(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024129238
(43)【公開日】2024-09-27
(54)【発明の名称】レーザ装置及びレーザ出力管理方法
(51)【国際特許分類】
G01J 1/02 20060101AFI20240919BHJP
H01S 5/022 20210101ALI20240919BHJP
G01J 1/58 20060101ALI20240919BHJP
G01J 1/42 20060101ALI20240919BHJP
B23K 26/00 20140101ALI20240919BHJP
【FI】
G01J1/02 K
H01S5/022
G01J1/58
G01J1/42 D
B23K26/00 N
【審査請求】有
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2023038315
(22)【出願日】2023-03-13
(11)【特許番号】
(45)【特許公報発行日】2024-03-25
(71)【出願人】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100106116
【弁理士】
【氏名又は名称】鎌田 健司
(74)【代理人】
【識別番号】100131495
【弁理士】
【氏名又は名称】前田 健児
(72)【発明者】
【氏名】海老原 賢
(72)【発明者】
【氏名】堂本 真也
【テーマコード(参考)】
2G065
4E168
5F173
【Fターム(参考)】
2G065AA04
2G065AB09
2G065AB20
2G065BA09
2G065BA11
2G065BA29
2G065BB14
2G065BB27
2G065CA25
2G065DA01
2G065DA05
4E168DA02
4E168DA03
4E168DA26
4E168DA28
4E168DA29
4E168EA05
4E168EA08
4E168EA17
4E168KA15
5F173MA08
5F173MC30
5F173MD65
5F173ME23
5F173MF13
5F173MF18
5F173MF28
5F173MF39
5F173MF40
(57)【要約】
【課題】迷光を検知しない出力モニタ機構を有するレーザ装置およびレーザ出力管理方法を提供する。
【解決手段】第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、レーザ光源から出射されたレーザ光の一部を被対象物へ照射する照射口と、レーザ光源より下流側で照射口より上流側の光路系に、レーザ光源から出射されるレーザ光の出力をモニタするモニタ機構と、を備える。さらに、モニタ機構は、レーザ光源から出射されるレーザ光の一部を第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、波長変換素子によって変換された第2波長域に含まれる光を受光し、電気信号を出力する第1の光検出器と、電気信号を用いてレーザ光源から出射されるレーザ光の出力をモニタする制御部を有する。
【選択図】
図4
【特許請求の範囲】
【請求項1】
第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、
前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、
前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備えるレーザ装置であって、
前記モニタ機構は、前記レーザ光源から出射される前記レーザ光の一部を前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、
前記波長変換素子によって変換された前記第2波長域に含まれる光を受光し、電気信号を出力する第1の光検出器と、
前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有するレーザ装置。
【請求項2】
請求項1のレーザ装置において、
前記モニタ機構は、前記第1の光検出器の受光面側に第2波長域の光を選択的に透過させる波長選択フィルタをさらに有するレーザ装置。
【請求項3】
請求項1に記載のレーザ装置において、
前記制御部は、前記電気信号に基づいてレーザ光源の電力を制御するレーザ装置。
【請求項4】
請求項1に記載のレーザ装置において、
前記制御部は、前記第1の光検出器の検出値と前記レーザ光源の出力を指令する出力指令値の関係が所定条件を満たさない場合は、警告の報知、または、レーザ発振の停止を実施するレーザ装置。
【請求項5】
請求項4に記載のレーザ装置において、
前記第1の光検出器の検出値と前記レーザ光源の出力を指令する出力指令値の関係は、前記第1の光検出器の検出値と前記出力指令値の差、または、前記出力指令値に対する前記第1の光検出器の検出値の割合によって算出されるレーザ装置。
【請求項6】
請求項1のレーザ装置において、
前記モニタ機構は、前記レーザ光源から出射され前記照射口へと伝達される前記レーザ光の一部を取り出す光取出しミラーと、
前記波長変換素子に入射した光のうち、変換され出射した前記第2波長域に含まれる光の進行方向と、当該素子で変換されずに透過した前記第1波長域に含まれる前記レーザ光の進行方向と、を分離する波長分離ミラーと、
前記波長分離ミラーで分離された前記第1波長域に含まれるレーザ光を受光し、電気信号を出力する第2の光検出器と、をさらに備え、
前記波長変換素子は、前記光取出しミラーで取り出した光の一部を前記第1波長域外である第2波長域に含まれる光に変換し、
前記制御部は、前記第1の光検出器と前記第2の光検出器の電気信号を用いて前記レーザ光の出力をモニタするレーザ装置。
【請求項7】
請求項6に記載のレーザ装置において、
前記制御部は、前記第1の光検出器及び前記第2の光検出器で受光した電気信号を、前記照射口から出射するレーザ光の出力値相当に換算する第1の換算係数及び第2の換算係数を算出するレーザ装置。
【請求項8】
請求項7に記載のレーザ装置において、
前記制御部は、前記第1の光検出器の検出値と前記第2の光検出器の検出値の関係が所
定条件を満たさない場合は、前記第2の光検出器の検出値を基にして前記第1の換算係数を補正し前記第1の光検出器に適用するレーザ装置。
【請求項9】
請求項8に記載のレーザ装置において、
前記第1の光検出器は前記第2の光検出器よりも応答速度が速いレーザ装置。
【請求項10】
請求項1ないし9のいずれか一項に記載のレーザ装置において、
前記制御部は、前記電気信号に基づいてレーザ光源の電流を調整するレーザ装置。
【請求項11】
前記レーザ光源を含むレーザ発振器と、
前記照射口を含む加工ヘッドと、を備えるレーザ装置であって、
前記モニタ機構を、前記レーザ発振器と前記加工ヘッドのそれぞれに一つずつ備えた請求項1ないし9のいずれか一項に記載のレーザ装置。
【請求項12】
第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、
前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、
前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備えるレーザ装置であって、
前記モニタ機構は、前記レーザ光源から出射される前記レーザ光の一部を前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、
前記波長変換素子によって変換された前記第2波長域に含まれる光を受光し、電気信号を出力する第1の光検出器と、
前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有するレーザ出力管理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、パワーモニタ機構を備えたレーザ装置及びレーザ出力管理方法に関する。
【背景技術】
【0002】
近年、金属加工用のレーザ光のビームプロファイルや出力をモニタする手法が種々提案されている。
【0003】
例えば、特許文献1では、ユーザがレーザ出力測定に関与する必要がなく、材料の加工中であってもレーザ出力をモニタ可能な手法を提案している。加えて、光検出器としてフォトダイオードではなくパワーメータを用いることで、ノイズの影響を受けにくいパワーモニタリング装置を開示している。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本開示は、より正確にレーザ出力をモニタできるレーザ装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記の目的を達成するために、本開示の一様態に係るレーザ装置は、第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備える。さらに、前記モニタ機構は、前記レーザ光源から出射される前記レーザ光の一部を前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、前記波長変換素子によって変換された前記第2波長域に含まれる光を受光し、電気信号を出力する第1の光検出器と、前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有する。
【発明の効果】
【0007】
本開示に係るレーザ装置によれば、より正確にレーザ出力をモニタできるレーザ装置を提供できる。
【図面の簡単な説明】
【0008】
【
図1】実施の形態に係るレーザ装置の外観図である。
【
図2】実施の形態に係るレーザモジュールの概念図である。
【
図3】実施の形態1に係るモニタ機構の概念図である。
【
図4】実施の形態2に係るモニタ機構の概念図である。
【
図5】レーザ発振時間と信号値及び出力値との関係図である。
【
図6】実施の形態3に係るレーザ装置の概念図である。
【
図7】実施の形態3に係る異常箇所の切り分け一覧図である。
【
図8】第1の光検出器を用いたレーザ光の出力モニタ手順を示した図である。
【
図9】第1の光検出器及び第2の光検出器を用いたレーザ光の出力モニタ手順を示した図である。
【
図10】第1の光検出器における換算係数のチェックモード手順を示した図である。
【
図11】第1の光検出器を用いたレーザ発振の電力制御手順を示した図である。
【発明を実施するための形態】
【0009】
以下、本開示に係るレーザ装置の実施の形態を、図面に基づき説明する。なお、下記に開示される実施の形態はすべて例示であって、本開示に係るレーザ装置に制限を加える意図はない。例えば、本開示に係るレーザ装置は、波長合成技術を用いたダイレクトダイオードレーザを用いるものを想定し説明するが、これに限るものではなくファイバレーザやディスクレーザ、空間合成技術を用いたダイレクトダイオードレーザ等を用いるものであってもよい。
【0010】
また、下記に開示される実施の形態では、必要以上の詳細な説明を省略する場合がある。例えば、既によく知られた事項についての詳細な説明や、実質的に同一の構成についての重複する説明を、省略する場合がある。これは、説明が不必要に冗長になるのを避けることで、当業者の理解を容易にするためである。
【0011】
[発明に至った経緯]
光検出器はその種類によって光に対する感度が異なる。例えば、パワーメータ(サーモパイル等に代表される熱電効果型の光検出器)等の低感度の光検出器は、レーザ装置内の様々な箇所で散乱及び反射してきた迷光の影響は受けにくい。しかし、そのような光検出器は、応答速度が遅く発振直後のオーバーシュートなどミリ秒単位の高速な電気信号を正確に出力することができない。一方、フォトダイオード等の高感度の光検出器は、サーモパイル等に比べて応答速度が速くミリ秒単位の高速な電気信号をも出力可能である。しかし、高感度な光検出器はレーザ装置内で散乱及び反射してきた迷光をも検知するため、電気信号を安定して出力することが困難となる。本開示に係るレーザ装置は、迷光とは異なる波長の光を用いてレーザ出力をモニタする。これにより、フォトダイオード等の高感度な光検出器を用いたとしても、迷光の影響を受けにくいモニタ機構を提供することが可能となる。
【0012】
[実施の形態1]
(全体構成)
図1は、実施の形態に係るレーザ装置の外観図である。
図2は、実施の形態に係るレーザモジュールの概念図である。
図1に示すように、レーザ装置1はレーザ発振器10、伝送ファイバ40、加工ヘッド20、モニタ機構30aを有する。レーザ発振器10は、例えば、波長合成技術を用いたダイレクトダイオードレーザであって、複数のレーザモジュール100とレーザ合成器200と集光ユニット300を有する。
【0013】
図2に示すように、レーザモジュール100は、複数のレーザ光源101、回折格子102、出力鏡103を有する。複数のレーザ光源101は、例えば半導体レーザアレイであり、異なる波長のレーザ光を出射する。本実施例において、複数のレーザ光源101が出射するレーザ光の波長域は、420nm~460nmの青色レーザ光であり、以降の説明において当該範囲を第1波長域λ
1と呼ぶ。しかし、第1波長域λ
1-は当該範囲に限定されず目的のレーザ加工によって適宜選択されうる。例えば、第1波長域λ
1として950~1000nmの近赤外光を用いる場合もある。
【0014】
回折格子102は、レーザ光源101から出射された第1波長域λ
1のレーザ光を1本のレーザ光LB
1として波長合成するように設けられている。また、出力鏡103は、回折格子102によって波長合成されたレーザ光LB
1を
図1に示すレーザ合成器200へ導光する一方、当該レーザ光LB
1の一部を反射してレーザ光源101との間で外部共振系を構築する。このようにして、レーザモジュール100内で波長合成された第1波長域
λ
1のレーザ光LB
1が複数のレーザモジュール100から出射する。
【0015】
図1に示すレーザ合成器200は、各レーザモジュール100からそれぞれ出射された第1波長域λ
1のレーザ光LB
1をさらに1本のレーザ光LB
1に結合して集光ユニット300に導光する。具体的には、各々のレーザモジュール100から出射したレーザ光LB
1の光軸を近接または一致させるとともに、互いの光軸が平行になるように結合する。集光ユニット300に入射したレーザ光LB
1は、伝送ファイバ40に向けて集光される。レーザ発振器10をこのような構成とすることで、レーザ出力が数kWを超える高出力のレーザ装置1を得ることができる。
【0016】
図1に示す加工ヘッド20は、照射口21を有する。伝送ファイバ40に入射し伝送されたレーザ光LB
1は、加工ヘッド20に入射したのち、照射口21から被対象物50に向けて照射される。
【0017】
図1に示すモニタ機構30aは、レーザ光源101から出射されたレーザ光LB
1の出力をモニタするように構成されている。モニタ機構30aは、レーザモジュール100内の回折格子102から出射する第1波長域λ
1のレーザ光LB
1の光路途上であって照射口21から出射するまでの間、言い換えると、回折格子102より下流側で照射口21より上流側の光路系に備えられている。つまり、モニタ機構30aは、レーザ発振器10を構成するレーザモジュール100、レーザ合成器200、集光ユニット300の内部に設けてもよいし、伝送ファイバ40の内部、加工ヘッド20の内部に設けても良い。例えば、モニタ機構30aをレーザモジュール100の内部に設けた場合、発振直後のレーザ光LB
1を測定するため、レーザモジュール自体の劣化等を検知することができる。一方、モニタ機構30aを加工ヘッド20の内部に設けた場合、加工に用いられるレーザ光LB
1の実出力を測定可能となる。ここで、光路系とは、レーザ装置1内をレーザ光LB
1が通過する経路及びその周辺の空間を含むものである。また、光路系の下流側とは照射口21により近い側を指し、光路系の上流側とはレーザ光源101により近い側を指す。以降で、モニタ機構の詳細について説明する。
【0018】
(モニタ機構)
図3は、実施の形態1に係るモニタ機構の概念図である。
図3に示すように、モニタ機構30aは、波長変換素子32、波長分離ミラー33、集光レンズ34、波長選択フィルタ35、第1の光検出器36、制御部38を有する。
【0019】
波長変換素子32は、例えば、蛍光体粒子を所定量含有する蛍光板であって、回折格子102で波長合成された第1波長域λ1のレーザ光LB1が入射するように構成されている。波長変換素子32に入射した第1波長域λ1のレーザ光LB1は、例えば、1%が前述した蛍光体粒子に吸収されて第2波長域λ2の光LB2に波長変換される。なお、波長変換素子32に入射したレーザ光LB1のうち、変換されない残りの光は第1波長域λ1のレーザ光LB1のまま出射される。第2波長域λ2の光LB2とは、第1波長域λ1外の波長域に含まれる波長の光である。第1波長域λ1と第2波長域λ2の関係は詳細を後述する。
【0020】
波長変換素子32から出射された第1波長域λ1のレーザ光LB1と第2波長域λ2の光LB2は波長分離ミラー33に入射する。波長分離ミラー33は、例えば、ダイクロイックミラーであって、波長分離ミラー33に入射した第2波長域λ2の光LB2を透過し、残りの波長域を反射することで、第1波長域λ1のレーザ光LB1と第2波長域λ2の光LB2の進行方向を分離する。なお、波長分離ミラー33は、第1波長域λ1のレーザ光LB1を透過し、残りの波長域の光を反射するように構成することも可能である。しかし、全体の約1%しか第2波長域λ2の光に変換されないことを考慮すれば、波長分離ミ
ラー33では第2の波長域λ2の光LB2を透過することが好ましい。
【0021】
波長分離ミラー33を透過した第2波長域λ2の光LB2は集光レンズ34によって集光される。集光レンズ34によって集光された光LB2は、波長選択フィルタ35を透過し、第1の光検出器36に到達する。なお、波長分離ミラー33で反射した第1波長域λ1のレーザ光LB1は照射口21方向に導光され被対象物50へ照射される。
【0022】
第1の光検出器36は、入射した光を電気信号に変換し、当該信号を制御部38に出力する。第1の光検出器36とは、例えば、フォトダイオードであって、ミリ秒単位で電気信号を出力可能な応答速度の速い光検出器である。
【0023】
波長選択フィルタ35とは、第2波長域λ2を含む波長域の光を選択的に透過する光学素子である。波長選択フィルタ35は、例えば、バンドパスフィルタ、ハイパスフィルタ、及びローパスフィルタ等が挙げられる。また、波長選択フィルタ35を用いずに、第1の光検出器36自体が第2波長域λ2を含む波長域の光に感度をもつように構成してもよい。なお、波長選択フィルタ35または第1の光検出器36は、第2波長域λ2の光を含む波長域に感度をもつように設計すればよいが、第1波長域λ1外の波長域を選択しなければならない。
【0024】
制御部38は、第1の光検出器36から出力された電気信号を使用してレーザ出力をモニタする。また、その結果に基づいてレーザ発振器10の電力を制御することも可能である。第1の光検出器36を用いたレーザ出力のモニタ手順及び電力制御手順については、モニタ手順の詳細説明にて後述する。
【0025】
ここで、第1波長域λ1と第2波長域λ2との関係を説明する。前述したように、第2波長域λ2の光LB2とは、第1波長域λ1外の波長域に含まれる波長の光のことをいう。ただし、迷光は第1波長域λ1に含まれる光がほとんどだが、反射によって波長が多少変化することもある。よって、第2波長域λ2は、第1波長域λ1とは所定の間隔だけ離れた範囲を選択することが好ましい。例えば、第1波長域λ1が420~460nmである本実施例においては、発光波長範囲が480nm~640nmであるフルオロセインを蛍光体粒子として選択することが好ましい。なお、第2波長域λ2の範囲は当該範囲に限定されず、蛍光板に含まれる蛍光体粒子の種類によって変更されうる。また、蛍光板だけでなく、アップコンバージョン素子や非線形光学素子を用いて波長範囲を選択することも可能である。例えば、第1波長域λ1が950~1000nmの場合、非線形光学素子を用いて第2波長域λ2を475~500nmとすることが可能である。
【0026】
一般的に、応答速度が速い光検出器は、光への感度が高いため、レーザ光よりも強度の低い迷光をも感知する。しかし、本開示に係る第1の光検出器36は、迷光とは異なる第2波長域λ2の光LB2を用いて測定を行う。よって、仮に第1波長域λ1のレーザ光LB1がレーザ装置1内で意図せず反射し、波長選択フィルタ35及び第1の光検出器36に迷光成分として到達したとしても、その影響を受けることなくレーザ出力をモニタ可能となる。これにより、光への感度が高い光検出器を用いても正確にモニタすることが可能となる。さらに、応答速度が速くかつ高精度のモニタ機構を採用することで、発振中にレーザ発振器10の電力を制御するような構成も実現できる。
【0027】
[実施の形態2]
第2波長域λ2の光LB2のみを用いたモニタ方法(実施の形態1)は、波長変換素子32自体の劣化等で当該素子の変換効率が変化したときに、正確なレーザ出力のモニタができなくなる恐れがある。そこで、実施の形態2に係る発明では、第2波長域λ2の光に加え第1波長域λ1の光もモニタすることで、波長変換素子32自体の劣化等による第1
の光検出器36の検出値の変化を検知可能なモニタ機構を提案する。以下で開示する実施例の説明は、実施の形態1とは異なる構成のみ記載する。
【0028】
図4は、実施の形態2に係るモニタ機構の概念図である。
図4に示すモニタ機構30bは、
図3で示すモニタ機構30aの構成要素に、さらに光取出しミラー31及び第2の光検出器37を加えたモニタ機構である。また、モニタ機構30bの設置場所は、実施の形態1の全体構成で説明したモニタ機構30aと同様である。
【0029】
実施の形態2に係るモニタ機構30bは、回折格子102で波長合成された第1波長域λ1のレーザ光LB1が光取出しミラー31に入射するよう構成されている。光取出しミラー31は、光取出しミラー31に入射した第1波長域λ1のレーザ光LB1を反射して照射口21へ導光する一方、0.1%を透過して第1波長域λ1の部分光LB3として取り出す。このとき、加工に用いるレーザ光LB1を透過し、部分光LB3を反射するように構成することも可能である。また、光取出しミラー31は、光取出しミラー31に入射した第1波長域λ1のレーザ光LB1の一部を透過すればよいが、キロワットクラスの大出力レーザを使用する場合は0.1%以下の光を透過させることが好ましい。
【0030】
光取出しミラー31で取り出された第1波長域λ1の部分光LB3は波長変換素子32に入射する。波長変換素子32は、波長変換素子32に入射した第1波長域λ1の部分光LB3の一部、例えば1%、を第2波長域λ2の光LB2に変換し出射する。さらに、波長変換素子32に入射した部分光LB3のうち、変換されないものは第1波長域λ1の部分光LB3のまま透過する。
【0031】
波長変換素子32から出射された第1波長域λ1の部分光LB3と第2波長域λ2の光LB2は波長分離ミラー33に入射する。波長分離ミラー33は、第2波長域λ2の光LB2を透過し、残りの波長域の光を反射することで第1波長域λ1の部分光LB3と第2波長域λ2の光LB2の進行方向を分離する。
【0032】
波長分離ミラー33で反射した第1波長域λ1の部分光LB3は、第2の光検出器37に入射する。第2の光検出器37は、入射した光を電気信号に変換し、当該信号を制御部38に出力する。第2の光検出器37は、例えば熱電効果型のサーモパイルであって、ワットクラスの光を検出可能な光検出器である。なお、波長分離ミラー33を透過した第2波長域λ2の光LB2は、モニタ機構30aと同様に第1の光検出器36に到達し、電気信号に変換される。
【0033】
ここで、第2の光検出器37は、第1の光検出器36とは異なり迷光と波長成分が同様である第1波長域λ1の光を使用してレーザ出力をモニタする。しかし、第2の光検出器37は、ワットクラスの光を検出する光検出器であるため、当該光より弱い光である迷光の影響を受けにくい構成とすることができる。このように、第1波長域λ1の部分光LB3をモニタ用の光として取り出すことで、第2波長域λ2の光に加え、第1波長域λ1の光をも用いてレーザ出力モニタが可能となる。
【0034】
しかしながら、一般的に測定可能なワット数に応じて熱時定数が大きくなることが知られているため、ワットクラスの光を検出可能な第2の光検出器37は電気信号を安定して出力できるようになるまで一定時間を要する。したがって、第2の光検出器37の検出結果は、第1の光検出器36の校正に用いられることが好ましい。第1の光検出器36の校正については詳細を後述する。
【0035】
制御部38は、第1の光検出器36及び第2の光検出器37から出力された電気信号を用いてレーザ出力をモニタする。また、第2の光検出器37の検出値を基に、第1の光検
出器36の校正も行うことも可能である。なお、実施の形態2におけるレーザ出力のモニタ手順及び校正手順は、モニタ手順の詳細説明にて後述する。さらに、オペレータによって設定される出力指令値と第1の光検出器の結果を比較しレーザ発振器10の電力を調整することも可能である。電力調整手順についてもモニタ手順の詳細説明にて後述する。
【0036】
実施形態1及び実施形態2では、波長分離ミラー33及び光取出しミラー31は、加工に用いるレーザ光LB
1を反射してもよいし、透過してもよいと説明した。しかし、熱レンズ効果の影響が少ない等の理由から、
図3及び
図4に示すように、当該素子は、加工に用いるレーザ光LB
1を反射させる構成が好ましい。
【0037】
(第1の光検出器の校正)
図5は、レーザ発振時間と信号値及び出力値との関係を示したものある。
図5の上段は、左側がレーザ発振時間と出力指令値Y
cとの関係を示したものであり、右側がレーザ発振時間と実際に照射口21から出射されるレーザ出力値Yの関係を示したものである。出力指令値Y
cとは、オペレータによって設定される任意のレーザ出力値のことをいう。
【0038】
図5の中段は、左側がレーザ発振時間と第1の光検出器36が検出した電気信号との関係を示したものであり、右側がレーザ発振時間と第1の光検出器36における換算出力の関係を示したものである。
図5の中段に示すように、第1の光検出器36は、ミリ秒単位で電気信号を出力可能であるため、発振直後の信号も実際に照射口21から出射されるレーザ出力値Yと同じ波形で検出可能である。
【0039】
図5の下段は、左側がレーザ発振時間と第2の光検出器37が検出した電気信号との関係を示し、右側がレーザ発振時間と第2の光検出器37における換算出力の関係を示したものである。
図5の下段に示すように、熱電効果型の光検出器である第2の光検出器37は、第1の光検出器36に比べて応答速度が遅く電気信号を安定して出力できるまで一定時間を要する。
【0040】
換算出力とは、第1の光検出器36及び第2の光検出器37の受光面で出力された電気信号を実際に照射口21から出射されるレーザ出力値Yに近い値に換算したものである。第1の光検出器36及び第2の光検出器37は、時間に伴う信号値を記録することで信号波形を検出している。しかし、第1の光検出器36で出力した電気信号は実際のレーザ出力値Yとは異なる。よって、制御部38は、第1の換算係数α(W/V)を用いて、受光面で検出した電気信号を実際のレーザ出力値Yと同様の換算出力に変換しレーザ出力のモニタを行う。第2の光検出器37は、換算係数として、第2の換算係数β(W/V)を用いる。光検出器から出力される電気信号と実際のレーザ出力との相関関係が線形かつ原点を通る場合は、第1の光検出器36及び第2の光検出器37にそれぞれ1つの係数で換算が可能であるが、相関関係次第で2つ以上の係数を用いた近似式で換算を行う場合もある。換算係数によって、実レーザ相当の出力波形を算出することで、出力比較が容易となる。
【0041】
以降の説明では、第1の光検出器36及び第2の光検出器37における換算出力を第1の検出値Y1及び第2の検出値Y2と呼ぶ。
【0042】
前述したように、第1の光検出器36は、波長変換素子32自体の劣化等の影響を受けやすい。一方、第2の光検出器37は、第1の波長域λ1を用いてレーザ出力をモニタするため、波長変換素子32自体の劣化等の影響を受けない。よって、制御部38は、第2の光検出器37が出力する電気信号が安定した後、第1の検出値Y1と第2の検出値Y2の関係を比較する。そして、2つの検出値の関係が所定範囲外(校正閾値外)であること
を検知した場合、第2の検出値Y2を基に、第1の検出値Y1を校正する。例えば、(下限閾値)<Y1/Y2<(上限閾値)として、第1の検出値Y1と第2の検出値Y2の割合が所定の範囲内か否かを判断する。当該割合が設定範囲外となった場合、Y1/Y2=1に近づくように第1の換算係数αを再算出し、第1の光検出器36に適用する。このような構成とすることで、継続的に高精度なレーザ出力モニタが可能となる。なお、校正閾値は任意に設定可能である。また、上記では第1の検出値Y1と第2の検出値Y2の割合を用いた判断方法を示したが、当該判断方法に限定しない。例えば、第1の検出値Y1と第2の検出値Y2の差を用いて校正閾値内か否かを判断してもよい。
【0043】
また、一定期間、例えば1秒、の照射が行われないレーザ加工を行う場合、使用者に意図的に1秒以上の照射を行ってもらうことで、第1の検出値の校正をかけることができる(チェックモード手順)。チェックモード手順についてはモニタ手順の詳細説明にて後述する。
【0044】
なお、第1の光検出器36の校正において、第2の検出値Y2は信頼できる値として用いられ校正対象ではない。しかし、定期的に、照射口21から出射されるレーザ光LB1をパワーモニタ等の測定器で実測し、当該実測値と比較して第2の換算係数βに校正をかけてもよい。
【0045】
[実施の形態3]
実施の形態3に係る発明では、異常箇所の切り分けが可能なモニタ機構を提案する。以下で開示する実施例の説明は、実施の形態1及び実施の形態2とは異なる構成のみ記載する。
【0046】
図6は、実施の形態3に係るレーザ装置の概念図である。
図7は、実施の形態3に係る異常箇所の切り分け一覧である。実施の形態3に係るレーザ装置1は、レーザ発振器10と加工ヘッド20に一つずつモニタ機構30を有する。モニタ機構30は、モニタ機構30aまたはモニタ機構30bと同様のものである。
【0047】
モニタ機構30をレーザ装置1内に複数設けることで、エラーを示したモニタ機構30の設置場所によって、異常箇所の切り分けが可能である。例えば、レーザ発振器10内のモニタ機構30が出力指令値相当を示し、加工ヘッド20内のモニタ機構30がレーザ光LB1の出力低下を示した場合、レーザ発振器10と加工ヘッド20の間に設けられた伝送ファイバ40前後で異常が発生したと考えられる。一方、レーザ発振器10内及び加工ヘッド内のモニタ機構30が共にレーザ光LB1の出力低下を示した場合、レーザ発振器10内部の異常、もしくはレーザ光源101自体の劣化が考えられる。
【0048】
制御部38は、実施形態1または2の制御部38の構成に加え、異常箇所判定も行う。異常箇所を切り分けることで、メンテナンスの負担を低減することができる。
図6では、モニタ機構30を二つ備えたレーザ装置1を示しているが、モニタ機構30をレーザ装置1内に三つ以上備え異常箇所の判定精度を向上させてもよい。光路系のどこにいくつ設けるかは、費用対効果によって選択される。
【0049】
[変形例]
以上、本開示の構成を、実施形態に基づいて説明したが、本開示は上記実施の形態に限られない。また、上記実施の形態に記載した材料、数値などは好適なものを例示しているだけであり、それに限定されることはない。さらに、本開示の技術的思想の範囲を逸脱しない範囲で、レーザ装置の構成に適宜変更を加えることは可能である。
【0050】
例えば、ディスクレーザ等の波長合成を必要としないレーザ装置の場合、モニタ機構3
0は、レーザ発振器10より下流側で照射口21より上流側の光路系に備えられている。つまり、モニタ機構30の最上流側の光学素子は、レーザ発振器10から出射された第1波長域λ1のレーザ光LB1が当該素子に入射するように構成されている。
【0051】
例えば、上記に記載した実施の形態では加工ヘッド20を備えたレーザ装置1を開示しているが、レーザ装置1は必ずしも加工ヘッド20を備える必要はない。
【0052】
[モニタ手順の詳細説明]
以下で、本開示に係る実施形態のモニタ手順を具体的に説明する。通知の必要が生じた際の報知方法は、図示しない表示部に表示するか、または、図示しない音声出力部から音声が出力されて、作業者に知らせるようにする。また、以下に示す手順は、制御部38が入力された値等に基づいて種々の判断を行う。なお、以下の説明において、図や説明で示す数値は、任意に変更可能である。
【0053】
(第1の光検出器を用いたモニタ手順)
図8は、第1の光検出器を用いたレーザ光の出力モニタ手順を示す。
【0054】
まず、レーザ発振器を運転して、レーザ発振を開始する(ステップS1)。次に、第1の光検出器36で検出された第1の検出値Y1が出力指令値Ycの10%以下か否かを判断する(ステップS2)。第1の検出値Y1が出力指令値Ycの10%よりも大きい場合にはレーザの出力過剰を作業者に知らせ(ステップS6)、レーザ発振を終了する(ステップS7)。ステップS6に進む場合は、発振直後のオーバーシュート等が想定される。
【0055】
第1の検出値Y1が出力指令値Ycの10%以下である場合、第1の検出値Y1が出力指令値Ycの-5%以上か否かを判断する(ステップS3)。第1の検出値Y1が出力指令値Ycの-5%よりも大きい場合、レーザ出力の低下を作業者に知らせ(ステップS8)、レーザ発振を終了する(ステップS9)。ステップS8に進む場合は、レーザ光源101または波長変換素子32の劣化等が想定される。
【0056】
第1の検出値Y1が出力指令値Ycの-5%以上である場合、レーザ発振終了の指令がなされているかを判断する(ステップS4)。レーザ発振終了の指令がなされていない場合、ステップS2に進みサイクルを継続させる。なお、レーザ発振終了の指令がなされている場合、レーザ発振を終了する(ステップS5)。
【0057】
(2つの光検出器を用いたレーザ光の出力モニタ手順)
第1の光検出器及び第2の光検出器を用いたレーザ光LB1の出力モニタ手順の詳細を説明する。
【0058】
図9は、第1の光検出器及び第2の光検出器を用いたレーザ光の出力モニタ手順を示す。まず、レーザ発振器を運転して、レーザ発振を開始し(ステップS20)、第1の検出値Y
1と出力指令値Y
cの関係が閾値以内かを判断する(
図8に示すステップS10)。ステップS10において、第1の検出値Y
1と出力指令値Y
cの関係が校正閾値以内、具体的には、ステップS3の判断結果が肯定的であれば、レーザ発振終了の指令がなされているかを判断する(ステップS21)。レーザ発振終了の指令がなされていない場合、出力指令値Y
cが1秒以上継続しているか否かを判断する(ステップS22)。なお、レーザ発振終了の指令がなされている場合、レーザ発振を終了する(ステップS23)。出力指令値Y
cが1秒以上継続していなければ、再びステップS10内のステップS2に進みサイクルを継続させる。
【0059】
出力指令値Y
cが1秒以上継続している場合、第1の検出値Y
1と第2の検出値Y
2を
同時に取得し(ステップS24)、第1の検出値Y
1と第2の検出値Y
2の関係が校正閾値以内か否かを判断する(ステップS25)。第1の検出値Y
1と第2の検出値Y
2の関係が校正閾値外である場合、検出値異常を作業者に知らせる(ステップS28)。ステップS28で警告を知らせた後、第2の検出値Y
2を参照して第1の換算係数αの書き換えを行い(ステップS29)、ステップS24に進む。なお、第1の検出値Y
1と第2の検出値Y
2の関係が校正閾値以内である場合、第1の検出値Y
1と出力指令値Y
cの関係が閾値以内か否かを判断するステップ(ステップS10)、具体的には
図8に示すステップS2に進む。
図9に示すステップS26及びステップS27は、
図8に示すステップS4及びステップS5と同様であるので説明を省略する。
【0060】
(第1の光検出器36のチェックモード手順)
図10は、第1の光検出器36のチェックモード手順を示す。チェックモード手順をレーザ加工前に行うことで、出力指令信号が1秒以下であるレーザ加工、例えば、1秒以下で単発的にレーザ加工を繰り返すレーザ加工を行う場合においても、第1の光検出器36の校正をおこなうことが可能となる。
【0061】
まず、レーザ発振器を運転して(ステップS40)、出力指令値Y
cが1秒以上継続しているか否かを判断する(ステップS41)。出力指令値Y
cが1秒以下であれば、判断結果が肯定的になるまでステップS41のサイクルを継続させる。出力指令値Y
cが1秒以上継続した場合、ステップS42に進む。
図10のステップS42、S43及びステップS46、S47は
図9のステップS24、S25及びステップS28、S29と同様であるので説明を省略する。なお、第1の検出値Y
1と第2の検出値Y
2の関係が校正閾値以内である場合、レーザ発振を終了して(ステップS44)、作業者に第1の検出値が正常であることを知らせる(ステップS45)。第1の検出値Y
1と第2の検出値Y
2の関係が校正閾値外である場合、第1の換算係数αを書き換えた後(ステップS47)、レーザ発振を終了させ(ステップS48)、作業者に第1の検出値の校正が完了したことを知らせる(ステップS49)。
【0062】
(実施の形態に係るレーザ発振の電力制御手順)
図11は、実施の形態に係るレーザ発振の電力制御手順である。まず、レーザ発振器を運転して、レーザ発振を開始し(ステップS50)、第1の検出値Y
1と出力指令値の関係が閾値以内かを判断する(ステップS51)。ステップS2及びステップS3と同様である。また、第1の光検出器36及び第2の光検出器37を共に用いた実施形態においても同様である。ステップS51において、第1の検出値Y
1と出力指令値の関係が閾値外で合った場合、電力の調整を行い再びステップS51に進む。なお、ステップS52及びS53は、ステップS4及S5と同様であるため説明を省略する。
【産業上の利用可能性】
【0063】
本開示は、より正確にレーザ出力をモニタできるモニタ機構を備えたレーザ加工装置として有用である。
【符号の説明】
【0064】
1 レーザ装置
10 レーザ発振器
20 加工ヘッド
21 照射口
30、30a、30b モニタ機構
31 光取出しミラー
32 波長変換素子
33 波長分離ミラー
34 集光レンズ
35 波長選択フィルタ
36 第1の光検出器
37 第2の光検出器
38 制御部
40 伝送ファイバ
50 被対象物
100 レーザモジュール
101 レーザ光源
102 回折格子
103 出力鏡
200 レーザ合成器
300 集光ユニット
LB1 レーザ光
LB2 光
LB3 部分光
Y レーザ出力値
Yc 出力指令値
Y1 第1の検出値
Y2 第2の検出値
α 第1の換算係数
β 第2の換算係数
λ1 第1波長域
λ2 第2波長域
【手続補正書】
【提出日】2023-08-25
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、
前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、
前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備えるレーザ装置であって、
前記モニタ機構は、前記レーザ光源から出射される前記レーザ光の一部を当該レーザ光の強度に応じて前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、
前記波長変換素子によって変換された前記第2波長域に含まれる光を受光し、電気信号を出力する第1の光検出器と、
前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有するレーザ装置。
【請求項2】
請求項1のレーザ装置において、
前記モニタ機構は、前記第1の光検出器の受光面側に第2波長域の光を選択的に透過させる波長選択フィルタをさらに有するレーザ装置。
【請求項3】
請求項1に記載のレーザ装置において、
前記制御部は、前記電気信号に基づいてレーザ光源の電力を制御するレーザ装置。
【請求項4】
請求項1に記載のレーザ装置において、
前記制御部は、前記第1の光検出器の検出値と前記レーザ光源の出力を指令する出力指令値の関係が所定条件を満たさない場合は、警告の報知、または、レーザ発振の停止を実施するレーザ装置。
【請求項5】
請求項4に記載のレーザ装置において、
前記第1の光検出器の検出値と前記レーザ光源の出力を指令する出力指令値の関係は、前記第1の光検出器の検出値と前記出力指令値の差、または、前記出力指令値に対する前記第1の光検出器の検出値の割合によって算出されるレーザ装置。
【請求項6】
請求項1のレーザ装置において、
前記モニタ機構は、前記レーザ光源から出射され前記照射口へと伝達される前記レーザ光の一部を取り出す光取出しミラーと、
前記波長変換素子に入射した光のうち、変換され出射した前記第2波長域に含まれる光の進行方向と、当該波長変換素子で変換されずに透過した前記第1波長域に含まれる前記レーザ光の進行方向と、を分離する波長分離ミラーと、
前記波長分離ミラーで分離された前記第1波長域に含まれるレーザ光を受光し、電気信号を出力する第2の光検出器と、をさらに備え、
前記波長変換素子は、前記光取出しミラーで取り出した光の一部を前記第1波長域外である第2波長域に含まれる光に変換し、
前記制御部は、前記第1の光検出器と前記第2の光検出器の電気信号を用いて前記レーザ光の出力をモニタするレーザ装置。
【請求項7】
請求項6に記載のレーザ装置において、
前記制御部は、前記第1の光検出器及び前記第2の光検出器で受光した電気信号を、前記照射口から出射するレーザ光の出力値相当に換算する第1の換算係数及び第2の換算係数を算出するレーザ装置。
【請求項8】
請求項7に記載のレーザ装置において、
前記制御部は、前記第1の光検出器の検出値と前記第2の光検出器の検出値の関係が所定条件を満たさない場合は、前記第2の光検出器の検出値を基にして前記第1の換算係数を補正し前記第1の光検出器に適用するレーザ装置。
【請求項9】
請求項8に記載のレーザ装置において、
前記第1の光検出器は前記第2の光検出器よりも応答速度が速いレーザ装置。
【請求項10】
請求項1ないし9のいずれか一項に記載のレーザ装置において、
前記制御部は、前記電気信号に基づいてレーザ光源の電流を調整するレーザ装置。
【請求項11】
前記レーザ光源を含むレーザ発振器と、
前記照射口を含む加工ヘッドと、を備えるレーザ装置であって、
前記モニタ機構を、前記レーザ発振器と前記加工ヘッドのそれぞれに一つずつ備えた請求項1ないし9のいずれか一項に記載のレーザ装置。
【請求項12】
第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、
前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、
前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備えるレーザ装置であって、
前記モニタ機構は、前記レーザ光源から出射される前記レーザ光の一部を前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、
前記波長変換素子によって変換された前記第2波長域に含まれる光を受光し、電気信号を出力する第1の光検出器と、
前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有するレーザ出力管理方法。
【手続補正書】
【提出日】2023-12-19
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、
前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、
前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備えるレーザ装置であって、
前記モニタ機構は、前記レーザ光源から出射される前記レーザ光の一部を当該レーザ光の強度に応じて前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、
前記波長変換素子に入射した光のうち、変換され出射した前記第2波長域に含まれる光の進行方向と、当該波長変換素子で変換されずに透過した前記第1波長域に含まれる前記レーザ光の進行方向と、を分離する波長分離ミラーと、
前記波長分離ミラーで分離された前記第2波長域に含まれる光を受光し、電気信号を出力する第1の光検出器と、
前記波長分離ミラーで分離された前記第1波長域に含まれるレーザ光を受光し、電気信号を出力する第2の光検出器と、をさらに備え、
前記第1の光検出器の前記電気信号と前記第2の光検出器の前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有するレーザ装置。
【請求項2】
請求項1のレーザ装置において、
前記モニタ機構は、前記第1の光検出器の受光面側に第2波長域の光を選択的に透過させる波長選択フィルタをさらに有するレーザ装置。
【請求項3】
請求項1に記載のレーザ装置において、
前記制御部は、前記電気信号に基づいてレーザ光源の電力を制御するレーザ装置。
【請求項4】
請求項1に記載のレーザ装置において、
前記制御部は、前記第1の光検出器の検出値と前記レーザ光源の出力を指令する出力指令値の関係が所定条件を満たさない場合は、警告の報知、または、レーザ発振の停止を実施するレーザ装置。
【請求項5】
請求項4に記載のレーザ装置において、
前記第1の光検出器の検出値と前記レーザ光源の出力を指令する出力指令値の関係は、前記第1の光検出器の検出値と前記出力指令値の差、または、前記出力指令値に対する前記第1の光検出器の検出値の割合によって算出されるレーザ装置。
【請求項6】
請求項1のレーザ装置において、
前記モニタ機構は、前記レーザ光源から出射され前記照射口へと伝達される前記レーザ光の一部を取り出す光取出しミラーをさらに備え、
前記波長変換素子は、前記光取出しミラーで取り出した光の一部を前記第1波長域外である第2波長域に含まれる光に変換するレーザ装置。
【請求項7】
請求項1に記載のレーザ装置において、
前記制御部は、前記第1の光検出器及び前記第2の光検出器で受光した電気信号を、前記照射口から出射するレーザ光の出力値相当に換算する第1の換算係数及び第2の換算係数を算出するレーザ装置。
【請求項8】
請求項7に記載のレーザ装置において、
前記制御部は、前記第1の光検出器の検出値と前記第2の光検出器の検出値の関係が所定条件を満たさない場合は、前記第2の光検出器の検出値を基にして前記第1の換算係数を補正し前記第1の光検出器に適用するレーザ装置。
【請求項9】
請求項1に記載のレーザ装置において、
前記第1の光検出器は前記第2の光検出器よりも応答速度が速いレーザ装置。
【請求項10】
請求項1ないし9のいずれか一項に記載のレーザ装置において、
前記制御部は、前記電気信号に基づいてレーザ光源の電流を調整するレーザ装置。
【請求項11】
前記レーザ光源を含むレーザ発振器と、
前記照射口を含む加工ヘッドと、を備えるレーザ装置であって、
前記モニタ機構を、前記レーザ発振器と前記加工ヘッドのそれぞれに一つずつ備えた請求項1ないし9のいずれか一項に記載のレーザ装置。
【請求項12】
第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、
前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、
前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備えるレーザ出力管理方法であって、
前記モニタ機構は、
前記レーザ光源から出射される前記レーザ光の一部を当該レーザ光の強度に応じて前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、
前記波長変換素子に入射した光のうち、変換され出射した前記第2波長域に含まれる光の進行方向と、当該波長変換素子で変換されずに透過した前記第1波長域に含まれる前記レーザ光の進行方向と、を分離する波長分離ミラーと、
前記波長分離ミラーで分離された前記第2波長域に含まれる光を受光し、電気信号を出力する第1の光検出器と、
前記波長分離ミラーで分離された前記第1波長域に含まれるレーザ光を受光し、電気信号を出力する第2の光検出器と、
前記第1の光検出器の前記電気信号と前記第2の光検出器の前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有するレーザ出力管理方法。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正の内容】
【0006】
本開示の一様態に係るレーザ装置は、第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備える。さらに、前記モニタ機構は、前記レーザ光源から出射される前記レーザ光の一部を前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、前記波長変換素子に入射した光のうち、変換され出射した前記第2波長域に含まれる光の進行方向と、当該波長変換素子で変換されずに透過した前記第1波長域に含まれる前記レーザ光の進行方向と、を分離する波長分離ミラーと、前記波長分離ミラーで分離された前記第2波長域に含まれる光を受光し、電信号を出力する第1の光検出器と、前記波長分離ミラーで分離された前記第1波長域に含まれるレーザ光を受光し、電気信号を出力する第2の光検出器と、前記第1の光検出器の前記電気信号と前記第2の光検出器の前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有する。
また、本開示の一様態に係るレーザ出力管理方法は、第1波長域に含まれる波長のレーザ光を出射するレーザ光源と、前記レーザ光源から出射された前記レーザ光の一部を被対象物へ照射する照射口と、前記レーザ光源より下流側で前記照射口より上流側の光路系に、前記レーザ光源から出射される前記レーザ光の出力をモニタするモニタ機構と、を備える。さらに、前記モニタ機構は、前記レーザ光源から出射される前記レーザ光の一部を前記第1波長域外である第2波長域に含まれる波長の光に変換する波長変換素子と、前記波長変換素子に入射した光のうち、変換され出射した前記第2波長域に含まれる光の進行方向と、当該波長変換素子で変換されずに透過した前記第1波長域に含まれる前記レーザ光の進行方向と、を分離する波長分離ミラーと、前記波長分離ミラーで分離された前記第2波長域に含まれる光を受光し、電信号を出力する第1の光検出器と、前記波長分離ミラーで分離された前記第1波長域に含まれるレーザ光を受光し、電気信号を出力する第2の光検出器と、前記第1の光検出器の前記電気信号と前記第2の光検出器の前記電気信号を用いて前記レーザ光源から出射される前記レーザ光の出力をモニタする制御部と、を有する。