、界面散
乱が起こりにくい。したがって、酸化物半導体層211aと酸化物層211bとの間にお
いて、キャリアの動きが阻害されないため、トランジスタの電界効果移動度が高くなる。
また、酸化物半導体層211aと酸化物層211bとの間に界面準位を形成しにくい。酸
化物半導体層211aと酸化物層211bとの間に界面準位があると、該界面をチャネル
としたしきい値電圧の異なる第2のトランジスタが形成され、トランジスタの見かけ上の
しきい値電圧が変動することがある。したがって、酸化物層211bを設けることにより
、トランジスタのしきい値電圧などの電気特性のばらつきを低減することができる。
【0249】
酸化物層211bとしてはIn-M-Zn酸化物(Al、Ti、Ga、Ge、Y、Zr
、Sn、La、CeまたはHf等の金属)で表記され、酸化物半導体層211aよりもM
の原子数比が高い酸化物層を含む。具体的には、酸化物層211bとして、酸化物半導体
層211aよりも前述の元素を1.5倍以上、好ましくは2倍以上、さらに好ましくは3
倍以上高い原子数比で含む酸化物層を用いる。前述の元素はインジウムよりも酸素と強く
結合するため、酸素欠損が酸化物層に生じることを抑制する機能を有する。即ち、酸化物
層211bは酸化物半導体層211aよりも酸素欠損が生じにくい酸化物層である。
【0250】
つまり、酸化物半導体層211a、酸化物層211bが、少なくともインジウム、亜鉛
及びM(Al、Ti、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)を
含むIn-M-Zn酸化物であるとき酸化物層211bをIn:M:Zn=x1:y1:
z1[原子数比]、酸化物半導体層211aをIn:M:Zn=x2:y2:z2[原子
数比]、とすると、y1/x1がy2/x2よりも大きくなることが好ましい。y1/x
1はy2/x2よりも1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上と
する。このとき、酸化物半導体層211aにおいて、y2がx2以上であるとトランジス
タの電気特性を安定させることができる。ただし、y2がx2の3倍以上になると、トラ
ンジスタの電界効果移動度が低下してしまうため、y2はx2の3倍未満であることが好
ましい。
【0251】
なお、酸化物半導体層211aがIn-M-Zn酸化物であるとき、InとMの原子数
比率は好ましくはInが25atomic%以上、Mが75atomic%未満、さらに
好ましくはInが34atomic%以上、Mが66atomic%未満とする。また、
酸化物層211bがIn-M-Zn酸化物であるとき、InとMの原子数比率は好ましく
はInが50atomic%未満、Mが50atomic%以上、さらに好ましくはIn
が25atomic%未満、Mが75atomic%以上とする。
【0252】
酸化物半導体層211a、及び酸化物層211bには、例えば、インジウム、亜鉛及び
ガリウムを含んだ酸化物半導体を用いることができる。具体的には、酸化物半導体層21
1aとしては、In:Ga:Zn=1:1:1[原子数比]のIn-Ga-Zn酸化物、
In:Ga:Zn=3:1:2[原子数比]のIn-Ga-Zn酸化物、又はその近傍の
組成を有する酸化物を用いることができ、酸化物層211bとしては、In:Ga:Zn
=1:3:2[原子数比]のIn-Ga-Zn酸化物、In:Ga:Zn=1:6:4[
原子数比]のIn-Ga-Zn酸化物、In:Ga:Zn=1:9:6[原子数比]のI
n-Ga-Zn酸化物、又はその近傍の組成を有する酸化物を用いることができる。
【0253】
また、酸化物半導体層211aの厚さは、3nm以上200nm以下、好ましくは3n
m以上100nm以下、さらに好ましくは3nm以上50nm以下とする。また、酸化物
層211bの厚さは、3nm以上100nm以下、好ましくは3nm以上50nm以下と
する。
【0254】
次に、酸化物積層211のバンド構造について、
図18(C)、(D)を用いて説明す
る。
【0255】
例として、酸化物半導体層211aとしてエネルギーギャップが3.15eVであるI
n-Ga-Zn酸化物を用い、酸化物層211bとしてエネルギーギャップが3.5eV
であるIn-Ga-Zn酸化物とする。エネルギーギャップは、分光エリプソメータ(H
ORIBA JOBIN YVON社 UT-300)を用いて測定した。
【0256】
酸化物半導体層211a及び酸化物層211bの真空準位と価電子帯上端のエネルギー
差(イオン化ポテンシャルともいう。)は、それぞれ8eV及び8.2eVであった。な
お、真空準位と価電子帯上端のエネルギー差は、紫外線光電子分光分析(UPS:Ult
raviolet Photoelectron Spectroscopy)装置(P
HI社 VersaProbe)を用いて測定した。
【0257】
したがって、酸化物半導体層211a及び酸化物層211bの真空準位と伝導帯下端の
エネルギー差(電子親和力ともいう。)は、それぞれ4.85eV及び4.7eVであっ
た。
【0258】
図18(C)は、酸化物積層211のバンド構造の一部を模式的に示している。ここで
は、酸化物積層211に酸化シリコン膜を接して設けた場合について説明する。なお、図
18(C)に表すEcI1は酸化シリコン膜の伝導帯下端のエネルギーを示し、EcS1
は酸化物半導体層211aの伝導帯下端のエネルギーを示し、EcS2は酸化物層211
bの伝導帯下端のエネルギーを示し、EcI2は酸化シリコン膜の伝導帯下端のエネルギ
ーを示す。また、EcI1は、
図18(A)において、絶縁層208に相当し、EcI2
は、
図18(A)において、絶縁層214に相当する。
【0259】
図18(C)に示すように、酸化物半導体層211a及び酸化物層211bにおいて、
伝導帯下端のエネルギーは障壁が無くなだらかに変化する。換言すると、連続的に変化す
るともいうことができる。これは、酸化物層211bは、酸化物半導体層211aと共通
の元素を含み、酸化物半導体層211a及び酸化物層211bの間で、酸素が相互に移動
することで混合層が形成されるためであるということができる。
【0260】
図18(C)より、酸化物積層211の酸化物半導体層211aがウェル(井戸)とな
り、酸化物積層211を用いたトランジスタにおいて、チャネル領域が酸化物半導体層2
11aに形成されることがわかる。なお、酸化物積層211は伝導帯下端のエネルギーが
連続的に変化しているため、酸化物半導体層211aと酸化物層211bとが連続接合し
ている、ともいえる。
【0261】
なお、
図18(C)に示すように、酸化物層211bと、絶縁層214との界面近傍に
は、不純物や欠陥に起因したトラップ準位が形成され得るものの、酸化物層211bが設
けられることにより、酸化物半導体層211aと該トラップ準位とを遠ざけることができ
る。ただし、EcS1とEcS2とのエネルギー差が小さい場合、該エネルギー差を越え
てトラップ準位に達することがある。トラップ準位に電子が捕獲されることで、絶縁層界
面にマイナスの電荷が生じ、トランジスタのしきい値電圧はプラス方向にシフトしてしま
う。したがって、EcS1とEcS2とのエネルギー差を、0.1eV以上、好ましくは
0.15eV以上とすると、トランジスタのしきい値電圧の変動が低減され、安定した電
気特性となるため好適である。
【0262】
図18(D)は、酸化物積層211のバンド構造の一部を模式的に示し、
図18(C)
に示すバンド構造の変形例である。ここでは、酸化物積層211に酸化シリコン膜を接し
て設けた場合について説明する。なお、
図18(D)に表すEcI1は酸化シリコン膜の
伝導帯下端のエネルギーを示し、EcS1は酸化物半導体層211aの伝導帯下端のエネ
ルギーを示し、EcI2は酸化シリコン膜の伝導帯下端のエネルギーを示す。また、Ec
I1は、
図18(A)において、絶縁層208に相当し、EcI2は、
図18(A)にお
いて、絶縁層214に相当する。
【0263】
図18(A)に示すトランジスタにおいて、導電層212d、212eの形成時に酸化
物積層211の上方、すなわち酸化物層211bがエッチングされる場合がある。しかし
、酸化物半導体層211aの上面は、酸化物層211bの成膜時に酸化物半導体層211
aと酸化物層211bの混合層が形成される場合がある。
【0264】
例えば、酸化物半導体層211aが、In:Ga:Zn=1:1:1[原子数比]のI
n-Ga-Zn酸化物、またはIn:Ga:Zn=3:1:2[原子数比]のIn-Ga
-Zn酸化物であり、酸化物層211bが、In:Ga:Zn=1:3:2[原子数比]
のIn-Ga-Zn酸化物、またはIn:Ga:Zn=1:6:4[原子数比]のIn-
Ga-Zn酸化物である場合、酸化物半導体層211aよりも酸化物層211bのGaの
含有量が多いため、酸化物半導体層211aの上面には、GaOx層または酸化物半導体
層211aよりもGaを多く含む混合層が形成されうる。
【0265】
したがって、酸化物層211bがエッチングされた場合においても、EcS1のEcI
2側の伝導帯下端のエネルギーが高くなり、
図18(D)に示すバンド構造のようになる
場合がある。
【0266】
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができ
る。
【0267】
(実施の形態8)
本実施の形態においては、実施の形態1の
図1(A)に示す表示装置に用いることので
きる接続端子部の構成について、
図19を用いて以下説明を行う。また、先の実施の形態
で説明した部分と同様の機能を有する部分については、同様の符号、及び同様のハッチン
グを付し、その詳細な説明は省略する。
【0268】
図19に示す表示装置に用いることのできる接続端子部103は、基板202上に形成
された絶縁層206、208と、絶縁層208上に形成された導電層212mと、絶縁層
208上に形成された絶縁層214、216と、を有する。また、絶縁層214、216
は、導電層212mに達する開口部が設けられ、FPC264が有する端子と異方性導電
剤262を介して、電気的に接続されている。
【0269】
また、接続端子部103において、絶縁層216上にシール材266が形成されている
。シール材266によって、基板202と基板252の間に液晶層260が封止されてい
る。
【0270】
また、絶縁層206、208は、先の実施の形態に示す材料を援用することができる。
【0271】
また、導電層212mは、保護回路106、及び駆動回路部104に形成された導電層
212a、212b、212cと同じ導電膜から形成することができる。
【0272】
異方性導電剤262は、熱硬化性、又は熱硬化性及び光硬化性の樹脂に導電性粒子を混
ぜ合わせたペースト状又はシート状の材料を硬化させたものである。異方性導電剤262
は、光照射や熱圧着によって異方性の導電性を示す材料となる。異方性導電剤262に用
いられる導電性粒子としては、例えば球状の有機樹脂をAuやNi、Co等の薄膜状の金
属で被覆した粒子を用いることができる。
【0273】
本実施の形態に示すように、接続端子部103と駆動回路部104との間に本発明の一
態様である保護回路106を設けることで、例えば、FPC264を貼り付ける際の静電
気等によって生じる過電流から駆動回路部104を保護することが可能となる。したがっ
て、信頼性の高い表示装置を提供することができる。
【0274】
なお、本明細書における表示装置とは、画像表示デバイス、もしくは光源(照明装置含
む。)を指す。また、コネクター、例えばFPCもしくはTCPが取り付けられたモジュ
ール、TCPの先にプリント配線板が設けられたモジュール、または表示素子にCOG方
式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする
。
【0275】
なお、本実施の形態に示す構成などは、他の実施の形態に示す構成と適宜組み合わせて
用いることができる。
【0276】
(実施の形態9)
本実施の形態においては、本発明の一態様の表示装置と組み合わせることができるタッ
チセンサ、及び表示モジュールについて、
図20乃至
図23を用いて説明する。
【0277】
図20(A)はタッチセンサ4500の構成例を示す分解斜視図であり、
図20(B)
は、タッチセンサ4500の電極の構成例を示す平面図である。また、
図21は、タッチ
センサ4500の構成例を示す断面図である。
【0278】
図20(A)、(B)に示すタッチセンサ4500は、基板4910上に、X軸方向に
配列された複数の導電層4510と、X軸方向と交差するY軸方向に配列された複数の導
電層4520とが形成されている。
図20(A)、(B)に示すタッチセンサ4500は
、複数の導電層4510が形成された平面図と、複数の導電層4520の平面図と、を分
離して表示されている。
【0279】
また、
図21は、
図20に示すタッチセンサ4500の導電層4510と導電層452
0との交差部分の等価回路図である。
図21に示すように、導電層4510と導電層45
20の交差する部分には、容量4540が形成される。
【0280】
また、導電層4510、4520は、複数の四辺形状の導電膜が接続された構造を有し
ている。複数の導電層4510及び複数の導電層4520は、導電膜の四辺形状の部分の
位置が重ならないように、配置されている。導電層4510と導電層4520の交差する
部分には、導電層4510と導電層4520が接触しないように間に絶縁膜が設けられて
いる。
【0281】
また、
図22は、
図20に示すタッチセンサ4500の導電層4510と導電層452
0との接続構造の一例を説明する断面図であり、導電層4510(導電層4510a、4
510b、4510c)と4520が交差する部分の断面図を一例として示す。
【0282】
図22に示すように、導電層4510は、1層目の導電層4510aおよび導電層45
10b、ならびに、絶縁層4810上の2層目の導電層4510cにより構成される。導
電層4510aと導電層4510bは、導電層4510cにより接続されている。導電層
4520は、1層目の導電膜により形成される。導電層4510、4520及び電極47
10を覆って絶縁層4820が形成されている。絶縁層4810、4820として、例え
ば、酸化窒化シリコン膜を形成すればよい。なお、基板4910と導電層4510及び電
極4710の間に絶縁膜でなる下地膜を形成してもよい、下地膜としては、例えば、酸化
窒化シリコン膜を形成することができる。
【0283】
導電層4510と導電層4520は、可視光に対して透光性を有する導電材料で形成さ
れる。例えば、透光性を有する導電材料として、酸化珪素を含む酸化インジウムスズ、酸
化インジウムスズ、酸化亜鉛、酸化インジウム亜鉛、ガリウムを添加した酸化亜鉛等があ
る。
【0284】
導電層4510aは、電極4710に接続されている。電極4710は、FPCとの接
続用端子を構成する。導電層4520も、導電層4510と同様、他の電極4710に接
続される。電極4710は、例えば、タングステン膜から形成することができる。
【0285】
導電層4510、4520及び電極4710を覆って絶縁層4820が形成されている
。電極4710とFPCとを電気的に接続するために、電極4710上の絶縁層4810
及び絶縁層4820には開口が形成されている。絶縁層4820上には、基板4920が
接着剤又は接着フィルム等により貼り付けられている。接着剤又は接着フィルムにより基
板4910側を表示パネルのカラーフィルタ基板に取り付けることで、タッチパネルが構
成される。
【0286】
次に、本発明の一態様の表示装置を用いることのできる表示モジュールについて、
図2
3を用いて説明を行う。
【0287】
図23に示す表示モジュール8000は、上部カバー8001と下部カバー8002と
の間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続され
た表示パネル8006、バックライトユニット8007、フレーム8009、プリント基
板8010、バッテリー8011を有する。
【0288】
上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル
8006のサイズに合わせて、形状や寸法を適宜変更することができる。
【0289】
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル
8006に重畳して用いることができる。また、表示パネル8006の対向基板(封止基
板)に、タッチパネル機能を持たせるようにすることも可能である。また、表示パネル8
006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。
【0290】
バックライトユニット8007は、光源8008を有する。光源8008は、バックラ
イトユニット8007の端部に設け、光拡散板を用いる構成としてもよい。
【0291】
フレーム8009は、表示パネル8006の保護機能の他、プリント基板8010の動
作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレ
ーム8009は、放熱板としての機能を有していてもよい。
【0292】
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信
号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であって
も良いし、別途設けたバッテリー8011による電源であってもよい。バッテリー801
1は、商用電源を用いる場合には、省略可能である。
【0293】
また、表示モジュール8000は、偏光板、位相差板、プリズムシートなどの部材を追
加して設けてもよい。
【0294】
なお、本実施の形態に示す構成などは、他の実施の形態に示す構成と適宜組み合わせて
用いることができる。
【0295】
(実施の形態10)
本実施の形態においては、電子機器の例について説明する。
【0296】
図24(A)乃至
図24(H)、
図25(A)乃至
図25(D)は、電子機器を示す図
である。これらの電子機器は、筐体5000、表示部5001、スピーカ5003、LE
Dランプ5004、操作キー5005(電源スイッチ、又は操作スイッチを含む)、接続
端子5006、センサ5007(力、変位、位置、速度、加速度、角速度、回転数、距離
、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線
、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフ
ォン5008、等を有することができる。
【0297】
図24(A)はモバイルコンピュータであり、上述したものの他に、スイッチ5009
、赤外線ポート5010、等を有することができる。
図24(B)は記録媒体を備えた携
帯型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表
示部5002、記録媒体読込部5011、等を有することができる。
図24(C)はゴー
グル型ディスプレイであり、上述したものの他に、第2表示部5002、支持部5012
、イヤホン5013、等を有することができる。
図24(D)は携帯型遊技機であり、上
述したものの他に、記録媒体読込部5011、等を有することができる。
図24(E)は
テレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ5014、シ
ャッターボタン5015、受像部5016、等を有することができる。
図24(F)は携
帯型遊技機であり、上述したものの他に、第2表示部5002、記録媒体読込部5011
、等を有することができる。
図24(G)はテレビ受像器であり、上述したものの他に、
チューナ、画像処理部、等を有することができる。
図24(H)は持ち運び型テレビ受像
器であり、上述したものの他に、信号の送受信が可能な充電器5017、等を有すること
ができる。
図25(A)はディスプレイであり、上述したものの他に、支持台5018、
等を有することができる。
図25(B)はカメラであり、上述したものの他に、外部接続
ポート5019、シャッターボタン5015、受像部5016、等を有することができる
。
図25(C)はコンピュータであり、上述したものの他に、ポインティングデバイス5
020、外部接続ポート5019、リーダ/ライタ5021、等を有することができる。
図25(D)は携帯電話機であり、上述したものの他に、送信部、受信部、携帯電話・移
動端末向けの1セグメント部分受信サービス用チューナ、等を有することができる。
【0298】
図24(A)乃至
図24(H)、
図25(A)乃至
図25(D)に示す電子機器は、様
々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など
)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示す
る機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能
、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能
を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム
又はデータを読み出して表示部に表示する機能、等を有することができる。さらに、複数
の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の
一つの表示部を主として文字情報を表示する機能、または、複数の表示部に視差を考慮し
た画像を表示することで立体的な画像を表示する機能、等を有することができる。さらに
、受像部を有する電子機器においては、静止画を撮影する機能、動画を撮影する機能、撮
影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部又はカメラ
に内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有することができ
る。なお、
図24(A)乃至
図24(H)、
図25(A)乃至
図25(D)に示す電子機
器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。
【0299】
本実施の形態において述べた電子機器は、何らかの情報を表示するための表示部を有す
ることを特徴とする。
【0300】
次に、表示装置の応用例を説明する。
【0301】
図25(E)に、表示装置を、建造物と一体にして設けた例について示す。
図25(E
)は、筐体5022、表示部5023、操作部であるリモコン装置5024、スピーカ5
025等を含む。表示装置は、壁かけ型として建物と一体となっており、設置するスペー
スを広く必要とすることなく設置可能である。
【0302】
図25(F)に、建造物内に表示装置を、建造物と一体にして設けた別の例について示
す。表示モジュール5026は、ユニットバス5027と一体に取り付けられており、入
浴者は表示モジュール5026の視聴が可能になる。
【0303】
なお、本実施の形態において、建造物として壁、ユニットバスを例としたが、本実施の
形態はこれに限定されず、様々な建造物に表示装置を設置することができる。
【0304】
次に、表示装置を、移動体と一体にして設けた例について示す。
【0305】
図25(G)は、表示装置を、自動車に設けた例について示した図である。表示モジュ
ール5028は、自動車の車体5029に取り付けられており、車体の動作又は車体内外
から入力される情報をオンデマンドに表示することができる。なお、ナビゲーション機能
を有していてもよい。
【0306】
図25(H)は、表示装置を、旅客用飛行機と一体にして設けた例について示した図で
ある。
図25(H)は、旅客用飛行機の座席上部の天井5030に表示モジュール503
1を設けたときの、使用時の形状について示した図である。表示モジュール5031は、
天井5030とヒンジ部5032を介して一体に取り付けられており、ヒンジ部5032
の伸縮により乗客は表示モジュール5031の視聴が可能になる。表示モジュール503
1は乗客が操作することで情報を表示する機能を有する。
【0307】
なお、本実施の形態において、移動体としては自動車車体、飛行機機体について例示し
たがこれに限定されず、自動二輪車、自動四輪車(自動車、バス等を含む)、電車(モノ
レール、鉄道等を含む)、船舶等、様々なものに設置することができる。
【0308】
なお、本明細書等においては、ある一つの実施の形態において述べる図または文章にお
いて、その一部分を取り出して、発明の一態様を構成することは可能である。したがって
、ある部分を述べる図または文章が記載されている場合、その一部分の図または文章を取
り出した内容も、発明の一態様として開示されているものであり、発明の一態様を構成す
ることが可能であるものとする。そのため、例えば、能動素子(トランジスタ、ダイオー
ドなど)、配線、受動素子(容量素子、抵抗素子など)、導電層、絶縁層、半導体層、有
機材料、無機材料、部品、装置、動作方法、製造方法などが単数又は複数記載された図面
または文章において、その一部分を取り出して、発明の一態様を構成することが可能であ
るものとする。例えば、N個(Nは整数)の回路素子(トランジスタ、容量素子等)を有
して構成される回路図から、M個(Mは整数で、M<N)の回路素子(トランジスタ、容
量素子等)を抜き出して、発明の一態様を構成することは可能である。別の例としては、
N個(Nは整数)の層を有して構成される断面図から、M個(Mは整数で、M<N)の層
を抜き出して、発明の一態様を構成することは可能である。さらに別の例としては、N個
(Nは整数)の要素を有して構成されるフローチャートから、M個(Mは整数で、M<N
)の要素を抜き出して、発明の一態様を構成することは可能である。
【0309】
なお、本明細書等においては、ある一つの実施の形態において述べる図または文章にお
いて、少なくとも一つの具体例が記載される場合、その具体例の上位概念を導き出すこと
は、当業者であれば容易に理解される。したがって、ある一つの実施の形態において述べ
る図または文章において、少なくとも一つの具体例が記載される場合、その具体例の上位
概念も、発明の一態様として開示されているものであり、発明の一態様を構成することが
可能である。
【0310】
なお、本明細書等においては、少なくとも図に記載した内容(図の中の一部でもよい)
は、発明の一態様として開示されているものであり、発明の一態様を構成することが可能
である。したがって、ある内容について、図に記載されていれば、文章を用いて述べてい
なくても、その内容は、発明の一態様として開示されているものであり、発明の一態様を
構成することが可能である。同様に、図の一部を取り出した図についても、発明の一態様
として開示されているものであり、発明の一態様を構成することが可能である。
【0311】
(実施の形態11)
なお、上記実施の形態で開示された、導電膜や半導体膜はスパッタ法やプラズマCVD法
により形成することができるが、他の方法、例えば、熱CVD(Chemical Va
por Deposition)法により形成してもよい。熱CVD法の例としてMOC
VD(Metal Organic Chemical Vapor Depositi
on)法やALD(Atomic Layer Deposition)法を使っても良
い。
【0312】
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成
されることが無いという利点を有する。
【0313】
熱CVD法は、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を大気圧ま
たは減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行
ってもよい。
【0314】
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが順
次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行ってもよい。
例えば、それぞれのスイッチングバルブ(高速バルブとも呼ぶ)を切り替えて2種類以上
の原料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原
料ガスと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第
2の原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキ
ャリアガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよ
い。また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後
、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の層を
成膜し、後から導入される第2の原料ガスと反応して、第2の層が第1の層上に積層され
て薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返
すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順
序を繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微
細なFETを作製する場合に適している。
【0315】
MOCVD法やALD法などの熱CVD法は、これまでに記載した実施形態に開示された
導電膜や半導体膜を形成することができ、例えば、In-Ga-Zn-O膜を成膜する場
合には、トリメチルインジウム、トリメチルガリウム、及びジメチル亜鉛を用いる。なお
、トリメチルインジウムの化学式は、In(CH3)3である。また、トリメチルガリウ
ムの化学式は、Ga(CH3)3である。また、ジメチル亜鉛の化学式は、Zn(CH3
)2である。また、これらの組み合わせに限定されず、トリメチルガリウムに代えてトリ
エチルガリウム(化学式Ga(C2H5)3)を用いることもでき、ジメチル亜鉛に代え
てジエチル亜鉛(化学式Zn(C2H5)2)を用いることもできる。
【0316】
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WF6ガ
スとB2H6ガスを順次繰り返し導入して初期タングステン膜を形成し、その後、WF6
ガスとH2ガスを同時に導入してタングステン膜を形成する。なお、B2H6ガスに代え
てSiH4ガスを用いてもよい。
【0317】
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn-Ga-Zn-O
膜を成膜する場合には、In(CH3)3ガスとO3ガスを順次繰り返し導入してIn-
O層を形成し、その後、Ga(CH3)3ガスとO3ガスを同時に導入してGaO層を形
成し、更にその後Zn(CH3)2とO3ガスを同時に導入してZnO層を形成する。な
お、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてIn-Ga-O
層やIn-Zn-O層、Ga-Zn-O層などの混合化合物層を形成しても良い。なお、
O3ガスに変えてAr等の不活性ガスでバブリングして得られたH2Oガスを用いても良
いが、Hを含まないO3ガスを用いる方が好ましい。また、In(CH3)3ガスにかえ
て、In(C2H5)3ガスを用いても良い。また、Ga(CH3)3ガスにかえて、G
a(C2H5)3ガスを用いても良い。また、In(CH3)3ガスにかえて、In(C
2H5)3ガスを用いても良い。また、Zn(CH3)2ガスを用いても良い。
【符号の説明】
【0318】
102 画素部
103 接続端子部
104 駆動回路部
104a ゲートドライバ
104b ソースドライバ
106 保護回路
106_1 保護回路
106_2 保護回路
106_3 保護回路
106_4 保護回路
108 画素回路
109 接続部
110 配線
112 配線
114 抵抗素子
130 液晶素子
131_1 トランジスタ
131_2 トランジスタ
133_1 容量素子
133_2 容量素子
134 トランジスタ
135 発光素子
140 基板
142 導電層
144 絶縁層
146 絶縁層
148 導電層
151 トランジスタ
152 トランジスタ
153 トランジスタ
154 トランジスタ
155 トランジスタ
155A トランジスタ
155B トランジスタ
156 トランジスタ
156A トランジスタ
156B トランジスタ
157 トランジスタ
157A トランジスタ
157B トランジスタ
158 トランジスタ
158A トランジスタ
158B トランジスタ
159 トランジスタ
160 トランジスタ
161 トランジスタ
162 トランジスタ
163 トランジスタ
164 トランジスタ
165 トランジスタ
166 トランジスタ
171 抵抗素子
172 抵抗素子
173 抵抗素子
174 抵抗素子
174A 抵抗素子
174B 抵抗素子
175 抵抗素子
175A 抵抗素子
175B 抵抗素子
176 抵抗素子
177 抵抗素子
178 抵抗素子
179 抵抗素子
180 抵抗素子
181 配線
182 配線
183 配線
184 配線
185 配線
186 配線
187 配線
188 配線
189 配線
190 配線
191 配線
199 抵抗素子
202 基板
204a 導電層
204b 導電層
204c 導電層
204d 導電層
204e 導電層
206 絶縁層
207a 開口部
207b 開口部
208 絶縁層
209 n型領域
210a 半導体層
210b 半導体層
210c 半導体層
210d 半導体層
211 酸化物積層
211a 酸化物半導体層
211b 酸化物層
212a 導電層
212b 導電層
212c 導電層
212d 導電層
212e 導電層
212f 導電層
212g 導電層
212h 導電層
212i 導電層
212j 導電層
212k 導電層
212m 導電層
214 絶縁層
216 絶縁層
218 絶縁層
219a 開口部
219b 開口部
219c 開口部
220a 導電層
220b 導電層
220c 導電層
220d 導電層
220e 導電層
220f 導電層
220g 導電層
220h 導電層
220i 導電層
220j 導電層
252 基板
254 有色層
256 絶縁層
258 導電層
260 液晶層
262 異方性導電剤
264 FPC
266 シール材
268 液晶素子
402 トランジスタ
404 トランジスタ
406 トランジスタ
408 トランジスタ
410 トランジスタ
412 トランジスタ
414 トランジスタ
416 トランジスタ
451 配線
452 配線
453 配線
454 配線
455 配線
456 配線
481 配線
482 配線
483 配線
484 配線
485 配線
486 配線
4500 タッチセンサ
4510 導電層
4510a 導電層
4510b 導電層
4510c 導電層
4520 導電層
4540 容量
4710 電極
4810 絶縁層
4820 絶縁層
4910 基板
4920 基板
5000 筐体
5001 表示部
5002 表示部
5003 スピーカ
5004 LEDランプ
5005 操作キー
5006 接続端子
5007 センサ
5008 マイクロフォン
5009 スイッチ
5010 赤外線ポート
5011 記録媒体読込部
5012 支持部
5013 イヤホン
5014 アンテナ
5015 シャッターボタン
5016 受像部
5017 充電器
5018 支持台
5019 外部接続ポート
5020 ポインティングデバイス
5021 リーダ/ライタ
5022 筐体
5023 表示部
5024 リモコン装置
5025 スピーカ
5026 表示モジュール
5027 ユニットバス
5028 表示モジュール
5029 車体
5030 天井
5031 表示モジュール
5032 ヒンジ部
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 表示パネル
8007 バックライトユニット
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリー
【手続補正書】
【提出日】2024-07-31
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
画素部と、
前記画素部の外側に配置された駆動回路部と、
前記画素部または前記駆動回路部のいずれか一方または双方に電気的に接続され、一対の電極を含む保護回路と、を有し、
前記画素部は、
マトリクス状に配置された画素電極と、
前記画素電極に電気的に接続された第1のトランジスタと、を有し、
前記第1のトランジスタは、
窒素とシリコンを含む第1の絶縁層と、酸素と窒素とシリコンを含む第2の絶縁層と、を有し、
前記保護回路は、第2のトランジスタを有し、
前記第2のトランジスタは、チャネル形成領域に酸化インジウムを有し、
前記保護回路において、前記第2の絶縁層は開口部を有し、前記一対の電極の一方が前記開口部を介して前記第1の絶縁層の上面に接し、前記一対の電極の間に前記第1の絶縁層を有する、表示装置。