(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024138023
(43)【公開日】2024-10-07
(54)【発明の名称】固体二次電池
(51)【国際特許分類】
H01M 10/0585 20100101AFI20240927BHJP
H01M 10/0562 20100101ALI20240927BHJP
H01M 10/052 20100101ALI20240927BHJP
【FI】
H01M10/0585
H01M10/0562
H01M10/052
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2024114438
(22)【出願日】2024-07-18
(62)【分割の表示】P 2021508345の分割
【原出願日】2020-03-12
(31)【優先権主張番号】P 2019058978
(32)【優先日】2019-03-26
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】山崎 舜平
(72)【発明者】
【氏名】栗城 和貴
(72)【発明者】
【氏名】田島 亮太
(72)【発明者】
【氏名】米田 祐美子
(57)【要約】
【課題】電解液を用いる従来のリチウムイオン二次電池よりも安全性の高い全固体二次電池、具体的には薄膜型の固体二次電池及びその作製方法を提供する。
【解決手段】固体電解質としてSiOと、リチウムの有機錯体との共蒸着で得られる混合材料を用いる。即ち、無機材料と有機材料の混合材料からなる固体電解質層を固体二次電池に用いる。固体電解質層のシリコンに対する酸素の比は、1より大きく2より小さい。
【選択図】
図4
【特許請求の範囲】
【請求項1】
正極と、
負極と、
前記正極と前記負極の間にシリコンと酸素とリチウムと炭素を有する固体電解質層と、
保護層と、を有し、
前記固体電解質層のシリコンに対する酸素の比(O/Si)は、1より大きく2より小さく、
上面視において、前記保護層は、前記正極及び前記負極から突出した前記固体電解質層と接する領域を有する、固体二次電池。
【請求項2】
正極と、
負極と、
前記正極と前記負極の間にシリコンと酸素とリチウムと炭素を有する固体電解質層と、
保護層と、を有し、
前記固体電解質層の断面に対するEDX測定結果から求めた、前記固体電解質層のシリコンに対する酸素の比(O/Si)は、1より大きく2より小さく、
上面視において、前記保護層は、前記正極及び前記負極から突出した前記固体電解質層と接する領域を有する、固体二次電池。
【請求項3】
請求項1または請求項2において、前記固体電解質層は、さらに窒素を有する、固体二次電池。
【請求項4】
請求項1乃至請求項3のいずれか一において、前記保護層は、窒化シリコンを有する、固体二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置または電子機器、またはそれらの製造方法に関する。
【0002】
なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
【背景技術】
【0003】
使用者が携帯する電子機器や、使用者が装着する電子機器が盛んに開発されている。
【0004】
使用者が携帯する電子機器や、使用者が装着する電子機器は、蓄電装置の一例である一次電池または二次電池を電源として動作する。使用者が携帯する電子機器は、長時間使用することが望まれ、そのために大容量の二次電池を用いればよい。電子機器に大容量の二次電池を内蔵させると大容量の二次電池は大きく、重量がかさむ問題がある。そこで携帯する電子機器に内蔵できる小型または薄型で大容量の二次電池の開発が進められている。
【0005】
キャリアイオンであるリチウムイオンを移動させるための媒体として有機溶媒などの液体を用いるリチウムイオン二次電池が一般に普及している。しかし、液体を用いる二次電池においては、液体を用いているため使用温度範囲、使用電位による電解液の分解反応の問題や二次電池外部への漏液の問題がある。また、電解質に液体を用いる二次電池は、漏液による発火のリスクが有る。
【0006】
液体を用いない二次電池として燃料電池があるが、電極に貴金属を用い、固体電解質の材料も高価なデバイスである。
【0007】
また、液体を用いない二次電池として固体電解質を用いる固体電池と呼ばれる蓄電装置が知られている。例えば、特許文献1、特許文献2などが開示されている。また、特許文献3にはリチウムイオン二次電池の電解質に溶媒、ゲル、或いは固体電解質のいずれか一を用いることが記載されている。
【0008】
特許文献1には、スパッタリング法により正極集電体上にコバルト酸リチウム膜を形成する例が記載されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許第8404001号明細書
【特許文献2】特開2012-023032号公報
【特許文献3】特開2013-229308号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
電解液を用いる従来のリチウムイオン二次電池よりも安全性の高い全固体二次電池、具体的には薄膜型の固体二次電池(薄膜全固体電池とも呼ぶ)及びその作製方法を提供する。
【0011】
また、薄膜型の固体二次電池に用いる固体電解質として新しい材料を提供することも課題の一つである。
【0012】
また、カード端末などの薄型電子機器に用いる二次電池として適した全固体二次電池を提供することも課題の一つである。
【0013】
また、ウェアラブルデバイス、具体的には腕時計型の小型電子機器に用いる二次電池や、眼鏡型の小型電子機器に用いる二次電池として適した全固体二次電池を提供することも課題の一つである。特に、ウェアラブルデバイスにおいては使用者の肌に接する場合もあるため、液漏れなどが生じない安全性の高い全固体二次電池を用いることが望まれている。
【課題を解決するための手段】
【0014】
本明細書で開示する構成の一つは、固体電解質としてSiOX(0<X<2)と、リチウムの有機錯体との共蒸着で得られる混合材料を用いる。即ち、無機材料と有機材料の混合材料からなる固体電解質層を固体二次電池に用いることが本発明の特徴の一つである。
【0015】
SiOX(0<X<2)と共蒸着させる材料としては、アルカリ金属またはアルカリ土類金属の単体、有機錯体または化合物のいずれかであり、例えば、Li、Li2Oなどを挙げることができる。特に、リチウムの有機錯体が好ましく、中でも、8-ヒドロキシキノリナト-リチウム(略称:Liq)が好ましい。
【0016】
本明細書で開示する作製方法に関する構成の一つは、正極活物質層上または負極活物質層上に、リチウムの有機錯体と、SiOX(0<X<2)とを共蒸着して固体電解質層を形成する固体二次電池の作製方法である。
【0017】
上記作製方法において、正極や負極は、スパッタ法で成膜するため、正極活物質層または負極活物質層はスパッタ法で形成することが好ましい。スパッタ装置は、同一チャンバー内または複数のチャンバーを用いて連続成膜を行うことも可能であり、マルチチャンバー方式の製造装置やインライン方式の製造装置とすることもできる。スパッタ法は、チャンバーとスパッタリングターゲットを用いる量産に適した製造方法である。また、スパッタ法は、薄く成形することができ、成膜特性が優れている。
【0018】
また、スパッタ法に特に限定されず、正極活物質層または負極活物質層は、気相法(真空蒸着法、溶射法、パルスレーザー堆積法(PLD法)、イオンプレーティング法、コールドスプレー法、エアロゾルデポジション法)を用いることもできる。なお、エアロゾルデポジション(AD)法は、基板を加熱することなく成膜を行う方法である。エアロゾルとは、ガス中に分散している微粒子を指している。
【0019】
また、CVD法や、ALD(Atomic layer Deposition)法を用いて、正極、負極、正極活物質層、または負極活物質層を成膜してもよい。
【0020】
また、上記作製方法で得られた材料膜を積層し、固体二次電池を作製することができる。
【0021】
得られた固体二次電池も本発明の一つであり、その構成は、正極と、負極と、正極と負極の間にシリコンと酸素とリチウムと炭素を有する固体電解質層とを有する。
【0022】
上記構成において、固体電解質層は、さらに窒素を含む。この窒素は、リチウムの有機錯体に含まれる窒素に起因している。
【0023】
また、上記構成において、負極と固体電解質層との間にシリコンを含む負極活物質層を有する。負極活物質層は、シリコンを主成分とするスパッタリングターゲットを用いて成膜することができる。
【0024】
また、上記構成において、正極と固体電解質層との間に正極活物質層を有する。正極活物質層は、リチウムコバルト酸化物(LiCoO2)を主成分とするスパッタリングターゲットを用いて成膜することができる。
【0025】
固体電解質層のシリコンと酸素の比(O/Si)は、1より大きく2より小さい。即ち、固体電解質層のシリコンに対する酸素の比は、1より大きく2より小さい。このような範囲にすることで、リチウムイオンが拡散しやすく、且つ、電子導電性がない固体電解質を実現することができる。
【0026】
固体電解質のリチウムイオン伝導率の向上を図るために、さらにリンなどを添加してもよい。
【0027】
なお、本明細書において、上述した固体電解質層の酸素比はEDX測定で得られる値を基にする。
【0028】
EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ場合がある。またEDXの面分析から、線状の領域のデータを抽出し、原子濃度について正極活物質粒子内の分布を評価することを線分析と呼ぶ場合がある。
【0029】
EDX面分析(例えば元素マッピング)により、内部、または表層部における、シリコン、窒素、炭素、および酸素の濃度を定量的に分析することができる。また、EDX線分析により、シリコン、窒素、炭素、および酸素の濃度のピークを分析することができる。EDXの濃度の単位は例えば原子%である。
【発明の効果】
【0030】
固体電解質層として、リチウムの有機錯体と、SiOX(0<X<2)とを共蒸着する薄膜を用いて薄膜型の固体二次電池の製造を可能とする。
【0031】
電解液を用いないため、薄膜型の固体二次電池は、高温でも用いることができる程度に耐熱性を有する。
【0032】
また、薄膜型の固体二次電池は、正極活物質層、固体電解質層、及び負極活物質層を1組とする積層数を増やすことで、直列または並列接続で多層積層化することができ、容量を大きくすることができる。
【0033】
また、薄膜型の固体二次電池は、面積を大きくすることでも容量を大きくすることができる。
【0034】
また、剥離転置技術を用いる事で、面積を大きくした後に所望の大きさに折り曲げることができる。
【図面の簡単な説明】
【0035】
【
図3】
図3は本発明の一態様を示す固体電解質層のEDXデータである。
【
図5】
図5は本発明の一態様を示す作製フロー図である。
【
図6】
図6Aは電池セルの一例を示す斜視図であり、
図6Bは回路の斜視図であり、
図6Cは電池セルと回路を重ねた場合の斜視図である。
【
図7】
図7Aは電池セルの一例を示す斜視図であり、
図7Bは回路の斜視図であり、
図7C、及び
図7Dは電池セルと回路を重ねた場合の斜視図である。
【発明を実施するための形態】
【0036】
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
【0037】
(実施の形態1)
図1は、薄膜型の固体二次電池の単層セルの場合について示す実施の形態の一つである。なお、本明細書において、固体二次電池の単層セルとは、正極、固体電解質層、負極を少なくとも有する一組のユニットを指すものとする。
【0038】
図1に示す単層セルは、基板101上に正極201、正極活物質層204、固体電解質層202、負極活物質層205、負極203の順に積層されている。なお、
図1に示す断面図は一部であり、正極の平面面積は、負極の平面面積よりも小さくなるように配置する。また、端部は丸みを帯びており、
図1では一方の端部のみを図示している。
【0039】
基板101としては、セラミックス基板、ガラス基板、プラスチック基板、シリコン基板、金属基板などが挙げられる。
【0040】
正極201や、負極203の材料としては、Al、Ti、Cu、Au、Cr、W、Mo、Ni、Agなどから選ばれる一種または複数種の導電材料を用いる。成膜方法としては、スパッタ法、蒸着法などを用いることができる。また、スパッタ法においては、メタルマスクを用いることで選択的に成膜することができる。また、レジストマスクなどを用いてドライエッチングやウェットエッチングにより選択的に除去することで導電膜をパターニングしてもよい。
【0041】
正極活物質層204は、リチウムコバルト酸化物(LiCoO2、LiCo2O4など)を主成分とするスパッタリングターゲットや、リチウムマンガン酸化物(LiMnO2、LiMn2O4など)を主成分とするスパッタリングターゲットや、リチウムニッケル酸化物(LiにO2、LiNi2O4など)を用いてスパッタ法により成膜することができる。また、リチウムマンガンコバルト酸化物(LiMnCoO4、Li2MnCoO4など)、ニッケルコバルトマンガンの三元系材料(LiNi1/3Mn1/3Co1/3O2:NCM)、ニッケルコバルトアルミニウムの三元系材料(LiNi0.8Co0.15Al0.05O2:NCA)などを用いることもできる。
【0042】
固体電解質層202は、無機材料と有機材料の混合材料を用いる。本実施の形態では、SiOX(0<X<2)と、リチウムの有機錯体との共蒸着で得られる混合材料を用いる。
【0043】
SiOX(0<X<2)と共蒸着させる材料としては、アルカリ金属またはアルカリ土類金属の単体、有機錯体または化合物のいずれかであり、例えば、Li、Li2Oなどを挙げることができる。特に、リチウムの有機錯体が好ましく、中でも、8-ヒドロキシキノリナト-リチウム(略称:Liq)が好ましい。SiOX(0<X<2)と共蒸着させる他の有機材料としては、ジリチウムフタロシアニン(フタロシアニン二リチウム)、リチウム2-(2-ピリジル)フェノラート(略称:Lipp)、リチウム2-(2’,2’’―ビピリジンー6’―イル)フェノラート(略称:Libpp)を用いることもできる。
【0044】
また、得られる固体電解質層202のシリコンと酸素の比(O/Si)は、1より大きく2より小さくなるように成膜条件を調節することが好ましい。このような範囲にすることで、リチウムイオンが拡散しやすく、且つ、電子導電性がない固体電解質層を実現することができる。
【0045】
また、固体電解質層202を積層構造としてもよく、積層とする場合、一層にリン酸リチウム(Li3PO4)に窒素を添加した材料(Li3PO4-YNY:LiPONとも呼ばれる)を積層してもよい。なお、Y>0である。
【0046】
負極活物質層205は、スパッタ法などを用いて、シリコンを主成分とする膜、炭素を主成分とする膜、酸化チタン膜、酸化バナジウム膜、酸化インジウム膜、酸化亜鉛膜、酸化スズ膜、酸化ニッケル膜などを用いることができる。また、負極活物質層205としてLi金属膜を用いてもよい。また、リチウムチタン酸化物(Li4Ti5O12、LiTi2O4など)を用いても良い。
【0047】
このように薄膜型の固体二次電池は、様々な膜を積層するため、界面抵抗の低減、内部抵抗の低減を図ることが好ましい。また、各膜の表面均一性、密着性なども接する膜に応じて優れた組み合わせとすることが好ましい。
【0048】
また、積層は任意の順序で堆積することができる。
図1と異なる積層順序とする例を
図2A及び
図2Bに示す。
図2Aは上面図であり、
図2Bは
図2A中の線AA’で切断した断面図に対応している。
【0049】
図2Bに示すように基板101上には、負極203を形成し、負極203上に負極活物質層205、固体電解質層202、正極活物質層204、正極201、保護層206の順で積層している。
【0050】
これらの膜は、それぞれメタルマスクを用いて形成することができる。スパッタ法を用いて負極203、負極活物質層205、正極活物質層204、正極201、保護層206を選択的に形成すればよい。また、共蒸着法を用い、メタルマスクを用いることで固体電解質層202を選択的に形成する。固体電解質層202は、Si粉末(SiO)と、Li粉末をそれぞれ蒸着させて共蒸着させることで成膜を行う。なお、共蒸着は、抵抗加熱源または電子ビーム蒸着源を用いる。なお、Si粉末(SiO)に限定されずペレット形状のものを用いてもよい。
【0051】
図2Aに示すように負極203の一部を露出させて負極端子部を形成している。負極端子部以外の領域は、保護層206で覆われている。また、正極201の一部を露出させて正極端子部を形成している。正極端子部以外の領域は、保護層206で覆われている。
【0052】
なお、保護層206としては、窒化シリコン膜(SiN膜とも呼ぶ)を用いる。窒化シリコン膜はスパッタ法を用いて成膜する。
【0053】
以上の一連の工程によって
図2Aに示す薄膜型の固体二次電池を製造することができる。
【0054】
また、得られた薄膜型の固体二次電池において、EDX面分析(例えば元素マッピング)を用いることで固体電解質層202の内部、または表層部における、シリコン、窒素、炭素、および酸素の濃度を定量的に分析することができる。
【0055】
固体電解質層202を成膜し、そのEDX測定を行った。
【0056】
固体電解質層202の断面のEDXスペクトルについて説明する。EDX測定では測定点に電子線照射を行い、これにより発生する特性X線のエネルギーと発生回数を測定し、EDXスペクトルを得る。結果を
図3に示す。また、原子数濃度%を表1に示す。
【0057】
【0058】
これらの結果から、得られた材料は、リチウムイオンが拡散しやすく、且つ、電子導電性はない材料といえ、固体電解質として用いることができる。
【0059】
また、固体電解質層の酸素比はEDX測定で得られる値を基に計算することができる。固体電解質層のシリコンと酸素の比(O/Si)は、1より大きく2より小さい。このような範囲にすることで、リチウムイオンが拡散しやすく、且つ、電子導電性がない固体電解質を実現することができる。
【0060】
また、固体電解質の成膜は、共蒸着に限定されず、同一チャンバー内でSiOガスとLiガスを同時に発生させ、それらのガスを同じ被成膜面上で冷却させることで成膜を行うこともできる。
【0061】
(実施の形態2)実施の形態1では単層セルの例を示したが、本実施の形態では多層セルの例を示す。
図4、
図5は、薄膜型の固体二次電池の多層セルの場合について示す実施の形態の一つである。
【0062】
【0063】
基板101上に正極201を形成し、正極201上に正極活物質層204、固体電解質層202、負極活物質層205、負極203を順次、形成することで、1つ目のセルを構成している。
【0064】
さらに、負極203上に2層目の負極活物質層、2層目の固体電解質層、2層目の正極活物質層、2層目の正極を順次、形成することで2つ目のセルを構成している。
【0065】
さらに、2層目の正極上に3層目の正極活物質層、3層目の固体電解質層、3層目の負極活物質層、3層目の負極を順次、形成することで、3つ目のセルを構成している。
【0066】
図4では、最後に保護層206が形成されている。
図4に示す3層積層は、容量を大きくするために、直列接続する構成となっているが、外部結線で並列に接続させることもできる。また、外部結線で直列と並列または直並列を選択することもできる。
【0067】
なお、固体電解質層202、2層目の固体電解質層、3層目の固体電解質層は、同じ材料を用いると製造コストを低減できるため、好ましい。
【0068】
また、
図4に示す構造を得るための製造フローの一例を
図5に示す。
【0069】
図5においては、作製工程を少なくするために、正極活物質層としてLCO膜を用い、集電体としてチタン膜を用いてチタン膜を正極とみなしている。また、負極活物質層としてシリコン膜を用い、集電体としてチタン膜を用い、負極とみなしている。チタン膜を共通電極として用いることで少ない構成で3層積層セルを実現している。
【0070】
(実施の形態3)
図6Aは、薄膜型の固体二次電池の外観図である。二次電池913は、端子951および端子952を有する。端子951は正極に、端子952は負極に、それぞれ電気的に接続される。
【0071】
図6Bは、電池制御回路の外観図である。
図6Bに示す電池制御回路は、基板900および層916を有する。基板900上には回路912およびアンテナ914が設けられる。アンテナ914は回路912に電気的に接続される。回路912には端子971および端子972が電気的に接続される。回路912は端子911に電気的に接続される。
【0072】
端子911は例えば、薄膜型の固体二次電池の電力が供給される機器に接続される。例えば、表示装置、センサ、等に接続される。
【0073】
層916は、例えば二次電池913による電磁界を遮蔽することができる機能を有する。層916としては、例えば磁性体を用いることができる。
【0074】
図6Cには、
図6Bに示す電池制御回路を二次電池913上に配置する例を示す。端子971は端子951に、端子972は端子952に、それぞれ電気的に接続される。層916は基板900と二次電池913との間に配置される。
【0075】
基板900として可撓性を有する基板を用いることが好ましい。
【0076】
基板900として可撓性を有する基板を用いることにより、薄型の電池制御回路を実現することができる。また後述する
図7Dに示すように電池制御回路を二次電池に巻き付けることができる。
【0077】
図7Aは薄膜型の固体二次電池の外観図である。
図7Bに示す電池制御回路は、基板900および層916を有する。
【0078】
図7Cに示すように、基板900を二次電池913の形状に合わせて曲げ、電池制御回路を二次電池の周りに配置することにより、
図7Dに示すように、電池制御回路を二次電池に巻き付けることができる。
【0079】
(実施の形態4)本実施の形態では、上記実施の形態で説明した電池制御回路に適用可能なトランジスタの構成ついて説明する。具体的には、異なる電気特性を有するトランジスタを積層して設ける構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
【0080】
図8に示す半導体装置は、トランジスタ300と、トランジスタ500と、容量600と、を有している。
図10Aはトランジスタ500のチャネル長方向の断面図であり、
図10Bはトランジスタ500のチャネル幅方向の断面図であり、
図10Cはトランジスタ300のチャネル幅方向の断面図である。
【0081】
トランジスタ500は、OSトランジスタである。よって、トランジスタ500は、オフ電流が極めて少ないため、これを半導体装置が有するトランジスタに用いることにより、長期にわたり書き込んだデータ電圧あるいは電荷を保持することが可能である。つまり、リフレッシュ動作の頻度が少ない、あるいは、リフレッシュ動作を必要としないため、半導体装置の消費電力を低減することができる。
【0082】
本実施の形態で説明する半導体装置は、
図8に示すようにトランジスタ300、トランジスタ500、容量600を有する。トランジスタ500はトランジスタ300の上方に設けられ、容量600はトランジスタ300、およびトランジスタ500の上方に設けられている。
【0083】
トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
【0084】
トランジスタ300は、
図10Cに示すように、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
【0085】
なお、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
【0086】
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
【0087】
低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
【0088】
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
【0089】
なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
【0090】
なお、
図8に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、などと同極性のトランジスタを意味する)とする場合、
図9に示すとおり、トランジスタ300の構成を、酸化物半導体を用いているトランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。
【0091】
トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
【0092】
絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
【0093】
なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
【0094】
絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
【0095】
また、絶縁体324には、基板311、またはトランジスタ300などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
【0096】
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
【0097】
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm2以下、好ましくは5×1015atoms/cm2以下であればよい。
【0098】
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
【0099】
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量600、またはトランジスタ500と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
【0100】
各プラグ、および配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
【0101】
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、
図8において、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0102】
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
【0103】
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
【0104】
絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、
図8において、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0105】
なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
【0106】
絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、
図8において、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0107】
なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
【0108】
絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、
図8において、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0109】
なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
【0110】
上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
【0111】
絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
【0112】
例えば、絶縁体510、および絶縁体514には、例えば、基板311、またはトランジスタ300を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
【0113】
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
【0114】
また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
【0115】
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
【0116】
また、例えば、絶縁体512、および絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
【0117】
また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量600、またはトランジスタ300と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0118】
特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
【0119】
絶縁体516の上方には、トランジスタ500が設けられている。
【0120】
図10Aおよび
図10Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516および導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542aおよび導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面および側面に配置された酸化物530cと、酸化物530cの形成面に配置された絶縁体550と、絶縁体550の形成面に配置された導電体560と、を有する。
【0121】
また、
図10Aおよび
図10Bに示すように、酸化物530a、酸化物530b、導電体542a、および導電体542bと、絶縁体580との間に絶縁体544が配置されることが好ましい。また、
図10Aおよび
図10Bに示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、
図10Aおよび
図10Bに示すように、絶縁体580、導電体560、および絶縁体550の上に絶縁体574が配置されることが好ましい。
【0122】
なお、本明細書などにおいて、酸化物530a、酸化物530b、および酸化物530cをまとめて酸化物530という場合がある。
【0123】
なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、および酸化物530cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、
図8、
図10Aに示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
【0124】
ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
【0125】
さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
【0126】
導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
【0127】
導電体503は、酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。
【0128】
本明細書等において、一対のゲート電極(第1のゲート電極、および第2のゲート電極)の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S-channel)構造とよぶ。また、本明細書等において、surrounded channel(S-channel)構造は、ソース電極およびドレイン電極として機能する導電体542aおよび導電体542bに接する酸化物530の側面および周辺が、チャネル形成領域と同じくI型であるといった特徴を有する。また、導電体542aおよび導電体542bに接する酸化物530の側面および周辺は、絶縁体544と接しているため、チャネル形成領域と同様にI型となりうる。なお、本明細書等において、I型とは後述する、高純度真性と同様として扱うことができる。また、本明細書等で開示するS-channel構造は、Fin型構造およびプレーナ型構造とは異なる。S-channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
【0129】
また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503aおよび導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構造として設ける構成にしてもよい。
【0130】
ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
【0131】
例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
【0132】
また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、本実施の形態では導電体503を導電体503aと導電体503bの積層で図示したが、導電体503は単層構造であってもよい。
【0133】
絶縁体520、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
【0134】
ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損(VO:oxygen vacancyともいう)を低減し、トランジスタ500の信頼性を向上させることができる。なお、酸化物530中の酸素欠損に水素が入った場合、当該欠陥(以下、VOHと呼ぶ場合がある。)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVOHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VOHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、酸化物半導体に酸素を供給して酸素欠損を補填すること(加酸素化処理と記載する場合がある。)が重要である。VOHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
【0135】
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm3以上、好ましくは1.0×1019atoms/cm3以上、さらに好ましくは2.0×1019atoms/cm3以上、または3.0×1020atoms/cm3以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
【0136】
また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VOH→Vo+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してH2Oとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542にゲッタリングされる場合がある。
【0137】
また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O2/(O2+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
【0138】
また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(VO)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
【0139】
なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をH2Oとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVOHが形成されるのを抑制することができる。
【0140】
また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
【0141】
絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
【0142】
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO3)、または(Ba,Sr)TiO3(BST)などのいわゆるhigh-k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh-k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
【0143】
特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
【0144】
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
【0145】
また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high-k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520を得ることができる。
【0146】
トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、酸化物530として適用できるIn-M-Zn酸化物は、CAAC-OS(c-axis aligned crystalline oxide semiconductor)であることが好ましい。または、CAC-OS(Cloud-Aligned Composite oxide semiconductor)であることが好ましい。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。また、酸化物530として、In-Ga酸化物、In-Zn酸化物を用いてもよい。
【0147】
CAC-OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC-OS又はCAC-metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(又はホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OS又はCAC-metal oxideに付与することができる。CAC-OS又はCAC-metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
【0148】
また、CAC-OS又はCAC-metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
【0149】
また、CAC-OS又はCAC-metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
【0150】
また、CAC-OS又はCAC-metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC-OS又はCAC-metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC-OS又はCAC-metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
【0151】
すなわち、CAC-OS又はCAC-metal oxideは、マトリックス複合材(matrix composite)、又は金属マトリックス複合材(metal matrix composite)と呼称することもできる。
【0152】
なお、酸化物半導体として機能する金属酸化物は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC-OS、多結晶酸化物半導体、nc-OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)、および非晶質酸化物半導体などがある。
【0153】
IGZOは、大きく分けてAmorphous(無定形)と、Crystalline(結晶性)と、Crystal(結晶)と、に分類される。また、Amorphousの中には、completely amorphousが含まれる。また、Crystallineの中には、CAAC(c-axis aligned crystalline)、nc(nanocrystalline)、及びCAC(Cloud-Aligned Composite)が含まれる。なお、Crystallineの分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、Crystalの中には、single crystal、及びpoly crystalが含まれる。
【0154】
CAAC-OSは、c軸配向性を有し、かつa-b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
【0155】
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC-OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
【0156】
また、CAAC-OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
【0157】
CAAC-OSは結晶性の高い金属酸化物である。一方、CAAC-OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損など)の少ない金属酸化物ともいえる。したがって、CAAC-OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC-OSを有する金属酸化物は熱に強く、信頼性が高い。
【0158】
nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶質酸化物半導体と区別が付かない場合がある。
【0159】
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、In-Ga-Zn酸化物(「IGZO」ともいう。)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
【0160】
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a-like OSは、鬆または低密度領域を有する。すなわち、a-like OSは、nc-OSおよびCAAC-OSと比べて、結晶性が低い。
【0161】
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。
【0162】
また、トランジスタ500には、キャリア濃度の低い金属酸化物を用いることが好ましい。金属酸化物のキャリア濃度を低くする場合においては、金属酸化物中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、金属酸化物中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
【0163】
特に、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、金属酸化物中に酸素欠損を形成する場合がある。金属酸化物中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となる場合がある。さらに、酸素欠損に水素が入った欠陥はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。
【0164】
酸素欠損に水素が入った欠陥は、金属酸化物のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、金属酸化物においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、金属酸化物のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
【0165】
よって、金属酸化物を酸化物530に用いる場合、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm3未満、好ましくは1×1019atoms/cm3未満、より好ましくは5×1018atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満とする。水素などの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
【0166】
また、酸化物530に金属酸化物を用いる場合、チャネル形成領域の金属酸化物のキャリア濃度は、1×1018cm-3以下であることが好ましく、1×1017cm-3未満であることがより好ましく、1×1016cm-3未満であることがさらに好ましく、1×1013cm-3未満であることがさらに好ましく、1×1012cm-3未満であることがさらに好ましい。なお、チャネル形成領域の金属酸化物のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10-9cm-3とすることができる。
【0167】
また、酸化物530に金属酸化物を用いる場合、導電体542(導電体542a、および導電体542b)と酸化物530とが接することで、酸化物530中の酸素が導電体542へ拡散し、導電体542が酸化する場合がある。導電体542が酸化することで、導電体542の導電率が低下する蓋然性が高い。なお、酸化物530中の酸素が導電体542へ拡散することを、導電体542が酸化物530中の酸素を吸収する、と言い換えることができる。
【0168】
また、酸化物530中の酸素が導電体542(導電体542a、および導電体542b)へ拡散することで、導電体542aと酸化物530bとの間、および、導電体542bと酸化物530bとの間に異層が形成される場合がある。当該異層は、導電体542よりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体542と、当該異層と、酸化物530bとの3層構造は、金属-絶縁体-半導体からなる3層構造とみなすことができ、MIS(Metal-Insulator-Semiconductor)構造と呼ぶ、またはMIS構造を主としたダイオード接合構造と呼ぶ場合がある。
【0169】
なお、上記異層は、導電体542と酸化物530bとの間に形成されることに限られず、例えば、異層が、導電体542と酸化物530cとの間に形成される場合や、導電体542と酸化物530bとの間、および導電体542と酸化物530cとの間に形成される場合がある。
【0170】
また、酸化物530においてチャネル形成領域にとして機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
【0171】
酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。
【0172】
なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530aまたは酸化物530bに用いることができる金属酸化物を、用いることができる。
【0173】
また、酸化物530aおよび酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530aおよび酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
【0174】
ここで、酸化物530a、酸化物530b、および酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、および酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、および酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
【0175】
具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn-Ga-Zn酸化物の場合、酸化物530aおよび酸化物530cとして、In-Ga-Zn酸化物、Ga-Zn酸化物、酸化ガリウムなどを用いるとよい。
【0176】
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、および酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
【0177】
酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542a、および導電体542bが設けられる。導電体542a、および導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があるため好ましい。
【0178】
また、
図10では、導電体542a、および導電体542bを単層構造として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅-マグネシウム-アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
【0179】
また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
【0180】
また、
図10Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、および領域543bが形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
【0181】
酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア密度が増加し、領域543a(領域543b)は、低抵抗領域となる。
【0182】
絶縁体544は、導電体542a、および導電体542bを覆うように設けられ、導電体542a、および導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
【0183】
絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコンまたは窒化シリコンなども用いることができる。
【0184】
特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、およびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、および導電体542bが耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
【0185】
絶縁体544を有することで、絶縁体580に含まれる水、および水素などの不純物が酸化物530c、絶縁体550を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
【0186】
絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面、および側面)に接して配置することが好ましい。絶縁体550は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
【0187】
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
【0188】
加熱により酸素が放出される絶縁体を、絶縁体550として、酸化物530cの上面に接して設けることにより、絶縁体550から、酸化物530cを通じて、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。
【0189】
また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
【0190】
なお、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high-k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
【0191】
第1のゲート電極として機能する導電体560は、
図10Aおよび
図10Bでは2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
【0192】
導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
【0193】
また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン、又は窒化チタンと上記導電性材料との積層構造としてもよい。
【0194】
絶縁体580は、絶縁体544を介して、導電体542a、および導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、および酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
【0195】
絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を、酸化物530cと接して設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530へと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
【0196】
絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
【0197】
半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
【0198】
絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550、および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
【0199】
例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
【0200】
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
【0201】
また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
【0202】
また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540a、および導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546、および導電体548と同様の構成である。
【0203】
絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
【0204】
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
【0205】
また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
【0206】
また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
【0207】
導電体546、および導電体548は、容量600、トランジスタ500、またはトランジスタ300と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
【0208】
また、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体522または絶縁体514に達する開口を形成し、絶縁体522または絶縁体514に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522または絶縁体514と同様の材料を用いればよい。
【0209】
続いて、トランジスタ500の上方には、容量600が設けられている。容量600は、導電体610と、導電体620と、絶縁体630とを有する。
【0210】
また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
【0211】
導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
【0212】
本実施の形態では、導電体612、および導電体610を単層構造で示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
【0213】
絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
【0214】
導電体620、および絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
【0215】
本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
【0216】
本発明の一態様の半導体装置に用いることができる基板としては、ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板(例えば、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板など)、半導体基板(例えば、単結晶半導体基板、多結晶半導体基板、または化合物半導体基板など)SOI(SOI:Silicon on Insulator)基板、などを用いることができる。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノシリケートガラス、またはアルミノホウケイ酸ガラス、またはソーダライムガラスなどがある。他にも、結晶化ガラスなどを用いることができる。
【0217】
または、基板として、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィルムなどを用いることができる。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、または回路の高集積化を図ることができる。
【0218】
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタ、抵抗、および/または容量などを形成してもよい。または、基板と、トランジスタ、抵抗、および/または容量などの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタ、抵抗、および/または容量などは耐熱性の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成、水素を含むシリコン膜等を用いることができる。
【0219】
つまり、ある基板上に半導体装置を形成し、その後、別の基板に半導体装置を転置してもよい。半導体装置が転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板を用いることにより、可撓性を有する半導体装置の製造、壊れにくい半導体装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる。
【0220】
(実施の形態5)
本実施の形態では、薄膜型二次電池を用いた電子機器の例について
図11及び
図12を用いて説明を行う。
【0221】
図11Bは、本発明に係る薄膜型二次電池を用いた応用機器の一例であるICカードである。電波3005を受信することにより得られた電力を
図11Aに示す薄膜型二次電池3001に充電することができる。ICカード3000内部にはアンテナ及びIC3004や、薄膜型二次電池3001が配置されている。ICカード3000上には、所有者のID3002及び写真3003が貼り付けされている。薄膜型二次電池3001に充電した電力を用いてアンテナから認証信号などの信号を発信することもできる。
【0222】
また、写真3003に代えてアクティブマトリクス表示装置を設けてもよい。アクティブマトリクス表示装置としては反射型液晶表示装置や有機EL表示装置や電子ペーパーなどがある。アクティブマトリクス表示装置に映像(動画または静止画)や時間を表示させることもできる。アクティブマトリクス表示装置の電力は、薄膜型二次電池3001から供給することができる。
【0223】
ICカードはプラスチック基板が用いられるため、フレキシブル基板を用いた有機EL表示装置が好ましい。
【0224】
また、太陽電池を設けてもよい。外光の照射により光を吸収し、電力を発生させ、その電力を薄膜型二次電池3001に充電することができる。
【0225】
また、薄膜型二次電池は、ICカードに限定されず、車載に用いるワイヤレスセンサの電源、MEMSデバイス用の二次電池などに用いることができる。
【0226】
図12Aは、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる。また、使用者が生活使用または屋外使用において水による耐水性を高めるため、接続するコネクタ部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
【0227】
例えば、
図12Aに示すような眼鏡型デバイス400に二次電池を搭載することができる。眼鏡型デバイス400は、フレーム400aと、表示部400bを有する。湾曲を有するフレーム400aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス400とすることができる。実施の形態1に示した薄膜型二次電池を備えてもよく、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
【0228】
また、ヘッドセット型デバイス401に二次電池を搭載することができる。ヘッドセット型デバイス401は、少なくともマイク部401aと、フレキシブルパイプ401bと、イヤフォン部401cを有する。フレキシブルパイプ401b内やイヤフォン部401c内に二次電池を設けることができる。実施の形態1に示した薄膜型二次電池を備えてもよく、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
【0229】
また、身体に直接取り付け可能なデバイス402に二次電池を搭載することができる。デバイス402の薄型の筐体402aの中に、二次電池402bを設けることができる。実施の形態1に示した薄膜型二次電池を備えてもよく、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
【0230】
また、衣服に取り付け可能なデバイス403に二次電池を搭載することができる。デバイス403の薄型の筐体403aの中に、二次電池403bを設けることができる。実施の形態1に示した薄膜型二次電池を備えてもよく、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
【0231】
また、ベルト型デバイス406に二次電池を搭載することができる。ベルト型デバイス406は、ベルト部406aおよびワイヤレス給電受電部406bを有し、ベルト部406aの内部に、二次電池を搭載することができる。実施の形態1に示した薄膜型二次電池を備えてもよく、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
【0232】
また、腕時計型デバイス405に二次電池を搭載することができる。腕時計型デバイス405は表示部405aおよびベルト部405bを有し、表示部405aまたはベルト部405bに、二次電池を設けることができる。実施の形態3に示した薄膜型二次電池を備えてもよく、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
【0233】
表示部405aには、時刻だけでなく、メールや電話の着信等、様々な情報を表示することができる。
【0234】
また、腕時計型デバイス405は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量および健康に関するデータを蓄積し、健康維持に役立てることができる。
【0235】
図12Aに示した腕時計型デバイス405について、以下に詳細な説明を行う。
【0236】
図12Bに腕から取り外した腕時計型デバイス405の斜視図を示す。
【0237】
また、側面図を
図12Cに示す。
図12Cは、内部に二次電池913を内蔵している様子を示している。二次電池913は実施の形態3に示した薄膜型二次電池である。二次電池913は表示部405aと重なる位置に設けられており、小型、且つ、軽量である。
【符号の説明】
【0238】
101:基板、201:正極、202:固体電解質層、203:負極、204:正極活物質層、205:負極活物質層、206:保護層、400:眼鏡型デバイス、400a:フレーム、400b:表示部、401:ヘッドセット型デバイス、401a:マイク部、401b:フレキシブルパイプ、401c:イヤフォン部、402:デバイス、402a:筐体、402b:二次電池、403:デバイス、403a:筐体、403b:二次電池、405:腕時計型デバイス、405a:表示部、405b:ベルト部、406:ベルト型デバイス、406a:ベルト部、406b:ワイヤレス給電受電部、3000:ICカード、3001:薄膜型二次電池、3002:ID、3003:写真、3004:IC、3005:電波
【手続補正書】
【提出日】2024-08-08
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
正極と、
負極と、
前記正極と前記負極の間の、シリコンと酸素とリチウムと炭素とを有する固体電解質層と、
保護層と、を有し、
前記固体電解質層のシリコンに対する酸素の比(O/Si)は、1より大きく2より小さく、
上面視において、前記保護層は、前記正極及び前記負極から突出した前記固体電解質層と接する領域を有する、固体二次電池。
【請求項2】
正極と、
負極と、
前記正極と前記負極の間の、シリコンと酸素とリチウムと炭素とを有する固体電解質層と、
保護層と、を有し、
前記固体電解質層の断面に対するEDX測定結果から求めた、前記固体電解質層のシリコンに対する酸素の比(O/Si)は、1より大きく2より小さく、
上面視において、前記保護層は、前記正極及び前記負極から突出した前記固体電解質層と接する領域を有する、固体二次電池。
【請求項3】
請求項1または請求項2において、前記固体電解質層は、さらに窒素を有する、固体二次電池。
【請求項4】
請求項1乃至請求項3のいずれか一において、前記保護層は、窒化シリコンを有する、固体二次電池。