(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024134282
(43)【公開日】2024-10-03
(54)【発明の名称】締付軸力検出方法及び締付軸力検出装置
(51)【国際特許分類】
G01L 5/00 20060101AFI20240926BHJP
【FI】
G01L5/00 103B
【審査請求】有
【請求項の数】22
【出願形態】OL
(21)【出願番号】P 2023044505
(22)【出願日】2023-03-20
(11)【特許番号】
(45)【特許公報発行日】2023-05-31
(71)【出願人】
【識別番号】000151690
【氏名又は名称】株式会社東日製作所
(71)【出願人】
【識別番号】599016431
【氏名又は名称】学校法人 芝浦工業大学
(74)【代理人】
【識別番号】100087398
【弁理士】
【氏名又は名称】水野 勝文
(74)【代理人】
【識別番号】100128783
【弁理士】
【氏名又は名称】井出 真
(74)【代理人】
【識別番号】100128473
【弁理士】
【氏名又は名称】須澤 洋
(74)【代理人】
【識別番号】100160886
【弁理士】
【氏名又は名称】久松 洋輔
(72)【発明者】
【氏名】堺 彌矩
(72)【発明者】
【氏名】橋村 真治
(72)【発明者】
【氏名】小松 恭一
(72)【発明者】
【氏名】伊藤 聖司
【テーマコード(参考)】
2F051
【Fターム(参考)】
2F051AA01
2F051AA06
2F051AB09
(57)【要約】 (修正有)
【課題】安定的なボルト締付軸力の検出方法を提供する。
【解決手段】ボルト締結体の所定の部位を押さえながらボルトを直接又は間接的に引っ張り、着力点変位及び引張力の変化に関する情報を取得する情報取得ステップと、取得した情報に基づき、ボルトのコンプライアンスを求めるコンプライアンス算出ステップと、算出したコンプライアンスを、引張力が所定値に達する前のバネ定数が不定であるボルトのバネ定数不定部におけるコンプライアンスに修正するコンプライアンス修正ステップと、修正コンプライアンス及び引張力に基づき、バネ定数不定部の変位である修正変位を算出する修正変位算出ステップと、前記修正コンプライアンスの最大値及びこの最大値に対応する前記修正変位の値に基づき、軸力上昇量を求め、軸力上昇量を前記修正コンプライアンスの最大値に対応する引張力から減じることによりボルトの締付軸力を算出する締付軸力算出ステップと、を有する。
【選択図】
図6
【特許請求の範囲】
【請求項1】
ボルト締結体におけるボルトの締付軸力を検出する締付軸力検出方法であって、
ボルト締結体の所定の部位を押さえながらボルトを直接又は間接的に引っ張り、着力点変位及び引張力の変化に関する情報を取得する情報取得ステップと、
前記情報取得ステップで取得した情報に基づき、ボルトのコンプライアンスを求めるコンプライアンス算出ステップと、
前記コンプライアンス算出ステップで算出したコンプライアンスを、引張力が所定値に達する前のバネ定数が不定であるボルトのバネ定数不定部におけるコンプライアンスに修正するコンプライアンス修正ステップと、
前記コンプライアンス修正ステップで修正した修正コンプライアンス及び引張力に基づき、バネ定数不定部の変位である修正変位を算出する修正変位算出ステップと、
前記修正コンプライアンスの最大値及びこの最大値に対応する前記修正変位の値に基づき、軸力上昇量を求め、この求めた軸力上昇量を前記修正コンプライアンスの最大値に対応する引張力から減じることにより、ボルトの締付軸力を算出する締付軸力算出ステップと、
を有することを特徴とする締付軸力検出方法。
【請求項2】
引張力の着力点変位に対する変化が、非線形から線形に変わるときの引張力を前記所定値とすることを特徴とする請求項1に記載の締付軸力検出方法。
【請求項3】
前記コンプライアンス修正ステップは、前記コンプライアンス算出ステップで算出したコンプライアンスの最小値を求め、この最小値を前記コンプライアンス算出ステップで算出したコンプライアンスから減じて修正コンプライアンスを求めるステップである、
ことを特徴とする請求項1又は2に記載の締付軸力検出方法。
【請求項4】
前記修正変位算出ステップにおいて、修正コンプライアンスを引張力で積分することにより修正変位を算出することを特徴とする請求項1又は2に記載の締付軸力検出方法。
【請求項5】
前記修正変位算出ステップにおいて、修正コンプライアンスを引張力で積分することにより修正変位を算出することを特徴とする請求項3に記載の締付軸力検出方法。
【請求項6】
前記所定の部位よりも下の前記ボルトの部分が、バネ定数不定部であることを特徴とする請求項1又は2に記載の締付軸力検出方法。
【請求項7】
前記所定の部位よりも下の前記ボルトの部分が、バネ定数不定部であることを特徴とする請求項3に記載の締付軸力検出方法。
【請求項8】
前記所定の部位よりも下の前記ボルトの部分が、バネ定数不定部であることを特徴とする請求項4に記載の締付軸力検出方法。
【請求項9】
前記所定の部位よりも下の前記ボルトの部分が、バネ定数不定部であることを特徴とする請求項5に記載の締付軸力検出方法。
【請求項10】
前記所定の部位は、前記ボルト締結体に含まれるナットの上面であることを特徴とする請求項1又は2に記載の締付軸力検出方法。
【請求項11】
前記所定の部位は、前記ボルト締結体に含まれるナットの上面であることを特徴とする請求項3に記載の締付軸力検出方法。
【請求項12】
前記所定の部位は、前記ボルト締結体に含まれるナットの上面であることを特徴とする請求項4に記載の締付軸力検出方法。
【請求項13】
前記所定の部位は、前記ボルト締結体に含まれるナットの上面であることを特徴とする請求項5に記載の締付軸力検出方法。
【請求項14】
前記所定の部位は、前記ボルト締結体における被締結体の上面であることを特徴とする請求項1又は2に記載の締付軸力検出方法。
【請求項15】
前記所定の部位は、前記ボルト締結体における被締結体の上面であることを特徴とする請求項3に記載の締付軸力検出方法。
【請求項16】
前記所定の部位は、前記ボルト締結体における被締結体の上面であることを特徴とする請求項4に記載の締付軸力検出方法。
【請求項17】
前記所定の部位は、前記ボルト締結体における被締結体の上面であることを特徴とする請求項5に記載の締付軸力検出方法。
【請求項18】
ボルト締結体におけるボルトの締付軸力を検出する締付軸力検出装置であって、
ボルト締結体の所定の部位を押さえながらボルトが直接又は間接的に引っ張られたときに、着力点変位及び引張力の変化に関する情報を取得する情報取得部と、
前記情報取得部で取得した情報に基づき、ボルトのコンプライアンスを求めるコンプライアンス算出部と、
前記コンプライアンス算出部で算出したコンプライアンスを、引張力が所定値に達する前のバネ定数が不定であるボルトのバネ定数不定部におけるコンプライアンスに修正するコンプライアンス修正部と、
前記コンプライアンス修正部で修正した修正コンプライアンス及び引張力に基づき、バネ定数不定部の変位である修正変位を算出する修正変位算出部と、
前記修正コンプライアンスの最大値及びこの最大値に対応する前記修正変位の値に基づき、軸力上昇量を求め、この求めた軸力上昇量を前記修正コンプライアンスの最大値に対応する引張力から減じることにより、ボルトの締付軸力を算出する締付軸力算出部と、
を有することを特徴とする締付軸力検出装置。
【請求項19】
前記所定値は、引張力の着力点変位に対する変化が、非線形から線形に変わるときの引張力であることを特徴とする請求項18に記載の締付軸力検出装置。
【請求項20】
前記コンプライアンス修正部は、前記コンプライアンス算出部が算出したコンプライアンスの最小値を求め、この最小値を前記コンプライアンス算出部が算出したコンプライアンスから減じて修正コンプライアンスを求める処理を行うことを特徴とする請求項18又は19に記載の締付軸力検出装置。
【請求項21】
前記修正変位算出部は、修正コンプライアンスを引張力で積分して修正変位を算出する処理を行うことを特徴とする請求項18又は19に記載の締付軸力検出装置。
【請求項22】
前記修正変位算出部は、修正コンプライアンスを引張力で積分して修正変位を算出する処理を行うことを特徴とする請求項20に記載の締付軸力検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ボルト締結体におけるボルトの締付軸力を検出する検出方法などに関するものである。
【背景技術】
【0002】
自動車等の機械、橋梁などの構造物の組み立てには、ボルト締結体による締結が必須である。ボルト締結体としての強度は、締付軸力に大きく左右される。以下、非特許文献1に開示された締付軸力の検出方法について、詳細に説明する。
【0003】
図14は、非特許文献1の引用である。
図14(a)はボルト締結体の概要図である。
図14(b)は、着力点変位δ、引張力P及び軸力Fの三つのパラメータの関係を示したグラフであり、横軸が着力点変位δ、縦軸が引張力P(ボルトの軸力F)である。引張力Pは実線で示し、軸力Fは波線で示している。
図14(c)は、
図14(a)の一部における拡大図であり、左側の図がボルトとナットのねじ面が離間する前の状態を示しており、右側の図がボルトとナットのねじ面が離間した後の状態を示している。
【0004】
ボルト締結体は、少なくともボルトとこのボルトが締結される被締結体とを含む。これら以外に、ナット、座金など締結に関わる他の部材が含まれていてもよい。図示例では、ボルト締結体は、ボルト10、ナット11及び被締結物Hからなり、ボルト10及びナット11は被締結体Hに締結されている。
被締結物Hは、二つの被締結体を重ねたものである。被締結物Hには、ボルト10のボルト軸部10bが貫通する貫通孔が形成されている。貫通孔には、ネジ溝が切られていない。したがって、ボルト10は、ナット11にだけ螺合し、被締結体Hの貫通孔には螺合しない。
【0005】
図14(a)を参照して、ナット11が上動しないように、ナット上面11bを押さえながら、ボルト軸部10bの先端に引張力を付与すると、
図14(b)に図示するように、引張力P及び締付軸力Fは、着力点変位δに対して非線形的に増大する。さらに、引張力Pを増大させると、ナットネジ面11aからボルトネジ面10b1が完全に離間し(
図14(c)参照)、引張力PがPcに達すると、引張力P及び締付軸力Fが同等になる。引張力P及び締付軸力Fが同等(つまり、ナットネジ面11aからボルトネジ面10b1が完全に離間した状態)になると、引張力P及び締付軸力Fは、着力点変位δに対して線形的に増大する。
【0006】
ナットネジ面11a及びボルトネジ面10b1が互いに離間する前の状態では、
図14(a)中のグリップ長さlgの範囲において、ボルト10は伸長する。グリップ長さlgとは、被締結体Hの上面から下面までの間隔のことである。これに対して、ナットネジ面11a及びボルトネジ面10b1が離間した後の状態では、長さl
0の範囲において、ボルト10は伸長する。長さl
0とは、前述のグリップ長さlgにボルト10及びナット11の噛み合い長さを加算した値である。
【0007】
このように、ナットネジ面11a及びボルトネジ面10b1が互いに離間する前後で、ボルト10の伸びる長さは異なる。したがって、引張力P及び着力点変位δの関係である見かけ上のバネ定数(以下、バネ定数と称する)も、ナットネジ面11a及びボルトネジ面10b1が離間する前後で異なる。非特許文献1では、このバネ定数の変化に着目して、ナットネジ面11a及びボルトネジ面10b1が離間するときの引張力Pを計測する。
【0008】
具体的には、ナットネジ面11aからボルトネジ面10b1が離間する前の状態をプロセス1、ナットネジ面11aからボルトネジ面10b1が離間した後の状態をプロセス2、プロセス1における引張力Pの勾配を勾配CA、プロセス2における引張力Pの勾配を勾配CBと定義する。そして、勾配CA及び勾配CBの直線の交点Iを求め、この交点Iに対応する引張力Pを、締付軸力F0として算出する。
【先行技術文献】
【非特許文献】
【0009】
【非特許文献1】日本機械学会論文集(C編) 68巻671号(2002-7) ボルト・ナット締結体における締付け力の検出方法 植村真治 村上敬宣
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、非特許文献1の手法は、勾配CAの決定が不安定であるため、非特許文献1の検出方法とは異なる検出方法が求められていた。すなわち、引張力Pを負荷する前の状態では、ナットネジ面11aの略全体がボルトネジ面10b1に接触している。引張力Pを負荷すると、ナットネジ面11aからボルトネジ面10b1が連続的に順次離間し、ボルト10のナット上面より下側の部分のバネ定数が変化する。勾配CAを決定する直線をどこから描けばよいのか明確でないため、勾配CAの決定が不安定になる。
【課題を解決するための手段】
【0011】
上記課題を解決するために、本発明に係る締付軸力検出方法は、(1)ボルト締結体におけるボルトの締付軸力を検出する締付軸力検出方法であって、ボルト締結体の所定の部位を押さえながらボルトを直接又は間接的に引っ張り、着力点変位及び引張力の変化に関する情報を取得する情報取得ステップと、前記情報取得ステップで取得した情報に基づき、ボルトのコンプライアンスを求めるコンプライアンス算出ステップと、前記コンプライアンス算出ステップで算出したコンプライアンスを、引張力が所定値に達する前のバネ定数が不定であるボルトのバネ定数不定部におけるコンプライアンスに修正するコンプライアンス修正ステップと、前記コンプライアンス修正ステップで修正した修正コンプライアンス及び引張力に基づき、バネ定数不定部の変位である修正変位を算出する修正変位算出ステップと、前記修正コンプライアンスの最大値及びこの最大値に対応する前記修正変位の値に基づき、軸力上昇量を求め、この求めた軸力上昇量を前記修正コンプライアンスの最大値に対応する引張力から減じることにより、ボルトの締付軸力を算出する締付軸力算出ステップと、を有することを特徴とする。
【0012】
(2)引張力の着力点変位に対する変化が、非線形から線形に変わるときの引張力を前記所定値とすることを特徴とする上記(1)に記載の締付軸力検出方法。
【0013】
(3)前記コンプライアンス修正ステップは、前記コンプライアンス算出ステップで算出したコンプライアンスの最小値を求め、この最小値を前記コンプライアンス算出ステップで算出したコンプライアンスから減じて修正コンプライアンスを求めるステップである、ことを特徴とする上記(1)又は(2)に記載の締付軸力検出方法。
【0014】
(4)前記修正変位算出ステップにおいて、修正コンプライアンスを引張力で積分することにより修正変位を算出することを特徴とする上記(1)又は(2)に記載の締付軸力検出方法。
【0015】
(5)前記修正変位算出ステップにおいて、修正コンプライアンスを引張力で積分することにより修正変位を算出することを特徴とする上記(3)に記載の締付軸力検出方法。
【0016】
(6)前記所定の部位よりも下の前記ボルトの部分が、バネ定数不定部であることを特徴とする上記(1)又は(2)に記載の締付軸力検出方法。
【0017】
(7)前記所定の部位よりも下の前記ボルトの部分が、バネ定数不定部であることを特徴とする上記(3)に記載の締付軸力検出方法。
【0018】
(8)前記所定の部位よりも下の前記ボルトの部分が、バネ定数不定部であることを特徴とする上記(4)に記載の締付軸力検出方法。
【0019】
(9)前記所定の部位よりも下の前記ボルトの部分が、バネ定数不定部であることを特徴とする上記(5)に記載の締付軸力検出方法。
【0020】
(10)前記所定の部位は、前記ボルト締結体に含まれるナットの上面であることを特徴とする上記(1)又は(2)に記載の締付軸力検出方法。
【0021】
(11)前記所定の部位は、前記ボルト締結体に含まれるナットの上面であることを特徴とする上記(3)に記載の締付軸力検出方法。
【0022】
(12)前記所定の部位は、前記ボルト締結体に含まれるナットの上面であることを特徴とする上記(4)に記載の締付軸力検出方法。
【0023】
(13)前記所定の部位は、前記ボルト締結体に含まれるナットの上面であることを特徴とする上記(5)に記載の締付軸力検出方法。
【0024】
(14)前記所定の部位は、前記ボルト締結体における被締結体の上面であることを特徴とする上記(1)又は(2)に記載の締付軸力検出方法。
【0025】
(15)前記所定の部位は、前記ボルト締結体における被締結体の上面であることを特徴とする上記(3)に記載の締付軸力検出方法。
【0026】
(16)前記所定の部位は、前記ボルト締結体における被締結体の上面であることを特徴とする上記(4)に記載の締付軸力検出方法。
【0027】
(17)前記所定の部位は、前記ボルト締結体における被締結体の上面であることを特徴とする上記(5)に記載の締付軸力検出方法。
【0028】
本発明に係る締付軸力検出装置は、(18)ボルト締結体におけるボルトの締付軸力を検出する締付軸力検出装置であって、ボルト締結体の所定の部位を押さえながらボルトが直接又は間接的に引っ張られたときに、着力点変位及び引張力の変化に関する情報を取得する情報取得部と、前記情報取得部で取得した情報に基づき、ボルトのコンプライアンスを求めるコンプライアンス算出部と、前記コンプライアンス算出部で算出したコンプライアンスを、引張力が所定値に達する前のバネ定数が不定であるボルトのバネ定数不定部におけるコンプライアンスに修正するコンプライアンス修正部と、前記コンプライアンス修正部で修正した修正コンプライアンス及び引張力に基づき、バネ定数不定部の変位である修正変位を算出する修正変位算出部と、前記修正コンプライアンスの最大値及びこの最大値に対応する前記修正変位の値に基づき、軸力上昇量を求め、この求めた軸力上昇量を前記修正コンプライアンスの最大値に対応する引張力から減じることにより、ボルトの締付軸力を算出する締付軸力算出部と、を有することを特徴とする。
【0029】
(19)前記所定値は、引張力の着力点変位に対する変化が、非線形から線形に変わるときの引張力であることを特徴とする上記(18)に記載の締付軸力検出装置。
【0030】
(20)前記コンプライアンス修正部は、前記コンプライアンス算出部が算出したコンプライアンスの最小値を求め、この最小値を前記コンプライアンス算出部が算出したコンプライアンスから減じて修正コンプライアンスを求める処理を行うことを特徴とする上記(18)又は(19)に記載の締付軸力検出装置。
【0031】
(21)前記修正変位算出部は、修正コンプライアンスを引張力で積分して修正変位を算出する処理を行うことを特徴とする上記(18)又は(19)に記載の締付軸力検出装置。
【0032】
(22)前記修正変位算出部は、修正コンプライアンスを引張力で積分して修正変位を算出する処理を行うことを特徴とする上記(20)に記載の締付軸力検出装置。
【発明の効果】
【0033】
本発明によれば、締付軸力の検出を安定して行うことができる。
【図面の簡単な説明】
【0034】
【
図2】着力点変位δ、引張力P及び軸力Fの関係を示すグラフである。
【
図3】取得した着力点変位δと引張力Pとの関係を示すグラフである。
【
図4】算出したコンプライアンスCのグラフである。
【
図5】ナットネジ面からボルトネジ面が離間するときの挙動を示す遷移図である。
【
図6】修正コンプライアンスC´等のグラフである。
【
図12】締付軸力検出装置の変形例4(座金引っ張り)である。
【
図13】締付軸力検出装置の変形例4(ナット引っ張り)である。
【
図14】従来の締付軸力の検出方法の説明図である。
【発明を実施するための形態】
【0035】
本発明の実施形態である締付軸力の検出方法について説明する。
図1は、
図14(a)のボルト締結体に締付軸力検出装置を装着した状態を図示する。ただし、説明の便宜上、ボルト軸部の長さを、
図14(a)よりも若干長く記載している。ボルト締結体については、背景技術で説明したから、詳細な説明を省略する。
【0036】
締付軸力検出装置1の下端部には、凹部1aが形成されており、この凹部1aの内周面には、ネジ溝が切られている。ボルト軸部10bの上端は、ナット上面11bから突出しており、凹部1aに螺合している。締付軸力検出装置1には、ナット上面11bを押さえる押さえ機構(不図示)が設けられている。したがって、ボルト軸部10bの上端を締付軸力検出装置1の凹部1aに螺合させた状態で、ナット11が上動しないように押さえ機構でナット上面11bを押さえながら、ボルト10を引っ張る引張試験を実施することができる。
【0037】
図2は、引張試験で検出される着力点変位δ、引張力P及び軸力Fの関係を示すグラフであり、
図14(b)に対応する。
図14(a)に図示するように、締付軸力F
0で締結されたボルト10を、ナット上面11bを押さえながら引っ張ると、上述の通り、軸力F及び引張力Pはそれぞれ波線及び実線に沿って増大する。なお、波線が軸力F、実線が引張力Pである。ここで、ナットネジ面11aからボルトネジ面10b1が完全に離間した直後の引張力P(特許請求の範囲に記載の「所定値」に相当し、以下「所定値」ともいう)又はこれを超える引張力PをP
Max(特許請求の範囲に記載の「修正コンプライアンスの最大値に対応する引張力」に相当する)、締付軸力F
0に対する軸力Fの上昇量(特許請求の範囲に記載の「軸力上昇量」に相当する)をΔFと定義したとき、締付軸力F
0は、以下の式(1)によって定義される。なお、
図2では、ナットネジ面11aからボルトネジ面10b1が完全に離間した直後の引張力PをP
Maxとしているが、後述するように当該引張力Pよりも高い引張力をP
Maxとしてもよい。
【数1】
【0038】
ここで、PMaxは、引張試験中に引張力Pを順次検出することによって、取得することができる。具体的には、既述の通り、引張力Pが高まり、ナットネジ面11aからボルトネジ面10b1が完全に離間すると、引張力Pの着力点変位δに対する変化が非線形から線形に変わるため、かかる変化が生じたときの引張力P又はこれを超える引張力PをPMax(特許請求の範囲に記載の「修正コンプライアンスの最大値に対応する引張力」に相当する)とすることができる。すなわち、引張力Pを着力点変位δで微分し、微分値が変化しなくなったときの引張力P又はそれを超える引張力PをPMaxとすることができる。
【0039】
ここで、引張力Pを負荷すると、ナットネジ面11aからボルトネジ面10b1が順次連続的に離間するとともに、ボルト10のナット上面11bより下側の部分におけるバネ定数が時々刻々と変化する。そして、ナットネジ面11aからボルトネジ面10b1が完全に離間すると、バネ定数は一定となる。つまり、ボルト10のナット上面11bより下側の部分は、引張力Pが上述の所定値に到達すると、バネ定数が不定から一定に変化する。本明細書では、かかる挙動が生じるボルト10の部分(本実施形態では、ナット上面11bより下側の部分)をバネ定数不定部と定義する。なお、ボルト10及びナット11の噛み合い状態が変化することにより、ナット下面より下側のボルト10の部分に働く力も変化する。したがって、バネ定数不定部には、ナット下面より下側のボルト10の部分も含まれる。なお、バネ定数不定部及びバネ定数一定部の境界は、反力を取る位置に対応する。
一方、ナット11との噛み合いがない、ボルト10のナット上面11bより上側の部分は、バネ定数が変化せずに一定であるから、これをバネ定数一定部と定義する。
【0040】
ここで、引張試験において、バネ定数不定部の変位(後述する「修正変位δ´Max」に相当する)を取得することができれば、フックの法則にしたがい、軸力上昇量ΔFを算出することができる。
本発明者等は、バネ定数不定部の変位を算出する際に、バネ定数の変化量を用いる方法について検討したが、以下に説明するように、技術的に困難であった。
【0041】
説明を簡素化するため、直列に接続されたバネの合成式を用いて、バネ定数を用いることの困難性について説明する。
直列に接続された一方のバネ1のバネ定数をk1、他方のバネ2のバネ定数をk2としたとき、合成バネ定数kは、以下の式(2)によって定義される。
【数2】
【0042】
ここで、バネ2のバネ定数k2がk2´に変化することにより、合成バネ定数KがK´に変化した場合、合成バネ定数の変化量は、以下の式(3)によって定義される。
【数3】
【0043】
式(3)において、バネ定数kの変化量に基づき、バネ定数k2からk2´への変化量を求めるためには、ばね定数k1及びバネ定数k2のうちいずれか一方が既知の必要がある。すなわち、バネ定数k1およびバネ定数k2が未知の場合、バネ定数kの変化量に基づき、バネ定数k2からk2´への変化量を求めることができない。したがって、バネ定数の変化量に基づき、軸力上昇量ΔFを求めることは、数学的に困難である。
【0044】
そこで、本発明者等は、バネ定数の逆数である見かけ上のコンプライアンス(以下、コンプライアンスと称する)の変化量を用いて、軸力上昇量ΔFを求める方法を検討した。
ここで、バネ定数の場合と同様に直列に接続されたバネの合成コンプライアンスについて考察する。直列に接続された一方のバネ1のコンプライアンスをc1、他方のバネ2のコンプライアンスをc2としたとき、合成コンプライアンスcは、以下の式(4)によって定義される。
【数4】
【0045】
ここで、バネ2のコンプライアンスc2がc2´に変化することにより、合成コンプライアンスcがc´に変化した場合、合成コンプライアンスの変化量は、以下の式(5)によって定義される。
【数5】
【0046】
このように,バネ要素が直列に接続されている場合、コンプライアンスの変化を用いることで、コンプライアンスが未知のバネを含む直列バネにおいて、定数項の影響を取り除くことができる。定数項とは、コンプライアンスが変化しない項、つまり、式(5)ではコンプライアンスc1のことであり、
図1であれば、ナット上面11bよりも上のボルト軸部10b(バネ定数一定部)のコンプライアンスのことである。
【0047】
以上の考察に基づき、本発明者等は、バネ定数不定部におけるコンプライアンスの変化及びバネ定数不定部の変位に基づき、軸力上昇量ΔFを推定する方法に到達した。軸力上昇量ΔFを数式で定義すると、以下の通りである。
【数6】
式(6)は、以下の算出ステップに基づき、導出される。
情報取得ステップ:ナット上面11b(請求項1に記載の「所定の部位」に相当する)を押さえながら、ボルト軸部10bを引っ張ることにより、着力点変位δ及び引張力Pの変化に関する情報を取得する。
コンプライアンス算出ステップ:情報取得ステップで取得した情報に基づき、ボルト10のコンプライアンスを求める。
コンプライアンス修正ステップ:コンプライアンス算出ステップで取得したコンプライアンスを、バネ定数不定部におけるコンプライアンスに修正して、修正コンプライアンスを算出する。
修正変位算出ステップ:コンプライアンス修正ステップで算出した修正コンプライアンス及び引張力に基づき、バネ定数不定部の変位である修正変位を算出する。
以下、各ステップに項分けして詳細に説明する。
【0048】
(情報取得ステップについて)
上述の引張試験を実施して、ボルト10の着力点変位δ及び引張力Pの変化に関する情報を取得する。引張力P及び着力点変位δの取得方法については、詳細を後述する。
図3は、取得した着力点変位δと引張力Pとの関係を示すグラフであり、
図2の縦軸及び横軸を互いに入れ替えたものである。引張力が上述の所定値に達する前は、着力点変位δは引張力Pに対して非線形的に増大し、引張力が上述の所定値に達すると、着力点変位δは引張力Pに対して線形的に増大する。その理由については、上述したから説明を繰り返さない。
【0049】
(コンプライアンス算出ステップ)
情報取得ステップで取得した情報(
図3の情報)に基づき、ボルト10のコンプライアンスCを算出する。
ここで、コンプライアンスCは、バネ定数の逆数であるから、フックの法則に基づき、以下の式(7)により定義される。
【数7】
図4は、式(7)に基づき算出したコンプライアンスCのグラフであり、右側の縦軸がコンプライアンスC[mm/kN]であり、左側の縦軸が引張力P又は軸力F[kN]であり、横軸が着力点変位δ[mm]である。コンプライアンスCの変化の挙動を把握するため、コンプライアンスCとともに、引張力P及び軸力Fのグラフも示している。なお、引張力P及び軸力Fのグラフは、
図2の引用である。
【0050】
ここで、上述の通りバネ定数不定部のバネ定数は、ナットネジ面11aからボルトネジ面10b1が離間する過程で時々刻々と変化するから、バネ定数の逆数であるコンプライアンスCも変化する。
図5は、ナットネジ面11aからボルトネジ面10b1が離間するときの遷移図である。同図に示すように、引張力Pが負荷されると、ナットネジ面11a及びボルトネジ面10b1は、上側から下側に向かって、この順序で連続的に離間する。同図に示す点線は、ボルト10及びナット11の噛み合い領域と離間領域との境界線であり、境界線より下の部分が噛み合い領域であり、境界線より上の部分が離間領域である。この境界線は、引張力Pが増大するにしたがって順次下がり、それに伴い、ボルト10のコンプライアンスCが時々刻々と変化する。このコンプライアンスCが変化する挙動を式で表現すると、以下の通りである。
【数8】
この式では、バネ定数一定部のコンプライアンスをc
1と定義している。また、バネ定数不定部をボルト10の軸方向に沿ってn-1個の要素に分割しており、それぞれの要素のコンプライアンスをc
2~c
nと定義している。なお、c
2がバネ定数不定部の上端に位置する要素のコンプライアンスであり、c
nがバネ定数不定部の下端に位置する要素のコンプライアンスである。
引張試験を実施すると、バネ定数不定部における上端の要素から順にコンプライアンスが変化する。一方、コンプライアンスc
1は、ナット上面11bよりも上側のコンプライアンスであるから、引張試験中に変動しない。
つまり、コンプライアンスC
(1)は、引張を開始する前のコンプライアンスであり、引張力Pを高めることにより、C
(2)→C
(3)→・・・・・→C
(n)の順に、コンプライアンスが変化する。なお、ナットネジ面11a及びボルトネジ面10b1が完全に離間したときのコンプライアンスがC
(n)であり、この状態から引張力を更に高めても、ボルトネジ面10b1及びナットネジ面11aは互いに離間したままであるから、コンプライアンスはC
(n)のままである。
【0051】
(コンプライアンス修正ステップ)
上述の通り、ボルト10のナット上面より上側の部分(バネ定数一定部)は、引張試験中にバネ定数が一定であるから、ΔFを算出する際に考慮する必要はない。つまり、ΔFを算出する際は、バネ定数が変化するバネ定数不定部だけに着目すればよい。一方、式(7)に基づき算出したコンプライアンスCは、ボルト10全体のコンプライアンスであるから、コンプライアンスCからバネ定数一定部のコンプライアンスを減じて、バネ定数不定部のコンプライアンスである修正コンプライアンスC´を求める必要がある。
ここで、
図4に図示するように、コンプライアンスCは、着力点変位δの増大に伴い、一旦低下し、その後漸次増大する挙動を示すため、かかる情報からコンプライアンスCの最小値(以下、minimum(C)という)を求めることができる。なお、コンプライアンスはバネ定数の逆数であるから、コンプライアンスCが最小になる位置でバネ定数は最大となる。そして、コンプライアンスCから最小値minimum(C)を減じることによって、修正コンプライアンスC´を算出することができる。これを式で表現すると、以下の通りである。
【数9】
修正コンプライアンスC´のグラフを
図4に描き、これを
図6に示す。
【0052】
図6において、C´の最大値であるC´
Maxを特定する。同図において、最大値C´
Maxは両矢印で示す範囲において、略同一であるから、かかる範囲の中で最大値C´
Maxを選択すればよい。選択した最大値C´
Maxに対応する引張力Pが、式(1)のP
Maxに相当する。最大値C´
Maxは、ナットネジ面11a及びボルトネジ面10b1が完全に離間した状態におけるバネ定数不定部のコンプライアンスと同等と考えてよい。
【0053】
(修正変位算出ステップ)
修正コンプライアンスC´を引張力Pで積分することにより、修正変位δ´を算出することができる。これを式で定義すると以下の通りである。
【数10】
なお、修正コンプライアンスC´はボルト10のバネ定数不定部におけるコンプライアンスであるから、修正変位δ´は、バネ定数不定部の引張力Pによる変位と見做すことができる。
積分区間を「引張力Pの負荷の開始から、修正コンプライアンスC´が最大値C´
Maxになるまで」に設定して、式(10)を計算することにより、式(6)の修正変位の値であるδ´
Max(特許請求の範囲に記載の「最大値に対応する修正変位の値」に相当する)を求めることができる。
【0054】
式(10)によって算出される修正変位δ´のグラフを
図7に示す。
図7は、
図3に対応するグラフである。ただし、右側の縦軸を締付軸力の軸力上昇量ΔFとして、軸力の変化量のグラフも記載している。両矢印で示す「δ´
Maxの選択範囲」は、
図6の「C´
Maxの選択範囲」に対応しており、
図6の「C´
Max」が
図7の「δ´
Max」に対応する。したがって、
図7のδ´
Maxに対応する右側の縦軸の値が軸力上昇量ΔFとなり、式(6)に示すように、ΔFはδ´
Maxにα、つまり、1/C´
Maxを乗じることにより算出される。なお、「C´
Maxの選択範囲」の中で別の「C´
Max」を選択した場合には、「P
Max」及び「δ´
Max」の値も変わるが、これらは互いに対応しているため、締付軸力F
0の算出値は略同じになる。
【0055】
よって、修正変位の値δ´Maxを、修正コンプライアンスC´の最大値であるC´Maxで除することにより、軸力上昇量ΔFを求めることができる。すなわち、フックの法則に基づき、C´Maxの逆数及び修正変位の値δ´Maxを乗算することにより、軸力上昇量ΔFを求めることができる。
そして、選択した最大値C´Maxに対応するPMaxから、軸力上昇量ΔFを減じることにより、締付軸力F0を求めることができる(式(1)参照)。
【0056】
締付軸力検出装置のより詳細な実施形態について説明する。
図8は、締付軸力検出装置の概略図である。本実施形態の締付軸力検出装置は、ボルト締結体を締結する機能と、締結されたボルトを引っ張り、締付軸力F
0を検出する機能を有している。ボルト締結体については、説明が重複するから、省略する。
【0057】
締付軸力検出装置1は、テンションロッド5、ホルダ6、ロードセル7(情報取得部に相当する)、ドライブソケット8、モータM1、モータM2、コントローラC、変位センサDS(情報取得部に相当する)を含む。
テンションロッド5の下端部には凹部5aが形成されており、この凹部5aの内周面には、ボルト軸部10bのネジ部と噛み合うネジ部が形成されている。テンションロッド5を一方向に回転させることにより、ボルト軸部10b及び凹部5aのねじ部の噛み合いによって、ボルト10を上方に引っ張ることができる。
【0058】
モータM1は、テンションロッド5を回転させるための動力源として用いられる。例えば、減速機構を介してテンションロッド5及びモータM1を接続することにより、モータM1の動力をテンションロッド5に伝達することができる。コントローラCは、モータM1の駆動を制御する。なお、モータM1の代わりに、作業者の手動操作によってテンションロッド5を回転させることもできる。
【0059】
ホルダ6は、テンションロッド5の外周面の外側に配置されており、ホルダ6の下端面6aはナット上面11bに接触する。テンションロッド5がボルト10を上方に引っ張るとき、ホルダ6はナット11を押さえる。
【0060】
ロードセル7は、ボルト10の軸方向における、テンションロッド5及びホルダ6の間に配置されており、ナット11を押さえてボルト10を上方に引っ張るときの力(引張力)P[kN]を検出する。つまり、締付軸力F0を推定する際に必要な引張力Pは、ロードセル7によって取得される。ロードセル7によって検出された引張力Pの情報は、コントローラCに送信される。
変位センサDSは、引張力Pを負荷したとき、テンションロッドの着力点における変位(着力点変位δ)を検出する。つまり、締付軸力F0を推定する際に必要な着力点変位δは、変位センサDSによって取得される。変位センサDSによって検出された着力点変位δの情報は、コントローラCに送信される。
【0061】
ドライブソケット8はホルダ6の外周面の外側に配置されており、ドライブソケット8の下端部はナット11の外側面と係合する。ドライブソケット8を一方向に回転させることにより、被締結体Hを締め付ける方向(下方向)にナット11を螺進させることができる。また、ドライブソケット8を他方向に回転させることにより、締結を解除する方向(上方向)にナット11を螺進させることができる。
【0062】
モータM2は、ドライブソケット8を回転させるための動力源として用いられる。例えば、減速機構を介してドライブソケット8及びモータM2を接続し、モータM2の動力をドライブソケット8に伝達することができる。コントローラCは、モータM2の駆動を制御する。
ただし、ドライブソケット8及びモータM2は、締付軸力F0を算出する際に使用しないから、省略してもよい。
【0063】
コントローラCは、ロードセル7及び変位センサDSから取得した引張力P及び着力点変位δに基づき、上述のコンプライアンス算出ステップ、コンプライアンス修正ステップ、修正変位算出ステップ、締付軸力算出ステップを実行する。言い換えると、コントローラは、請求項に記載の「コンプライアンス算出部、コンプライアンス修正部、修正変位算出部、締付軸力算出部」に対応する。
これらのステップは、プログラムにより実行してもよい。すなわち、コントローラCは、不図示の記憶部からプログラムを読み出し、これを実行することにより、締付軸力F0を算出することができる。
【0064】
本実施形態では、締付軸力検出装置1に実装されたコントローラCが、締付軸力F0を算出したが、本発明はこれに限るものではない。例えば、ロードセル7及び変位センサDSが取得した引張力P及び着力点変位δを、ハードディスクなどに一旦記憶させ、パーソナルコンピュータなどに、上述のコンプライアンス算出ステップ、コンプライアンス修正ステップ、修正変位算出ステップ、締付軸力算出ステップを実行させることにより、締付軸力F0を算出してもよい。この場合、ロードセル7、変位センサDS、パーソナルコンピュータなどが協働することによって、締付軸力検出装置1が実現される。
【0065】
(変形例1)
図9は、変形例1の引張装置の概略図であり、上記実施形態の締付軸力検出装置と機能が共通する要素には、同一符号を付している。本変形例の締付軸力検出装置は、被締結体H(被締結体H1)の上面を押さえながら、ボルト10に引張力Pを負荷する点で、実施形態に記載の締付軸力検出装置と相違する。すなわち、ホルダ6の下面で被締結体Hを押さえながら、ボルト10に引張力を負荷することで、ロードセル7及び変位センサDSを介して、引張力P及び着力点変位δを検出することができる。なお、被締結体H(被締結体H1)の上面が、請求項1に記載の「所定の部位」に相当する。
なお、図示例では、ボルト軸部10bは、ナット11及び凹部5aに螺合しており、被締結体Hには螺合しない。
【0066】
本変形例の構成では、反力を取る位置が被締結体H1の上面であるから、ボルト10の被締結体H1の上面(ナット下面)より上側の部分がバネ定数一定部であり、被締結体H1の上面(ナット下面)より下側の部分がバネ定数不定部である。
【0067】
なお、本変形例の引張装置は、ドライブソケット8及びモータM2を有しない点でも、実施形態の締付軸力検出装置と相違する。
【0068】
締付軸力F0の算出方法は、実施形態と同様であるから、記載を省略する。
【0069】
(変形例2)
図10は、変形例2の引張装置の概略図であり、上記実施形態の締付軸力検出装置と機能が共通する要素には、同一符号を付している。
本変形例は、ボルト締結体の構造が実施形態と相違する。相違点は以下の通りである。
(1)ボルト頭部を有しないスタットボルト(以下、スタットボルト10ともいう)が被締結体Hに締結されている。
(2)スタットボルト10が螺合するネジ部H21が被締結体H2に形成されている点で、被締結体H2の孔部にネジ部が形成されていない、実施形態の被締結体H2と相違する。
【0070】
本変形例の構成においても、反力を取る位置を基準として、ナット上面11aより上側のボルト10の部分がバネ定数一定部であり、ナット上面11aより下側のボルト10の部分がバネ定数不定部である。
【0071】
締付軸力F0の算出方法は、実施形態と同様であるから、記載を省略する。
【0072】
(変形例3)
図11は、変形例3の引張装置の概略図であり、上記実施形態の締付軸力検出装置と機能が共通する要素には、同一符号を付している。
本変形例の締付軸力検出装置は、ボルト10を、テンションロッド5に接続された接続部材9を介して引っ張る構成となっている。
接続部材9の上端には凸部9aが形成されており、この凸部9aの外側面にはネジ溝が形成されている。テンションロッド5の凹部5a及び接続部材9の凸部9aは互いに螺合している。接続部材9の下端には凹部9bが形成されており、この凹部9bの内側面にはネジ溝が形成されている。
【0073】
ボルト軸部10bは、被締結体Hの貫通孔に形成されたネジ部に螺合している。ボルト頭部10aの外側面には、ネジ溝が形成されており、ボルト頭部10a及び接続部材9の凹部9bは互いに螺合している。
【0074】
図11は、ボルト10に対して引張力を負荷する直前の状態を図示しており、ホルダ6は被締結体H1の上面に当接しており、接続部材9の下端部と被締結体H1との間にはクリアランスが形成されており、接続部材9の凸部9aとテンションロッド5の凹部5aの天面との間にもクリアランスが形成されている。
【0075】
モータM1を作動させて、テンションロッド5を回転させることにより、接続部材9が上動し、ボルト10に対して引張力を付与することができる。なお、接続部材9は、上動する際に回転しない。
【0076】
本変形例の構成では、被締結体H1の上面で反力を取っているため、被締結体H1の上面より上側のボルト10の部分がバネ定数一定部であり、被締結体H1の上面より下側のボルト10の部分がバネ定数不定部である。締付軸力F0の算出方法は、実施形態と同様であるから、記載を省略する。
【0077】
(変形例4)
上述の実施形態及び変形例1~3では、ボルト10を直接引っ張る構成について説明したが、本発明は、ボルト10を間接的に引っ張る締付軸力検出装置にも適用することができる。
例えば、
図12に図示するようにボルト頭部10aと被締結体Hとの間に座金21を介在させ、座金21の外周面に形成されたネジ溝と接続部材9の凹部9bに形成されたネジ溝を互いに螺合させることにより、座金21を介して間接的にボルト10を引っ張ってもよい。
また、
図13に図示するようにナット11の外周面に形成されたネジ溝と接続部材9の凹部9bに形成されたネジ溝を互いに螺合させることにより、ナット11を介して間接的にボルト10を引っ張ってもよい。
本変形例の構成では、被締結体H1の上面で反力を取っているため、被締結体H1の上面より上側のボルト10の部分がバネ定数一定部であり、被締結体H1の上面より下側のボルト10の部分がバネ定数不定部である。締付軸力F
0の算出方法は、実施形態と同様であるから、記載を省略する。
【符号の説明】
【0078】
1 締付軸力検出装置
5 テンションロッド
6 ホルダ
7 ロードセル
8 ドライブソケット
9 接続部材
10 ボルト
10a ボルト頭部
10b ボルト軸部
11 ナット
11b ナット上面
M1,M2 モータ
C コントローラ
DS 変位センサ