(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024133670
(43)【公開日】2024-10-02
(54)【発明の名称】高温用のコイル変換器
(51)【国際特許分類】
H01F 38/20 20060101AFI20240925BHJP
G01F 1/84 20060101ALI20240925BHJP
G01F 1/00 20220101ALI20240925BHJP
H01F 41/04 20060101ALI20240925BHJP
【FI】
H01F38/20
G01F1/84
G01F1/00 G
H01F41/04 A
【審査請求】有
【請求項の数】22
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024109966
(22)【出願日】2024-07-09
(62)【分割の表示】P 2022159323の分割
【原出願日】2018-05-15
(71)【出願人】
【識別番号】500205770
【氏名又は名称】マイクロ モーション インコーポレイテッド
(74)【代理人】
【識別番号】110000556
【氏名又は名称】弁理士法人有古特許事務所
(72)【発明者】
【氏名】ルピエンスキー, マーク
(72)【発明者】
【氏名】ガーネット, ロバート バークレイ
(57)【要約】 (修正有)
【課題】高温用のコイル変換器を提供する。
【解決手段】コイル変換器200は、導電性ワイヤからなるコイル212を含むコイル部分210と、導電性ワイヤに近接して配置されたボビン214を含む電気絶縁体と、を備える。コイル212は、350℃よりも大きい温度範囲にて再現性がある電気的特性を有する。導電性ワイヤ及び電気絶縁体が、350℃よりも大きい温度範囲にて互いに熱膨張が適合すること、電気絶縁体が、350℃よりも大きい温度範囲にて実質的に非導電性であること及び導電性ワイヤが、350℃よりも大きい温度範囲にて実質的に再現性がある導電性を有すること、のうちの少なくとも1つを有する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
高温用のコイル変換器(200)であって、
導電性ワイヤ(212a)からなるコイル(212)を含むコイル部分(210)と、
導電性ワイヤ(212a)に近接して配置された電気絶縁体とを備え、
コイル(212)は、350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成される、コイル変換器(200)。
【請求項2】
350℃よりも大きい前記温度範囲にて再現性がある電気的特性を有するように構成される前記コイル(212)は、
導電性ワイヤ(212a)及び電気絶縁体は、前記温度範囲にて互いに熱膨張が適合する
こと、
電気絶縁体は前記温度範囲にて実質的に非導電性であること、及び
導電性ワイヤ(212a)は、前記温度範囲にて実質的に再現性がある導電性を有するこ
と、の少なくとも1つを有する、請求項1に記載のコイル変換器(200)。
【請求項3】
互いに熱膨張が適合した前記導電性ワイヤ(212a)及び前記電気絶縁体は、実質的に
等しい熱膨張係数を有する、請求項2に記載のコイル変換器(200)。
【請求項4】
前記温度範囲にて実質的に再現性がある導電性を有する導電性ワイヤ(212a)は、前記温度範囲の少なくとも一部を含む複数の温度サイクルにわたって実質的に再現性がある導電性を有する、請求項2に記載のコイル変換器(200)。
【請求項5】
前記複数の温度サイクルの夫々は、前記温度範囲を含む、請求項4に記載のコイル変換器(200)。
【請求項6】
前記電気絶縁体は、前記導電性ワイヤ(212a)上にセラミック被覆(212b)を有する、請求項1乃至5の何れかに記載のコイル変換器(200)。
【請求項7】
前記電気絶縁体はボビン(214)を備え、前記コイル(212)は前記ボビン(214)の周囲に配置される、請求項1乃至6の何れかに記載のコイル変換器(200)。
【請求項8】
前記導電性ワイヤ(212a)と、前記ボビン(214)及び前記セラミック被覆(212b)の少なくとも一方は、互いに熱膨張が適合している、請求項7に記載のコイル変換器(200)。
【請求項9】
前記導電性ワイヤ(212a)が磁性材料を含む、請求項1乃至8の何れかに記載のコイ
ル変換器(200)。
【請求項10】
前記導電性ワイヤ(212a)が、ニッケル、ニッケル合金、白金ロジウム合金、白金イ
リジウム合金、およびニオビウムタンタルタングステン合金のうちの1つを含む材料からなる、請求項1乃至9の何れかに記載のコイル変換器(200)。
【請求項11】
前記温度範囲は、350℃から500℃、350℃から427℃、410℃から500℃、410℃から427℃の何れかである、請求項1乃至10の何れかに記載のコイル変換器(200)。
【請求項12】
マグネット部分(220)をさらに含み、マグネット部分(220)は、コイル部分(21
0)に対して空間的に変位するように構成される、請求項1乃至11の何れかに記載のコ
イル変換器(200)。
【請求項13】
高温用のコイル変換器を形成する方法であって、
導電性ワイヤからなるコイルを含むコイル部分を形成する工程と、
導電性ワイヤに近接して電気絶縁体を配置する工程と、
コイルを、350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成する工程を備える、方法。
【請求項14】
350℃を超える温度範囲にて再現性がある電気的特性を有するようにコイルを構成する工程が、
前記温度範囲にて互いに熱膨張が適合するように導電性ワイヤ及び電気絶縁体を構成する工程、
電気絶縁体が、温度範囲にて実質的に非導電性であるように構成する工程、
前記温度範囲にて実質的に再現性がある導電性を有するように導電性ワイヤを構成する工程の、
少なくとも1つを含む、請求項13に記載の方法。
【請求項15】
互いに熱膨張が適合するように導電性ワイヤ及び電気絶縁体を構成する工程は、実質的に等しい熱膨張係数を有するように前記導電性ワイヤ及び前記電気絶縁体を構成する工程を含む、請求項14に記載の方法。
【請求項16】
前記温度範囲にて実質的に再現性がある導電性を有するように前記導電性ワイヤを構成する工程は、前記温度範囲の少なくとも一部を含む複数の温度サイクルにわたって実質的に再現性がある導電性を有するように前記導電性ワイヤを構成する工程を含む、請求項14に記載の方法。
【請求項17】
前記複数の温度サイクルの各々が、前記温度範囲を含む、請求項16に記載の方法。
【請求項18】
前記導電性ワイヤに近接して前記電気絶縁体を配置する工程は、前記導電性ワイヤ上にセラミック被覆を配置する工程を含む、請求項13乃至17の何れかに記載の方法。
【請求項19】
前記導電性ワイヤに近接して前記電気絶縁体を配置する工程は、ボビンを形成する工程と、前記ボビンの周囲に前記コイルを配置する工程とを含む、請求項13乃至18の何れかに記載の方法。
【請求項20】
前記導電性ワイヤと前記電気絶縁体とを互いに熱膨張が適合するように構成する工程は、前記導電性ワイヤと、前記ボビン及び前記セラミック被覆の少なくとも一方とを互いに熱膨張が適合するように構成する工程を含む、請求項19に記載の方法。
【請求項21】
前記導電性ワイヤが磁性材料を含む、請求項13乃至20の何れかに記載の方法。
【請求項22】
前記導電性ワイヤが、ニッケル、ニッケル合金、白金ロジウム合金、白金イリジウム合金、およびニオビウムタンタルタングステン合金のうちの1つを含む材料からなる、請求項13乃至21の何れかに記載の方法。
【請求項23】
前記温度範囲は、350℃から500℃、350℃から427℃、410℃から500℃、410℃から427℃の何れかである、請求項13乃至22の何れかに記載の方法。
【請求項24】
マグネット部分を形成する工程と、コイル部分に対して空間的に変位するようにマグネット部分を構成する工程とをさらに含む、請求項13乃至23の何れかに記載の方法。
【請求項25】
高温用の振動式メータ(5)であって、
メータ電子機器(20)と、
メータ電子機器(20)と通信可能に連結されたメータアセンブリ(10)を備え、該メータアセンブリ(10)は、
少なくとも1つの導管(103A、103B)と、
少なくとも1つの導管(103A、103B)に連結されたドライバ(104)と、
少なくとも1つの導管(103A、103B)に連結された少なくとも1つのピックオフ(105、105')とを含み、
前記ドライバ(104)と少なくとも1つのピックオフ(105、105')の少なくとも
1つは、コイル変換器(200)を備え、該コイル変換器(200)は、
導電性ワイヤ(212a)からなるコイル(212)を含むコイル部分(210)と、
導電性ワイヤ(212a)に近接して配置された電気絶縁体とを備え、
コイル(212)は、350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成される、振動式メータ(5)。
【請求項26】
350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成されるコイル(212)は、
導電性ワイヤ(212a)及び電気絶縁体は、前記温度範囲にて互いに熱膨張が適合する
こと、
電気絶縁体は前記温度範囲にて実質的に非導電性であること、及び
導電性ワイヤ(212a)は、前記温度範囲にて実質的に再現性がある導電性を有するこ
と、の少なくとも1つを有する、請求項25に記載の振動式メータ(5)。
【発明の詳細な説明】
【技術分野】
【0001】
以下に記載された実施形態は、コイル変換器に関し、特に高温用のコイル変換器に関する。
【背景技術】
【0002】
振動式メータ、例えば振動式デンシトメータ及びコリオリ式流量計は一般的に知られており、流量計の導管内の物質の質量流量などを測定するのに用いられている。例示的なコリオリ式流量計は、米国特許4109524号、米国特許4491025号、及び再公開特許31450号に
開示されており、これらの特許はすべてJ.E.スミスらへ付与されたものである。これらの流量計は真っ直ぐなまたは湾曲した1つ以上の導管を備えている。コリオリ式質量流量計の各導管構造は、単純曲げモード、ねじれモードまたは結合モードでありうる一組の固有の振動モードを有している。導管に駆動力を付与するドライバによって、好ましいモードで振動するように各導管が駆動される。
【0003】
物質は、流量計の入口側に接続されているパイプラインから導管を通り、流量計の出口側から流量計を出るようになっている。振動システムの固有振動モードは、導管の質量と導管内を流れる物質の合計によって一部は規定される。
【0004】
流体が流量計を流れていない場合、振動力が導管に加えられると、導管に沿った全ての部位が、同一の位相で振動するか又は小さな「ゼロオフセット」で振動する。この「ゼロオフセット」はゼロ流量において測定される時間遅れである。物質が流量計を流れ始めると、コリオリ力により導管に沿った各部位が異なる位相を有するようになる。たとえば、流量計の入口端部の位相は中央のドライバの位置の位相より遅れ、出口の位相は中央のドライバの位置の位相よりも進んでいる。導管上のピックオフは当該導管の運動を表す正弦波信号を生じる。2つ以上のピックオフから出力される信号が処理されて、ピックオフ間の時間遅延が求められる。2つ以上のピックオフ間の時間遅延は導管を流れる物質の質量流量に比例する。ピックオフから出力される信号は、メータ検証のためにドライバに提供された駆動信号と比較され、導管内の被覆、亀裂、侵食などの状態が検出される。
【0005】
ドライバとピックオフはコイル変換器で構成されていてもよい。コイル変換器は、コイル内の電気エネルギーを機械的運動に変換することができ、従って、上記のドライバになり得る。コイル変換器はまた、機械的運動を電気エネルギーに変換することができ、従って、上記のピックオフとなり得る。その結果、機械的運動(例えば、導管の振動)と電気エネルギーとの間の定量的関係は、コイル変換器内の構成要素の電気的特性に依存する。
【0006】
コイル変換器の電気的特性は、変化するが、温度に関して再現性がある。例えば、コイル変換器内のコイルの抵抗は、コイルは100℃のときに常にほぼ所定の値になる。従って、振動式メータの電子機器は、コイルの温度の変動を補償することができる。しかし、高温(350℃を超えるなど)では、様々な理由で電気的特性を再現できない場合がある。例えば、一部の絶縁体は、350℃を超える温度で導体として動作する場合がある。その結果、要素の電気的特性の再現性の不可能な変動により、例えば、ゼロ流れのオフセットが変動したり、メータの検証結果が不正確になる。その結果、高温用のコイル変換器を求めるニーズがある。
【発明の概要】
【0007】
概要
高温用のコイル変換器が提供される。実施形態に従って、コイル変換器は、導電性ワイ
ヤからなるコイルを含むコイル部分と、導電性ワイヤに近接して配置された電気絶縁体とを備える。コイルは、350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成される。
【0008】
高温用のコイル変換器を形成する方法が提供される。実施形態に従って、方法は導電性ワイヤからなるコイルを含むコイル部分を形成する工程と、導電性ワイヤに近接して電気絶縁体を配置する工程と、コイルを、350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成する工程を有する。
【0009】
高温用の振動式メータが提供される。実施形態に従って、振動式メータはメータ電子機器と、メータ電子機器と通信可能に連結されたメータアセンブリを備える。メータアセンブリは、少なくとも1つの導管と、少なくとも1つの導管に連結されたドライバと、少なくとも1つの導管に連結された少なくとも1つのピックオフとを含む。
ドライバと少なくとも1つのピックオフの少なくとも1つは、コイル変換器を備える。該コイル変換器は、コイルを含むコイル部分を備える。コイルは導電性ワイヤからなり、導電性ワイヤに近接して配置された電気絶縁体とを備える。コイルは、350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成される。
【0010】
態様
一態様に従って、高温用のコイル変換器(200)は、導電性ワイヤ(212a)からなる
コイル(212)を含むコイル部分(210)と、導電性ワイヤ(212a)に近接して配置さ
れた電気絶縁体とを備える。コイル(212)は、350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成される。
【0011】
350℃よりも大きい前記温度範囲にて再現性がある電気的特性を有するように構成される前記コイル(212)は、導電性ワイヤ(212a)及び電気絶縁体は、前記温度範囲に
て互いに熱膨張が適合すること、電気絶縁体は前記温度範囲にて実質的に非導電性であること、及び導電性ワイヤ(212a)は、前記温度範囲にて実質的に再現性がある導電性を
有すること、の少なくとも1つを有するのが好ましい。
【0012】
互いに熱膨張が適合した前記導電性ワイヤ(212a)及び前記電気絶縁体は、実質的に
等しい熱膨張係数を有するのが好ましい。
前記温度範囲にて実質的に再現性がある導電性を有する導電性ワイヤ(212a)は、温度範囲の少なくとも一部を含む複数の温度サイクルにわたって実質的に再現性がある導電性を有するのが好ましい。
複数の温度サイクルの夫々は、前記温度範囲を含むのが好ましい。
前記電気絶縁体は、前記導電性ワイヤ上にセラミック被覆を有するのが好ましい。
【0013】
前記電気絶縁体はボビン(214)を備え、前記コイル(212)は前記ボビン(214)の周囲に配置されるのが好ましい。
前記導電性ワイヤ(212a)と、前記ボビン(214)及び前記セラミック被覆(212b)の少なくとも一方は、互いに熱膨張が適合しているのが好ましい。
前記導電性ワイヤ(212a)が磁性材料を含むのが好ましい。
前記導電性ワイヤ(212a)が、ニッケル、ニッケル合金、白金ロジウム合金、白金イ
リジウム合金、およびニオビウムタンタルタングステン合金のうちの1つを含む材料からなるのが好ましい。
前記温度範囲は、350℃から500℃、350℃から427℃、410℃から500℃、410℃から427℃の何れかであるのが好ましい。
コイル変換器(200)はマグネット部分(220)をさらに含み、マグネット部分(22
0)は、コイル部分(210)に対して空間的に変位するように構成されるのが好ましい。
【0014】
一態様に従って、方法は導電性ワイヤからなるコイルを含むコイル部分を形成する工程と、導電性ワイヤに近接して電気絶縁体を配置する工程と、コイルを350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成する工程を有する。
【0015】
350℃を超える温度範囲にて再現性がある電気的特性を有するようにコイルを構成する工程が、前記温度範囲にて互いに熱膨張が適合するように導電性ワイヤ及び電気絶縁体を構成する工程、電気絶縁体が、前記温度範囲にて実質的に非導電性であるように構成する工程、前記温度範囲にて実質的に再現性がある導電性を有するように導電性ワイヤを構成する工程の少なくとも1つを含むのが好ましい。
互いに熱膨張が適合するように導電性ワイヤ及び電気絶縁体を構成する工程は、実質的に等しい熱膨張係数を有するように前記導電性ワイヤ及び前記電気絶縁体を構成する工程を含むのが好ましい。
前記温度範囲にて実質的に再現性がある導電性を有するように前記導電性ワイヤを構成する工程は、前記温度範囲の少なくとも一部を含む複数の温度サイクルにわたって実質的に再現性がある導電性を有するように前記導電性ワイヤを構成する工程を含むのが好ましい。
【0016】
前記複数の温度サイクルの各々が、前記温度範囲を含むのが好ましい。
前記導電性ワイヤに近接して前記電気絶縁体を配置する工程は、前記導電性ワイヤ上にセラミック被覆を配置する工程を含むのが好ましい。
前記導電性ワイヤに近接して前記電気絶縁体を配置する工程は、ボビンを形成する工程と、前記ボビンの周囲に前記コイルを配置する工程とを含むのが好ましい。
前記導電性ワイヤと前記電気絶縁体とを互いに熱膨張が適合するように構成する工程は、前記導電性ワイヤと、前記ボビン及び前記セラミック被覆の少なくとも一方とを互いに熱膨張が適合するように構成する工程を含むのが好ましい。
【0017】
前記導電性ワイヤが磁性材料を含むのが好ましい。
前記導電性ワイヤが、ニッケル、ニッケル合金、白金ロジウム合金、白金イリジウム合金、およびニオビウムタンタルタングステン合金のうちの1つを含む材料からなるのが好ましい。
前記温度範囲は、350℃から500℃、350℃から427℃、410℃から500℃、410℃から427℃の何れかであるのが好ましい。
方法は更に、マグネット部分を形成する工程と、コイル部分に対して空間的に変位するようにマグネット部分を構成する工程とをさらに含むのが好ましい。
【0018】
一態様に従って、高温用の振動式メータ(5)は、メータ電子機器(20)と、メータ電子機器(20)と通信可能に連結されたメータアセンブリ(10)を備える。、該メータアセンブリ(10)は、少なくとも1つの導管(103A、103B)と、少なくとも1つの導管(
103A、103B)に連結されたドライバ(104)と、少なくとも1つの導管(103A、103B)に連結された少なくとも1つのピックオフ(105、105')とを含む。前記ドライバ(104)と少なくとも1つのピックオフ(105、105')の少なくとも1つは
、コイル変換器(200)を備える。該コイル変換器(200)は、導電性ワイヤ(212a)
からなるコイル(212)を含むコイル部分(210)と、導電性ワイヤ(212a)に近接し
て配置された電気絶縁体とを備える。コイル(212)は、350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成される。
【0019】
350℃よりも大きい温度範囲にて再現性がある電気的特性を有するように構成されるコイル(212)は、導電性ワイヤ(212a)及び電気絶縁体は、前記温度範囲にて互いに
熱膨張が適合すること、電気絶縁体は前記温度範囲にて実質的に非導電性であること、及
び導電性ワイヤ(212a)は、前記温度範囲にて実質的に再現性がある導電性を有するこ
と、の少なくとも1つを有するのが好ましい。
【図面の簡単な説明】
【0020】
同じ参照番号はすべての図面上の同じ要素を表す。図面は必ずしも縮尺通りではないことは理解されるべきである。
【
図1】コリオリ流量計の形式である振動式メータを示し、該振動式メータは高温用のコイル変換器を含む。
【
図2】高温用のコイル変換器200の断面図を示す。
【
図3】
図2に示すコイル変換器200の詳細な断面図である。
【
図4】高温が質量流量測定にどのように影響し得るかを示すグラフ400を示す図である。
【
図5】高温用のコイル変換器から生じる安定した質量流量測定を示すグラフ500を示す図である。
【
図6】温度サイクル中の故障を示すグラフ600を示す図である。
【
図7】高温用のコイル変換器から得られる抵抗測定値を示すグラフ700を示す図である。
【
図8】高温用のコイル変換器の電気的特性を示すグラフ800を示す図である。
【
図9】高温用のコイル変換器から生じる安定した質量流量測定を示すグラフ900を示す図である。
【
図10】高温用のコイル変換器を形成する方法1000を示す図である。
【発明を実施するための形態】
【0021】
図1乃至
図10及び以下の説明は特定の実施例を記載して、補正測定流量を決定するための実施形態における最良の形態を創出かつ使用する方法を当業者に教示する。本発明の原理を教示することを目的として、いくつかの従来の態様を簡略化または省略している。当業者は、これらの実施例の変形例が本明細書の範囲内にあることを理解する。当業者であれば、以下に説明する特徴を様々な方法で組み合わせて、高温用のコイル変換器の複数の変形例を形成できることを理解する。結果として、以下に説明する実施形態は後述する特定の実施例に限定されるものではなく、特許請求の範囲およびその均等物によってのみ限定される。
【0022】
図1は、コリオリ流量計の形式である振動式メータ5を示し、該振動式メータは高温用のコイル変換器を含む。
図1に示すように、振動式メータ5はメータアセンブリ10とメータ電子機器20を示す。メータ電子機器20は、メータアセンブリ10と電気的に通信して、例えば、密度、質量流量、体積流量、総質量流量、温度、および他の情報などの流れ材料の特性を測定する。
【0023】
メータアセンブリ10は、一対のフランジ101及び101'と、マニホールド102
及び102'と、第1の導管及び第2の導管103A及び103Bとを含む。従来技術の
コリオリ流量計のフランジ101及び101'は、スペーサ106の両端に固定されてい
る。スペーサ106は、マニホールド102及び102'の間の間隔を維持して、第1の
導管及び第2の導管103A及び103B内の望ましくない振動を防止する。第1の導管及び第2の導管103A、103Bは、マニホールドから大凡平行に外向きに延びている。メータアセンブリ10が流れ材料を運ぶパイプラインシステム(図示せず)に挿入されると、材料はフランジ101を通ってメータアセンブリ10に入り、入口マニホールド102を通過し、そこで材料の総量が第1の導管及び第2の導管103A、103Bに入るように向けられ、導管103A、103Bを通って流れて、出口マニホールド102'に戻
り、そこでフランジ101'を通ってメータアセンブリ10を出る。
【0024】
メータアセンブリ10は、ドライバ104を含む。ドライバ104は、ドライバ104が例えば駆動モードで導管103A、103Bを振動させることができる位置にて、導管103A、103Bに取り付けられている。特にドライバ104は、第1の導管103Aに取り付けられた第1のドライバ構成要素104Aと、第2の導管103Bに取り付けられた第2のドライバ構成要素104Bとを含む。ドライバ104は、第1の導管103Aに取り付けられたコイルや、第2の導管103Bに取り付けられた対向したマグネットなど、多くの周知の構成のうちの1つを含むことができる。
【0025】
駆動モードは、第1の位相外曲げモードであり、夫々曲げ軸W-W及びW’-W’の周りに実質的に同じ質量分布、慣性モーメント及び弾性係数を有する平衡システムを提供するように、第1の導管及び第2の導管103A、103Bが選択され、入口マニホールド102及び出口マニホールド102'に適切に取り付けられる。本例において、駆動モード
が第1の位相外曲げモードでは、第1の導管及び第2の導管103A、103Bは、ドライバ104によって、夫々曲げ軸W-W及びW’-W’を中心として反対方向に駆動される。交流の形態の駆動信号がメータ電子機器20によって供給され、コイルを通過して第1の導管及び第2の導管103A、103Bを振動させることができる。加えて又はこれに代えて、他の駆動モードが振動式メータによって使用され得る。
【0026】
示されるメータアセンブリ10は、導管103A、103Bに固定される一対のピックオフ105、105'を含む。特に第1のピックオフ要素105A、105'Aは第1の導管103Aの上に位置し、第2のピックオフ要素105B、105'Bは導管103Bの
上に位置する。記載された実施形態にて、ピックオフ105、105’は、コイル変換器であり、例えば第1の導管及び第2の導管103A、103Bの速度及び位置を表すピックオフ信号を生成するピックオフ磁石及びピックオフコイルとすることができる。例えば、ピックオフ105、105'は、メータ電子機器にピックオフ信号111、111'を供給することができる。当業者であれば、第1の導管及び第2の導管103A、103Bの動きは、流れ材料の特定の特性、例えば、第1の導管及び第2の導管103A、103Bを流れる材料の質量流量及び密度に比例することを理解するであろう。しかし、第1の導管及び第2の導管103A、103Bの動きはまた、ピックオフ105、105'で測定
することができるゼロ流れオフセットを含む。ゼロ流れオフセットは非比例減衰、残留柔軟性応答、電磁クロストーク、器具の位相遅延などの多くの要因によって引き起こされる。
【0027】
多くの振動式メータにおいて、ゼロ流れオフセットは通常、ゼロ流れ条件でゼロ流れオフセットを測定し、流れ中に行われた後続の測定から測定されたゼロ流れオフセットを差し引くことによって補正される。このアプローチは、ゼロ流れオフセットが一定のままである場合に適切な流れ測定を提供するが、実際には、ゼロ流れオフセットは、周囲環境(
温度など)の変化や材料が流れる導管内の変化など、様々な要因によって変化する。温度
を測定するために、温度センサ108は、メータアセンブリ10、特に第1の導管及び第2の導管103A、103Bの近くに配置される。温度センサ108は、抵抗温度検出器、赤外線センサなどの任意の適切な温度センサであり得る。温度センサ108は、直接又は間接的に、メータアセンブリ10の任意の部分、メータアセンブリ10を取り囲むケースなどに結合され得る。
【0028】
上記のメータアセンブリ10は、二重導管の振動式メータであるが、単一の導管の振動式メータを実施することは、本発明の範囲内であることは理解されるべきである。更に、第1の導管及び第2の導管103A、103Bは、湾曲した導管構成を含むものとして示されているが、本発明は、真っ直ぐな導管構成を含む振動式メータを用いて実施することができる。従って、上記のメータアセンブリ10の特定の実施形態は、単なる一例であり、本開示の範囲を決して限定するべきではない。
【0029】
図1に示す例において、メータ電子機器20はドライバ104に駆動信号を供給し、ピックオフ105、105'から左右のピックオフ信号111、111'を受信する。メータ電子機器20はまた、温度センサ108から温度信号112を受信する。駆動信号110、左右のピックオフ信号111、111'、及び温度信号112は、まとめてセンサ信号
115と呼ばれる。メータ電子機器20は、センサ信号115を処理して、例えば、導管103A、103B内の材料の質量流量、密度などを決定する。メータ電子機器20はまた、センサ信号115を処理して、メータアセンブリ10のメータ検証を実行することができる。経路26は、1つまたは複数のメータ電子機器20が作業者と連絡することを可能にする入力および出力手段を提供する。
【0030】
上記の如く、ゼロ流れオフセットは、初期較正工程中に初期のゼロ流れオフセットΔt0を測定することで補正でき、これには通常、バルブを閉じて、振動式メータにゼロ流れ条件を提供することが含まれる。動作中に、流量測定は、式[1]に従って、測定された時間差から初期のゼロ流れオフセットΔt0を差し引くことによって調整される。
【数1】
ここで、
【数1A】
=質量流量、
FCF=流れ較正係数、
Δt
measured=測定された時間遅延、
Δt0=初期のゼロ流れオフセット
である。
式[1]は単なる例であり、本開示の範囲を決して限定しないことは理解されるべきである。理解されるように、ゼロ流れオフセットの変化は流れ特性の測定誤差に起因する。
【0031】
ゼロ流れオフセットの変化は、350℃を超える温度などの高温でのみ発生する。ゼロ流れオフセットの変化は、従来技術の振動式メータにおけるピックオフの再現不可能な電気的特性に起因する。例えば、従来技術の振動式メータにおけるピックオフの導電性ワイヤは、ピックオフが高温にあるときに存在する機械的応力のために機械的クリープを被る可能性がある。機械的クリープ故に、導電性ワイヤの抵抗が時間の経過とともに増加するか、導電性ワイヤが単に破損する可能性がある。その結果、導電性ワイヤの抵抗は、高温範囲では再現不可能である。更に又は或いは、導電性ワイヤ又は他の電気絶縁体のセラミック被覆は、高温で導電する可能性がある。これは、振動式メータのピックオフの導電性ワイヤからの電流の漏れに繋がる。
【0032】
導電性ワイヤ内の機械的応力は、高温におけるピックオフ内の要素の熱膨張が原因である可能性がある。例えば、要素の材料は、異なる又は互換性のない熱膨張係数を有し、それにより、近接する(例えば、接する、隣接するなどの)要素を異なる速度で膨張させる。例えば、導電性ワイヤは、導電性ワイヤとは異なる割合で膨張するセラミック被覆を有する場合がある。この差により、350℃未満の温度では導電性ワイヤに大きな機械的応力が発生しない。しかし、350℃を超える温度では、セラミック被覆が導電性ワイヤほど膨張していない可能性があり、それによって導電性ワイヤに機械的応力が発生する。同様に、導電性ワイヤが巻き付けられているボビンも、導電性ワイヤに機械的応力を引き起こ
す可能性がある。
【0033】
上記の記載から理解されるように、ピックオフの電気的特性は、ピックオフが暫くの間、高温になった後にのみ再現できない場合がある。即ち、電気的特性は、例えば、温度が例えば室温から350℃を超えるまで上昇したときに、所与の温度で再現可能な公称値を有する。しかし、電気的特性はピックオフが一定期間高温に留まった後、電気的特性が公称値から逸脱し始める場合がある。例えば、上記の如く、ピックオフ内の導電性ワイヤは、温度が上昇するために機械的なクリープが発生する可能性がある。従って、電気的特性は、クリープがコイルの機械的特性(例えば、電気抵抗を変化させるのに十分な疲労)または寸法(例えば、断面積の変化)に大きな変化を引き起こすように十分な時間が経過するまで、実質的に再現性を維持する(例えば、公称値の特定の範囲内に留まる)ことができる。これらの変化は、ピックオフの温度サイクルによっても発生する可能性がある。例えば、疲労は、一定期間にわたる温度サイクルが原因でのみ発生する可能性がある。
【0034】
図2は、高温環境用のコイル変換器200の断面図を示す。コイル変換器200は、上記のピックオフ105、105'又はドライバ104のうちの1つであるが、コイル変換
器は、高温で振動などの動きを課す及び/又は感知する任意のアセンブリ内またはアセン
ブリ上で使用することができる。例えば、コイル変換器200は、デンシトメータに使用され得る。
図2に示すように、コイル変換器200はコイル部分210とマグネット部分220とから構成される。コイル部分210とマグネット部分220とは、それらの要素と同様に、コイル変換器の中心線に沿って整列して示される。
【0035】
図2に示すように、コイル部分210は取付けブラケット210bを用いて、第1の導管103Aに連結される。取付けブラケット210bは、溶接、ろう付け、接合などの技術に従って、第1の導管103Aに結合される。コイル部分210は
図3を参照して以下により詳細に記載するコイル212を含む。コイル部分210はまた、ボビン214を含む。ボビン214は、マグネット受入れ部分214'を含む。ボビン214は、ボルトま
たは同様の固定装置で取付けブラケット210bに保持される。コイル部分210を第1
の導管103Aに結合するために使用される特定の方法は、本実施形態の範囲を決して制限するべきではない。
【0036】
マグネット部分220は、ボルトを使用して取付けブラケット220bに保持されるマグネット222を備える。マグネット222は、磁場を方向付けるのを助けることができるマグネットキーパ224内に位置する。取付けブラケット220bは、第2の導管103Bに結合されて示されている。取付けブラケット220bは、溶接、ろう付け、接合などの技術に従って、第2の導管103Bに結合され得る。
【0037】
更に、コイル変換器200は第1の導管及び第2の導管103A、103Bに結合されていると示されるが、他の実施形態では、コイル部分210及び/又はマグネット部分2
20は例えば、静止した要素又はダミー管に結合されている。これは、コイル変換器200が単一の導管のメータアセンブリで利用される状況の場合である。
【0038】
図3は、
図2に示すコイル変換器200の詳細な断面図である。
図3の詳細な断面図に示すように、コイル212は導電性ワイヤ212aとセラミック被覆212bを含む。セラミック被覆212bは導電性ワイヤ212a上に蒸着されている。コイル212はボビン214の周りに配置されている。導電性ワイヤ212a及びボビン214は、導電性ワイヤ
212aの近くに配置された電気絶縁体である。
図3に示されるように、コイル212は
、ボビンの溝214g内に配置されている。溝214gは、ボビン214の周囲にあり、長方形の断面を有するが、任意の適切な形状、断面などを使用することができる。導電性ワイヤ212aの各端部は、第1の端子214ta及び第2の端子214tbに電気的に
結合されている(例えば、接合、ろう付け、介在バス、ねじ端子接合部など)。見られるように、マグネット222は、マグネット受入れ部分214'に部分的に配置されている。
マグネット22は、マグネットキーパ224内に配置され、マグネットキーパ224に固定されている。
【0039】
図2及び
図3に関して、コイル変換器200は電気-機械的な変換器である。導管103A、103Bの動きにより、マグネット122及びコイル212は、マグネット122がコイル212に対して移動するように、コイル変換器の中心線200clに沿って移動する。この動きは、コイル212に対するマグネット122の変位、速度、加速度などに比例する電気信号を誘発する。更に、コイル212に提供された信号は、マグネット122に作用して力を生じさせることができ、それにより、導管103A、103Bを比例的に移動させることができる。示されるように、第1の導管及び第2の導管103A、103Bが軸の周りで曲がっていても、動きは実質的に線形である。
【0040】
理解されるように、コイル212とマグネット222の相対運動とコイル212内の信号との間の定量的関係は、コイル212の電気的特性に依存する。例えば、温度が上昇するにつれて、導電性ワイヤ212aの抵抗はそれに応じて増加する。更に又はこれに代えて、導電性ワイヤ212a上のセラミック被覆212bの電気的特性はまた、温度の上昇
とともに変化する。これらの電気的特性が温度に対して再現可能である場合、例えば、メータ電子機器20は、コイル212内の信号を動きに相関させることができる。上記の記載から理解されるように、これは、ゼロ流れオフセットが初期のゼロ流れオフセットΔt0と同じままである可能性があることを意味する。
【0041】
しかし、電気的特性がコイル変換器の温度に対して再現可能でない場合、ゼロ流れオフセットの変更により、不正確な質量流量測定が発生する可能性がある。以下に説明するように、
図2のコイル変換器200は質量流量を正確に測定するために高温で使用できる要素で構成されている。
【0042】
導電性ワイヤ
以下の表1は、高温用のコイル変換器200に使用され得る様々な導電性ワイヤ材料、並びに高温に適さない可能性がある材料の特性を示している。表1は、様々な材料をリストした材料列を含む。各材料に関連付けられているのは、密度、極限強度、熱膨張係数(
CTE)、及び動作限界値の列である。標準的な単位が使用されるが、導電性ワイヤの評
価には任意の適切な単位が使用され得る。
【0043】
表1 様々な導電性ワイヤ材料の特性の比較
【表1】
【0044】
材料は、周期表の記号、または商品名でリストされている。例えば、材料列の材料には、銀(Ag)、ニッケル(Ni)、白金(Pt)、タンタル(Ta)、モリブデン(Mo)、及びタングステン(W)の元素が含まれる。白金-ロジウム(80-20組成のPt-Rh)、白金-イリジウム(80-20組成のPt-Ir)、及びニオブ-タンタル-タングステン合金(8
0-10-10組成のNb-Ta-W)も示されている。組成は、組成内の各番号に対応
する各要素の比率である。例えば、80-20組成のPt-Rhは合金は80%の白金と20%のイリジウムで構成されることを意味する。組成は質量の単位であるが、任意の適切な単位を使用することができる。従って、100キログラムの80-20組成のPt-Rh合金は、80キログラムの白金と20キログラムのイリジウムを有する。「Kover」
の商標も示され、これはニッケル合金、特にニッケル-コバルト合金である。
【0045】
表1に見られるように、導電性ワイヤのCTE(熱膨張係数)が異なる。例えば、銀Agは、
19.7μin/in/℃のCTEを有する。これは、材料の1インチごとに、銀Agが摂氏温度の上昇ごとに19.7μinの方向に膨張することを意味する。比較によって、タングステンは
4.6μin/in/℃のCTEを有する。理解されるように、この違いは、導電性ワイヤの長さによっては重要な場合がある。例えば1000フット(12000インチ)の銀の導電性ワイヤが室温から500℃まで加熱されると、導電性ワイヤの線長さは約113インチ増加す
る可能性がある。同じ長さのタングステンの導電性ワイヤは同じ温度上昇を受けて約26インチ増加する可能性がある。
【0046】
材料の動作限界は、文献レビュー(「(est)」で示される)から推定されるか、テスト
によって定量的に確立される。例えば、白金の410℃の動作限界は、文献レビューから推定される。文献レビューは、白金の引張強度が410℃の温度で著しく低いことを示している。従って、白金は410℃を超える温度で導電性を有し、弾性変形することができるが、白金の導電性ワイヤは、例えば410℃を超える温度範囲で実質的に再現不可能な導電性を有する。従って、文献レビューでは、振動式メータで正確な測定値を取得するために、410℃を超える温度では白金の導電体を使用できないことが示されている。
【0047】
動作限界の一部には、例えば温度範囲全体で公称値からの大幅な偏差がない再現性のある導電率などの再現性のある電気的特性により、最大500℃と推定される場合がある。従って、電気的特性は500℃まで再現可能であるため、プラス記号が使用される。例として、文献レビューは、ニオブ-タンタル-タングステン合金で構成される導電性ワイヤが、定格500℃のコリオリ流量計で使用できることを示している。
【0048】
しかし、動作限界は高温範囲での導電性ワイヤのテストの結果として確立される場合もある。例えば、白金-ロジウム合金の動作限界は430℃まで確立されている。動作限界
は、導電性ワイヤに近接する電気絶縁体で導電性ワイヤをテストすることによって確立される。
【0049】
電気絶縁体
電気絶縁体は例えば、セラミック、ポリマー、複合材料などの任意の適切な材料であり得る。例えば、電気絶縁体は、機械加工可能である場合もそうでない場合もあるガラスセラミック(例えば、Corning(商標)によって開発されたMacor(商標))、セメント(例えば、Sauereisen(商標)によって開発されたElectrotemp(商標)セメント第8号)、セラミッ
クコーティング(例えば、Aremco(商標)によって開発されたCeramacoat 512-N(商標))から構成され得る。電気絶縁体の上記例において、Macor(商標)のCTEは9.3μin/in/℃、Sauereisen#8(商標)のCTEは4.7μin/in/℃、Aremco512N(商標)のCTEは9.9μin/in/℃である。これらの上記の例示的な電気絶縁体はすべて、少なくとも500℃の動作限界を有する。本開示はこれらの特殊な電気絶縁体に限定されない。
【0050】
しかし、電気絶縁体には500℃未満の動作限界を有するものがある。例えば、金属成分を含む一部のセラミック材料(例えば、接合を改善するため)は、350℃を超える温度にて電流を伝導する場合がある。金属成分を含むセラミック材料によって伝導される電流の量は、多くの用途では重要ではないかもしれないが、振動式メータでは重要である。例えば、コリオリ流量計のコイル変換器におけるセラミック被覆による電流漏れは、高温でゼロ流れオフセットのドリフトを引き起こし、それによって不正確な質量流量測定を引き起こす可能性がある。
【0051】
CTE比較
上記の如く、導電性ワイヤ及び/又は電気絶縁体の熱膨張は、導電性ワイヤ上の機械的
応力を引き起こす。その結果、導電性ワイヤの電気的特性は、温度範囲にわたって変化するか、再現性が無い場合がある。この機械的応力は、実質的に同じCTEを持つ導電性ワイ
ヤと電気絶縁体の材料を選択するなど、様々な方法で軽減または排除することができる。例えば、上記の例示的な導電性ワイヤ及びび電気絶縁体を参照することにより、Macor(商標)、Aremco512N(商標)、及び白金-ロジウム合金がほぼ同じCTEを有することが決定され得る。従って、これらの材料から構成されたコイル変換器は、以下でより詳細に説明するように、所与の振動式メータの仕様を満たす動作限界を有する。
【0052】
熱膨張の互換性
熱膨張の互換性がある部品は、高温に晒されても互いの電気的特性に悪影響を及ぼさない。従って、部品は高温用の振動式メータのコイル変換器の一部である。Macor、Aremco 512N(商標)、及び白金ロジウム合金が特定の振動式メータで熱膨張に対応するかどうかは、材料の選択だけでなく、コイル変換器の部品の構成(形状、寸法、断面プロファイル、
巻線方法、組み立て方法など)によって、部品が互いに熱膨張に対応しているかどうかが
決定される。例えば、白金のCTEがMacorのCTEに近い場合でも、この近さは、コイルが所
定のMacorのボビンの構成に所定の張力で巻き付けられている場合に不利になる可能性が
ある。従って、所定のMacorのボビンの構成の材料として白金-ロジウム合金を選択することは、材料の他の利点とともに有利である可能性がある(例えば、白金-ロジウム合金の引張強度は白金よりも大幅に高い)。
【0053】
一例として、Macor(商標)のボビンは、0.830インチの外径を有する円筒形及び0.
708インチの直径を有する円周方向の溝を有するように特定され得る。ボビンはまた、約0.628インチの内径を有する同軸の穴を有する。これらの仕様では、導電性ワイヤ
がボビンの円周方向の溝に巻き付けられているため、白金の動作制限は最大410℃ではなく、350℃に制限される。これは、導電性ワイヤをボビンに巻き付けた後の導電性ワイヤの張力が原因である可能性がある。反対に、直径0.0050インチ、長さ約33フ
ィートの白金-ロジウム合金で構成された導電性ワイヤは、文献レビュー後、最大500
℃の推定動作限界を持つ、何故なら例えば500℃までは機械的クリープが発生しない場合があるからである。例えば、0.0025-0.0050インチの直径及び/又は33フ
ィート以外の長さなど他の寸法が使用されて、この動作限界を達成することができるが、これらの寸法に限定されない。上記の如く、有効な動作限界は、材料と部品の構成の様々な組み合わせのシミュレーション、テスト工程などを通じて確立することができる。例示的なテスト工程を以下により詳細に説明する。
【0054】
例示的なテスト工程
上記の如く、所定の材料の有効な動作限界は、高温での電気的テストによって、または高温範囲を含む複数の温度サイクルにて確立することができる。導電性ワイヤ及び/又は
絶縁性材料の動作限界は、材料の形成されたサンプル(例えば、コイルに組み立てられた
導電性ワイヤ、機械加工された電気絶縁体、蒸着及び焼き付けられたセラミックなど)、
組み立てられたコイル変換器、及び/又は振動式メータ内に組み立てられたコイル変換器
を使用することによって決定され得る。
【0055】
上記の材料の各々の導電性ワイヤ及び/又は電気絶縁体は、コイル又はコイル変換器に
組み立てられ、オーブン内に置かれ、導電性ワイヤ及び/又は電気絶縁体の電気的特性を
測定しながら、温度サイクルに晒される。電気的特性は導電性ワイヤ及び電気絶縁体の導電性及び抵抗を含むが、これらに限定されない。温度サイクルは、室温(例えば、23℃)から500℃まで広がるが、室温未満及び500℃を超えるあらゆる適切な範囲が用いられる。更に又は或いは、導電性ワイヤ及び/又は電気絶縁体を含むコイル変換器は例えば
、オーブン内に配置された上記の振動式メータ5などに組み立てられる。
【0056】
導電性ワイヤ及び電気絶縁体の導電率又は抵抗は、例えば、導電率が再現可能であるかどうかを決定するために、温度サイクル中に測定される(例えば、抵抗対温度は、高温範
囲にて再現可能である)。例えば、測定された電気的特性は、特定の温度で公称値の指定
された範囲内に留まる。電気絶縁体の場合、公称値は、温度範囲全体で導電率がゼロになる場合がある。導電性ワイヤについては、測定された導電率または抵抗は、高温範囲にわたる温度値に対応する公称値の指定された範囲内にある。更に又は或いは、コイル、コイル変換器及び/又は振動式メータは、振動式メータが、例えば、ゼロ流量状態又は既知の
質量流量を測定して、ゼロ又は既知の質量流量を正確に測定しているかを決定する間、温度サイクルに晒される。
【0057】
従って、所定の温度範囲に亘って再現可能な電気的特性を有するように構成されたコイルを有するコイル変換器が提供される。その結果、例えば、より正確な質量流量測定が得られる。以下の図面は、
図2及び
図3に示されるコイル変換器によって付与される改善例を示す。
【0058】
図4は、高温が如何に質量流量測定に影響を与えるかを示すグラフ400である。
図4に示すように、グラフ400は、時間軸410、質量流量軸420、及び温度軸430を含む。時間軸410は時間の単位で示され、質量流量軸420はポンド-質量/分(lbm/min)の単位で示され、温度軸430は摂氏(℃)の単位で示される。しかし、任意の適切な
単位が用いられる。時間軸410はt1からt14の範囲として示され、数週間にわたる場合があるが、任意の適切な時間範囲が使用され得る。
【0059】
グラフ400は、温度プロット440(オーブン温度及びメータ温度測定値を含む)及び質量流量プロット450を含む。温度プロット440は、約25℃から約430℃の範囲として示されているが、20℃未満及び430℃を超える温度を含む任意の適切な範囲を使用することができる。質量流量プロット450は約0lbm/minから約13lbm/minの範囲として示される。質量流量プロット450はゼロ流れ条件の下で、振動式メータの質量流量を測定することにより得られる。温度プロット440と質量流量プロット450を比較することにより、温度が上昇すると、質量流量プロット450が大幅に増加することが理解される。
【0060】
より具体的には、質量流量プロット450は、温度が約20℃から約350℃の範囲であるとき、ほぼゼロlbm/minで安定している。しかし、温度プロット440が350℃
から430℃に上昇すると、質量流量プロット450は、測定された質量流量の可成りの増加を示す。測定された流量のこの増加は、振動式メータを通る実際の質量流量の増加によるものではない。その代わり、流量の増加は温度上昇による、測定されたゼロ流れオフセットの不安定性によるものである。
【0061】
質量流量プロット450を生成するようにテストされた振動式メータのピックオフセンサは、例えば、ニッケル導電性ワイヤ及び金属注入セラミックボビンを含むセラミックから構成されていた。質量流量の増加は、導電性の金属注入セラミックボビンが350℃を超えたことが原因である。
【0062】
理解されるように、質量流量プロット450は、ピックオフセンサのボビンとコイルの電気的特性は、25℃から350℃の温度範囲で再現可能であることを示している。しかし、質量流量プロット450はまた、ピックオフセンサの電気的特性は、350℃から430℃の温度範囲では再現不可能であることを示している。その結果、ピックオフセンサに使用される材料は、350℃を越えて作動すると特定される振動式メータには適切ではない。
【0063】
図5は、高温に対するコイル変換器から生じる安定した質量流量測定を示すグラフ500を示す。
図5に示すように、グラフ500は、時間軸510、質量流量軸520、及び温度軸530を含む。時間軸510は時間の単位で示され、質量流量軸520はポンド-
質量/分(lbm/min)の単位で示され、温度軸530は摂氏(℃)の単位で示される。しかし、任意の適切な単位が用いられる。
【0064】
グラフ500は、温度プロット540(オーブン温度及びメータ温度測定値を含む)及び
質量流量プロット550を含む。温度プロット540は、約20℃から約430℃の範囲として示されているが、20℃未満及び430℃を超える温度を含む任意の適切な範囲を使用することができる。質量流量プロット550は約-2lbm/minから約2lbm/minの範囲として示される。質量流量プロット550はゼロ流れ条件の下で、振動式メータの質量流量を測定することにより得られる。温度プロット540と質量流量プロット550を比較することにより、430℃まで温度が上昇しても、質量流量プロット550が大きく変化しないことが理解され、これは
図4に示すグラフ400とは反対である。
【0065】
安定した質量流量の測定は、350℃を超える温度では導電しないボビンが原因である。例えば、グラフ500を生成するためにテストされた振動式メータで使用されるボビンは、上記のMacorから構成される。グラフ500は、Macorで構成されたボビンは、コイルが20℃から430℃の温度範囲で再現可能な電気的特性を持つことを保証できることを示している。しかし、判るように、3つの温度サイクルが示される。従って、3つの温度サイクルについて、430℃までの有効な動作限界のみが示される。上記の振動式メータ5のような振動式メータの中には、多くの温度サイクルにて電気的特性が再現可能であることを要求するものがある。
【0066】
図6は高温を含む温度サイクル中の故障を示すグラフ600を示している。
図6に示すように、グラフ600は、時間軸610、質量流量軸620、及び温度軸630を含む。時間軸610は時間の単位で示され、質量流量軸620はポンド-質量/分(lbm/min)の
単位で示され、温度軸630は摂氏(℃)の単位で示される。しかし、任意の適切な単位が用いられる。
【0067】
グラフ600は、温度プロット640(オーブン温度及びメータ温度測定値を含む)及び質量流量プロット650を含む。温度プロット640は、0℃への負のスパイクを備えた約20℃から約430℃の範囲として示されているが、20℃未満及び430℃を超える温度を含む任意の適切な範囲を使用することができる。質量流量プロット650は、15lbm/minへの正のスパイクを備えた約-2lbm/minから約2lbm/minの範囲として示
される。温度プロット640と質量流量プロット650を比較することにより、温度プロット640が増加しても、質量流量プロット550が大きく変化しないことが理解され、これは
図4に示すグラフ400とは反対である。しかし、
図5に示すグラフ500とは反対に、質量流量プロット650は流量スパイク650aをも含む。
【0068】
流量スパイク650aは、テストされた振動式メータのコイル変換器の導電性ワイヤの
故障が原因である可能性がある。例えば、故障は破損であった可能性があり、それによってコイルの導電性ワイヤが電気的に開いた状態になる。その結果、メータ電子機器は流量スパイク650aで示される、質量流量のスパイクとして解釈される信号をもはや受信し
なくなった。この故障は、ボビンと導電性ワイヤが最大430℃の温度範囲で再現可能な電気的特性を持っていたにもかかわらず、2回の温度サイクル後に導電性が再現可能な電気的特性を持たなかったことを示している。導電性ワイヤは銀で構成されていた。故障は銀製ワイヤの機械的クリープに依るものであった、
【0069】
従って、文献レビュー及び/又は他のテストは、350℃を超える温度範囲にて再現可
能な電気的特性を有するが、温度範囲を含む複数の温度サイクルにわたって再現可能な電気的特性を有するコイルを確立するために、導電性ワイヤ及び/又は電気絶縁体のために
選択される材料及び/又は構成を提案する。例えば、文献レビューは純粋な白金が銀と同
じかそれより少ない温度サイクルの後に故障することを示している(例えば、白金は銀よ
りも降伏強度が低い)。しかし、白金-ロジウムのような他の材料はそのような故障を受けていない。
【0070】
図7は、高温用のコイル変換器から生じる抵抗測定値を示すグラフである。
図7に示すように、グラフ700は、時間軸710、抵抗値軸720、及び温度軸730を含む。時間軸710は時間の単位で示され、抵抗値軸720はオーム(Ω)の単位で示され、温度軸730は摂氏(℃)の単位で示される。しかし、任意の適切な単位が用いられる。グラフ700に示されるように、導電性ワイヤは白金-ロジウム合金から構成される。
【0071】
グラフ700は、温度プロット740と抵抗プロット750を含む(第1のコイル及び
第2のコイルの測定された抵抗値を備える)。温度プロット740は、約20℃から約4
30℃の範囲として示されているが、20℃未満及び430℃を超える温度を含む、任意の適切な範囲を使用することができる。抵抗プロット750は、約188オームから約285オームの範囲である。抵抗プロット750は、第1のコイル及び第2のコイルの抵抗が、20℃から430℃の全温度範囲にわたって再現可能であることを示している。抵抗プロット750はまた、350℃から430℃の高温範囲を含む複数の温度サイクルに亘って抵抗が(故障することなく)再現可能であることを示している。即ち、白金-ロジウム合金を含む導電性ワイヤは、複数の温度サイクルに亘って再現可能な電気的特性を有する。
【0072】
理解されるように、電気的特性の再現性は、温度の上昇又は低下に関連している。例えば、400℃での白金-ロジウム合金の抵抗は、温度が400℃に上昇したか400℃に
低下したかによって異なる場合がある。
図8は、高温用のコイル変換器の電気的特性を示すグラフ800を示す。
図8に示すように、グラフ800は温度軸810及び抵抗値軸820を含む。温度軸810は摂氏(℃)の単位で示され、抵抗値軸820はオーム(Ω)の単位で示されるが、任意の適切な単位が用いられる。
【0073】
グラフ800はまた、第1のコイル及び第2のコイルの測定された抵抗を示すヒステリシスプロット840(第1のコイル及び第2のコイルの測定された抵抗を含む)を含む。ヒステリシスプロット840は、約20℃から約430℃の温度範囲で約185オームから約285オームの範囲である。ヒステリシスプロット840は、第1のコイル及び第2のコイルの温度が上昇するにつれて、第1のコイル及び第2のコイルの抵抗が増加することを示している。
【0074】
見られるように、ヒステリシスプロット840は第1の温度経路840a及び第2の温
度経路840bを含む。第1の温度経路840aは、第1のコイル及び第2のコイルの温度が約430℃から約20℃に低下するときに測定される抵抗値である。第2の温度経路840bは、第1のコイル及び第2のコイルの温度が約20℃から約430℃に上昇すると
きに測定される抵抗値である。見られるように、所与の温度での抵抗値は、第1の温度経路及び第2の温度経路840a、840bのどちらが測定されるかによって異なるが、抵抗値は温度範囲に亘って再現可能である。
【0075】
図9は、高温用のコイル変換器から生じる安定した質量流量測定を示すグラフ900を示す。コイル変換器は、
図7及び
図8に関して記載された白金-ロジウム合金の導電性ワ
イヤから構成される。
図9に示すように、グラフ900は、時間軸910、質量流量軸920、及び温度軸930を含む。時間軸910は時間の単位で示され、質量流量軸920はポンド-質量/分(lbm/min)の単位で示され、温度軸930は摂氏(℃)の単位で示され
る。しかし、任意の適切な単位が用いられる。
【0076】
グラフ900は、温度プロット940及び質量流量プロット950を含む。温度プロット940及び質量流量プロット950は、テストが一時停止されたギャップを含む。温度プロット940は、約20℃から約430℃の範囲として示されているが、20℃未満及
び430℃を超える温度を含む任意の適切な範囲を使用することができる。質量流量プロット650は、約0lbm/分から約-2lbm/分の範囲として示されている。温度プロット640と質量流量プロット650を比較することにより、温度プロット640が増加しても、質量流量プロット650が大きく変化しないことを理解することができる。理解されるように、質量流量プロット650は複数の温度サイクルに亘って、約ゼロlbm/分のま
まである。
【0077】
コイル変換器を形成する方法
図10は、高温用のコイル変換器を形成する方法1000を示す。方法は、ステップ1010にてコイルを含むコイル部分を形成する。コイルは導電性ワイヤから構成される。ステップ1020にて、方法1000は、導電性ワイヤの近くに電気絶縁体を配置する。方法1000は、ステップ1030において、350℃を超える温度範囲に亘って再現可能な電気的特性を有するようにコイルを構成する。温度範囲は、例えば、350℃から500℃、350℃から427℃、410℃から500℃、及び/又は410℃から427
℃であり得る。
【0078】
ステップ1030にて、方法1000は、導電性ワイヤ及び電気絶縁体を350℃を超える温度範囲に亘って互いに熱膨張が適合するように構成することにより、350℃を超える温度範囲に亘って再現可能な電気的特性を有するようにコイルを構成することができる。更に又はこれに代えて、方法1000は電気絶縁体を、温度範囲に亘って実質的に非導電性であるように構成することができる。更に又はこれに代えて、方法1000は、温度範囲に亘って実質的に再現可能な導電性を有するように導電性ワイヤを構成することができる。
【0079】
方法1000は、導電性ワイヤと電気絶縁体が実質的に等しい熱膨張係数を有するように構成することによって、導電性ワイヤと電気絶縁体が互いに熱膨張が適合するように構成することができる。実質的に等しい熱膨張係数は、例えば、データシートから入手可能な熱膨張係数を比較することによって決定することができる。さらに、夫々の形状、寸法、構造などの導電性ワイヤ及び電気絶縁体の構成及び製造方法もまた、熱膨張係数が実質的に等しいかどうかを決定するために考慮され得る。例えば、導電性ワイヤが比較的短く、比較的低い張力で巻かれている場合は、ボビンの周りに巻かれた導電性ワイヤは、実質的に同じ熱膨張係数を有し得るが、導電性ワイヤが比較的長く比較的高い張力で巻かれている場合は、実質的にボビンと同じ熱膨張係数を有さない。
【0080】
温度範囲の少なくとも一部を含む複数の温度サイクルに亘って、実質的に再現可能な導電性を有するように導電性ワイヤを構成することにより、方法1000は、温度範囲にわたって実質的に再現可能な導電性を有する導電性ワイヤを構成することができる。方法1000は、電気絶縁体とともに又は電気絶縁体無しで導電性ワイヤを選択し形成し、且つ
図7乃至
図9に関して記載したように導電性ワイヤをテストすることにより、そのような方法で導電性ワイヤを構成することができる。
図2乃至
図9に関して記載したように、方法1000にて用いられる複数の温度サイクルの各々は、温度範囲を含む。
【0081】
方法1000は、導電性ワイヤ上にセラミック被覆を配置することにより、導電性ワイヤの近傍に電気絶縁体を配置する。更に又は或いは、方法1000はボビンを形成し、コイルをボビンの周りに配置することによって、導電性ワイヤの近くに電気絶縁体を配置する。従って、方法1000は導電性ワイヤと、ボビンとセラミック被覆の少なくとも1つを、互いに熱膨張が適合するように構成することにより、導電性ワイヤ及び電気絶縁体を熱膨張が互いに適合するように構成する。
【0082】
方法1000は種々お材料を用いる。例えば、導電性ワイヤは磁性材を含む。更に又は
或いは、導電性ワイヤはニッケル、白金-ロジウム合金、白金-イリジウム合金、及びニオブ-タンタル-タングステン合金の何れかを含む材料を含む。方法1000はまた、マグネット部分を形成し、マグネット部分をコイル部分に対して空間的に変位するように構成する。
【0083】
上記で開示されたコイル変換器200及びコイル変換器を形成する方法は、高温にて安定したゼロ流れオフセットを備えた振動式メータ5を提供するのに使用される。高温における安定したゼロ流れオフセットは、350℃を超える温度範囲にて再現可能な電気的特性を有するように構成されたコイル212を含むことにより達成される。温度範囲に亘る安定した電気的特性のこの技術的に有利な利点によって、例えばメータ電子機器20は少なくとも1つの導管103A、103Bの機械的変位をコイル変換器200内の電気信号に正確に相関させて、安定したゼロ流れオフセットの技術的効果を達成することができ、それにより高温における質量流量測定のような正確な測定を確実にする。更に又は或いは、メータの検証が実行されて、導管内の被覆、亀裂、侵食などの状態を正確に検出できる。
【0084】
上記の実施形態の詳細な説明は、本明細書の範囲内であると本発明者らが企図するすべての実施形態の網羅的な説明ではない。実際、当業者であれば、上記の実施形態の特定の要素を様々に組み合わせるか、または削除して別の実施形態を創出してもよく、またこのような別の実施形態が本明細書の範囲および教示内容に含まれることを認識する。また、当業者には、上記の実施形態の全体または一部を組み合わせて、本明細書の範囲および教示内容内にある追加の実施形態を創出してもよいことが明らかである。
【0085】
従って、特定の実施形態を例示の目的で本明細書に記載しているが、当業者が認識するように、本明細書の範囲内で種々の均等な修正が可能である。本明細書で提供している教示内容を、他の高温用のコイル変換器に適用することができ、これらは、上述し、かつ添付の図面に示した実施形態にのみ適用されるものではない。従って、上記の実施形態の範囲は以下の特許請求の範囲から決定されるべきである。
【手続補正書】
【提出日】2024-07-29
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
高温用のコイル変換器(200)であって、
導電性ワイヤ(212a)からなるコイル(212)を含むコイル部分(210)と、
導電性ワイヤ(212a)に近接して配置された電気絶縁体とを備え、
コイル(212)は、350℃よりも大きい温度範囲を少なくとも含む複数の温度サイクルにわたって公称値から実質的に逸脱することなく再現性がある導電性を有するように構成される、コイル変換器(200)。
【請求項2】
350℃よりも大きい前記温度範囲を少なくとも含む複数の温度サイクルにわたって公称値から実質的に逸脱することなく再現性がある導電性を有するように構成される前記コイル(212)は、
導電性ワイヤ(212a)及び電気絶縁体は、前記温度範囲にて互いに熱膨張が適合すること、及び
電気絶縁体は前記温度範囲を少なくとも含む複数の温度サイクルにわたって実質的に非導電性であること、の少なくとも1つを有し、
互いに熱膨張が適合した前記導電性ワイヤ(212a)及び前記電気絶縁体は、実質的に等しい熱膨張係数を有する、請求項1に記載のコイル変換器(200)。
【請求項3】
前記複数の温度サイクルの夫々は、前記温度範囲を含む、請求項1に記載のコイル変換器(200)。
【請求項4】
前記電気絶縁体は、前記導電性ワイヤ(212a)上にセラミック被覆(212b)を有する、請求項1乃至3の何れかに記載のコイル変換器(200)。
【請求項5】
前記電気絶縁体はボビン(214)を備え、前記コイル(212)は前記ボビン(214)の周囲に配置される、請求項1乃至4の何れかに記載のコイル変換器(200)。
【請求項6】
前記電気絶縁体はボビン(214)を備え、前記コイル(212)は前記ボビン(214)の周囲に配置され、
前記導電性ワイヤ(212a)と、前記ボビン(214)及び前記セラミック被覆(212b)の少なくとも一方は、互いに熱膨張が適合している、請求項4に記載のコイル変換器(200)。
【請求項7】
前記導電性ワイヤ(212a)が磁性材料を含む、請求項1乃至6の何れかに記載のコイル変換器(200)。
【請求項8】
前記導電性ワイヤ(212a)が、ニッケル、ニッケル合金、白金ロジウム合金、白金イリジウム合金、およびニオビウムタンタルタングステン合金のうちの1つを含む材料からなる、請求項1乃至7の何れかに記載のコイル変換器(200)。
【請求項9】
前記温度範囲は、350℃から500℃、350℃から427℃、410℃から500℃、410℃から427℃の何れかである、請求項1乃至8の何れかに記載のコイル変換器(200)。
【請求項10】
マグネット部分(220)をさらに含み、マグネット部分(220)は、コイル部分(210)に対して空間的に変位するように構成される、請求項1乃至9の何れかに記載のコイル変換器(200)。
【請求項11】
高温用のコイル変換器を形成する方法であって、
導電性ワイヤからなるコイルを含むコイル部分を形成する工程と、
導電性ワイヤに近接して電気絶縁体を配置する工程と、
コイルを、350℃よりも大きい温度範囲を少なくとも含む複数の温度サイクルにわたって公称値から実質的に逸脱することなく再現性がある導電性を有するように構成する工程を備える、方法。
【請求項12】
350℃を超える温度範囲にて公称値から実質的に逸脱することなく再現性がある導電性を有するようにコイルを構成する工程が、
前記温度範囲にて互いに熱膨張が適合するように導電性ワイヤ及び電気絶縁体を構成する工程、及び
電気絶縁体が、前記温度範囲を少なくとも含む複数の温度サイクルにわたって実質的に非導電性であるように構成する工程の、
少なくとも1つを含み、
互いに熱膨張が適合するように導電性ワイヤ及び電気絶縁体を構成する工程は、実質的に等しい熱膨張係数を有するように前記導電性ワイヤ及び前記電気絶縁体を構成する工程を含む、請求項11に記載の方法。
【請求項13】
前記複数の温度サイクルの各々が、前記温度範囲を含む、請求項11に記載の方法。
【請求項14】
前記導電性ワイヤに近接して前記電気絶縁体を配置する工程は、前記導電性ワイヤ上にセラミック被覆を配置する工程を含む、請求項11乃至13の何れかに記載の方法。
【請求項15】
前記導電性ワイヤに近接して前記電気絶縁体を配置する工程は、ボビンを形成する工程と、前記ボビンの周囲に前記コイルを配置する工程とを含む、請求項11乃至14の何れかに記載の方法。
【請求項16】
前記導電性ワイヤに近接して前記電気絶縁体を配置する工程は、ボビンを形成する工程と、前記ボビンの周囲に前記コイルを配置する工程とを含み、
前記導電性ワイヤと前記電気絶縁体とを互いに熱膨張が適合するように構成する工程は、前記導電性ワイヤと、前記ボビン及び前記セラミック被覆の少なくとも一方とを互いに熱膨張が適合するように構成する工程を含む、請求項14に記載の方法。
【請求項17】
前記導電性ワイヤが磁性材料を含む、請求項11乃至16の何れかに記載の方法。
【請求項18】
前記導電性ワイヤが、ニッケル、ニッケル合金、白金ロジウム合金、白金イリジウム合金、およびニオビウムタンタルタングステン合金のうちの1つを含む材料からなる、請求項13乃至17の何れかに記載の方法。
【請求項19】
前記温度範囲は、350℃から500℃、350℃から427℃、410℃から500℃、410℃から427℃の何れかである、請求項11乃至18の何れかに記載の方法。
【請求項20】
マグネット部分を形成する工程と、コイル部分に対して空間的に変位するようにマグネット部分を構成する工程とをさらに含む、請求項11乃至19の何れかに記載の方法。
【請求項21】
高温用の振動式メータ(5)であって、
メータ電子機器(20)と、
メータ電子機器(20)と通信可能に連結されたメータアセンブリ(10)を備え、該メータアセンブリ(10)は、
少なくとも1つの導管(103A、103B)と、
少なくとも1つの導管(103A、103B)に連結されたドライバ(104)と、
少なくとも1つの導管(103A、103B)に連結された少なくとも1つのピックオフ(105、105')とを含み、
前記ドライバ(104)と少なくとも1つのピックオフ(105、105')の少なくとも1つは、コイル変換器(200)を備え、該コイル変換器(200)は、
導電性ワイヤ(212a)からなるコイル(212)を含むコイル部分(210)と、
導電性ワイヤ(212a)に近接して配置された電気絶縁体とを備え、
コイル(212)は、350℃よりも大きい温度範囲を少なくとも含む複数の温度サイクルにわたって公称値から実質的に逸脱することなく再現性がある導電性を有するように構成される、振動式メータ(5)。
【請求項22】
前記350℃よりも大きい温度範囲を少なくとも含む複数の温度サイクルにわたって公称値から実質的に逸脱することなく再現性がある導電性を有するように構成されるコイル(212)は、
導電性ワイヤ(212a)及び電気絶縁体は、前記温度範囲にて互いに熱膨張が適合すること、及び
電気絶縁体は前記温度範囲を少なくとも含む複数の温度サイクルにわたって実質的に非導電性であること、の少なくとも1つを有し、
互いに熱膨張が適合した前記導電性ワイヤ(212a)及び前記電気絶縁体は、実質的に等しい熱膨張係数を有する、請求項21に記載の振動式メータ(5)。
【外国語明細書】