(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024138810
(43)【公開日】2024-10-09
(54)【発明の名称】熱硬化性樹脂、その硬化物及び熱硬化性組成物
(51)【国際特許分類】
C08F 232/08 20060101AFI20241002BHJP
C08F 212/02 20060101ALI20241002BHJP
C08F 212/34 20060101ALI20241002BHJP
H05K 1/03 20060101ALI20241002BHJP
【FI】
C08F232/08
C08F212/02
C08F212/34
H05K1/03 610H
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2023049506
(22)【出願日】2023-03-27
(11)【特許番号】
(45)【特許公報発行日】2024-02-28
(71)【出願人】
【識別番号】000003506
【氏名又は名称】第一工業製薬株式会社
(74)【代理人】
【識別番号】110003395
【氏名又は名称】弁理士法人蔦田特許事務所
(72)【発明者】
【氏名】小倉 綾太
(72)【発明者】
【氏名】村上 賢志
(72)【発明者】
【氏名】矢野 まゆか
【テーマコード(参考)】
4J100
【Fターム(参考)】
4J100AB00Q
4J100AB02Q
4J100AB03Q
4J100AB15R
4J100AB16R
4J100AR09P
4J100AR10P
4J100AR31P
4J100AR32P
4J100CA05
4J100CA06
4J100DA01
4J100DA09
4J100DA25
4J100DA55
4J100FA03
4J100FA19
4J100FA28
4J100FA30
4J100HA35
4J100HC36
4J100HC54
4J100HE14
4J100JA44
(57)【要約】
【課題】誘電特性とガラス転移温度を両立することができ、また溶融粘度の低い熱硬化性樹脂を提供する。
【解決手段】実施形態に係る熱硬化性樹脂は、モノビニル芳香族化合物に対応する繰り返し単位、ジビニル芳香族化合物に対応する繰り返し単位、及び芳香環縮合環状オレフィン化合物に対応する繰り返し単位を有する、直鎖状の共重合体である。
【選択図】なし
【特許請求の範囲】
【請求項1】
モノビニル芳香族化合物に対応する繰り返し単位、ジビニル芳香族化合物に対応する繰り返し単位、及び芳香環縮合環状オレフィン化合物に対応する繰り返し単位を有する、直鎖状の共重合体である、熱硬化性樹脂。
【請求項2】
前記芳香環縮合環状オレフィン化合物に対応する繰り返し単位の含有量が、全繰り返し単位100モル%中、5~80モル%である、請求項1に記載の熱硬化性樹脂。
【請求項3】
前記直鎖状の共重合体の末端に、一般式(1):R1-N=N-R2で表される重合開始剤由来の構造を有し、前記一般式(1)中のR1及びR2は、それぞれ独立に一価の飽和炭化水素基又は一価の芳香族炭化水素基を表す、請求項1に記載の熱硬化性樹脂。
【請求項4】
前記モノビニル芳香族化合物に対応する繰り返し単位と前記ジビニル芳香族化合物に対応する繰り返し単位と前記芳香環縮合環状オレフィン化合物に対応する繰り返し単位の含有量の合計が、全繰り返し単位100モル%中、80モル%以上である、請求項1に記載の熱硬化性樹脂。
【請求項5】
前記芳香環縮合環状オレフィン化合物の環の数が3以下である、請求項1に記載の熱硬化性樹脂。
【請求項6】
請求項1~5のいずれか1項に記載の熱硬化性樹脂を硬化してなる硬化物。
【請求項7】
請求項1~5のいずれか1項に記載の熱硬化性樹脂を含む、熱硬化性組成物。
【請求項8】
プリント基板材料である請求項7に記載の熱硬化性組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、熱硬化性樹脂、及びその硬化物に関し、また該熱硬化性樹脂を含む熱硬化性組成物に関する。
【背景技術】
【0002】
近年、電子機器の小型化、高性能化が進んでおり、これに伴って使用される各種材料の要求性能が向上している。例えば、高周波通信に対応できる低誘電正接のプリント基板材料が求められている。
【0003】
特許文献1には、誘電特性、耐熱性、密着性及び耐湿性に優れた熱硬化性樹脂組成物として、アセナフチレン系構成単位及びヒドロキシスチレン系構成単位を含む共重合体と、一分子中に少なくとも2個のエポキシ基を有する化合物と、硬化剤とを含有するものが開示されている。特許文献1には、該共重合体の具体例として、スチレンとp-t-ブトキシスチレンとジビニルベンゼンとアセナフチレンとの共重合体が開示されているが、該共重合体は分岐鎖を持つものである。
【0004】
特許文献2には、耐熱性、相溶性、誘電特性、湿熱信頼性及び耐熱酸化劣化性に優れた硬化性組成物を与える共重合体として、ジビニル芳香族化合物に由来する構造単位、モノビニル芳香族化合物に由来する構造単位、及びシクロオレフィン化合物に由来する構造単位を含むものが開示されている。特許文献2において、該共重合体は、ジビニル芳香族化合物とモノビニル芳香族化合物とシクロオレフィン化合物の混合液を用いて重合するものであるため、得られる共重合体は分岐鎖を持つものである。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001-192539号公報
【特許文献2】特開2018-039995号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来の熱硬化性樹脂は、誘電特性の点で必ずしも満足のいくものではなく、誘電特性に優れるものであってもガラス転移温度が低かったり、溶融粘度が高く加工性に劣ったりするという問題があった。
【0007】
本発明の実施形態は、以上の点に鑑み、誘電特性とガラス転移温度を両立することができ、また溶融粘度の低い熱硬化性樹脂を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は以下に示される実施形態を含む。
[1] モノビニル芳香族化合物に対応する繰り返し単位、ジビニル芳香族化合物に対応する繰り返し単位、及び芳香環縮合環状オレフィン化合物に対応する繰り返し単位を有する、直鎖状の共重合体である、熱硬化性樹脂。
[2] 前記芳香環縮合環状オレフィン化合物に対応する繰り返し単位の含有量が、全繰り返し単位100モル%中、5~80モル%である、[1]に記載の熱硬化性樹脂。
[3] 前記直鎖状の共重合体の末端に、一般式(1):R1-N=N-R2で表される重合開始剤由来の構造を有し、前記一般式(1)中のR1及びR2は、それぞれ独立に一価の飽和炭化水素基又は一価の芳香族炭化水素基を表す、[1]又は[2]に記載の熱硬化性樹脂。
[4] 前記モノビニル芳香族化合物に対応する繰り返し単位と前記ジビニル芳香族化合物に対応する繰り返し単位と前記芳香環縮合環状オレフィン化合物に対応する繰り返し単位の含有量の合計が、全繰り返し単位100モル%中、80モル%以上である、[1]~[3]のいずれか1項に記載の熱硬化性樹脂。
[5] 前記芳香環縮合環状オレフィン化合物の環の数が3以下である、[1]~[4]のいずれか1項に記載の熱硬化性樹脂。
[6] [1]~[5]のいずれか1項に記載の熱硬化性樹脂を硬化してなる硬化物。
[7] [1]~[5]のいずれか1項に記載の熱硬化性樹脂を含む、熱硬化性組成物。
[8] プリント基板材料である[7]に記載の熱硬化性組成物。
【発明の効果】
【0009】
本発明の実施形態によれば、誘電特性とガラス転移温度を両立することができ、また溶融粘度が低い熱硬化性樹脂が得られる。
【発明を実施するための形態】
【0010】
本実施形態に係る熱硬化性樹脂は、(A)モノビニル芳香族化合物に対応する繰り返し単位、(B)ジビニル芳香族化合物に対応する繰り返し単位、及び(C)芳香環縮合環状オレフィン化合物に対応する繰り返し単位を有する共重合体である。
【0011】
上記(A)のモノビニル芳香族化合物に対応する繰り返し単位(以下、「モノビニル芳香族化合物単位」ともいう。)とは、上記共重合体の構成単位であって、モノビニル芳香族化合物をモノマーとして付加重合させることで形成される構造を持つ構成単位である。該繰り返し単位は、当該モノビニル芳香族化合物に対応する構造を持つものであれば、必ずしも当該モノビニル芳香族化合物を用いて重合してなるものには限定されず、重合後に更に反応させることでモノビニル芳香族化合物に対応する構造としたものでもよい。
【0012】
モノビニル芳香族化合物単位としては、下記一般式(2)で表されるようにモノビニル芳香族化合物のビニル基が付加重合により単結合となった構造を持つ繰り返し単位が挙げられる。
【化1】
【0013】
式(2)中、R3は、炭素数6~30の一価の芳香族炭化水素基を表す。より詳細には、R3は、置換基を有してもよいフェニル基、置換基を有してもよいビフェニルイル基、置換基を有してもよいナフチル基、及び置換基を有してもよいターフェニルイル基からなる群から選ばれる炭素数6~30(より好ましくは炭素数6~20)の一価の芳香族炭化水素基が挙げられる。ここで、R3の炭素数は、アルキル基等の置換基を有する場合、当該置換基に含まれる炭素原子の数を含めたR3全体での炭素数である。
【0014】
このような繰り返し単位を形成するモノビニル芳香族化合物としては、ビニル基を1つ有する芳香族化合物であればよく、例えば、スチレン、ビニルナフタレン、ビニルビフェニルなどのビニル芳香族化合物、アルキルスチレン(例えばo-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレンン、m-エチルスチレン、p-エチルスチレン)、ジアルキルスチレン(例えば3,5-ジメチルスチレン、2,5-ジメチルスチレン、2,5-ジエチルスチレン)、アルキルビニルビフェニル(例えばエチルビニルビフェニル)、アルキルビニルナフタレン(例えばエチルビニルナフタレン)などの核アルキル置換ビニル芳香族化合物などが挙げられ、これらはいずれか1種又は2種以上組み合わせて用いることができる。
【0015】
一実施形態において、モノビニル芳香族化合物は、スチレン、ビニルナフタレン、ビニルビフェニル、アルキルスチレン、ジアルキルスチレン、アルキルビニルビフェニル、及びアルキルビニルナフタレンからなる群から選択される少なくとも1種(A1)を含むことが好ましい。この場合、モノビニル芳香族化合物単位100モル%中の当該少なくとも1種(A1)に対応する繰り返し単位の量は、70モル%以上であることが好ましく、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、100モル%でもよい。
【0016】
一実施形態において、モノビニル芳香族化合物は、スチレンを含むことが好ましい。この場合、モノビニル芳香族化合物単位100モル%中のスチレンに対応する繰り返し単位(以下、「スチレン単位」ともいう。)の量は、70モル%以上であることが好ましく、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、100モル%でもよい。
【0017】
上記(B)のジビニル芳香族化合物に対応する繰り返し単位(以下、「ジビニル芳香族化合物単位」ともいう。)とは、上記共重合体の構成単位であって、ジビニル芳香族化合物をモノマーとして付加重合させることで形成される、1つのビニル基を有する構造を持つ構成単位である。該繰り返し単位は、ジビニル芳香族化合物に対応する構造を持つものであれば、必ずしも当該ジビニル芳香族化合物を用いて重合してなるものには限定されず、重合後に更に反応させることでジビニル芳香族化合物に対応する構造としたものでもよい。
【0018】
ジビニル芳香族化合物単位としては、下記一般式(3)で表されるようにジビニル芳香族化合物の1つのビニル基が付加重合により単結合となった構造を持つ繰り返し単位が挙げられる。
【化2】
【0019】
式(3)中、R4は、炭素数6~30の二価の芳香族炭化水素基を表す。より詳細には、R4は、置換基を有してもよいフェニレン基、置換基を有してもよいビフェニルジイル基、置換基を有してもよいナフチレン基、及び置換基を有してもよいターフェニルジイル基からなる群から選ばれる炭素数6~30(より好ましくは炭素数6~20)の二価の芳香族炭化水素基が挙げられる。ここで、R4の炭素数は、アルキル基等の置換基を有する場合、当該置換基に含まれる炭素原子の数を含めたR4全体での炭素数である。
【0020】
このような繰り返し単位を形成するジビニル芳香族化合物としては、ビニル基を2つ有する芳香族化合物であればよく、例えば、ジビニルベンゼン(各位置異性体又はこれらの混合物を含む)、ジビニルナフタレン(各位置異性体又はこれらの混合物を含む)、ジビニルビフェニル(各位置異性体又はこれらの混合物を含む)が挙げられ、これらはいずれか1種又は2種以上組み合わせて用いることができる。
【0021】
一実施形態において、ジビニル芳香族化合物は、ジビニルベンゼン、ジビニルナフタレン、及びジビニルビフェニルからなる群から選択される少なくとも1種(B1)を含むことが好ましい。この場合、ジビニル芳香族化合物単位100モル%中の当該少なくとも1種(B1)に対応する繰り返し単位の量は、70モル%以上であることが好ましく、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、100モル%でもよい。
【0022】
一実施形態において、ジビニル芳香族化合物は、ジビニルベンゼン(m-体、p-体又はこれらの位置異性体混合物)を含むことが好ましい。この場合、ジビニル芳香族化合物単位100モル%中のジビニルベンゼンに対応する繰り返し単位(以下、「ジビニルベンゼン単位」ともいう。)の量は、70モル%以上であることが好ましく、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、100モル%でもよい。
【0023】
上記(C)の芳香環縮合環状オレフィン化合物に対応する繰り返し単位(以下、「環状オレフィン単位」ともいう。)とは、上記共重合体の構成単位であって、芳香環縮合環状オレフィン化合物をモノマーとして付加重合させることで形成される構造を持つ構成単位である。該繰り返し単位は、当該芳香環縮合環状オレフィン化合物に対応する構造を持つものであれば、必ずしも当該芳香環縮合環状オレフィン化合物を用いて重合してなるものには限定されず、重合後に更に反応させることで芳香環縮合環状オレフィン化合物に対応する構造としたものでもよい。
【0024】
芳香環縮合環状オレフィン化合物は、芳香環が縮合した環状オレフィン化合物であり、より詳細には、炭素-炭素二重結合を有する脂肪族環と芳香環との縮合環を持つ化合物である。該縮合はオルト縮合でもよく、オルトペリ縮合でもよい。芳香環縮合環状オレフィン化合物としては、例えば、インデン系化合物、アセナフチレン系化合物、フェナレン系化合物、アセフェナントリレン系化合物、アセアントリレン系化合物、ベンゾフラン系化合物、ベンゾチオフェン系化合物などが挙げられ、これらはいずれか1種又は2種以上組み合わせて用いることができる。これらの中でも、芳香環縮合環状オレフィン化合物としては、環の数が3以下であるものが好ましい。具体的には、環の数が2つであるものとして、インデン系化合物、ベンゾフラン系化合物、ベンゾチオフェン系化合物; 環の数が3つであるものとして、アセナフチレン系化合物、フェナレン系化合物が好ましく、より好ましくは、インデン系化合物及び/又はアセナフチレン系化合物である。
【0025】
一実施形態において、芳香環縮合環状オレフィン化合物は、インデン系化合物、アセナフチレン系化合物、フェナレン系化合物、アセフェナントリレン系化合物、アセアントリレン系化合物、ベンゾフラン系化合物、及びベンゾチオフェン系化合物からなる群から選択される少なくとも1種(C1)を含むことが好ましい。この場合、環状オレフィン単位100モル%中の当該少なくとも1種(C1)に対応する繰り返し単位の量は、70モル%以上であることが好ましく、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、100モル%でもよい。
【0026】
インデン系化合物としては、例えば、インデン、アルキルインデン、ハロゲン化インデン、アリールインデン、及びアルコキシインデンからなる群から選ばれる少なくとも1種が挙げられる。
【0027】
アセナフチレン系化合物としては、例えば、アセナフチレン、アルキルアセナフチレン、ハロゲン化アセナフチレン、アリールアセナフチレン、及びアルコキシアセナフチレンからなる群から選ばれる少なくとも1種が挙げられる。
【0028】
フェナレン系化合物、アセフェナントリレン系化合物、アセアントリレン系化合物、ベンゾフラン系化合物、及びベンゾチオフェン系化合物についても、フェナレン、アセフェナントリレン、アセアントリレン、ベンゾフラン、及びベンゾチオフェンの他、上記インデン系化合物と同様の置換基を持つ化合物が挙げられる。
【0029】
一実施形態において、環状オレフィン単位としては、下記一般式(4)で表される繰り返し単位が挙げられる。
【化3】
【0030】
式(4)中、R5及びR6は、それぞれ独立に炭素数1~20のアルキル基、ハロゲン原子、炭素数6~20のアリール基、又は炭素数1~20のアルコキシ基を表す。m及びnは、それぞれ独立に0~3の整数を表す。m及びnが2以上の場合、一繰り返し単位中のR5及びR6はそれぞれ同一でも異なってもよい。
【0031】
式(4)の繰り返し単位を形成する芳香環縮合環状オレフィン化合物は、下記一般式(5)で表されるアセナフチレン系化合物である。
【化4】
式(5)中のR
5、R
6、m及びnは、式(4)中のR
5、R
6、m及びnと同じである。
【0032】
一実施形態において、芳香環縮合環状オレフィン化合物は、上記式(5)で表されるアセナフチレン系化合物を含むことが好ましく、より好ましくはアセナフチレンを含むことである。この場合、環状オレフィン単位100モル%中の式(4)で表される繰り返し単位(好ましくはアセナフチレンに対応する繰り返し単位(以下、「アセナフチレン単位」ともいう。))の量は、70モル%以上であることが好ましく、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、100モル%でもよい。
【0033】
本実施形態に係る熱硬化性樹脂は、上記3つの繰り返し単位を有する直鎖状の共重合体である。直鎖状構造により分子鎖の絡み合いが生じて成形性が向上する。ここで、直鎖状とは、共重合体を構成する繰り返し単位が互いに一次元の鎖状に連なって結合した構造を持つことをいい、架橋構造を持たない構造を持つことをいう。
【0034】
該熱硬化性樹脂において、モノビニル芳香族化合物単位とジビニル芳香族化合物単位と環状オレフィン単位の配列順序は、規則的に配列されてもよく、ランダムに配列されてもよい。該熱硬化性樹脂は、好ましくは、モノビニル芳香族化合物単位とジビニル芳香族化合物単位と環状オレフィン単位がランダムに配列されたランダム共重合体である。
【0035】
該熱硬化性樹脂は、モノビニル芳香族化合物単位、ジビニル芳香族化合物単位、及び環状オレフィン単位の他に、その効果が損なわれない範囲で、他のモノマーに対応する繰り返し単位を含んでもよい。そのような他のモノマーとしては、例えば、トリビニル芳香族化合物、トリビニル脂肪族化合物、ジビニル脂肪族化合物、モノビニル脂肪族化合物などが挙げられる。
【0036】
該熱硬化性樹脂において、モノビニル芳香族化合物単位の含有量は、特に限定されないが、共重合体を構成する全繰り返し単位を100モル%として、当該100モル%中、15~90モル%であることが好ましい。15モル%以上であることにより、溶融粘度の低減効果に優れる。モノビニル芳香族化合物単位の含有量は、より好ましくは30~80モル%であり、更に好ましくは40~75モル%であり、更に好ましくは50~70モル%である。なお、本明細書において、全繰り返し単位100モル%には、共重合体の末端に存在する重合開始剤由来の構造は含まれない。
【0037】
該熱硬化性樹脂において、ジビニル芳香族化合物単位の含有量は、特に限定されないが、共重合体を構成する全繰り返し単位100モル%中、3~30モル%であることが好ましい。3モル%以上であることにより、熱硬化性を高めて良好な硬化物を得ることができ、またガラス転移温度を向上することができる。ジビニル芳香族化合物単位の含有量は、より好ましくは5~25モル%であり、更に好ましくは8~22モル%であり、更に好ましくは10~20モル%である。
【0038】
該熱硬化性樹脂において、環状オレフィン単位の含有量は、特に限定されないが、共重合体を構成する全繰り返し単位100モル%中、5~80モル%であることが好ましい。5モル%以上であることにより、ガラス転移温度の向上効果に優れる。80モル%以下であることにより、溶融粘度の低減効果に優れる。環状オレフィン単位の含有量は、より好ましくは7~50モル%であり、更に好ましくは8~35モル%であり、更に好ましくは10~30モル%である。
【0039】
上記モノビニル芳香族化合物単位とジビニル芳香族化合物単位と環状オレフィン単位の含有量の合計は、共重合体を構成する全繰り返し単位100モル%中、80モル%以上であることが好ましく、より好ましくは90モル%以上であり、100モル%でもよい。
【0040】
一実施形態において、熱硬化性樹脂は、上記式(2)で表される繰り返し単位(好ましくはスチレン単位)、上記式(3)で表される繰り返し単位(好ましくはジビニルベンゼン単位)、及び、上記式(4)で表される繰り返し単位(好ましくはアセナフチレン単位)を有する共重合体であることが好ましい。この場合、熱硬化性樹脂は、共重合体を構成する全繰り返し単位を100モル%として、各繰り返し単位を次のように含むことが好ましい。なお、この場合、これらの繰り返し単位とともに、当該繰り返し単位以外の上記(A)、(B)又は(C)の繰り返し単位を含んでもよい。
・式(2)で表される繰り返し単位(好ましくはスチレン単位):15~90モル%、好ましくは30~80モル%、より好ましくは40~75モル%、更に好ましくは50~70モル%。
・式(3)で表される繰り返し単位(好ましくはジビニルベンゼン単位):3~30モル%、好ましくは5~25モル%、より好ましくは8~22モル%、更に好ましくは10~20モル%。
・式(4)で表される繰り返し単位(好ましくはアセナフチレン単位):5~80モル%、好ましくは7~50モル%、より好ましくは8~35モル%、更に好ましくは10~30モル%。
【0041】
該熱硬化性樹脂は、直鎖状の共重合体の末端に、下記一般式(1)で表される重合開始剤由来の構造、又は下記一般式(6)で表される重合開始剤由来の構造の少なくとも一方を有してもよい。式(1)で表される重合開始剤は、汎用のアゾ系開始剤であるアゾビスイソブチロニトリル(AIBN)とは異なり、シアノ基を持たないアゾ系開始剤である。式(6)で表される重合開始剤は、ジアルキルパーオキサイドなどの有機過酸化物である。このうち、式(1)で表される重合開始剤を用いることにより、より優れた誘電特性を付与することができる。
R1-N=N-R2 (1)
R7-O-O-R8 (6)
【0042】
式(1)及び式(6)中、R1、R2、R7およびR8は、それぞれ独立に一価の飽和炭化水素基又は一価の芳香族炭化水素基を表し、ヘテロ原子を含まない。飽和炭化水素基の炭素数は、特に限定されないが、1~23であることが好ましく、より好ましくは4~13である。芳香族炭化水素基の炭素数は、特に限定されないが、6~23であることが好ましく、より好ましくは6~13である。
【0043】
飽和炭化水素基としては、分岐又は直鎖の飽和脂肪族炭化水素基(アルキル基)でもよく、飽和脂環式炭化水素基でもよい。飽和炭化水素基の具体例としては、tert-ブチル基、tert-ペンチル基、tert-ヘキシル基、1,1,3,3-テトラメチルブチル基などのアルキル基、シクロへキシル基などの飽和脂環式炭化水素基が挙げられる。
【0044】
芳香族炭化水素基の具体例としては、フェニル基、トリル基、ナフチル基などのアリール基、クミル基、ベンジル基、フェネチル基などのアラルキル基が挙げられる。
【0045】
一実施形態において、R
1、R
2、R
7及びR
8は、それぞれ独立に下記一般式(7)で表される基でもよい。
【化5】
【0046】
式(7)中、R9、R10及びR11は、それぞれ独立に一価の飽和炭化水素基又は一価の芳香族炭化水素基を表す。より好ましくは、R9は炭素数1~20(より好ましくは炭素数1~10)の一価の飽和炭化水素基又は炭素数6~20(より好ましくは炭素数6~10)の一価の芳香族炭化水素基を表し、R10及びR11はメチル基を表す。R9、R10及びR11(好ましくはR9)についての飽和炭化水素基としては、分岐でも直鎖でもよく、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、イソプロピル基、tert-ブチル基、2,2-ジメチルプロピル基などのアルキル基、シクロへキシル基などの飽和脂環式炭化水素基が挙げられる。R9、R10及びR11(好ましくはR9)についての芳香族炭化水素としては、フェニル基、トリル基、ナフチル基等が挙げられる。
【0047】
これらの重合開始剤を用いてラジカル重合によりビニル共重合体を合成した場合、通常、得られたビニル共重合体の両末端が該重合開始剤由来の構造となる。上記式(1)の重合開始剤を用いて重合した場合、上記のR1-及び/又はR2-を両末端に持つ共重合体が得られる。すなわち、共重合体の両末端は、ともにR1-でもよく、ともにR2-でもよく、一端がR1-で他端がR2-でもよい。一方、上記式(6)の重合開始剤を用いて重合した場合、R7O-及び/又はR8O-を両末端に持つ共重合体が得られる。すなわち、共重合体の両末端は、ともにR7O-でもよく、ともにR8O-でもよく、一端がR7O-で他端がR8O-でもよい。
【0048】
該熱硬化性樹脂の重量平均分子量Mwは特に限定されず、例えば1千~10万でもよく、2千~5万でもよく、3千~2万でもよい。重量平均分子量Mwが1千以上であることにより、重合開始剤由来の末端基の濃度を下げて誘電特性を向上することができる。また、重量平均分子量Mwが10万以下であることにより、溶融粘度を低減することができる。ここで、重量平均分子量Mwは、ゲル浸透クロマトグラフィー(GPC)により測定されるポリスチレン換算の重量平均分子量である。
【0049】
該熱硬化性樹脂の製造方法は、特に限定されない。直鎖状の共重合体を合成するための方法として、好ましい一実施形態に係る製造方法では、上記式(1)で表される重合開始剤又は式(6)で表される重合開始剤の少なくとも一方を用いて、ビニルベンジルホスホニウム塩とモノビニル芳香族化合物と芳香環縮合環状オレフィン化合物を共重合させ、得られた共重合体をホルムアルデヒドと反応させる。但し、この製造方法に限定されるものではない。
【0050】
ビニルベンジルホスホニウム塩としては、ビニルベンジルホスホニウムハライドを用いることが好ましい。ビニルベンジルホスホニウム塩におけるホスホニウム基としては、例えば、トリアルキルホスホニウム、トリアリールホスホニウム、トリアラルキルホスホニウムなどの第四級ホスホニウム基が挙げられる。また、ホスホニウム基と塩を形成するハロゲンとしては、例えば塩素、臭素などが挙げられる。
【0051】
ビニルベンジルホスホニウム塩をモノビニル芳香族化合物及び芳香環縮合環状オレフィン化合物と共重合させる方法としては、公知のビニル重合法を用いることができる。重合開始剤として、上記式(1)及び/又は式(6)で表されるラジカル重合開始剤を用いることにより、ビニルベンジルホスホニウム塩に由来する繰り返し単位とモノビニル芳香族化合物に由来する繰り返し単位と芳香環縮合環状オレフィン化合物に由来する繰り返し単位を有する共重合体が得られる。重合に際しては、連鎖移動剤を添加して、共重合体の分子量を調整してもよい。
【0052】
そして、得られた共重合体をホルムアルデヒドと反応させる方法としては、公知のウィッティッヒ反応を用いることができ、該共重合体を塩基で処理してホルムアルデヒドと反応させることにより、ホスホニウム基が外れてビニル基が導入される。
【0053】
この製造方法であると、共重合工程ではビニルベンジルホスホニウム塩がモノビニルであるため、分岐を持たない直鎖状の共重合体が得られ、共重合後にビニルベンジルホスホニウム塩に由来する繰り返し単位にビニル基を導入するため、ジビニル芳香族化合物に対応する繰り返し単位を有するものでありながら、分岐のない直鎖状の共重合体を得ることができる。
【0054】
本実施形態に係る熱硬化性組成物は、上記熱硬化性樹脂を含むものである。熱硬化性組成物における熱硬化性樹脂の含有量は、当該組成物が熱により硬化する性質を有する限り、特に限定されない。例えば、熱硬化性組成物の固形分(後述する有機溶媒を含む場合は当該有機溶媒を除いた量であり、有機溶媒を含まない場合は当該組成物全体の量)100質量%に対して、1~99質量%でもよく、10~95質量%でもよい。
【0055】
熱硬化性組成物には、上記熱硬化性樹脂の他に、例えば、他の熱硬化性樹脂(熱硬化性架橋剤)、熱可塑性樹脂、充填剤、難燃剤、硬化促進剤、重合開始剤、消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料等の着色剤、滑剤、分散剤などの種々の成分を含有してもよい。
【0056】
また、熱硬化性組成物はその粘度を調整するために有機溶媒を含んでもよく、熱硬化性組成物は上記熱硬化性樹脂を含む溶液であってもよい。有機溶媒としては、上記熱硬化性樹脂を溶解できるものが用いられ、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル、ジメチルアセトアミド、ジメチルホルムアミド等のアミド、トルエン、キシレン等の芳香族炭化水素などが挙げられ、これらをいずれか1種又は2種以上組み合わせて用いることができる。
【0057】
本実施形態の熱硬化性樹脂又は熱硬化性組成物は、共重合体の分子鎖中にビニル基を有することから重合による架橋が可能であり、熱硬化により硬化物を得ることができる。該硬化物は誘電正接及び誘電率が低く誘電特性に優れるため、例えば、プリント基板材料、半導体封止材料などの電子材用途に用いることができる。すなわち、一実施形態に係る熱硬化性組成物は、電子材用熱硬化性組成物である。
【0058】
プリント基板材料としては、片面基板、両面基板、多層基板、ビルドアップ基板などのリジッドプリント基板材料や、フィルム状ないしシート状のフレキシブルプリント基板材料などが挙げられる。また、誘電特性に優れることから高周波通信機器に用いられる高周波基板材料として好適に用いられる。
【実施例0059】
以下、実施例によってさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0060】
<測定・評価方法>
[スチレン/ジビニルベンゼン/アセナフチレンのモル比率]
実施例1~9、11~13、比較例1,4~6及び9で得た生成物及び組成物について重水素化クロロホルムに溶解し、核磁気共鳴装置(JEOL製)により1H-NMR測定を行って、スチレンに対応する繰り返し単位、ジビニルベンゼンに対応する繰り返し単位及びアセナフチレンに対する繰り返し単位のモル比を求め、全繰り返し単位100モル%に対するスチレンに対応する繰り返し単位の含有量(スチレン比率)、ジビニルベンゼンに対応する繰り返し単位の含有量(ジビニルベンゼン比率)及びアセナフチレンに対応する繰り返し単位の含有量(アセナフチレン比率)を算出した。
【0061】
[スチレン/ジビニルベンゼン/アセナフチレン/ビニルシクロヘキサンのモル比率]
実施例10、比較例2及び7で得た生成物について重水素化クロロホルムに溶解し、核磁気共鳴装置(JEOL製)により1H-NMR測定を行って、スチレンに対応する繰り返し単位、ジビニルベンゼンに対応する繰り返し単位、アセナフチレンに対する繰り返し単位及びビニルシクロヘキサンに対する繰り返し単位のモル比を求め、全繰り返し単位100モル%に対するスチレンに対応する繰り返し単位の含有量(スチレン比率)、ジビニルベンゼンに対応する繰り返し単位の含有量(ジビニルベンゼン比率)、アセナフチレンに対応する繰り返し単位の含有量(アセナフチレン比率)及びビニルシクロヘキサンに対応する繰り返し単位の含有量(ビニルシクロヘキサン比率)を算出した。
【0062】
[スチレン/ジビニルベンゼン/イソボルニルアクリレートのモル比率]
比較例3及び8で得た生成物について重水素化クロロホルムに溶解し、核磁気共鳴装置(JEOL製)により1H-NMR測定を行って、スチレンに対応する繰り返し単位、ジビニルベンゼンに対応する繰り返し単位及びイソボルニルアクリレートに対する繰り返し単位のモル比を求め、全繰り返し単位100モル%に対するスチレンに対応する繰り返し単位の含有量(スチレン比率)、ジビニルベンゼンに対応する繰り返し単位の含有量(ジビニルベンゼン比率)及びイソボルニルアクリレートに対応する繰り返し単位の含有量(イソボルニルアクリレート比率)を算出した。
【0063】
[重量平均分子量]
実施例1~13及び比較例1~9で得た生成物及び組成物をテトラヒドロフランに溶解し、ポリスチレン系ゲルを充填剤とした4本のカラム(Shodex GPCカラム KF-601、KF-602、KF-603、KF-604、昭和電工製)を連結したゲル浸透クロマトグラフィー(GPC)(Prominence、島津製作所製)によりポリスチレン換算の重量平均分子量Mwを測定した。カラムオーブン温度40℃、THF流量0.6mL/min、試料濃度0.1質量%、試料注入量10μLとし、示差屈折率検出器(Shodex RI-504、昭和電工製)を用いた。
【0064】
[誘電率、誘電正接]
実施例1~13及び比較例1~9で得た生成物及び組成物を試料として用いた。試験用単動圧縮成形機(安田精機製作所製)を用いて圧力10MPa、温度220℃で試料1.5gを15分間プレスし、30mm×30mm×厚さ1mmの平板を作製した。得られた平板を裁断して幅2mm、厚さ1mm、長さ30mmの試験片を作製した。該試験片について、空洞共振器法誘電率測定装置(KEYSIGHT製)を使用して、10GHzでの誘電率及び誘電正接を測定し、以下の基準により評価した。
【0065】
誘電率が2.4未満のものを「A」(優秀)、2.4以上2.5未満のものを「B」(良好)、2.5以上2.6未満のものを「C」(普通)、2.6以上2.7未満のものを「D」(不良)、2.7以上のものを「E」(劣悪)とした。
【0066】
誘電正接が0.001未満のものを「A」(優秀)、0.001以上0.002未満のものを「B」(良好)、0.002以上0.003未満のものを「C」(普通)、0.003以上0.004未満のものを「D」(不良)、0.004以上のものを「E」(劣悪)とした。
【0067】
[ガラス転移温度Tg]
上記の[誘電率、誘電正接]で作製した平板を裁断して幅5mm、厚さ1mm、長さ25mmの試験片を作製した。この試験片を動的粘弾性測定装置:Rheogel-E4000(株式会社ユービーエム製)を使用して、ガラス転移温度を測定した。該試験片について、引っ張り正弦波、動的歪み5μm、周波数1Hz、昇温測度3℃/分の条件下で測定した損失正接(tanδ)の極大値をガラス転移温度として求めた。ガラス転移温度が180℃以上のものを「A」(優秀)、170℃以上180℃未満のものを「B」(良好)、160℃以上170℃未満のものを「C」(普通)、160℃未満のものを「D」(不良)とした。
【0068】
[溶融粘度(最低溶融粘度)]
実施例1~13及び比較例1~9で得た生成物及び組成物を試料として用いた。手動油圧ポンプ:P-1B(リケン製)を用いて圧力10MPaで試料0.4gを1分間プレスし、直径20mm×厚さ1mmのペレットを作製した。得られたペレットを試料として、レオメータ:MCR 302(Anton Paar社製)を用い、昇温速度5℃/分で50℃から200℃まで昇温した。複素粘性率の極小値を最低溶融粘度とし、最低溶融粘度が100000poise未満のものを「○」(低粘度)、100000poise以上のものを「×」(高粘度)とした。
【0069】
(合成例1)化合物1:ビニルベンジルトリフェニルホスホニウムクロライドの合成
ビニルベンジルクロライド(商品名:CMS-14、AGCセイミケミカル社製)1.5モル(228.9g)、トリフェニルホスフィン1.8モル(472.1g)、及びジメチルホルムアミド622.4gを2.0Lの反応器内に投入し、窒素条件下70℃で3時間反応させることで白色の固体が析出した。固体をアセトンで十分洗浄した後、92℃で減圧乾燥して化合物1を490g回収した。
【0070】
(合成例2)共重合体Aの合成
スチレン15.1g、13.2gの化合物1、アセナフチレン5.5g、連鎖移動剤としての2,4-ジフェニル-4-メチル-1-ペンテン3.5g、重合開始剤としての2,2’-アゾビス(2,4,4-トリメチルペンタン)(商品名:VR-110、富士フィルム和光純薬製)1.28g、及びジメチルホルムアミド78.8gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Aをジメチルホルムアミド溶液として得た。
【0071】
(合成例3)共重合体Bの合成
スチレン12.7g、16.0gの化合物1、アセナフチレン5.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.5g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.28g、及びジメチルホルムアミド78.7gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Bをジメチルホルムアミド溶液として得た。
【0072】
(合成例4)共重合体Cの合成
スチレン18.5g、10.1gの化合物1、アセナフチレン6.3g、2,4-ジフェニル-4-メチル-1-ペンテン3.6g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.33g、及びジメチルホルムアミド81.5gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Cをジメチルホルムアミド溶液として得た。
【0073】
(合成例5)共重合体Dの合成
スチレン17.3g、13.5gの化合物1、アセナフチレン2.8g、2,4-ジフェニル-4-メチル-1-ペンテン3.5g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.27g、及びジメチルホルムアミド78.2gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Dをジメチルホルムアミド溶液として得た。
【0074】
(合成例6)共重合体Eの合成
スチレン12.8g、12.8gの化合物1、アセナフチレン8.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.5g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.28g、及びジメチルホルムアミド78.4gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Eをジメチルホルムアミド溶液として得た。
【0075】
(合成例7)共重合体Fの合成
スチレン17.7g、10.3gの化合物1、アセナフチレン8.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.7g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.37g、及びジメチルホルムアミド83.9gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Fをジメチルホルムアミド溶液として得た。
【0076】
(合成例8)共重合体Gの合成
スチレン13.4g、15.8gの化合物1、アセナフチレン3.7g、2,4-ジフェニル-4-メチル-1-ペンテン3.4g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.25g、及びジメチルホルムアミド76.7gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Gをジメチルホルムアミド溶液として得た。
【0077】
(合成例9)共重合体Hの合成
スチレン10.2g、15.0gの化合物1、アセナフチレン7.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.4g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.22g、及びジメチルホルムアミド75.2gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Hをジメチルホルムアミド溶液として得た。
【0078】
(合成例10)共重合体Iの合成
スチレン21.7g、10.6gの化合物1、アセナフチレン3.3g、2,4-ジフェニル-4-メチル-1-ペンテン3.7g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.35g、及びジメチルホルムアミド82.9gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Iをジメチルホルムアミド溶液として得た。
【0079】
(合成例11)共重合体Jの合成
スチレン9.7g、12.0gの化合物1、アセナフチレン5.0g、ビニルシクロヘキサン8.5g、2,4-ジフェニル-4-メチル-1-ペンテン3.8g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.34g、及びジメチルホルムアミド82.2gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Jをジメチルホルムアミド溶液として得た。
【0080】
(合成例12)共重合体Kの合成
スチレン18.5g、10.1gの化合物1、アセナフチレン6.3g、2,4-ジフェニル-4-メチル-1-ペンテン3.7g、重合開始剤としてのジターシャリーブチルパーオキサイド(商品名:パーブチルD、日油製)0.77g、及びジメチルホルムアミド81.5gを、500mLの反応器内に投入し、窒素条件下132℃で3時間反応させて、共重合体Kをジメチルホルムアミド溶液として得た。
【0081】
(合成例13)共重合体Lの合成
スチレン15.1g、13.2gの化合物1、アセナフチレン5.5g、2,4-ジフェニル-4-メチル-1-ペンテン1.8g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.28g、及びジメチルホルムアミド78.8gを、500mLの反応器内に投入し、窒素条件下120℃で3.5時間反応させて、共重合体Lをジメチルホルムアミド溶液として得た。
【0082】
(合成例14)共重合体Mの合成
スチレン18.5g、10.1gの化合物1、アセナフチレン6.3g、2,4-ジフェニル-4-メチル-1-ペンテン7.3g、2,2’-アゾビス(2,4,4-トリメチルペンタン)2.65g、及びジメチルホルムアミド81.5gを、500mLの反応器内に投入し、窒素条件下120℃で1.5時間反応させて、共重合体Mをジメチルホルムアミド溶液として得た。
【0083】
(比較合成例1)共重合体Nの合成
スチレン22.0g、15.5gの化合物1、2,4-ジフェニル-4-メチル-1-ペンテン3.9g、ジターシャリーブチルパーオキサイド0.82g、及びジメチルホルムアミド87.4gを、500mLの反応器内に投入し、窒素条件下132℃で3時間反応させて、共重合体Nをジメチルホルムアミド溶液として得た。
【0084】
(比較合成例2)共重合体Oの合成
スチレン14.3g、12.4gの化合物1、ビニルシクロヘキサン8.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.7g、ジターシャリーブチルパーオキサイド0.76g、及びジメチルホルムアミド81.0gを、500mLの反応器内に投入し、窒素条件下132℃で3時間反応させて、共重合体Oをジメチルホルムアミド溶液として得た。
【0085】
(比較合成例3)共重合体Pの合成
スチレン14.1g、11.4gの化合物1、イソボルニルアクリレート8.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.5g、ジターシャリーブチルパーオキサイド0.74g、及びジメチルホルムアミド78.3gを、500mLの反応器内に投入し、窒素条件下132℃で3時間反応させて、共重合体Pをジメチルホルムアミド溶液として得た。
【0086】
(比較合成例4)共重合体Qの合成
スチレン22.0g、15.5gの化合物1、2,4-ジフェニル-4-メチル-1-ペンテン3.9g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.42g、及びジメチルホルムアミド87.4gを、500mLの反応器内に投入し、窒素条件下120℃で2時間反応させて、共重合体Qをジメチルホルムアミド溶液として得た。
【0087】
(比較合成例5)共重合体Rの合成
10.6gの化合物1、アセナフチレン22.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.4g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.24g、及びジメチルホルムアミド76.0gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Rをジメチルホルムアミド溶液として得た。
【0088】
(比較合成例6)共重合体Sの合成
スチレン14.3g、12.4gの化合物1、ビニルシクロヘキサン8.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.6g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.32g、及びジメチルホルムアミド81.0gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Sをジメチルホルムアミド溶液として得た。
【0089】
(比較合成例7)共重合体Tの合成
スチレン14.1g、11.4gの化合物1、イソボルニルアクリレート8.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.5g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.27g、及びジメチルホルムアミド78.3gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Tをジメチルホルムアミド溶液として得た。
【0090】
(比較合成例8)重合体Uの合成
アセナフチレン35.0g、2,4-ジフェニル-4-メチル-1-ペンテン3.6g、2,2’-アゾビス(2,4,4-トリメチルペンタン)1.33g、及びジメチルホルムアミド81.7gを、500mLの反応器内に投入し、窒素条件下120℃で4時間反応させた。この反応溶液を大過剰のメタノール中に再沈殿した後、上澄みをデカンテーションした。残った固体を92℃で減圧乾燥することで重合体Uを33.9g回収した。
【0091】
(実施例1)
合成例2で得られた共重合体Aのジメチルホルムアミド溶液117.4g、トルエン117.4g、37質量%ホルマリン31.1g、及び28質量%水酸化カリウム水溶液38.3gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを18.2g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物1を14.2g回収した。生成物1のMwは5500、スチレン比率は62.1モル%、ジビニルベンゼン比率は16.2モル%、アセナフチレン比率は21.7モル%であった。
【0092】
(実施例2)
合成例3で得られた共重合体Bのジメチルホルムアミド溶液117.2g、トルエン117.2g、37質量%ホルマリン37.6g、及び28質量%水酸化カリウム水溶液46.5gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを22.1g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物2を13.0g回収した。生成物2のMwは5400、スチレン比率は57.9モル%、ジビニルベンゼン比率は20.8モル%、アセナフチレン比率は21.3モル%であった。
【0093】
(実施例3)
合成例4で得られた共重合体Cのジメチルホルムアミド溶液121.4g、トルエン121.4g、37質量%ホルマリン23.7g、及び28質量%水酸化カリウム水溶液29.3gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを13.9g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物3を16.4g回収した。生成物3のMwは5500、スチレン比率は66.9モル%、ジビニルベンゼン比率は10.4モル%、アセナフチレン比率は22.7モル%であった。
【0094】
(実施例4)
合成例5で得られた共重合体Dのジメチルホルムアミド溶液116.5g、トルエン116.5g、37質量%ホルマリン31.6g、及び28質量%水酸化カリウム水溶液39.0gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを18.6g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物4を14.0g回収した。生成物4のMwは5700、スチレン比率は73.5モル%、ジビニルベンゼン比率は17.0モル%、アセナフチレン比率は9.5モル%であった。
【0095】
(実施例5)
合成例6で得られた共重合体Eのジメチルホルムアミド溶液116.8g、トルエン116.8g、37質量%ホルマリン30.1g、及び28質量%水酸化カリウム水溶液37.2gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを17.7g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物5を14.6g回収した。生成物5のMwは5100、スチレン比率は52.3モル%、ジビニルベンゼン比率は15.7モル%、アセナフチレン比率は32.0モル%であった。
【0096】
(実施例6)
合成例7で得られた共重合体Fのジメチルホルムアミド溶液125.0g、トルエン125.0g、37質量%ホルマリン24.1g、及び28質量%水酸化カリウム水溶液29.7gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを14.1g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物6を16.9g回収した。生成物6のMwは5200、スチレン比率は63.0モル%、ジビニルベンゼン比率は10.6モル%、アセナフチレン比率は26.4モル%であった。
【0097】
(実施例7)
合成例8で得られた共重合体Gのジメチルホルムアミド溶液114.3g、トルエン114.3g、37質量%ホルマリン37.1g、及び28質量%水酸化カリウム水溶液45.9gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを21.8g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物7を12.7g回収した。生成物7のMwは5700、スチレン比率は63.5モル%、ジビニルベンゼン比率は20.8モル%、アセナフチレン比率は15.7モル%であった。
【0098】
(実施例8)
合成例9で得られた共重合体Hのジメチルホルムアミド溶液111.9g、トルエン111.9g、37質量%ホルマリン35.1g、及び28質量%水酸化カリウム水溶液43.4gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを20.6g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物8を12.9g回収した。生成物8のMwは6000、スチレン比率は49.1モル%、ジビニルベンゼン比率は20.2モル%、アセナフチレン比率は30.7モル%であった。
【0099】
(実施例9)
合成例10で得られた共重合体Iのジメチルホルムアミド溶液123.5g、トルエン123.5g、37質量%ホルマリン24.9g、及び28質量%水酸化カリウム水溶液30.7gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを14.6g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物9を16.6g回収した。生成物9のMwは5100、スチレン比率は79.0モル%、ジビニルベンゼン比率は9.7モル%、アセナフチレン比率は11.3モル%であった。
【0100】
(実施例10)
合成例11で得られた共重合体Jのジメチルホルムアミド溶液122.5g、トルエン122.5g、37質量%ホルマリン28.2g、及び28質量%水酸化カリウム水溶液34.9gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを16.6g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物10を15.7g回収した。生成物10のMwは6400、スチレン比率は42.9モル%、ジビニルベンゼン比率は16.8モル%、アセナフチレン比率は21.9モル%、ビニルシクロヘキサン比率は18.4モル%であった。
【0101】
(実施例11)
合成例12で得られた共重合体Kのジメチルホルムアミド溶液120.8g、トルエン120.8g、37質量%ホルマリン23.7g、及び28質量%水酸化カリウム水溶液29.3gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを13.9g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物11を16.5g回収した。生成物11のMwは5200、スチレン比率は62.7モル%、ジビニルベンゼン比率は16.0モル%、アセナフチレン比率は21.3モル%であった。
【0102】
(実施例12)
合成例13で得られた共重合体Lのジメチルホルムアミド溶液115.7g、トルエン115.7g、37質量%ホルマリン31.1g、及び28質量%水酸化カリウム水溶液38.3gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを18.2g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物12を14.3g回収した。生成物12のMwは10900、スチレン比率は60.7モル%、ジビニルベンゼン比率は16.9モル%、アセナフチレン比率は22.4モル%であった。
【0103】
(実施例13)
合成例14で得られた共重合体Mのジメチルホルムアミド溶液126.3g、トルエン126.3g、37質量%ホルマリン23.7g、及び28質量%水酸化カリウム水溶液29.3gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを13.9g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物13を16.5g回収した。生成物13のMwは2600、スチレン比率は64.7モル%、ジビニルベンゼン比率は15.0モル%、アセナフチレン比率は20.3モル%であった。
【0104】
(比較例1)
比較合成例1で得られた共重合体Nのジメチルホルムアミド溶液129.7g、トルエン129.7g、37質量%ホルマリン36.2g、及び28質量%水酸化カリウム水溶液44.7gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを21.3g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物14を15.6g回収した。生成物14のMwは5600、スチレン比率は83.2モル%、ジビニルベンゼン比率は16.8モル%であった。
【0105】
(比較例2)
比較合成例2で得られた共重合体Oのジメチルホルムアミド溶液120.1g、トルエン120.1g、37質量%ホルマリン29.1g、及び28質量%水酸化カリウム水溶液35.9gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを17.1g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物15を15.2g回収した。生成物15のMwは6000、スチレン比率は63.9モル%、ジビニルベンゼン比率は15.8モル%、ビニルシクロヘキサン比率は20.3モル%であった。
【0106】
(比較例3)
比較合成例3で得られた共重合体Pのジメチルホルムアミド溶液116.1g、トルエン116.1g、37質量%ホルマリン26.9g、及び28質量%水酸化カリウム水溶液33.1gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを15.8g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物16を14.9g回収した。生成物16のMwは5500、スチレン比率は63.2モル%、ジビニルベンゼン比率は15.7モル%、イソボルニルアクリレート比率は21.1モル%であった。
【0107】
(比較例4)
比較合成例4で得られた共重合体Qのジメチルホルムアミド溶液130.2g、トルエン130.2g、37質量%ホルマリン36.3g、及び28質量%水酸化カリウム水溶液44.9gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを21.3g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物17を15.7g回収した。生成物17のMwは6200、スチレン比率は84.4モル%、ジビニルベンゼン比率は15.6モル%であった。
【0108】
(比較例5)
スチレン77.6g、アセナフチレン20.0g、2,4-ジフェニル-4-メチル-1-ペンテン10.2g、2,2’-アゾビス(2,4,4-トリメチルペンタン)3.71g、及びジメチルホルムアミド227.6gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させた。この反応溶液を大過剰のメタノール中に再沈殿した後、上澄みをデカンテーションした。残った固体を80℃で減圧乾燥することで生成物18を58.2g回収した。生成物18のMwは4900、スチレン比率は76.9モル%、アセナフチレン比率は23.1モル%であった。
【0109】
(比較例6)
比較合成例5で得られた共重合体Rのジメチルホルムアミド溶液113.2g、トルエン113.2g、37質量%ホルマリン24.9g、及び28質量%水酸化カリウム水溶液30.7gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを14.6g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物19を14.9g回収した。生成物19のMwは4700、ジビニルベンゼン比率は13.0モル%、アセナフチレン比率は87.0モル%であった。
【0110】
(比較例7)
比較合成例6で得られた共重合体Sのジメチルホルムアミド溶液120.6g、トルエン120.6g、37質量%ホルマリン29.1g、及び28質量%水酸化カリウム水溶液35.9gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを17.1g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物20を15.2g回収した。生成物20のMwは6300、スチレン比率は62.1モル%、ジビニルベンゼン比率は16.5モル%、ビニルシクロヘキサン比率は21.4モル%であった。
【0111】
(比較例8)
比較合成例7で得られた共重合体Tのジメチルホルムアミド溶液116.6g、トルエン116.6g、37質量%ホルマリン26.9g、及び28質量%水酸化カリウム水溶液33.1gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をトルエンで希釈し、蒸留水とイソプロピルアルコールで有機層を洗浄した。有機層を脱水、濃縮した後、無水塩化マグネシウムを15.8g投入し、65℃で2時間攪拌した。ろ過により固形物を除去し、トルエンで希釈したろ液をメタノールに再沈殿した。次いでろ過にて固体を取り出した後、60℃で減圧乾燥することで生成物21を15.0g回収した。生成物21のMwは5700、スチレン比率は63.8モル%、ジビニルベンゼン比率は15.5モル%、イソボルニルアクリレート比率は20.7モル%であった。
【0112】
(比較例9)
比較例4で得られた生成物17を5.7gと比較合成例8で得られた重合体U2.0gを混合し、トルエンに溶解させ均一な溶液とした。この溶液を60℃で減圧乾燥させることで組成物1を7.3g回収した。組成物1のMwは6100、スチレン比率は67.5モル%、ジビニルベンゼン比率は12.5モル%、アセナフチレン比率は20.0モル%であった。
【0113】
実施例1~13及び比較例1~9で得られた生成物及び組成物について、誘電率、誘電正接、ガラス転移温度及び溶融粘度を評価した。結果を下記表1~5に示す。
【0114】
【0115】
【0116】
【0117】
【0118】
【0119】
実施例11及び比較例1~3は、過酸化物型の重合開始剤を用いた例である。比較例1ではアセナフチレン単位が存在しないため、ガラス転移温度に劣っていた。比較例2では、比較例1に対してビニルシクロヘキサンをモノマーとして追加して共重合したが、ガラス転移温度は向上しなかった。比較例3では、比較例1に対してイソボルニルアクリレートをモノマーとして追加して共重合しており、ガラス転移温度は改善されたが、エステル基の存在により誘電率及び誘電正接ともに悪化した。
【0120】
これに対し、実施例11では、比較例1に対してアセナフチレン単位を組み込んだことにより、誘電率及び誘電正接が多少改善しつつ、ガラス転移温度が顕著に向上しており、誘電特性とガラス転移温度を両立することができた。実施例11では、また最低溶融粘度も低いものであった。
【0121】
実施例1~10,12~13及び比較例4~9は、上記式(1)のアゾ系開始剤を用いた例である。比較例4では、比較例1に対して誘電特性は改善されたが、アセナフチレン単位が存在しないため、比較例1と同様、ガラス転移温度に劣っていた。
【0122】
比較例5では、ジビニルベンゼン単位が存在せず、熱硬化が進行しなかった。そのため誘電率、誘電正接及びガラス転移温度評価用の試験片を作製できず、これらの項目については評価できなかった。また、熱硬化が進行しないことにより、溶融粘度は単調に低下し続けたため最低溶融粘度については観測できなかった。
【0123】
比較例6では、誘電特性とガラス転移温度には優れていたものの、スチレン単位を含まないため、最低溶融粘度が高く、加工性に劣るものであった。比較例7では、比較例4に対してビニルシクロヘキサンをモノマーとして追加して共重合したが、ガラス転移温度は向上しなかった。比較例8では、比較例4に対してイソボルニルアクリレートをモノマーとして追加して共重合しており、ガラス転移温度は改善されたが、エステル基の存在により誘電率及び誘電正接ともに悪化した。
【0124】
比較例9では、比較例4の生成物17とアセナフチレンのホモポリマーである重合体Uとを混合しており、組成としてはスチレン単位、ジビニルベンゼン単位及びアセナフチレン単位を含むものであったが、ガラス転移温度に劣るとともに、最低溶融粘度が高く、加工性に劣るものであった。
【0125】
これに対し、実施例1~10,12~13であると、比較例4に対してアセナフチレン単位を組み込んだことにより、優れた誘電率及び誘電正接を概ね維持しながら、ガラス転移温度に優れており、誘電特性とガラス転移温度を両立することができた。また、最低溶融粘度も低いものであった。
【0126】
また、実施例1~13の生成物では、熱可塑性樹脂や架橋剤を併用せずとも自立するほどの十分なシートを成形することができ、成形性に優れていた。
【0127】
なお、明細書に記載の種々の数値範囲は、それぞれそれらの上限値と下限値を任意に組み合わせることができ、それら全ての組み合わせが好ましい数値範囲として本明細書に記載されているものとする。また、「X~Y」との数値範囲の記載は、X以上Y以下を意味する。
【0128】
以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。