(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024138294
(43)【公開日】2024-10-08
(54)【発明の名称】IABネットワークにおけるレイテンシ低減のためのマルチホップ構成のシステム及び方法
(51)【国際特許分類】
H04W 92/20 20090101AFI20241001BHJP
H04W 76/10 20180101ALI20241001BHJP
【FI】
H04W92/20 110
H04W76/10
【審査請求】有
【請求項の数】16
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024099664
(22)【出願日】2024-06-20
(62)【分割の表示】P 2023524783の分割
【原出願日】2020-10-22
(71)【出願人】
【識別番号】503260918
【氏名又は名称】アップル インコーポレイテッド
【氏名又は名称原語表記】Apple Inc.
【住所又は居所原語表記】One Apple Park Way,Cupertino, California 95014, U.S.A.
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】バンガラ, サーマ ヴィー.
(72)【発明者】
【氏名】シュー, ファンリ
(72)【発明者】
【氏名】フー, ハイジン
(72)【発明者】
【氏名】シン, ロンダ
(72)【発明者】
【氏名】シカリ, ムルタザ エー.
(72)【発明者】
【氏名】コダリ, スリー ラム
(72)【発明者】
【氏名】ニンマラ, スリニバサン
(57)【要約】 (修正有)
【課題】効率を改善するためのアクセスバックホール統合(IAB)ネットワークを含む無線通信システム及び方法を提供する。
【解決手段】バックホール無線リンク制御(RLC)チャネル確立の方法は、宛先フィールドと、経路フィールドと、宛先フィールドがユニキャストアドレスを含むのかマルチキャストアドレスを含むのかを示すように構成されたビットと、を含むバックホールアダプションプロトコル(BAP)ヘッダを含むBAPプロトコルデータユニット(PDU)を生成し、BAP PDUを含むマルチキャスト無線リソース制御(RRC)再構成メッセージを生成し、マルチキャストRRC再構成メッセージを送信したことに応答して、複数のIABノードからBAPを使用して受信されたユニキャストRRC再構成完了メッセージを処理する。
【選択図】
図5
【特許請求の範囲】
【請求項1】
無線ネットワークでバックホールアダプションプロトコル(BAP)を使用する、バックホール無線リンク制御(RLC)チャネル確立のための方法であって、
宛先フィールドと、経路フィールドと、前記宛先フィールドがユニキャストアドレスを含むのかマルチキャストアドレスを含むのかを示すように構成されたビットと、を含むBAPヘッダを含むBAPプロトコルデータユニット(PDU)を生成することと、
前記BAP PDUを含むマルチキャスト無線リソース制御(RRC)再構成メッセージを生成することと、
前記マルチキャストRRC再構成メッセージを送信したことに応答して、複数のアクセスバックホール統合(IAB)ノードから前記BAPを使用して受信されたユニキャストRRC再構成完了メッセージを処理することと、
を含む、方法。
【請求項2】
前記宛先フィールド内のアドレスを、前記BAPヘッダの前記経路フィールド内の経路識別子のための前記マルチキャストアドレスとして扱うように複数のIABノードに指示するように前記ビットを設定することを更に含む、請求項1に記載の方法。
【請求項3】
前記複数のIABノードを、サブネットプレフィックスに対応するサブネットにグループ化することと、
前記サブネットプレフィックスを前記BAPヘッダの前記宛先フィールドに含めることと、
を更に含む、請求項2に記載の方法。
【請求項4】
コアネットワークからのPDUセッションセットアップ要求に応答して前記BAP PDUを生成することと、
前記複数のIABノードからの前記ユニキャストRRC再構成完了メッセージを処理することに応答して、前記複数のIABノードのうち1つと通信状態にあるユーザ機器(UE)にユニキャストRRC再構成メッセージを送信することと、
前記UEからのRRC再構成完了メッセージを処理することと、
前記UEからの前記RRC再構成完了メッセージに応答して、前記コアネットワークにPDUセッションセットアップ完了メッセージを送信することと、
を更に含む、請求項1に記載の方法。
【請求項5】
前記複数のIABノードが、前記UEと前記コアネットワークとの間の第1のバックホール経路内の優先リンクのための第1のIABノードと、前記UEと前記コアネットワークとの間の第2のバックホール経路内のバックアップリンクのための第2のIABノードとを含む、請求項4に記載の方法。
【請求項6】
無線ネットワークで構成転送を使用する、バックホール無線リンク制御(RLC)チャネル確立のための方法であって、
転送先フィールドを含む情報要素(IE)を含む無線リソース制御(RRC)再構成メッセージを生成することであって、前記転送先フィールドが複数のアクセスバックホール統合(IAB)ノード間の順次ホップのためのアドレスのリストを含む、ことと、
前記複数のIABノードのうち第2のIABノードに転送するために、前記RRC再構成メッセージを前記複数のIABノードのうち第1のIABノードに送信することと、
を含む、方法。
【請求項7】
前記複数のIABノードの各ノードからRRC再構成完了メッセージを受信することを更に含む、請求項6に記載の方法。
【請求項8】
前記複数のIABノードの末端ノードからRRC再構成完了メッセージを受信することであって、前記末端ノードが、ユーザ機器(UE)と通信状態にあるか、又は前記UEとの接続を確立するための経路に沿って故障を検出済みである、ことを更に含む、請求項6に記載の方法。
【請求項9】
前記故障に基づいて、前記複数のIABノードのうち故障したIABノードに前記RRC再構成メッセージを再送することを更に含む、請求項8に記載の方法。
【請求項10】
1つ以上のRRC再構成完了メッセージを受信したことに基づいて、前記バックホールRLCチャネル確立が完了するまで、前記RRC再構成メッセージの再送を閾値回数まで試みることを更に含む、請求項6に記載の方法。
【請求項11】
前記複数のIABノードを、サブネットプレフィックスに対応するサブネットにグループ化することを更に含む、請求項6に記載の方法。
【請求項12】
前記複数のIABノードが、前記UEと前記コアネットワークとの間の第1の経路に優先リンクを確立し、前記UEと前記コアネットワークとの間の第2の経路にバックアップリンクを確立する、請求項6に記載の方法。
【請求項13】
前記RRC再構成メッセージが、前記優先リンクを含む前記第1のバックホール経路に対応する第1のRRC再構成メッセージを含み、前記方法が、
前記転送先フィールドを含む前記IEを含む第2のRRC再構成メッセージを生成することであって、前記転送先フィールドが前記バックアップリンクのための第3のIABノードのアドレスを含む、ことと、
前記複数のIABノードのうち前記第3のIABノードに直接又は間接的に転送するために、前記第2のRRC再構成メッセージを前記複数のIABノードのうち前記第1のIABノードに送信することと、
を更に含む、請求項12に記載の方法。
【請求項14】
前記第2のRRC再構成メッセージを送信する前に、前記第1のバックホール経路に対応するRRC再構成完了メッセージを受信することを更に含む、請求項13に記載の方法。
【請求項15】
前記優先リンクと前記バックアップリンクとの両方を確立するために、前記第1のRRC再構成メッセージと前記第2のRRC再構成メッセージとを同時に送信することを更に含む、請求項13に記載の方法。
【請求項16】
前記バックアップリンクをアクティブ化するための指示を含むメディアアクセス制御(MAC)制御要素(CE)を処理することを更に含む、請求項13に記載の方法。
【請求項17】
前記MAC CEが、アクティブ化/非アクティブ化フィールド及び経路識別子(ID)フィールドを含み、前記アクティブ化/非アクティブ化フィールドが、前記経路IDフィールドによって特定される前記バックアップリンクに対応する前記第2経路がアクティブ化されているのか非アクティブ化されているのかを示す、請求項16に記載の方法。
【請求項18】
前記複数のIABノード間での交換のために構成された下りリンク制御情報(DCI)フォーマットを有するDCIを処理することであって、前記DCIフォーマットが、IAB間通信のためのIABコマンドのグループを送信するために使用され、IABコマンドの前記グループが、前記バックアップリンクをアクティブ化するためのコマンドを含む、ことを更に含む、請求項13に記載の方法。
【請求項19】
マルチキャストを伴う無線リソース構成(RRC)再構成を使用する、バックホール無線リンク制御(RLC)チャネル確立のための方法であって、
アクセスバックホール統合(IAB)ドナーノード及び1つ以上の子IABノードを1つのサブネットとして構成することと、
前記サブネットに送信するための再構成メッセージを生成することであって、前記再構成メッセージが、前記バックホールRLCチャネル確立のための構成設定を含む前記サブネットのための情報要素(IE)を含み、前記IEが、前記サブネットに関連するインターネットプロトコル(IP)アドレスを有する前記IABドナーノード及び前記1つ以上の子IABノードに前記構成設定を適用するように指示するために、前記サブネットを特定する、ことと、を含む、
方法。
【請求項20】
前記構成設定が、前記IABのための前記RLCの1対1(1-1)又は複数対1(複数-1)のマッピング構成のためのものである、請求項19に記載の方法。
【請求項21】
請求項1から請求項20のいずれか一項に記載のステップの各々を処理する手段を備えるノード。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は一般に、アクセスバックホール統合(Integrated Access and Backhaul:IAB)ネットワークを含め、無線通信システムに関する。
【背景技術】
【0002】
無線モバイル通信技術は、様々な規格及びプロトコルを使用して、基地局と無線モバイルデバイスとの間でデータを送信する。無線通信システムの規格及びプロトコルには、第3世代パートナーシッププロジェクト(3GPP(登録商標))ロングタームエボリューション(LTE)(例えば、4G)又は新無線(NR)(例えば、5G)、ワールドワイド・インターオペラビリティ・フォー・マイクロウェーブ・アクセス(worldwide interoperability for microwave access、WiMAX)として業界団体に一般的に知られている、米国電気電子学会(Institute of Electrical and Electronics、Engineers、IEEE)802.16規格、及びWi-Fiとして業界団体に一般的に知られている、無線ローカルエリアネットワーク(wireless local area network、WLAN)のためのIEEE802.11規格を挙げることができる。LTEシステムの3GPP無線アクセスネットワーク(radio access network、RAN)では、基地局は、ユーザ機器(user equipment、UE)として知られる無線通信デバイスと通信する、発展型ユニバーサル地上無線アクセスネットワーク(Evolved Universal Terrestrial Radio Access Network、E-UTRAN)ノードB(発展型ノードB、拡張ノードB、eNodeB、又はeNBとも一般に呼ばれる)及び/又はE-UTRANの無線ネットワークコントローラ(Radio Network Controller、RNC)などのRANノードを含むことができる。第5世代(5G)無線RANでは、RANノードは、5Gノード、NRノード(次世代ノードB、又はgノードB(gNB)とも呼ばれる)を含むことができる。
【0003】
RANは、無線アクセス技術(radio access technology、RAT)を使用して、RANノードとUEとの間で通信する。RANとしては、コアネットワークを介した通信サービスへのアクセスを提供する、モバイル通信のためのグローバルシステム(global system for mobile communications、GSM)、GSM進化のためのエンハンスドデータレート(enhanced data rates for GSM evolution、EDGE)RAN(GERAN)、ユニバーサル地上無線アクセスネットワーク(Universal Terrestrial Radio Access Network、UTRAN)、及び/又はE-UTRANを挙げることができる。RANのそれぞれは、特定の3GPP RATに従って動作する。例えば、GERANは、GSM及び/又はEDGE RATを実装し、UTRANは、ユニバーサル移動通信システム(universal mobile telecommunication system、UMTS)RAT、又は他の3GPP RATを実装し、E-UTRANは、LTE RATを実装し、NG-RANは5G RATを実装する。特定の配備では、E-UTRANはまた、5G RATを実装することができる。
【図面の簡単な説明】
【0004】
任意の特定の要素又は行為の考察を容易に識別するために、参照番号の最上位の桁(単数又は複数)は、その要素が最初に導入された図の番号を指す。
【0005】
【
図1】アクセスバックホール統合(Integrated Access and Backhaul:IAB)ネットワーク例を示す図である。
【0006】
【
図2A】一実施形態による、IABネットワーク例及び、対応するBH RLCチャネルセットアップのシグナリング図を示す図である。
【0007】
【
図2B】一実施形態による、バックアップリンクを有するIABネットワーク例及び、対応するBH RLCチャネルセットアップのシグナリング図を示す図である。
【0008】
【
図3】一実施形態によって修正され得るBAPヘッダを含むBAP PDUを示す図である。
【0009】
【
図4】一実施形態による、IABネットワーク及び、対応する、BAPヘッダ修正を伴うBH RLCチャネルセットアップのシグナリング図を示す図である。
【0010】
【0011】
【
図6】一実施形態による、IABネットワーク及び、対応する、構成転送を伴うBH RLCチャネルセットアップのシグナリング図を示す図である。
【0012】
【
図7】一実施形態による、IABネットワーク及び、対応するBH RLCチャネルセットアップのシグナリング図を示す図である。
【0013】
【
図8】一実施形態による、バックアップリンクを有するIABネットワーク及び、対応するBH RLCチャネルセットアップのシグナリング図を示す図である。
【0014】
【0015】
【
図10】一実施形態によるMAC CE例を示す図である。
【0016】
【0017】
【
図12】一実施形態によるインフラストラクチャ設備を示す図である。
【0018】
【
図13】一実施形態によるプラットフォームを示す図である。
【0019】
【
図14】一実施形態によるコンポーネントを示す図である。
【発明を実施するための形態】
【0020】
本開示は、マルチホップルーティングを可能にするために3GPPに設計された特徴である、アクセスバックホール統合(IAB)に関する。IABノードは、UEへのアクセスノードとしての役割を果たすとともに、他のIABノードへのバックホール(BH)リンクも提供する。無線バックホールでは、IPレイヤは、複数回のホップを介したルーティングを可能にするバックホールアダプションプロトコル(BAP)サブレイヤを介して搬送される。BAPは、IABノードが互いに対話できるようにし、また、例えば、ネクストホップ無線リンク制御(RLC)チャネルのマッピング、トラフィック弁別に基づくネクストホップIABノード(子及び親の両方)へのルーティング、ネットワークイベント(例えば、無線リンク故障(RLF))の指示、データ転送、及び/又はフロー制御フィードバックシグナリングを含む、非常に多数の機能に対応する。
【0021】
各バックホールリンク上で、BAPプロトコルデータユニット(PDU)はBH RLCチャネルによって搬送される。トラフィック優先順位付け及びサービス品質(QoS)実施を可能にするように、各BHリンク上に複数のBH RLCチャネルを構成することができる。BAP PDUに対するBH-RLCチャネルマッピングは、各IABノード及びIABドナーデータユニット(DU)上のBAPエンティティによって実行される。ある特定のシステムでは、RLCチャネルマッピングは主に、ドナー制御ユニット(CU)から各個のノードへの無線リソース制御(RRC)再構成メッセージ(RRCReconfiguration message)を介して行われる。BH RLCチャネル確立のいくつかの実装形態では、最終的な宛先(UEにおける)まで、ホップごとに確実にセットアップが行われるように、別々のRRCReconfigurationメッセージが使用される。
【0022】
個々のIABノードを構成するプロセスはホップごとに行われるにも関わらず、構成自体及びメッセージ自体は複数のIABノードで同じであり、これにより、このプロセスについて複数のRRCReconfigurationラウンドトリップ時間レイテンシが発生する。レイテンシ問題は、1対1(1-1)と複数対1(複数-1)の両方のBH RLCマッピング構成で同程度である。不十分な無線周波数(RF)カバレッジが原因のRLF及びノード過負荷などのネットワークイベントが、UEへのBH RLCチャネルの確立において更なる遅延を引き起こす可能性がある。したがって、超高信頼性低レイテンシ通信(ultra-reliable low-latency communication:URLLC)が必要なアプリケーションなどの、QoSが増大したアプリケーションは、セットアップ及びメンテナンスの大幅なレイテンシに直面することがある。
【0023】
図1は、IABネットワーク例100のBH RLCチャネルコールフローのためのRRCReconfigurationを示す。IABネットワーク100は、コアネットワーク104(例えばNRコア)へのファイバ接続性(例えばNGインタフェースを介した)を有するIABドナー102を含む。IABネットワーク100はまた、この例ではIABノード106(IABノード1として示される)及びIABノード108(IABノード2として示される)を含むが、UE110とコアネットワーク104との間の接続を確立するために、任意の数のIABノードすなわちホップ数でも使用され得る。IABドナー102はバックエンドノードと呼ばれることもあり、DU112及びCU114を含む。IABノード106及びIABノード108は、中間ノード、子ノード、又は中継ノードと呼ばれることもあり、それぞれが2つのサブコンポーネント、すなわち、DU(DU116及びDU118として示される)及びモバイル端末(MT)(MT120及びMT122として示される)を含む。
【0024】
MTは、通常のUEと同様に動作するようにネットワークノード(例えば、gNB)を構成するコンポーネントを備える。例えば、典型的なUEがネットワークに接続するために使用するプロトコルが、MTにおいて、3GPP Rel.16及びRel.17で考察されている追加の拡張付きでサポートされている。例えばMT122は、IABノード108が親ノード(IABドナー102)とのシグナリング無線ベアラ(SRB)及び/又はデータ無線ベアラ(DRB)を確立できるようにする。MTは、どの親のもとに参加するか特定するためにセル選択を実行し、BAPレイヤを通してRLCをセットアップして利用し、BAPレイヤは、複数の異なるUEベアラのためにネットワークを通した異なる経路を介してデータをルーティングする機能性を提供する。
【0025】
図1に示すように、IAB統合手順124には、あるIABノードがIABネットワーク100に参加するための3つのフェーズ(フェーズ1、フェーズ2-1、及びフェーズ2-2として示す)が含まれ得る。フェーズ1はIABノード発見統合を含み、ここで、例えば、IABノード106は参加しようとするIABノードとして、コアネットワーク104との接続を確立するために、IABノード108及びIABドナー102を含めた他のIABノードの特定を試みてもよい。例えば、IABノード106は、そのノードのMT120の機能を使用して初期アクセス手順を実行してもよい。フェーズ2-1でIABドナー102、IABノード106及びIABノード108はルーティング更新手順を実行して、それらの間に、UE110(及びIABノード106に接続された他のUE)からのデータがそこを通ってコアネットワーク104にリーチできるようになるルーティング管理スキームを確立する。例えば、IABドナー102は、IABノード106に向かう1つ以上の中間ホップに1つ以上のBH RLCチャネルを確立し、それらの中間ホップにおけるルーティングテーブルを更新してもよい。次にフェーズ2-2で、フェーズ2-1で確立されたBH RLC接続性を使用して、IABノード106のDU116が構成される。DU116がセットアップされると、IABノード106はUE110及び/又は他のUEにサービスを提供することができる。
【0026】
UE110及びコアネットワーク104は、次いで、PDUセッション確立/修正の手順126を実行することができ、ここでUE110はIABノード106についての測定報告128を送信してもよく、コアネットワーク104はPDUセッションセットアップ要求130を送信してもよい。ところが、
図1に示すように、PDUセッションセットアップが完了し、UE110とコアネットワーク104との間でデータフロー132が開始できるようになる前に、IABノード108、IABノード106、及びUE110の各々から再構成完了メッセージを受信する際にマルチホップ遅延が存在することがある。例えば、PDUセッションセットアップ要求130に応答して、IABドナー102は、BH情報(bh-RLC-ChannelToAddModList)を有するRRCReconfigurationメッセージを順次送信し、IABノード108及びIABノード106からRRCReconfigurationCompleteメッセージを受信する。次いで、IABドナー102は、RRCReconfigurationメッセージをUE110に送信し、それに応答してRRCReconfigurationCompleteメッセージを受信し、これがコアネットワーク104に転送されて、PDUセッション確立手順が完了する。そのようなマルチホップ遅延は、多くのアプリケーションにとって望ましくない場合がある。
【0027】
図2Aは、ある一定のネットワーク実装形態におけるIABネットワーク例202a及び、対応するBH RLCチャネルセットアップのシグナリング
図204aを示す。IABネットワーク202aは、5Gコアネットワーク208へのファイババックホール接続(例えば、NGインタフェースを介した)を有するIABドナー206を含む。この例では、IABネットワーク202aはまた、IABノード210(IABノード1-1として示される)、IABノード212(IABノード2-1として示される)、及びIABノード214(IABノード3-1として示される)を含む。この例ではまた、IABノード214は無線バックホールを使用して(例えばNR-Uuインタフェースを使用して)、UE216と5Gコアネットワーク208との間の通信を確立する。当業者であれば、IABノードのいずれもがまた、他のUEとの通信を提供してもよいことを本明細書の開示から認識する。例えばIABノード210が、UE218と5Gコアネットワーク208との間の通信を確立してもよい。
図1に関して上記で説明したように、IABドナー206はDU及びCUを含み、IABノード210、IABノード212、及びIABノード214の各々はDU及びMTを含む。
【0028】
シグナリング
図204aは、ある一定の無線ネットワークによって実装されるIABネットワーク202aのBH RLCチャネルセットアップ手順を示す。IABドナー206はIABノード210にRRCReconfigurationメッセージ220を送信し、それに応答してRRCReconfigurationCompleteメッセージ222を受信する。次いでIABドナー206はIABノード212にRRCReconfigurationメッセージ224を送信し、それに応答してRRCReconfigurationCompleteメッセージ226を受信する。次いでIABドナー206はIABノード214にRRCReconfigurationメッセージ228を送信し、それに応答してRRCReconfigurationCompleteメッセージ230を受信する。最後にIABドナー206はUE216にRRCReconfigurationメッセージ232を送信し、それに応答してRRCReconfigurationCompleteメッセージ234を受信する。IABドナー206は、各ホップのためのRRCReconfiguration及びRRCReconfigurationCompleteメッセージを順次処理することによって、BH RLCチャネルセットアップ手順に遅延をもたらす。
【0029】
別の例として
図2Bは、ある一定のネットワーク実装形態における、バックアップリンクを有するIABネットワーク例202b及び、対応するBH RLCチャネルセットアップのシグナリング
図204bを示す。この例では、IABノード210とIABノード214との間の優先リンクがIABノード212を介して確立され(
図2Aに示すように)、IABノード210とIABノード214との間のバックアップリンクがIABノード236(IABノード2-2として示される)を介して確立される。シグナリング
図204bは、
図2Aに示したRRCReconfiguration及びRRCReconfigurationCompleteメッセージの各々と、それに続く、バックアップリンクを通る経路を確立するための追加のメッセージとを含む。
図2Bに示すように、IABドナー206はIABノード210にRRCReconfigurationメッセージ238を送信し、RRCReconfigurationCompleteメッセージ240を受信する。次いでIABドナー206はIABノード236にRRCReconfigurationメッセージ242を送信し、応答のRRCReconfigurationCompleteメッセージ244を受信する。次いでIABドナー206はIABノード214にRRCReconfigurationメッセージ246を送信し、RRCReconfigurationCompleteメッセージ248を受信する。したがって、
図2Bに示される、順次送られるRRCReconfiguration及びRRCReconfigurationCompleteメッセージによる遅延は、
図2Aに示される遅延よりも増加する。
【0030】
したがって、本明細書のある一定の実施形態は構成レイテンシの低減を提供する。
【0031】
ある一定の実施形態では、効率を改善するためのアーキテクチャ的変更が提供される。例えば、ネットワークノードのグループ化を使用して、更新の必要な同一の共通構成に属する複数のノードを単一のRRCReconfigurationメッセージ(例えばグループページメッセージなど)を使用して更新できるようにし得る。グループは、あるUEにリーチするIABノードから作られてもよい(インターネットグループ管理プロトコル(Internet Group Management Protocol:IGMP)に類似)。サブネット化概念を使用して、あるIABネットワークについて、子ノードが親ノードのサブネットの一部である階層化アーキテクチャを作成してもよい。これによりマルチキャストの負担が軽減され、単一のサブネットプレフィックスを使用して全ての受信者を指定することができる。
【0032】
ある一定の実施形態では、BAPヘッダの修正によってDRB送信の高速化を支援する。他の実施形態では、構成レイテンシを低減するためにSRBフロー及びDRBフローの両方に構成転送が使用され、構成転送では、複数の中間ノードに単一のRRCReconfigurationメッセージが転送され、それぞれの中間ノードが独立に構成を処理して応答する。更に別の実施形態では、IABノード及びバックアップの同時構成のために、SRBフローとDRBフローの両方に構成マルチキャストが使用される。ある一定のそのような実施形態では、IABノードでのバックアップリンクの高速アクティブ化の方法が提供される。
【0033】
I.BAPヘッダの修正
【0034】
一実施形態では、UEへの経路内のノードへのRRCReconfigurationメッセージの配信を簡易化及び/又は高速化しながらもBAPによってもたらされる信頼性を保持するために、BAPヘッダに1つ以上のフィールドが追加される。例えば、ある状況下では、BAPヘッダのDESTINATIONアドレスは、マルチキャストアドレスとして扱われてもよい。更に、BAPヘッダ内の単一のビットを使用して、DESTINATIONアドレスをユニキャストアドレスと扱うべきか、マルチキャストアドレスとして扱うべきかを示してもよい。
【0035】
例えば、
図3は、本明細書のある一定の実施形態に従って修正され得るBAPヘッダを含むBAP PDU300を示す。BAPヘッダは、BAP PDU300の最初の3オクテットを含む。BAPヘッダの最初のオクテットは、BAP PDU300がBAPデータPDUであるかBAP制御PDUであるかを示すD/Cビット302と、3つの予約済みビット304と、DESTINATIONフィールド306の第1の部分(例えば4ビット)とを含む。BAPヘッダの2番目のオクテットは、DESTINATIONフィールド306の第2の部分(例えば6ビット)と、PATHフィールド308の第1の部分(例えば2ビット)とを含む。BAPヘッダの3番目のオクテットは、PATHフィールド308の第2の部分(例えば8ビット)を含む。BAP PDU300は、BAPヘッダに続いてデータ310を含む。
【0036】
一実施形態では、予約済みビット304のうち1つ(例えば、最上位の予約済みビット)が、DESTINATIONフィールド306がユニキャストアドレス(すなわち宛先のIABノード又はIABドナーDUのBAPアドレス)として構成されるのか、マルチキャストアドレスとして構成されるのかを示すBAPマルチキャストビットとして再構成される。例えば、DESTINATIONフィールド306に提供されるアドレスがPATHフィールド308内のBAP経路識別子(PathID)のためのブロードキャストアドレスとして扱うべきであることを中間ノードに示すためにBAPマルチキャストビットが「1」に設定されてもよく、また、DESTINATIONフィールド306をユニキャストアドレスとして扱うべきであることを示すためにBAPマルチキャストビットが「0」に設定されもよい。ある一定の実施形態では、実際のRLC自体は透過モードにあることがある。
【0037】
修正されたBAPヘッダを有するBAP PDU300を使用することには、いくつかの利点がある。例えば、BAPはネットワーク専用プロトコルなので、交換はIABノード間でのみ行われる。更に、このプロトコルはユニキャストからブロードキャスト及び他の機構に拡張可能である。また、経路が確立されてからは、RRCReconfigurationを用いて別々にUEを扱うことができる(例えば、DESTINATIONフィールド306をユニキャストアドレスとして扱うべきであることを示すように、BAPマルチキャストビットを変更する)。
【0038】
個々のIABノードは、マルチキャストのRRCReconfigurationメッセージを受信すると、BAPプロトコルを介してユニキャストのRRCReconfigurationCompleteメッセージで応答する。したがって、本方法は、ラウンドトリップレイテンシを低減するために、応答を集めて送信する高速化された方法を提供する。
【0039】
ある一定のそのような実施形態では、UEにリーチする複数のIABノードがDESTINATIONフィールド306によって特定されるサブネット内にあることができるように、上記で説明したようにネットワークノードのグループ化が使用されてもよい。例えば
図4は、一実施形態によるIABネットワーク402(すなわち、
図2Bに示すIABネットワーク202b)及び、対応する、BAPヘッダ修正を伴うBH RLCチャネルセットアップのシグナリング
図404を示す。この例では、IABドナー206が、修正されたBAPヘッダを含むRRCReconfigurationメッセージ406を生成し、ここでBAPマルチキャストビットは、DESTINATIONフィールドがBAP PathID(”aaaaaa”)のためのマルチキャストアドレス(例えば、”subnet/k”を示す)であることを示すように設定される(R=1)。IABドナー206は、RRCReconfigurationメッセージ406を、例えばコアネットワークからPDUセッションセットアップ要求を受信したことに応答して生成してもよい(
図1参照)。IABドナー206は、IABノード210にRRCReconfigurationメッセージ406を送信する。
【0040】
IABノード210は、IABドナー206にRRCReconfigurationCompleteメッセージ408で応答し、IABノード212にRRCReconfigurationメッセージ406を転送する。IABノード212は、IABドナー206にRRCReconfigurationCompleteメッセージ410を送信することによって応答し、IABノード214にRRCReconfigurationメッセージ406を転送する。IABノード214もまた、IABドナー206にRRCReconfigurationCompleteメッセージ412を送信することによって応答する。マルチキャストアドレスを使用してIABノードが構成された後、IABドナー206はUE216にユニキャストRRCReconfigurationメッセージ414を送信し、UE216はIABドナー206にRRCReconfigurationCompleteメッセージ416を送信することによって応答する。同様に、IABドナー206は、IABノード214に接続されている他のUEに他のユニキャストRRCReconfigurationメッセージを送信してもよい。IABドナー206は、RRCReconfigurationCompleteメッセージ416を受信した後、コアネットワークにPDUセッションセットアップ完了メッセージを送信してもよい(
図1参照)。
【0041】
図4のシグナリング
図404に示すように、IABドナー206がRRCReconfigurationメッセージ406を送信するのは1回だけなので、ラウンドトリップレイテンシが低減される。したがって、BH RLCチャネルセットアップのためにBAPヘッダ修正を使用すると6つのRRCReconfiguration及びRRCReconfigurationCompleteメッセージが使用され、これは、
図2Bの例で8つのRRCReconfiguration及びRRCReconfigurationCompleteメッセージが使用されるのと比較して全体的なレイテンシが低減されることを示す。
【0042】
図5は、一実施形態による、無線ネットワークでバックホールアダプションプロトコル(BAP)を使用する、バックホール無線リンク制御(RLC)チャネル確立の方法500のフローチャートである。方法500は、例えば、本明細書の
図4及び他の図に示されるIABドナー206によって実行されてもよい。ブロック502で方法500は、宛先フィールドと、経路フィールドと、宛先フィールドがユニキャストアドレスを含むのかマルチキャストアドレスを含むのかを示すように構成されたビットと、を含むBAPヘッダを含むBAPプロトコルデータユニット(PDU)を生成することを含む。ブロック504で方法500は、BAP PDUを含むマルチキャスト無線リソース制御(RRC)再構成メッセージを生成することを含む。ブロック506で方法500は、マルチキャストRRC再構成メッセージを送信したことに応答して、複数のアクセスバックホール統合(IAB)ノードからBAPを使用して受信されたユニキャストRRC再構成完了メッセージを処理することを含む。
【0043】
方法500のある一定の実施形態は、当該ビットを、BAPヘッダの宛先フィールド内のアドレスを経路フィールド内の経路識別子のためのマルチキャストアドレスとして扱うように複数のIABノードに指示するように設定することを更に含む。方法500は、複数のIABノードを、あるサブネットプレフィックスに対応するサブネットにグループ化することと、そのサブネットプレフィックスをBAPヘッダの宛先フィールドに含めることと、を更に含んでもよい。
【0044】
加えて、又は他の実施形態では、方法500は、BAP PDUを、コアネットワークからのPDUセッションセットアップ要求に応答して生成することと、複数のIABノードからのユニキャストRRC再構成完了メッセージを処理したことに応答して、複数のIABノードのうち1つと通信状態にあるユーザ機器(UE)にユニキャストRRC再構成メッセージを送信することと、UEからのRRC再構成完了メッセージを処理することと、UEからのRRC再構成完了メッセージに応答して、コアネットワークにPDUセッションセットアップ完了メッセージを送信することと、を含む。複数のIABノードは、UEとコアネットワークとの間の第1のバックホール経路内の優先リンクのための第1のIABノードと、UEとコアネットワークとの間の第2のバックホール経路内のバックアップリンクのための第2のIABノードとを含んでもよい。
【0045】
II.構成転送
【0046】
ある一定の実施形態では、複数の中間ノードに単一のRRCReconfigurationメッセージが転送され、それぞれの中間ノードが独立に構成を処理して応答する。ノード間でホップ・バイ・ホップでパケット転送が行われるように、RRCReconfigurationメッセージ内に新しいフィールド及び/又は情報要素(IE)が作出されてもよい。ある一定のそのような実施形態では、上記で説明したように、UEにリーチする複数のIABノードが1つのサブネット内にあることができるように、ネットワークノードのグループ化が使用されてもよい。
【0047】
実施形態の一例では、IABノードのためのIEとして、ForwardToフィールド(例えば、次のホップのインターネットプロトコルアドレス(ipAddress)、又は順次ホップのためのIPアドレスのリストを含む)がRRCReconfiguration Messageに追加される。各中間ノードは、ForwardToフィールドを有するRRCReconfigurationを受信すると、ユニキャストRRCReconfigurationCompleteメッセージで応答する。ある一定の実施形態では、カウントダウンホッピング又はホットポテトルーティングが使用されてもよい。
【0048】
転送能力がない、又は故障の場合は、IABノードは、RRCReconfigurationメッセージを受信しなかったノードに対してのみ再試行を行ってもよい。加えて、又は別の実施形態では、故障を検出したIABノードは同じRRC手順を、閾値回数の試みが行われるまで使用してもよい。試行の閾値回数は、RRCReconfigurationメッセージのIEで定められてもよい。
【0049】
一実施形態では、各中間ノードによって、RRCReconfigurationCompleteメッセージがその中間ノードのIDとともに送信される。別の実施形態では、末端ノード又は故障が発生したノード(例えば、その結果、別の試みが行われる)によってのみ、RRCReconfigurationCompleteメッセージが送信される。
【0050】
図6は、ある一定の実施形態による、IABネットワーク602(すなわち、
図2Aに示すIABネットワーク202a)及び、対応する、構成転送を伴うBH RLCチャネルセットアップのシグナリング
図604を示す。この例では、IABドナー206は、RRCReconfigurationメッセージ606をIABノード210に送信する。RRCReconfigurationメッセージ606は、転送アドレスのリスト(例えば、IABノード212及びIABノード214に対応する)を含んでもよい。IABノード210は、RRCReconfigurationメッセージ606に応答して、IABドナー206にRRCReconfigurationCompleteメッセージ608で応答する。IABノード210は、次のホップのIPアドレスを転送アドレスのリストから判定し、IABノード212にRRCReconfigurationメッセージ606を送信する。IABノード212は、IABドナー206にRRCReconfigurationCompleteメッセージ 610を送信することによって応答し、次のホップのIPアドレスを転送アドレスのリストから判定する。次いでIABノード212は、IABノード214にRRCReconfigurationメッセージ606を送信する。IABノード214は、IABドナー206にRRCReconfigurationCompleteメッセージ612を送信することによって応答する。したがって、ラウンドトリップレイテンシが低減する(例えば
図2Aに示す例と比較して)。
【0051】
別の例として
図7は、ある一定の実施形態による、バックアップリンクを有するIABネットワーク702(すなわち、
図2Bに示すIABネットワーク202b)及び、対応するBH RLCチャネルセットアップのシグナリング
図704を示す。シグナリング
図704は、IABドナー206からIABノード214へIABノード236を介してバックアップリンクを使用して転送するために、
図6に示すRRCReconfiguration及びRRCReconfigurationCompleteメッセージのそれぞれと、それに続く、バックアップリンクを介して経路を確立するための追加のメッセージとを含む。
図7に示すように、IABドナー206は、IABノード210にRRCReconfigurationメッセージ706を送信する。RRCReconfigurationメッセージ706は、転送アドレスのリスト(例えば、IABノード236及びIABノード214に対応する)を含んでもよい。IABノード210は、RRCReconfigurationメッセージ706に応答して、IABドナー206にRRCReconfigurationCompleteメッセージ708で応答する。IABノード210は、次のホップのIPアドレスを転送アドレスのリストから判定、IABノード236にRRCReconfigurationメッセージ706を送信する。IABノード236は、IABドナー206にRRCReconfigurationCompleteメッセージ 710を送信することによって応答し、次のホップのIPアドレスを転送アドレスのリストから判定する。次いでIABノード236は、IABノード214にRRCReconfigurationメッセージ706を送信する。IABノード214は、IABドナー206にRRCReconfigurationCompleteメッセージ712を送信することによって応答する。したがって、
図7に示す例のラウンドトリップレイテンシは、
図2Bに示す例よりも小さい。
【0052】
代替として、
図8は早期経路セットアップを伴う別の実施形態による、バックアップリンクを有するIABネットワーク802(すなわち、
図2Bに示すIABネットワーク202b)及び、対応するBH RLCチャネルセットアップのシグナリング
図804を示す。この例では、優先リンク及びバックアップリンクは、同時に(又はほぼ同時に)セットアップされ得る。例えば、IABドナー206は、IABノード210にRRCReconfigurationメッセージ806を送信する。RRCReconfigurationメッセージ806は、転送アドレスのリストを含んでもよい。IABノード210は、RRCReconfigurationメッセージ806に応答して、IABドナー206にRRCReconfigurationCompleteメッセージ808で応答する。IABノード210は、優先リンク及びバックアップリンクの両方の次のホップのIPアドレスを転送アドレスのリストから判定し、IABノード212及びIABノード236に同時又はほぼ同時にRRCReconfigurationメッセージ706を送信する。IABノード212及びIABノード236は、IABドナー206にそれぞれRRCReconfigurationCompleteメッセージ810及びRRCReconfigurationCompleteメッセージ812を送信することによって応答する。また、IABノード212及びIABノード236はそれぞれ、IABノード214にRRCReconfigurationメッセージ806を送信する。IABノード214は、IABドナー206に単一のRRCReconfigurationCompleteメッセージ 814で応答してもよい。別の実施形態では、IABノード214は、IABノード236から受信したRRCReconfigurationメッセージ806に対応するRRCReconfigurationCompleteメッセージ814及び、IABノード212から受信したRRCReconfigurationメッセージ806に対応するRRCReconfigurationCompleteメッセージ816で応答する。いずれにしても、ラウンドドリップレイテンシは、
図7に示す例と比較して低減される。
【0053】
ある一定の実施形態では、以下で説明するように、
図7及び
図8に示す例に従って確立されたバックアップリンクのアクティブ化及び非アクティブ化のために、高速アクティブ化信号が使用される。
【0054】
III.マルチキャストを伴うRRCReconfiguration
【0055】
ある一定の実施形態では、IABノードとバックアップとの同時構成のために構成マルチキャストが提供される。例えば、マルチキャストを可能にするために、あるIABドナーと複数の子IABノードが1つのサブネットとして構成されてもよい。そのサブネット及びそのサブネットに属する全てのノードに単一の再構成メッセージが送信されてもよい。再構成メッセージはForSubnet IEに含まれてもよい。
【0056】
このシングルショットマルチ構成モデルは、複数のDUコンポーネントが関与する全てのアーキテクチャ(例えば、サイドライン(SL)、非地上波ネットワーク(NTN)など)に使用され得る。更に、このシングルショットマルチ構成モデルは、IABのためのRLCの1対1(1-1)と複数対1(複数-1)の両方のマッピング構成に等しく適用可能であり得る。あるUEのIPアドレスが当該サブネットに属している場合、そのUEは、そのRRCReconfiguration構成を適用する。次に、UEはユニキャストRRCReconfigurationCompleteメッセージで応答する。ある一定の実施形態では、ネットワークは、このようにしてアドホック構成を形成することもできる。
【0057】
この方法の利点には、モバイルIABノードに拡張可能(例えば、モバイルNTNネットワークノードに適用できるように)であることが含まれる。
【0058】
図9は、一実施形態による、無線ネットワークで構成転送を使用するバックホール無線リンク制御(RLC)チャネル確立の方法900のフローチャートである。方法900は、例えば、本明細書の
図6~
図8及び他の図に示すIABドナー206によって実行されてもよい。ブロック902で方法900は、転送先フィールドが含まれた情報要素(IE)を含む無線リソース制御(RRC)再構成メッセージを生成することを含み、ここで、転送先フィールドは複数のアクセスバックホール統合(IAB)ノード間の順次ホップのためのアドレスのリストを含む。ブロック904で方法900は、複数のIABノードのうち第2のIABノードに転送するために、RRC再構成メッセージを複数のIABノードのうち第1のIABノードに送信することを含む。
【0059】
ある一定の実施形態では、方法900は、複数のIABノードの各ノードからRRC再構成完了メッセージを受信することを更に含む。
【0060】
ある一定の実施形態では、方法900は、複数のIABノードの末端ノードからRRC再構成完了メッセージを受信することを更に含み、ここで末端ノードは、あるユーザ機器(UE)と通信状態にあるか、又はそのUEとの接続を確立するための経路に沿って故障を検出済みである。更に方法900は、その故障に基づいて、複数のIABノードのうち故障したIABノードにRRC再構成メッセージを再送することを含んでもよい。
【0061】
ある一定の実施形態では、方法900は、1つ以上のRRC再構成完了メッセージを受信したことに基づいて、バックホールRLCチャネル確立が完了するまで、RRC再構成メッセージの再送を閾値回数まで試みることを更に含む。
【0062】
ある一定の実施形態では、方法900は、複数のIABノードを、あるサブネットプレフィックスに対応するサブネットにグループ化することを更に含む。この複数のIABノードは、UEとコアネットワークとの間の第1の経路に優先リンクを確立し、UEとコアネットワークとの間の第2の経路にバックアップリンクを確立してもよい。RRC再構成メッセージは、優先リンクを含む第1のバックホール経路に対応する第1のRRC再構成メッセージを含んでもよく、また、方法900は、転送先フィールドが含まれたIEを含む第2のRRC再構成メッセージであって、転送先フィールドがバックアップリンクのための第3のIABノードのアドレスを含む、第2のRRC再構成メッセージを生成することと、複数のIABノードのうち第3のIABノードに直接又は間接的に転送するために、第2のRRC再構成メッセージを複数のIABノードのうち第1のIABノードに送信することと、を更に含んでもよい。方法900はまた、第2のRRC再構成メッセージを送信する前に第1のバックホール経路に対応するRRC再構成完了メッセージを受信すること、優先リンクとバックアップリンクの両方を確立するために第1のRRC再構成メッセージと第2のRRC再構成メッセージとを同時に送信すること、又はバックアップリンクをアクティブ化するための指示を含むメディアアクセス制御(MAC)制御要素(CE)を処理することを含んでもよい。MAC CEはアクティブ化/非アクティブ化フィールド及び経路識別子(ID)フィールドを含んでもよく、アクティブ化/非アクティブ化フィールドは、経路IDフィールドによって特定されるバックアップリンクに対応する第2の経路がアクティブ化されているのか非アクティブ化されているのかを示してもよい。
【0063】
ある一定の実施形態では、方法900は、複数のIABノード間での交換のために構成されたDCIフォーマットを有する下りリンク制御情報(DCI)を処理することを更に含み、このDCIフォーマットは、IAB間通信のためのIABコマンドのグループを送信するために使用され、このIABコマンドのグループはバックアップリンクをアクティブ化するためのコマンドを含む。
【0064】
IV.IABノードでのバックアップリンクの高速アクティブ化
【0065】
あるIABネットワークでRLFに起因して主経路が失われ、二次経路を確立することが必要なシナリオでは、CUによって確実にバックアップIAB経路が確立されるように、複数のRRCReconfigurationメッセージが送信されてもよい。例えば、
図2Bを参照されたい。本明細書のある一定の実施形態では、構成マルチキャスト技法を使用して、複数の二次バックアップリンクが同時に確立される(例えば
図8参照)。ところが、停電が検出されたときに、バックアップリンクをアクティブ化するために転送技法の1つをRRCで使用すると、追加のレイテンシがもたらされる。したがって、ある一定の実施形態では、確立されたバックアップリンクをアクティブ化するために、レイヤ1(L1)及び/又はレイヤ2(L2)のスタックを使用する技法が提供される。
【0066】
一実施形態では、バックアップリンクのアクティブ化のための新しいメディアアクセス制御(MAC)制御要素(CE)が提供される。これは、例えば、IABノードのみについてのキャリアアグリゲーション(CA)アクティブ化と類似し得る。例えば、
図10は、アクティブ化/非アクティブ化フィールド1002及び、経路IDフィールド1004を含むMAC CE例1000を示す。複数の予約済みビット(R)が含まれてもよい。アクティブ化/非アクティブ化フィールド1002は、経路IDフィールド1004によって特定される経路(例えば、バックアップリンクに対応する経路)がアクティブ化されているのか非アクティブ化されているのかを示す。
【0067】
別の実施形態では、IABノードのみの間での交換のための新しい下りリンク制御情報(DCI)フォーマットが使用されてもよい。例えば、1つ以上のIAB親ノードによるIAB間通信のためのIABコマンドのグループを送信するために、DCIフォーマット4_0が使用されてもよい。したがって、このDCIフォーマットを使用して、あるIABネットワーク内に確立されたリンクを迅速にアクティブ化又は非アクティブ化することができる。
【0068】
図11は、一実施形態による、マルチキャスティングを伴う無線リソース構成(RRC)再構成を使用するバックホール無線リンク制御(RLC)チャネル確立の方法1100のフローチャートである。ブロック1102で方法1100は、あるアクセスバックホール統合(IAB)ドナーノード及び1つ以上の子IABノードを1つのサブネットとして構成することを含む。ブロック1104で方法1100は、サブネットに送信するための再構成メッセージを生成することを含む。この再構成メッセージは、バックホールRLCチャネル確立のための構成設定を含む、そのサブネットについての情報要素(IE)を含む。このIEは、そのサブネットに関連するインターネットプロトコル(IP)アドレスを有するIABドナーノード及び1つ以上の子IABノードに構成を適用するように指示するために、サブネットを特定する。
【0069】
方法1100の一実施形態では、構成設定は、IABのためのRLCの1対1(1-1)又は複数対1(複数-1)のマッピング構成のためのものである。
【0070】
図12は、様々な実施形態によるインフラストラクチャ設備1200の例を示す。インフラストラクチャ設備1200は、基地局、無線ヘッド、RANノード、AN、アプリケーションサーバ、及び/又は本明細書で説明されるいずれかの他の要素/デバイスとして実装されてもよい。他の例では、インフラストラクチャ設備1200は、UE内に、又はUEによって実装され得る。
【0071】
インフラストラクチャ設備1200は、アプリケーション回路1202と、ベースバンド回路1204と、1つ以上の無線フロントエンドモジュール(RFEM)1206と、メモリ回路1208と、電力管理集積回路(PMIC1210として示される)と、電力T回路1212と、ネットワークコントローラ回路1214と、ネットワークインタフェースコネクタ1220と、衛星測位回路1216と、ユーザインタフェース回路1218とを含む。いくつかの実施形態では、デバイスインフラストラクチャ設備1200は、例えば、メモリ/記憶装置、ディスプレイ、カメラ、センサ、又は入出力(I/O)インタフェースなどの追加の要素を含んでもよい。他の実施形態では、以下に説明するコンポーネントは、2つ以上のデバイスに含まれてもよい。例えば、当該回路は、CRAN、vBBU、又は他の同様の実装のために2つ以上のデバイスに別々に含まれてもよい。アプリケーション回路1202は、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、並びに低ドロップアウトレギュレータ(LDO)、割り込みコントローラ、SPI、I2C、又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、リアルタイムクロック(RTC)、インターバル及びウォッチドッグタイマを含むタイマカウンタ、汎用入出力(I/O又はIO)、Secure Digital(SD)マルチメディアカード(MMC)などのメモリカードコントローラ、ユニバーサルシリアルバス(USB)インタフェース、モバイル産業プロセッサインタフェース(MIPI)インタフェース、及びJoint Test Access Group(JTAG)テストアクセスポートなどのうち1つ以上の回路を含むが、これらに限定されない。アプリケーション回路1202のプロセッサ(又はコア)は、メモリ/記憶要素に結合されてもよいし、メモリ/記憶要素を含んでもよく、様々なアプリケーション又はオペレーティングシステムをインフラストラクチャ設備1200上で実行することを可能にするために、メモリ/記憶装置に記憶された命令を実行するように構成されてもよい。いくつかの実装形態では、メモリ/記憶要素はオンチップメモリ回路であってもよく、これは、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は本明細書で説明されるような任意の他のタイプのメモリデバイス技術などの任意の適切な揮発性及び/又は不揮発性メモリを含んでもよい。
【0072】
アプリケーション回路1202のプロセッサは、例えば、1つ以上のプロセッサコア(CPU)、1つ以上のアプリケーションプロセッサ、1つ以上のグラフィック処理ユニット(GPU)、1つ以上の縮小命令セットコンピューティング(RISC)プロセッサ、1つ以上のAcorn RISCマシン(ARM)プロセッサ、1つ以上の複合命令セットコンピューティング(CISC)プロセッサ、1つ以上のデジタル信号プロセッサ(DSP)、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、又はそれらのどのような好適な組み合わせを含んでもよい。いくつかの実施形態では、アプリケーション回路1202は、本明細書の様々な実施形態によって動作する専用プロセッサ/コントローラを含んでもよく、又は専用プロセッサ/コントローラであってもよい。例として、アプリケーション回路1202のプロセッサは、1つ以上のIntelのPentium(登録商標)、Core(登録商標)、又はXeon(登録商標)プロセッサ;Advanced Micro Devices(AMD)のRyzen(登録商標)プロセッサ、Accelerated Processing Units(APU)、又はEpyc(登録商標)プロセッサ;ARM Cortex-AファミリプロセッサなどのARM Holdings Ltd.からライセンスされたARMベースプロセッサ、及びCavium(商標),Inc.によって提供されるThunderX2(登録商標);MIPS Warrior P-クラスプロセッサなどのMIPS Technologies,Inc.から提供されるMIPSベースの設計のプロセッサなどを含んでもよい。いくつかの実施形態では、インフラストラクチャ設備1200は、アプリケーション回路1202を利用しなくてもよく、代わりに、例えば、EPC又は5GCから受信したIPデータを処理する専用プロセッサ/コントローラを含んでもよい。
【0073】
いくつかの実装形態では、アプリケーション回路1202は、マイクロプロセッサ、プログラマブル処理デバイスなどであり得る、1つ以上のハードウェアアクセラレータを含んでもよい。1つ以上のハードウェアアクセラレータは、例えば、コンピュータビジョン(CV)及び/又はディープラーニング(DL)アクセラレータを含むことができる。例として、プログラム可能な処理デバイスは、フィールドプログラマブルゲートアレイ(FPGA)などのフィールドプログラマブルデバイス(FPD);複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラマブルロジックデバイス(PLD);構造化ASICなどのASIC;プログラマブルSoC(PSoC)などのうち1つ以上であってもよい。そのような実装形態では、アプリケーション回路1202の回路は、本明細書で説明される様々な実装形態の手順、方法、機能などの様々な機能を実行するようにプログラムされ得る、論理ブロック又は論理ファブリック、及び他の相互接続されたリソースを含んでもよい。そのような実施形態では、アプリケーション回路1202の回路は、論理ブロック、論理ファブリック、データなどをルックアップテーブル(LUT)などに記憶するために使用されるメモリセル(例えば、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、静的ランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含んでもよい。ベースバンド回路1204は、例えば、1つ以上の集積回路を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージ集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。
【0074】
ユーザインタフェース回路1218は、インフラストラクチャ設備1200とのユーザ相互作用を可能にするように設計された1つ以上のユーザインタフェース、又はインフラストラクチャ設備1200との周辺コンポーネント相互作用を可能にするように設計された周辺コンポーネントインタフェースを含んでもよい。ユーザインタフェースは、1つ以上の物理又は仮想ボタン(例えば、リセットボタン)、1つ以上のインジケータ(例えば、発光ダイオード(LED))、物理キーボード又はキーパッド、マウス、タッチパッド、タッチスクリーン、スピーカ又は他のオーディオ発光デバイス、マイクロフォン、プリンタ、スキャナ、ヘッドセット、ディスプレイスクリーン又はディスプレイデバイスなどを含んでもよいが、これらに限定されない。周辺コンポーネントインタフェースは、不揮発性メモリポート、ユニバーサルシリアルバス(USB)ポート、オーディオジャック、電源インタフェースなどを含んでもよいが、これらに限定されない。
【0075】
無線フロントエンドモジュール1206は、ミリメートル波(ミリ波)無線フロントエンドモジュール(RFEM)及び1つ以上のサブミリ波無線周波数集積回路(RFIC)を含んでもよい。いくつかの実装形態では、1つ以上のサブミリ波RFICは、ミリ波RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイへの接続を含んでもよく、RFEMは、複数のアンテナに接続されてもよい。代替実装形態では、ミリ波及びサブミリ波無線機能の両方は、ミリ波アンテナ及びサブミリ波の両方を組み込んだ同じ物理無線フロントエンドモジュール1206内に実装されてもよい。
【0076】
メモリ回路1208は、動的ランダムアクセスメモリ(DRAM)及び/又は同期動的ランダムアクセスメモリ(SDRAM)を含む揮発性メモリ、並びに高速電気的消去可能メモリ(一般にフラッシュメモリと呼ばれる)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などを含む不揮発性メモリ(NVM)のうち1つ以上を含むことができ、Intel(登録商標)及びMicron(登録商標)の三次元(3D)クロスポイント(XPOINT)メモリを組み込んでもよい。メモリ回路1208は、はんだ付けパッケージ集積回路、ソケット式メモリモジュール、及びプラグインメモリカードのうち1つ以上として実装されてもよい。
【0077】
PMIC1210は、電圧レギュレータ、サージ保護器、電力アラーム検出回路、及びバッテリ又はコンデンサなどの1つ以上の予備電源を含んでもよい。電力アラーム検出回路は、ブラウンアウト(不足電圧)及びサージ(過電圧)状態のうちの1つ以上を検出してもよい。電力T回路1212は、単一のケーブルを使用してインフラストラクチャ設備1200に電力供給及びデータ接続性の両方を提供するネットワークケーブルから引き出される電力を供給してもよい。
【0078】
ネットワークコントローラ回路1214は、イーサネット、GREトンネル上のイーサネット、マルチプロトコルラベルスイッチング(MPLS)上のイーサネット、又は何らかの他の適切なプロトコルなどの標準的なネットワークインタフェースプロトコルを使用してネットワークへの接続性を提供してもよい。ネットワーク接続は、インフラストラクチャ設備1200へ、又はインフラストラクチャ設備800から、ネットワークインタフェースコネクタ1220を介して物理的接続を使用して提供されてもよく、物理的接続は、電気的(一般に「銅配線」と呼ばれる)、光、又は無線であってもよい。ネットワークコントローラ回路1214は、前述のプロトコルのうち1つ以上を使用して通信する1つ以上の専用プロセッサ及び/又はFPGAを含んでもよい。いくつかの実装形態では、ネットワークコントローラ回路1214は、同じプロトコル又は異なるプロトコルを使用して他のネットワークへの接続を提供する複数のコントローラを含んでもよい。
【0079】
測位回路1216は、全地球航法衛星システム(GNSS)の測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号する回路を含む。航法衛星コンスタレーション(又はGNSS)の例には、米国の全地球測位システム(GPS)、ロシアの全地球航法システム(GLONASS)、欧州連合のガリレオシステム、中国の北斗航法衛星システム、地域航法システム又はGNSS補強システム(例えば、Indian Constellation(NAVIC)によるナビゲーション、日本の準天頂衛星システム(QZSS)、フランスのDoppler Orbitography and Radio positioning Integrated by Satellite(DORIS)など)などが含まれる。測位回路1216は、航法衛星コンスタレーションノードなどの測位ネットワークのコンポーネントと通信する様々なハードウェア要素(例えば、OTA通信を容易にするために、スイッチ、フィルタ、増幅器、アンテナ素子などのハードウェアデバイスを含む)を備える。いくつかの実施形態では、測位回路1216は、マスタタイミングクロックを使用してGNSS支援なしで位置追跡/推定を実行するMicro-Technology for Positioning,Navigation,and Timing(Micro-PNT)ICを含んでもよい。測位回路1216はまた、測位ネットワークのノード及びコンポーネントと通信するために、ベースバンド回路1204及び/又は無線フロントエンドモジュール1206の一部であってもよく、又はそれらと相互作用してもよい。測位回路1216はまた、位置データ及び/又は時間データをアプリケーション回路1202に提供してもよく、アプリケーション回路は、データを使用して動作を様々なインフラストラクチャなどと同期させてもよい。
図12に示すコンポーネントは、業界標準アーキテクチャ(ISA)、拡張ISA(EISA)、周辺コンポーネント相互接続(PCI)、拡張周辺コンポーネント相互接続(PCix)、PCIエクスプレス(PCie)、又は多数の他の技術など多数のバス及び/又は相互接続(IX)技術を含み得るインタフェース回路を使用して互いに通信してもよい。バス/IXは、例えば、SoCベースのシステムで使用される独自のバスであってもよい。他のバス/IXシステム、とりわけ、I
2Cインタフェース、SPIインタフェース、ポイントツーポイントインタフェース、及び電力バスなどが含まれてもよい。
【0080】
図13は、様々な実施形態によるプラットフォーム例1300を示す。実施形態では、コンピュータプラットフォーム1300は、UE、アプリケーションサーバ、及び/又は本明細書で考察されるいずれかの他の要素/デバイスとしての使用に適し得る。プラットフォーム1300は、例に示したコンポーネントのどのような組み合わせを含んでもよい。プラットフォーム1300のコンポーネントは、コンピュータプラットフォーム1300に適合された集積回路(IC)、その一部、個別の電子デバイス、又は他のモジュール、論理、ハードウェア、ソフトウェア、ファームウェア、又はそれらの組み合わせとして、あるいはより大きなシステムのシャーシ内にその他の方法で組み込まれるコンポーネントとして実装されてもよい。
図13のブロック図は、コンピュータプラットフォーム1300のコンポーネントの俯瞰図を示すことを意図している。しかしながら、示されているコンポーネントのいくつかは省略されてもよく、追加のコンポーネントが存在してもよく、示されているコンポーネントの異なる配置が他の実施態様で発生してもよい。
【0081】
アプリケーション回路1302は、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、並びに1つ以上のLDO、割り込みコントローラ、SPI、I2C、又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、RTC、インターバル及びウォッチドッグタイマを含むタイマカウンタ、汎用IO、SD MMCなどのメモリカードコントローラ、USBインタフェース、MIPIインタフェース、及びJTAGテストアクセスポートなどの回路を含が、これらに限定されない。アプリケーション回路1302のプロセッサ(又はコア)は、メモリ/記憶要素に結合されてもよいし、メモリ/記憶要素を含んでもよく、様々なアプリケーション又はオペレーティングシステムをプラットフォーム1300上で実行することを可能にするために、メモリ/記憶装置に記憶された命令を実行するように構成されてもよい。いくつかの実装形態では、メモリ/記憶要素はオンチップメモリ回路であってもよく、これは、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は本明細書で説明されるような任意の他のタイプのメモリデバイス技術などの任意の適切な揮発性及び/又は不揮発性メモリを含んでもよい。
【0082】
アプリケーション回路1302のプロセッサ(単数又は複数)は、例えば、1つ以上のプロセッサコア、1つ以上のアプリケーションプロセッサ、1つ以上のGPU、1つ以上のRISCプロセッサ、1つ以上のARMプロセッサ、1つ以上のCISCプロセッサ、1つ以上のDSP、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、マルチスレッドプロセッサ、超低電圧プロセッサ、埋め込みプロセッサ、いくつかの他の既知の処理エレメント、又はこれらのどのような好適な組み合わせでも含み得る。いくつかの実施形態では、アプリケーション回路1302は、本明細書の様々な実施形態に従って動作する専用プロセッサ/コントローラを含んでもよく、又は専用プロセッサ/コントローラであってもよい。
【0083】
例として、アプリケーション回路1302のプロセッサは、Intel(登録商標)Corporationから入手可能な、Quark(商標)、Atom(商標)、i3、i5、i7、若しくはMCUクラスプロセッサなどのIntel(登録商標)Architecture Core(商標)ベースのプロセッサ、又は別のそのようなプロセッサを含んでもよい。アプリケーション回路1302のプロセッサはまた、アドバンスドマイクロデバイス(AMD)Ryzen(登録商標)プロセッサ又はアクセラレーテッドプロセッシングユニット(APU);Apple(登録商標)Inc.製のAS-A9プロセッサ(単数又は複数)、Qualcomm(登録商標)Technologies,Inc.のSnapdragon(商標)プロセッサ(単数又は複数)、Texas Instruments,Inc.(登録商標)Open Multimedia Applications Platform(OMAP)(商標)プロセッサ(単数又は複数);MIPS Warrior Mクラス、Warrior Iクラス、及びWarrior PクラスプロセッサなどのMIPS Technologies,Inc.からのMIPSベースの設計、ARM Cortex-A、Cortex-R、及びCortex-MファミリのプロセッサなどのARM Holdings,LtdからライセンスされたARMベースの設計などののうち1つ以上であってもよい。いくつかの実装形態では、アプリケーション回路1302は、アプリケーション回路1302及び他のコンポーネントが単一の集積回路、又はIntel(登録商標)Corporation製のEdison(商標)若しくはGalileo(商標)SoCボードなどの単一のパッケージに形成されるシステムオンチップ(SoC)の一部であってもよい。
【0084】
追加的又は代替的に、アプリケーション回路1302は、限定されないが、FPGAなどの1つ以上のフィールドプログラマブルデバイス(FPD)、複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラマブルロジックデバイス(PLD)、構造化ASICなどのASIC、プログラマブルSoC(PSoC)などの回路を含み得る。そのような実施形態では、アプリケーション回路1302の回路は、論理ブロック又は論理ファブリック、及び本明細書で説明される様々な実施形態の手順、方法、機能などの様々な機能を実行するようにプログラムされ得る他の相互接続されたリソースを含んでもよい。そのような実施形態では、アプリケーション回路1302の回路は、ルックアップテーブル(LUT)などに論理ブロック、論理ファブリック、データなどを記憶するために使用されるメモリセル(例えば、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、静的ランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含んでもよい。
【0085】
ベースバンド回路1304は、例えば、1つ以上の集積回路を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージ集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。
【0086】
無線フロントエンドモジュール1306は、ミリメートル波(ミリ波)無線フロントエンドモジュール(RFEM)及び1つ以上のサブミリ波無線周波数集積回路(RFIC)を含んでもよい。いくつかの実装形態では、1つ以上のサブミリ波RFICは、ミリ波RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイへの接続を含んでもよく、RFEMは、複数のアンテナに接続されてもよい。代替実装形態では、ミリ波及びサブミリ波無線機能の両方が、ミリ波アンテナ及びサブミリ波の両方を組み込んだ同じ物理無線フロントエンドモジュール1306内に実装されてもよい。
【0087】
メモリ回路1308は、所与の量のシステムメモリを提供するために使用される、どのような数及び種類のメモリデバイスを含んでもよい。例として、メモリ回路1308は、ランダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)及び/又は同期ダイナミックRAM(RAM)を含む揮発性メモリ、並びに高速電気的消去可能メモリ(一般にフラッシュメモリと呼ばれる)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などを含む不揮発性メモリ(NVM)のうち1つ以上を含んでもよい。メモリ回路1308は、Joint Electron Devices Engineering Council(JEDEC)の低電力ダブルデータレート(LPDDR)ベースの設計、例えばLPDDR2、LPDDR3、LPDDR4などに従って開発されてもよい。メモリ回路1308は、はんだ付きパッケージ集積回路、シングルダイパッケージ(SDP)、デュアルダイパッケージ(DDP)又はクワッドダイパッケージ(Q17P)、ソケット式メモリモジュール、マイクロDIMM又はミニDIMMを含むデュアルインラインメモリモジュール(DIMM)、及び/又はボールグリッドアレイ(BGA)を介してマザーボード上にはんだ付けされたもののうち1つ以上として実装されてもよい。低電力実装では、メモリ回路1308は、アプリケーション回路1302に関連付けられたオンダイメモリ又はレジスタであってもよい。データ、アプリケーション、オペレーティングシステムなどの情報の永続的記憶を提供するために、メモリ回路1308は、1つ以上の大容量記憶装置を含んでもよく、それには、とりわけ、ソリッドステートディスクドライブ(SSDD)、ハードディスクドライブ(HDD)、マイクロHDD、抵抗変化メモリ、相変化メモリ、ホログラフィックメモリ、又は化学メモリが含まれ得る。例えば、コンピュータプラットフォーム1300は、Intel(登録商標)及びMicron(登録商標)からの3次元(3D)クロスポイント(XPOINT)メモリを組み込んでもよい。
【0088】
取り外し可能なメモリ回路1326は、ポータブルデータ記憶装置をプラットフォーム1300と結合するために使用されるデバイス、回路、エンクロージャ/筐体、ポート又はレセプタクルなどを含んでもよい。これらのポータブルデータ記憶装置は、大量記憶目的のために使用することができ、例えば、フラッシュメモリカード(例えば、セキュアデジタル(SD)カード、microSDカード、xD画像カードなど)、及びUSBフラッシュドライブ、光ディスク、外部HDDなどを含んでもよい。
【0089】
プラットフォーム1300はまた、外部デバイスをプラットフォーム1300と接続するために使用されるインタフェース回路(図示せず)を含んでもよい。インタフェース回路を介してプラットフォーム1300に接続された外部デバイスは、センサ1322及び電気機械コンポーネント(EMC1324として示されている)、並びに取り外し可能なメモリ回路1326に結合された取り外し可能なメモリデバイスを含む。
【0090】
センサ1322は、環境内の事象又は変化を検出し、検出された事象に関する情報(センサデータ)を何か他のデバイス、モジュール、サブシステムなどに送信することを目的とするデバイス、モジュール又はサブシステムを含み得る。そのようなセンサの例には、とりわけ、加速度計、ジャイロスコープ、及び/又は磁力計を含む、慣性計測ユニット(IMU)、3軸加速度計、3軸ジャイロスコープ、及び/又は磁力計を含む、微小電気機械システム(MEMS)又はナノ電気機械システム(NEMS)、レベルセンサ、流量センサ、温度センサ(例えば、サーミスタ)、圧力センサ、気圧センサ、重力計、高度計、画像キャプチャデバイス(例えば、カメラ又はレンズ無し絞り)、光検出及び測距(LiDAR)センサ、近接センサ(例えば、赤外線検出器など)、深度センサ、周囲光センサ、超音波トランシーバ、マイクロフォン又は他の同様の音声キャプチャデバイス、などが含まれる。
【0091】
EMC1324は、デバイス、モジュール、又はサブシステムを含み、それらデバイスなどの目的は、プラットフォーム1300がその状態、位置、及び/若しくは方向を変更すること、又は機構若しくは(サブ)システムを移動若しくは制御できるようにすることである。更に、EMC1324は、EMC1324の現在の状態を示すために、プラットフォーム1300の他のコンポーネントにメッセージ/シグナリングを生成及び送信するように構成されていてもよい。EMC1324の例には、1つ以上の電源スイッチ、電気機械式リレー(EMR)及び/又はソリッドステートリレー(SSR)を含むリレー、アクチュエータ(例えば、バルブアクチュエータなど)、可聴音発生装置、視覚的警告デバイス、モータ(例えば、DCモータ、ステッパモータなど)、車輪、スラスタ、プロペラ、爪、クランプ、フック、及び/又は他の同様の電気機械部品が含まれる。実施形態では、プラットフォーム1300は、1つ以上のキャプチャされたイベント及び/又はサービスプロバイダ及び/又は様々なクライアントから受信した命令又は制御信号に基づいて、1つ以上のEMC1324を動作させるように構成されている。いくつかの実装形態では、インタフェース回路は、プラットフォーム1300を測位回路1316と接続してもよい。測位回路1316は、GNSSの測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号する回路を含む。航法衛星コンスタレーション(又はGNSS)の例には、米国のGPS、ロシアのGLONASS、欧州連合のガリレオシステム、中国の北斗航法衛星システム、地域航法システム又はGNSS補強システム(例えば、NAVIC、日本のQZSS、フランスのDORISなど)などが含まれる。測位回路1316は、航法衛星コンスタレーションノードなどの測位ネットワークのコンポーネントと通信する様々なハードウェアエレメント(例えば、OTA通信を容易にするために、スイッチ、フィルタ、増幅器、アンテナエレメントなどのハードウェアデバイスを含む)を備える。いくつかの実施形態では、測位回路1316は、マスタタイミングクロックを使用してGNSS支援なしで位置トラッキング/推定を実行するMicro-PNT ICを含んでもよい。測位回路1316はまた、測位ネットワークのノード及びコンポーネントと通信するために、ベースバンド回路1304及び/又は無線フロントエンドモジュール1306の一部であってもよく、又はそれらと相互作用してもよい。測位回路1316はまた、位置データ及び/又は時間データをアプリケーション回路1302に提供してもよく、アプリケーション回路は、データを使用して、ターンバイターンナビゲーションアプリケーションなどのために、様々なインフラストラクチャ(例えば、無線基地局)と動作を同期させてもよい。
【0092】
いくつかの実装形態では、インタフェース回路は、プラットフォーム1300を近距離通信回路(NFC回路1312として示される)と接続してもよい。NFC回路1312は、無線周波数識別(RFID)規格に基づいて非接触の短距離通信を提供するように構成されており、磁場誘導は、NFC回路1312とプラットフォーム1300の外部のNFC対応デバイス(例えば、「NFCタッチポイント」)との間の通信を可能にするために使用される。NFC回路1312は、アンテナ要素と結合されたNFCコントローラと、NFCコントローラと結合されたプロセッサとを備える。NFCコントローラは、NFCコントローラファームウェア及びNFCスタックを実行することによってNFC回路1312にNFC機能を提供するチップ/ICであってもよい。NFCスタックは、NFCコントローラを制御するためにプロセッサによって実行されてもよく、NFCコントローラファームウェアは、短距離RF信号を放出するようにアンテナ素子を制御するためにNFCコントローラによって実行されてもよい。RF信号は、パッシブNFCタグ(例えば、ステッカー又はリストバンドに埋め込まれたマイクロチップ)に電力を供給して、記憶されたデータをNFC回路1312に送信するか、又は、NFC回路1312とプラットフォーム1300に近接した別のアクティブなNFCデバイス(例えば、スマートフォン又はNFC対応POS端末)との間のデータ移送を開始してもよい。
【0093】
ドライバ回路1318は、プラットフォーム1300に組み込まれた、プラットフォーム1300に取り付けられた、又は他の方法でプラットフォーム1300と通信可能に結合された特定のデバイスを制御するように動作するソフトウェア及びハードウェア要素を含んでもよい。ドライバ回路1318は、プラットフォーム1300の他のコンポーネントが、プラットフォーム1300内に存在するか、又はそれに接続され得る様々な入力/出力(I/O)装置と相互作用するか、又はそれらを制御することを可能にする個々のドライバを含んでもよい。例えば、ドライバ回路1318は、ディスプレイデバイスへのアクセスを制御及び許可するディスプレイドライバと、プラットフォーム1300のタッチスクリーンインタフェースへのアクセスを制御及び許可するタッチスクリーンドライバと、センサ1322のセンサ読み取り値を取得してセンサ1322へのアクセスを制御及び許可するセンサドライバと、EMC1324のアクチュエータ位置を取得して及び/又はEMC1324へのアクセスを制御及び許可するEMCドライバと、埋め込みキャプチャデバイスへのアクセスを制御及び許可するカメラドライバと、1つ以上のオーディオ装置へのアクセスを制御及び許可するオーディオドライバとを含んでもよい。
【0094】
電力管理集積回路(PMIC1310として示される)(「電力管理回路」とも呼ばれる)は、プラットフォーム1300の様々なコンポーネントに供給される電力を管理してもよい。具体的には、ベースバンド回路1304に関して、PMIC1310は、電源選択、電圧スケーリング、バッテリ充電、又はDC-DC変換を制御してもよい。プラットフォーム1300がバッテリ1314によって給電可能である場合、例えば、デバイスがUEに含まれている場合、多くの場合、PMIC1310が含まれ得る。
【0095】
いくつかの実施形態では、PMIC1310は、プラットフォーム1300の様々な省電力機構を制御してもよいし、又は別の方法でその一部であってもよい。例えば、プラットフォーム1300がRRC接続状態にあって、トラフィックを間もなく受信することが予期されるのでRANノードに依然として接続されている場合、ある非アクティブ期間後、プラットフォームは、間欠受信モード(DRX)として知られる状態に入ってもよい。この状態の間は、プラットフォーム1300は、電力を短い間隔で落としてもよく、それによって節電してもよい。長期間のデータトラフィック活動が存在しない場合、プラットフォーム1300は、RRC_アイドル状態に遷移してもよく、ネットワークから切断し、チャネル品質フィードバック、ハンドオーバなどの動作を実行しない。プラットフォーム1300は、非常に低い電力状態になり、ページングを実行し、ここで再び周期的にウェイクアップしてネットワークをリッスンし、次いで再び電力を落とす。プラットフォーム1300は、この状態ではデータを受信できず、データを受信するためには、RRC_接続状態に遷移しなければならない。更なる省電力モードでは、デバイスはページング間隔(数秒から数時間に及ぶ)より長期間、ネットワークから利用できなくなることを許容され得る。この間、デバイスは、ネットワークに全くリーチできず、完全に電力が落とされ得る。この間に送信されたデータがあれば大幅な遅延が生じるが、遅延は許容できるものとみなされる。
【0096】
バッテリ1314がプラットフォーム1300に電力を供給してもよいが、いくつかの例では、プラットフォーム1300は固定のロケーションに配備されてマウントされることがあり、送電網に結合された電源を有してもよい。バッテリ1314は、リチウムイオンバッテリ、空気亜鉛バッテリ、アルミニウム空気バッテリ、リチウム空気バッテリなどの金属空気バッテリ、などであってもよい。V2X用途などのいくつかの実装形態では、バッテリ1314は、典型的な鉛酸自動車バッテリであってもよい。
【0097】
いくつかの実装形態では、バッテリ1314は、バッテリ管理システム(BMS)又はバッテリ監視集積回路を含むか、又はそれに結合された「スマートバッテリ」であってもよい。BMSは、プラットフォーム1300に含まれてバッテリ1314の充電状態(SoCh)を追跡してもよい。BMSは、バッテリ1314の他のパラメータを監視して、バッテリ1314の健全状態(SoH)及び機能状態(SoF)などの故障予測を提供するために使用されてもよい。BMSは、バッテリ1314の情報を、アプリケーション回路1302又はプラットフォーム1300の他のコンポーネントに通信してもよい。BMSはまた、アプリケーション回路1302がバッテリ1314の電圧、又はバッテリ1314からの電流を直接監視することを可能にするアナログ-デジタル(ADC)変換器を含んでもよい。送信周波数、ネットワーク動作、検知周波数などの、プラットフォーム1300が実行し得る動作を決定するために、バッテリパラメータが使用されてもよい。
【0098】
バッテリ1314を充電するために、電力ブロック、又は電気グリッドに結合された他の電源がBMSに結合されていてもよい。いくつかの例では、電力ブロックは、無線電力受信機と置き換えられて、例えば、コンピュータプラットフォーム1300内のループアンテナを介して無線で電力を取得してもよい。これらの例では、無線バッテリ充電回路がBMSに含まれてもよい。選択される特定の充電回路は、バッテリ1314のサイズ、したがって必要とされる電流に依存してもよい。充電は、とりわけ、Airfuel Allianceによって公布されたAirfuel標準、Wireless Power Consortiumによって公布されたQi無線充電標準、又はAlliance for Wireless Powerによって公布されたRezence充電標準を使用して実行することができる。
【0099】
ユーザインタフェース回路1320は、プラットフォーム1300内に存在するか、又はそれに接続される様々な入出力(I/O)デバイスを含み、プラットフォーム1300とのユーザ相互作用を可能にするように設計された1つ以上のユーザインタフェース、及び/又はプラットフォーム1300との周辺コンポーネント相互作用を可能にするように設計された周辺コンポーネントインタフェースを含む。ユーザインタフェース回路1320は、入力デバイス回路及び出力デバイス回路を含む。入力デバイス回路は、とりわけ、1つ以上の物理的又は仮想的ボタン(例えば、リセットボタン)、物理キーボード、キーパッド、マウス、タッチパッド、タッチスクリーン、マイクロフォン、スキャナ、ヘッドセットなどを含む入力を受け付けるための任意の物理的又は仮想的手段を含む。出力デバイス回路は、センサ読み取り値、アクチュエータ位置(単数又は複数)、又は他の同様の情報などの情報を表示するか、又は他の方法で情報を伝達するための任意の物理的又は仮想的な手段を含む。出力デバイス回路は、どのような数及び/又は組み合わせのオーディオ又は視覚ディスプレイを含んでもよく、それらには、とりわけ、バイナリ状態インジケータなどの1つ以上の単純な視覚出力/インジケータ(例えば、発光ダイオード(LED))及び複数文字の視覚出力、又は、プラットフォーム1300の動作から生成若しくは作成される、文字、グラフィック、マルチメディアオブジェクトなどの出力を有するディスプレイデバイス若しくはタッチスクリーン(例えば、液晶ディスプレイ(LCD)、LEDディスプレイ、量子ドットディスプレイ、プロジェクタなど)などの、より複雑な出力が含まれる。出力デバイス回路はまた、スピーカ又は他のオーディオ放出デバイス、プリンタ(単数又は複数)、及び/又は同様のものを含んでもよい。いくつかの実施形態では、センサ1322は、入力装置回路(例えば、画像キャプチャデバイス、モーションキャプチャデバイスなど)として使用されてもよく、1つ以上のEMCが、出力装置回路(例えば、触覚フィードバックを提供するアクチュエータなど)として使用されてもよい。別の例では、アンテナ要素及び処理デバイスと結合されたNFCコントローラを備えるNFC回路が、電子タグを読み取り、かつ/又は別のNFC対応デバイスと接続するために含まれてもよい。周辺コンポーネントインタフェースとしては、不揮発性メモリポート、USBポート、オーディオジャック、電源インタフェースなどが挙げられるが、これらに限定されない。
【0100】
図示されていないが、プラットフォーム1300のコンポーネントは、適切なバス又は相互接続(IX)技術を使用して互いに通信してもよく、これは、ISA、EISA、PCI、PCix、PCie、時間トリガプロトコル(TTP)システム、FlexRayシステムを含む任意の数の技術、又は任意の数の他の技術を含んでもよい。バス/IXは、例えば、SoCベースのシステムで使用される独自のバス/IXであってもよい。他のバス/IXシステム、とりわけ、I2Cインタフェース、SPIインタフェース、ポイントツーポイントインタフェース、及び電力バスなどが含まれてもよい。
【0101】
図14は、いくつかの実施形態例による、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取り、本明細書で論じる方法のうちいずれか1つ以上を実行し得るコンポーネント1400を示すブロック図である。具体的には、
図14は、1つ以上のプロセッサ1406(又はプロセッサコア)、1つ以上のメモリ/記憶装置1414、及び1つ以上の通信リソース1424を含み、それらの各々を、バス1416を介して通信可能に結合し得る、ハードウェアリソース1402の図式表現を示す。ノード仮想化(例えば、NFV)が利用される実施形態では、ハイパーバイザ1422が、ハードウェアリソース1402を利用する1つ以上のネットワークスライス/サブスライスの実行環境を提供するように実行されてもよい。
【0102】
プロセッサ1406(例えば、中央演算処理装置(CPU)、縮小命令セットコンピューティング(Reduced instruction set computing、RISC)プロセッサ、複合命令セットコンピューティング(CISC)プロセッサ、グラフィック処理ユニット(GPU)、ベースバンドプロセッサなどのデジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、高周波集積回路(RFIC)、別のプロセッサ、又はこれらの任意の好適な組み合わせ)は、例えば、プロセッサ1408及びプロセッサ1410を含んでもよい。
【0103】
メモリ/記憶装置1414は、メインメモリ、ディスクストレージ、又はそれらのどのような好適な組み合わせを含んでもよい。メモリ/記憶装置1414としては、動的ランダムアクセスメモリ(DRAM)、静的ランダムアクセスメモリ(SRAM)、消去可能プログラム可能読み出し専用メモリ(EPROM)、電気的消去可能プログラム可能読み出し専用メモリ(EEPROM)、フラッシュメモリ、ソリッドステートストレージなどの任意の種類の揮発性又は不揮発性メモリが挙げられるが、これらに限定されない。
【0104】
通信リソース1424は、ネットワーク1418を介して1つ以上の周辺機器1404又は1つ以上のデータベース1420と通信するための、相互接続又はネットワークインタフェースコンポーネント又は他の好適なデバイスを含み得る。例えば、通信リソース1424は、(例えば、ユニバーサルシリアルバス(USB)を介した結合のための)有線通信コンポーネント、セルラー通信コンポーネント、NFCコンポーネント、Bluetooth(登録商標)コンポーネント(例えば、Bluetooth(登録商標)Low Energy)、Wi-Fi(登録商標)コンポーネント、及び他の通信コンポーネントを含んでもよい。
【0105】
命令1412は、プロセッサ1406の少なくともいずれかに、本明細書で論じる方法論のうち任意の1つ以上を実行させるための、ソフトウェア、プログラム、アプリケーション、アプレット、アプリ、又は他の実行可能コードを含んでもよい。命令1412は、完全に又は部分的に、プロセッサ1406(例えば、プロセッサのキャッシュメモリ内に)、メモリ/記憶装置1414、又はそれらの任意の好適な組み合わせのうち少なくとも1つの中に存在してもよい。更に、命令1412の任意の部分は、周辺機器1404又はデータベース1420の任意の組み合わせからハードウェアリソース1402に転送されてもよい。したがって、プロセッサ1406のメモリ、メモリ/記憶装置1414、周辺機器1404、及びデータベース1420は、コンピュータ可読媒体及び機械可読媒体の例である。
【0106】
1つ以上の実施形態では、前述の図のうちの1つ以上に記載されるコンポーネントのうちの少なくとも1つは、以下の実施例セクションに記載されるような1つ以上の動作、技術、プロセス、及び/又は方法を実行するように構成されている場合がある。例えば、前述の図のうちの1つ以上に関連して上述したベースバンド回路は、以下に記載される例のうちの1つ以上に従って動作するように構成されていてもよい。別の例として、前述の図のうちの1つ以上に関連して上述したようなUE、基地局、ネットワーク要素などと関連付けられた回路は、実施例セクションにおいて以下に記載される例のうちの1つ以上に従って動作するように構成されている場合がある。
【0107】
実施例セクション
【0108】
以下の実施例は、更なる実施形態に関連する。
【0109】
実施例1は、無線ネットワークでバックホールアダプションプロトコル(BAP)を使用する、バックホール無線リンク制御(RLC)チャネル確立の方法である。この方法は、宛先フィールドと、経路フィールドと、宛先フィールドがユニキャストアドレスを含むのかマルチキャストアドレスを含むのかを示すように構成されたビットとを含むBAPヘッダを含むBAPプロトコルデータユニット(PDU)を生成することと、そのBAP PDUを含むマルチキャスト無線リソース制御(RRC)再構成メッセージを生成することと、そのマルチキャストRRC再構成メッセージを送信することに応答して、複数のアクセスバックホール統合(IAB)ノードからBAPを使用して受信したユニキャストRRC再構成完了メッセージを処理することと、を含む。
【0110】
実施例2は実施例1の方法を含み、当該ビットを、BAPヘッダの宛先フィールド内のアドレスを経路フィールド内の経路識別子のためのマルチキャストアドレスとして扱うように複数のIABノードに指示するように設定することを更に含む。
【0111】
実施例3は実施例2の方法を含み、複数のIABノードを、あるサブネットプレフィックスに対応するサブネットにグループ化することと、そのサブネットプレフィックスをBAPヘッダの宛先フィールドに含めることとを更に含む。
【0112】
実施例4は実施例1の方法を含み、BAP PDUを、コアネットワークからのPDUセッションセットアップ要求に応答して生成することと、複数のIABノードからのユニキャストRRC再構成完了メッセージを処理することに応答して、複数のIABノードのうち1つと通信状態にあるユーザ機器(UE)にユニキャストRRC再構成メッセージを送信することと、UEからのRRC再構成完了メッセージを処理することと、UEからの前記RRC再構成完了メッセージに応答して、コアネットワークにPDUセッションセットアップ完了メッセージを送信することと、を更に含む。
【0113】
実施例5は実施例4の方法を含み、複数のIABノードは、UEとコアネットワークとの間の第1のバックホール経路内の優先リンクのための第1のIABノードと、UEとコアネットワークとの間の第2のバックホール経路内のバックアップリンクのための第2のIABノードとを含む。
【0114】
実施例6は、無線ネットワークで構成転送を使用する、バックホール無線リンク制御(RLC)チャネル確立の方法である。この方法は、転送先フィールドが含まれた情報要素(IE)を含む無線リソース制御(RRC)再構成メッセージであって、転送先フィールドが複数のアクセスバックホール統合(IAB)ノード間の順次ホップのためのアドレスのリストを含む、RRC再構成メッセージを生成することと、複数のIABノードのうち第2のIABノードに転送するために、複数のIABノードのうち第1のIABノードにRRC再構成メッセージを送信することと、を含む。
【0115】
実施例7は実施例6の方法を含み、複数のIABノードの各ノードからRRC再構成完了メッセージを受信することを更に含む。
【0116】
実施例8は実施例6の方法を含み、複数のIABノードの末端ノードからRRC再構成完了メッセージを受信することを更に含み、ここで末端ノードは、あるユーザ機器(UE)と通信状態にあるか、又はそのUEとの接続を確立するための経路に沿って故障を検出済みである。
【0117】
実施例9は実施例8の方法を含み、故障に基づいて、複数のIABノードのうち故障したIABノードにRRC再構成メッセージを再送することを更に含む。
【0118】
実施例10は実施例6の方法を含み、1つ以上のRRC再構成完了メッセージを受信したことに基づいて、バックホールRLCチャネル確立が完了するまで、RRC再構成メッセージの再送を閾値回数まで試みることを更に含む。
【0119】
実施例11は実施例6の方法を含み、複数のIABノードを、あるサブネットプレフィックスに対応するサブネットにグループ化することを更に含む。
【0120】
実施例12は実施例6の方法を含み、複数のIABノードは、UEとコアネットワークとの間の第1の経路に優先リンクを確立し、UEとコアネットワークとの間の第2の経路にバックアップリンクを確立する。
【0121】
実施例13は実施例12の方法を含み、RRC再構成メッセージは、優先リンクを含む第1のバックホール経路に対応する第1のRRC再構成メッセージを含み、この方法は、転送先フィールドが含まれたIEを含む第2のRRC再構成メッセージであって、転送先フィールドがバックアップリンクのための第3のIABノードのアドレスを含む、第2のRRC再構成メッセージを生成することと、複数のIABノードのうち第3のIABノードに直接又は間接的に転送するために、第2のRRC再構成メッセージを複数のIABノードのうち第1のIABノードに送信することと、を更に含む。
【0122】
実施例14は実施例13の方法を含み、第2のRRC再構成メッセージを送信する前に、第1のバックホール経路に対応するRRC再構成完了メッセージを受信することを更に含む。
【0123】
実施例15は実施例13の方法を含み、優先リンクとバックアップリンクの両方を確立するために第1のRRC再構成メッセージと第2のRRC再構成メッセージとを同時に送信することを更に含む。
【0124】
実施例16は実施例13の方法を含み、バックアップリンクをアクティブ化するための指示を含むメディアアクセス制御(MAC)制御要素(CE)を処理することを更に含む。
【0125】
実施例17は実施例16の方法を含み、MAC CEは、アクティブ化/非アクティブ化フィールド及び経路識別子(ID)フィールドを含み、アクティブ化/非アクティブ化フィールドは、経路IDフィールドによって特定されるバックアップリンクに対応する第2の経路がアクティブ化されているのか非アクティブ化されているのかを示す。
【0126】
実施例18は実施例13の方法を含み、複数のIABノード間での交換のために構成されたDCIフォーマットを有する下りリンク制御情報(DCI)を処理することを更に含み、このDCIフォーマットは、IAB間通信のためのIABコマンドのグループを送信するために使用され、このIABコマンドのグループはバックアップリンクをアクティブ化するためのコマンドを含む。
【0127】
実施例19は、マルチキャスティングを伴う無線リソース構成(RRC)再構成を使用する、バックホール無線リンク制御(RLC)チャネル確立の方法である。この方法は、アクセスバックホール統合(IAB)ドナーノード及び1つ以上の子IABノードをサブネットとして構成することと、サブネットに送信するための再構成メッセージを生成することを含み、再構成メッセージは、バックホールRLCチャネル確立のための構成設定が含まれたサブネットのための情報要素(IE)を含み、そのIEは、そのサブネットに関連するインターネットプロトコル(IP)アドレスを有するIABドナーノード及び1つ以上の子IABノードに構成設定を適用するように指示するために、そのサブネットを特定する。
【0128】
実施例20は実施例19の方法を含み、構成設定は、IABのためのRLCの1対1(1-1)又は複数対1(複数-1)のマッピング構成のためのものである。
【0129】
実施例21は、上記実施例のいずれかに記載の、若しくはこれらに関連する方法、又は本明細書に記載のいずれかの他の方法若しくはプロセス、の1つ以上の要素を実行する手段を含む装置を含み得る。
【0130】
実施例22は、命令を含む1つ以上の非一時的なコンピュータ可読媒体であって、電子デバイスの1つ以上のプロセッサによって命令が実行されると、命令は電子デバイスに、上記実施例のいずれか又は本明細書に記載の任意の他の方法若しくはプロセスに記載の又はそれに関連する方法の1つ以上の要素を実行させる、1つ以上の非一時的なコンピュータ可読媒体を含み得る。
【0131】
実施例23は、上記実施例のいずれか又は本明細書に記載の任意の他の方法若しくはプロセスに記載の又はそれに関連する方法の1つ以上の要素を実行する論理、モジュール、又は回路を含む装置を含み得る。
【0132】
実施例24は、上記実施例のいずれか又はその一部分若しくは一部に記載の又はそれに関連する、方法、技術、又はプロセスを含み得る。
【0133】
実施例25は、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されると、1つ以上のプロセッサに、上記実施例のいずれか又はその一部分に記載の又はそれに関連する、方法、技術、又はプロセスを実行させる命令を含む1つ以上のコンピュータ可読媒体と、を含む装置を含み得る。
【0134】
実施例26は、上記実施例のいずれか又はその一部分若しくは一部に記載の又はそれに関連する信号を含み得る。
【0135】
実施例27は、上記実施例のいずれか又はその一部分若しくは一部に記載の又はそれに関連する、あるいは本開示に記載の、データグラム、パケット、フレーム、セグメント、プロトコルデータユニット(PDU)、又はメッセージを含み得る。
【0136】
実施例28は、上記実施例のいずれか又はその一部分若しくは一部に記載の又はそれに関連する、あるいは本開示に記載の、データを用いて符号化された信号を含み得る。
【0137】
実施例29は、上記実施例のいずれか又はその一部分若しくは一部に記載の又はそれに関連する、あるいは本開示に記載の、データグラム、パケット、フレーム、セグメント、PDU、又はメッセージを用いて符号化された信号を含み得る。
【0138】
実施例30は、1つ以上のプロセッサによるコンピュータ可読命令の実行が、1つ以上のプロセッサに、上記実施例のいずれか又はその一部分に記載の又はそれに関連する、方法、技術、又はプロセスを実行させる、コンピュータ可読命令を搬送する電磁信号を含み得る。
【0139】
実施例31は、処理要素によるプログラムの実行が、処理要素に、上記実施例のいずれか又はその一部分に記載の又はそれに関連する、方法、技術、又はプロセスを実行させる、命令を備えたコンピュータプログラムを含み得る。
【0140】
実施例32は、本明細書に示され記載された、無線ネットワーク内の信号を含み得る。
【0141】
実施例33は、本明細書に示され記載された、無線ネットワーク内で通信する方法を含み得る。
【0142】
実施例34は、本明細書に示され記載された、無線通信を提供するためのシステムを含み得る。
【0143】
実施例35は、本明細書に示され記載された、無線通信を提供するためのデバイスを含み得る。
【0144】
上述した実施例のいずれも、特に明記しない限り、任意の他の実施例(又は実施例の組み合わせ)と組み合わせることができる。1つ以上の実装形態の前述の説明は、例示及び説明を提供するが、網羅的であることを意図するものではなく、又は、実施形態の範囲を開示される正確な形態に限定することを意図するものではない。修正及び変形は、上記の教示を踏まえて可能であり、又は様々な実施形態の実践から習得することができる。
【0145】
本明細書に記載されるシステム及び方法の実施形態及び実装形態は、コンピュータシステムによって実行される機械実行可能命令で具現化することができる様々な動作を含むことができる。コンピュータシステムは、1つ以上の汎用コンピュータ又は専用コンピュータ(又は他の電子デバイス)を含んでもよい。コンピュータシステムは、動作を実行するための特定の論理を含むハードウェアコンポーネントを含んでもよく、又はハードウェア、ソフトウェア、及び/若しくはファームウェアの組み合わせを含んでもよい。
【0146】
本明細書に記載されるシステムは、特定の実施形態の説明を含むことが認識されるべきである。これらの実施形態は、単一のシステムに組み合わせる、他のシステムに部分的に組み合わせる、複数のシステムに分割する、又は他の方法で分割若しくは組み合わせることができる。加えて、一実施形態のパラメータ、属性、態様などは、別の実施形態で使用することができることが企図される。パラメータ、属性、態様は、明確にするために1つ以上の実施形態に記載されているだけであり、パラメータ、属性、態様などは、本明細書で具体的に放棄されない限り、別の実施形態のパラメータ、属性などと組み合わせること、又は置換することができることが認識される。
【0147】
個人情報の使用は、ユーザのプライバシーを維持するための業界又は政府の要件を満たす又は超えるとして一般に認識されているプライバシーポリシー及びプラクティスに従うべきであることに十分に理解されている。特に、個人情報データは、意図されない又は認可されていないアクセス又は使用のリスクを最小にするように管理され取り扱われるべきであり、認可された使用の性質は、ユーザに明確に示されるべきである。
【0148】
前述は、明確にするためにある程度詳細に説明されてきたが、その原理から逸脱することなく、特定の変更及び修正を行うことができることは明らかであろう。本明細書に記載されるプロセス及び装置の両方を実装する多くの代替的な方法が存在することに留意されたい。したがって、本実施形態は、例示的であり、限定的ではないとみなされるべきものであり、説明は、本明細書で与えられる詳細に限定されるものではなく、添付の特許請求の範囲及び均等物内で修正されてもよい。
【手続補正書】
【提出日】2024-07-05
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
無線ネットワークで構成転送を使用する、バックホール無線リンク制御(RLC)チャネル確立のための方法であって、
転送先フィールドを含む情報要素(IE)を含む無線リソース制御(RRC)再構成メッセージを生成することであって、前記転送先フィールドが複数のアクセスバックホール統合(IAB)ノード間の順次ホップのためのアドレスのリストを含む、ことと、
前記複数のIABノードのうち第2のIABノードに転送するために、前記RRC再構成メッセージを前記複数のIABノードのうち第1のIABノードに送信することと、
を含む、方法。
【請求項2】
前記複数のIABノードの各ノードからRRC再構成完了メッセージを受信することを更に含む、請求項1に記載の方法。
【請求項3】
前記複数のIABノードの末端ノードからRRC再構成完了メッセージを受信することであって、前記末端ノードが、ユーザ機器(UE)と通信状態にあるか、又は前記UEとの接続を確立するための経路に沿って故障を検出済みである、ことを更に含む、請求項1に記載の方法。
【請求項4】
前記故障に基づいて、前記複数のIABノードのうち故障したIABノードに前記RRC再構成メッセージを再送することを更に含む、請求項3に記載の方法。
【請求項5】
1つ以上のRRC再構成完了メッセージを受信したことに基づいて、前記バックホールRLCチャネル確立が完了するまで、前記RRC再構成メッセージの再送を閾値回数まで試みることを更に含む、請求項1に記載の方法。
【請求項6】
前記複数のIABノードを、サブネットプレフィックスに対応するサブネットにグループ化することを更に含む、請求項1に記載の方法。
【請求項7】
前記複数のIABノードが、UEとコアネットワークとの間の第1の経路に優先リンクを確立し、前記UEと前記コアネットワークとの間の第2の経路にバックアップリンクを確立する、請求項1に記載の方法。
【請求項8】
前記RRC再構成メッセージが、前記優先リンクを含む前記第1の経路に対応する第1のRRC再構成メッセージを含み、前記方法が、
前記転送先フィールドを含む前記IEを含む第2のRRC再構成メッセージを生成することであって、前記転送先フィールドが前記バックアップリンクのための第3のIABノードのアドレスを含む、ことと、
前記複数のIABノードのうち前記第3のIABノードに直接又は間接的に転送するために、前記第2のRRC再構成メッセージを前記複数のIABノードのうち前記第1のIABノードに送信することと、
を更に含む、請求項7に記載の方法。
【請求項9】
前記第2のRRC再構成メッセージを送信する前に、前記第1の経路に対応するRRC再構成完了メッセージを受信することを更に含む、請求項8に記載の方法。
【請求項10】
前記優先リンクと前記バックアップリンクとの両方を確立するために、前記第1のRRC再構成メッセージと前記第2のRRC再構成メッセージとを同時に送信することを更に含む、請求項8に記載の方法。
【請求項11】
前記バックアップリンクをアクティブ化するための指示を含むメディアアクセス制御(MAC)制御要素(CE)を処理することを更に含む、請求項8に記載の方法。
【請求項12】
前記MAC CEが、アクティブ化/非アクティブ化フィールド及び経路識別子(ID)フィールドを含み、前記アクティブ化/非アクティブ化フィールドが、前記経路IDフィールドによって特定される前記バックアップリンクに対応する前記第2の経路がアクティブ化されているのか非アクティブ化されているのかを示す、請求項11に記載の方法。
【請求項13】
前記複数のIABノード間での交換のために構成された下りリンク制御情報(DCI)フォーマットを有するDCIを処理することであって、前記DCIフォーマットが、IAB間通信のためのIABコマンドのグループを送信するために使用され、IABコマンドの前記グループが、前記バックアップリンクをアクティブ化するためのコマンドを含む、ことを更に含む、請求項8に記載の方法。
【請求項14】
マルチキャストを伴う無線リソース構成(RRC)再構成を使用する、バックホール無線リンク制御(RLC)チャネル確立のための方法であって、
アクセスバックホール統合(IAB)ドナーノード及び1つ以上の子IABノードを1つのサブネットとして構成することと、
前記サブネットに送信するための再構成メッセージを生成することであって、前記再構成メッセージが、前記バックホールRLCチャネル確立のための構成設定を含む前記サブネットのための情報要素(IE)を含み、前記IEが、前記サブネットに関連するインターネットプロトコル(IP)アドレスを有する前記IABドナーノード及び前記1つ以上の子IABノードに前記構成設定を適用するように指示するために、前記サブネットを特定する、ことと、を含む、
方法。
【請求項15】
前記構成設定が、前記IABのための前記RLCの1対1(1-1)又は複数対1(複数-1)のマッピング構成のためのものである、請求項14に記載の方法。
【請求項16】
請求項1から請求項15のいずれか一項に記載の方法のステップの各々を処理する手段を備えるノード。
【外国語明細書】