(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024013911
(43)【公開日】2024-02-01
(54)【発明の名称】半導体装置
(51)【国際特許分類】
H01L 29/78 20060101AFI20240125BHJP
H01L 29/739 20060101ALI20240125BHJP
H01L 21/336 20060101ALI20240125BHJP
H01L 29/872 20060101ALI20240125BHJP
H01L 29/12 20060101ALI20240125BHJP
【FI】
H01L29/78 657D
H01L29/78 655G
H01L29/78 655B
H01L29/78 655D
H01L29/78 658H
H01L29/78 653A
H01L29/78 652J
H01L29/78 652M
H01L29/86 301F
H01L29/78 652T
H01L29/86 301D
H01L29/86 301M
【審査請求】未請求
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2022116335
(22)【出願日】2022-07-21
(71)【出願人】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】吉田 浩介
(57)【要約】 (修正有)
【課題】スイッチング損失を低減した半導体装置を提供する。
【解決手段】トランジスタ部及びダイオード部80を備える半導体装置100であって、ダイオード部は、半導体基板10のおもて面21に設けられた第1導電型領域11と、半導体基板の上方に設けられ、第1導電型領域11とショットキー接合されたショットキー接合電極と、半導体基板10のおもて面21に設けられた複数のトレンチ部30と、を備える。ショットキー接合電極は、複数のトレンチ部の間のメサ部81に設けられた第1導電型領域とショットキー接合し、複数のトレンチ部のトレンチ深さをDtとし、複数のトレンチ部の間のメサ部におけるメサ幅をWmとしたとき、Dt/Wm≧2を満たす。
【選択図】
図1B
【特許請求の範囲】
【請求項1】
ダイオード部を備える半導体装置であって、
前記ダイオード部は、
半導体基板のおもて面に設けられた第1導電型領域と、
前記半導体基板の上方に設けられ、前記第1導電型領域とショットキー接合されたショットキー接合電極と、
前記半導体基板のおもて面に設けられた複数のトレンチ部と、
を備え、
前記ショットキー接合電極は、前記複数のトレンチ部の間のメサ部に設けられた前記第1導電型領域とショットキー接合し、
前記複数のトレンチ部のトレンチ深さDtと、前記複数のトレンチ部の間のメサ部におけるメサ幅Wmは、Dt/Wm≧2を満たす半導体装置。
【請求項2】
前記半導体基板の裏面に設けられたカソード領域を備え、
前記カソード領域は、
前記第1導電型領域よりもドーピング濃度の高い第1導電型の第1カソード部と、
前記半導体基板の前記裏面において、前記第1カソード部と隣接して設けられた第2導電型の第2カソード部と、
を有する
請求項1に記載の半導体装置。
【請求項3】
前記第1導電型領域のドーピング濃度は、1E12cm-3以上、2E14cm-3以下である
請求項1または2に記載の半導体装置。
【請求項4】
前記半導体基板において、前記カソード領域の上方に設けられた第1導電型のドリフト領域を備え、
前記第1導電型領域は、前記半導体基板の前記おもて面まで延伸して設けられた前記ドリフト領域である
請求項2に記載の半導体装置。
【請求項5】
前記第1カソード部のドーピング濃度は、1E13cm-3以上、1E20cm-3以下である
請求項2に記載の半導体装置。
【請求項6】
前記第2カソード部のドーピング濃度は、1E13cm-3以上、1E18cm-3以下である
請求項2に記載の半導体装置。
【請求項7】
前記第1カソード部および前記第2カソード部は、前記半導体基板の前記裏面において、予め定められたピッチで交互に設けられ、
前記第1カソード部および前記第2カソード部のピッチは、0.5μm以上、50.0μm以下である
請求項2に記載の半導体装置。
【請求項8】
前記ショットキー接合電極とショットキー接合した前記メサ部の両端の前記複数のトレンチ部は、前記ショットキー接合電極の電位に設定されている
請求項1または2に記載の半導体装置。
【請求項9】
前記ショットキー接合電極とショットキー接合した前記メサ部の両端の前記複数のトレンチ部は、ゲート電位に設定されている
請求項1または2に記載の半導体装置。
【請求項10】
前記半導体基板の深さ方向における中心よりも前記半導体基板の裏面側であって、前記半導体基板の深さ方向において、前記カソード領域よりも前記半導体基板の前記おもて面側に設けられた第1導電型のバッファ領域を備える
請求項2に記載の半導体装置。
【請求項11】
トランジスタ部を備え、
前記トランジスタ部は、
前記半導体基板の前記おもて面に設けられ、前記第1導電型領域よりもドーピング濃度の高い第1導電型のエミッタ領域と、
前記エミッタ領域の下方に設けられた第2導電型のベース領域と、
前記半導体基板の裏面に設けられ、前記ベース領域よりもドーピング濃度の高い第2導電型のコレクタ領域と
を有する
請求項2に記載の半導体装置。
【請求項12】
前記トランジスタ部および前記ダイオード部は、前記半導体基板のおもて面において、それぞれ複数のトレンチ部を備える
請求項11に記載の半導体装置。
【請求項13】
前記トランジスタ部は、前記ダイオード部と隣接して設けられた境界部を備え、
前記境界部は、前記半導体基板の前記おもて面において、前記ベース領域よりもドーピング濃度の高い第2導電型のコンタクト領域を有する
請求項11に記載の半導体装置。
【請求項14】
前記トランジスタ部は、前記ダイオード部と隣接して設けられた境界部を備え、
前記境界部は、前記半導体基板の前記おもて面に前記第1導電型領域を有する
請求項11に記載の半導体装置。
【請求項15】
前記境界部の下方の前記コレクタ領域は、前記第1カソード部と隣接して設けられる
請求項14に記載の半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の製造方法に関する。
【背景技術】
【0002】
特許文献1には、RFC(Relaxed Field of Cathode)構造を備えるPNダイオードを提供することが記載されている。
[先行技術文献]
[特許文献]
特許文献1 特開2016-195271号公報
特許文献2 特開2016-225345号公報
【発明の概要】
【発明が解決しようとする課題】
【0003】
スイッチング損失を低減した半導体装置を提供する。
【課題を解決するための手段】
【0004】
本発明の第1の態様においては、ダイオード部を備える半導体装置であって、前記ダイオード部は、半導体基板のおもて面に設けられた第1導電型領域と、前記半導体基板の上方に設けられ、前記第1導電型領域とショットキー接合されたショットキー接合電極と、前記半導体基板のおもて面に設けられた複数のトレンチ部と、を備える半導体装置を提供する。前記ショットキー接合電極は、前記複数のトレンチ部の間のメサ部に設けられた前記第1導電型領域とショットキー接合してよい。前記複数のトレンチ部のトレンチ深さDtと、前記複数のトレンチ部の間のメサ部におけるメサ幅Wmは、Dt/Wm≧2を満たしてよい。
【0005】
上記の半導体装置は、前記半導体基板の裏面に設けられたカソード領域を備えてよい。前記カソード領域は、前記第1導電型領域よりもドーピング濃度の高い第1導電型の第1カソード部と、前記半導体基板の前記裏面において、前記第1カソード部と隣接して設けられた第2導電型の第2カソード部と、を有してよい。
【0006】
上記いずれかの半導体装置において、前記第1導電型領域のドーピング濃度は、1E12cm-3以上、2E14cm-3以下であってよい。
【0007】
上記いずれかの半導体装置は、前記半導体基板において、前記カソード領域の上方に設けられた第1導電型のドリフト領域を備えてよい。前記第1導電型領域は、前記半導体基板の前記おもて面まで延伸して設けられた前記ドリフト領域であってよい。
【0008】
上記いずれかの半導体装置において、前記第1カソード部のドーピング濃度は、1E13cm-3以上、1E20cm-3以下であってよい。
【0009】
上記いずれかの半導体装置において、前記第2カソード部のドーピング濃度は、1E13cm-3以上、1E18cm-3以下であってよい。
【0010】
上記いずれかの半導体装置において、前記第1カソード部および前記第2カソード部は、前記半導体基板の前記裏面において、予め定められたピッチで交互に設けられてよい。前記第1カソード部および前記第2カソード部のピッチは、0.5μm以上、50.0μm以下であってよい。
【0011】
上記いずれかの半導体装置において、前記ショットキー接合電極とショットキー接合した前記メサ部の両端の前記複数のトレンチ部は、前記ショットキー接合電極の電位に設定されてよい。
【0012】
上記いずれかの半導体装置において、前記ショットキー接合電極とショットキー接合した前記メサ部の両端の前記複数のトレンチ部は、ゲート電位に設定されてよい。
【0013】
上記いずれかの半導体装置は、前記半導体基板の深さ方向における中心よりも前記半導体基板の裏面側であって、前記半導体基板の深さ方向において、前記カソード領域よりも前記半導体基板の前記おもて面側に設けられた第1導電型のバッファ領域を備えてよい。
【0014】
上記いずれかの半導体装置は、トランジスタ部を備えてよい。前記トランジスタ部は、前記半導体基板の前記おもて面に設けられ、前記第1導電型領域よりもドーピング濃度の高い第1導電型のエミッタ領域と、前記エミッタ領域の下方に設けられた第2導電型のベース領域と、前記半導体基板の裏面に設けられ、前記ベース領域よりもドーピング濃度の高い第2導電型のコレクタ領域とを有してよい。
【0015】
上記いずれかの半導体装置において、前記トランジスタ部および前記ダイオード部は、前記半導体基板のおもて面において、それぞれ複数のトレンチ部を備えてよい。
【0016】
上記いずれかの半導体装置において、前記トランジスタ部は、前記ダイオード部と隣接して設けられた境界部を備えてよい。前記境界部は、前記半導体基板の前記おもて面において、前記ベース領域よりもドーピング濃度の高い第2導電型のコンタクト領域を有してよい。
【0017】
上記いずれかの半導体装置において、前記トランジスタ部は、前記ダイオード部と隣接して設けられた境界部を備えてよい。前記境界部は、前記半導体基板の前記おもて面に前記第1導電型領域を有してよい。
【0018】
上記いずれかの半導体装置において、前記境界部の下方の前記コレクタ領域は、前記第1カソード部と隣接して設けられてよい。
【0019】
なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0020】
【
図2A】半導体装置100の変形例の上面図である。
【
図2B】半導体装置100の変形例のb-b'断面を示す。
【
図4】比較例に係る半導体装置500の断面図である。
【
図5A】ダイオード部80の電圧波形の一例を示す。
【
図5B】ダイオード部80の電流波形の一例を示す。
【
図6A】PNダイオードの電気特性を示すリニアスケールのグラフである。
【
図6B】PNダイオードの電気特性を示す対数スケールのグラフである。
【
図7A】PNダイオードの逆回復時の電流波形を示す図である。
【
図7B】PNダイオードの逆回復時の電圧波形を示す図である。
【
図8】ダイオード部80のポテンシャルエネルギーを示すグラフである。
【
図9】比較例であるショットキーバリアダイオードの耐圧を示す。
【
図10】実施例のショットキーバリアダイオードの耐圧を示す。
【
図11】ダイオード部80の耐圧のメサ幅依存性を示す図である。
【発明を実施するための形態】
【0021】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0022】
本明細書においては半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」の方向は、重力方向または半導体装置の実装時における方向に限定されない。
【0023】
本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。直交座標軸は、構成要素の相対位置を特定するに過ぎず、特定の方向を限定するものではない。例えば、Z軸は地面に対する高さ方向を限定して示すものではない。なお、+Z軸方向と-Z軸方向とは互いに逆向きの方向である。正負を記載せず、Z軸方向と記載した場合、+Z軸および-Z軸に平行な方向を意味する。
【0024】
本明細書では、半導体基板の上面および下面に平行な直交軸をX軸およびY軸とする。また、半導体基板の上面および下面と垂直な軸をZ軸とする。本明細書では、Z軸の方向を深さ方向と称する場合がある。また、本明細書では、X軸およびY軸を含めて、半導体基板の上面および下面に平行な方向を、水平方向と称する場合がある。
【0025】
本明細書において「同一」または「等しい」のように称した場合、製造ばらつき等に起因する誤差を有する場合も含んでよい。当該誤差は、例えば10%以内である。
【0026】
本明細書においては、不純物がドーピングされたドーピング領域の導電型をP型またはN型として説明している。本明細書においては、不純物とは、特にN型のドナーまたはP型のアクセプタのいずれかを意味する場合があり、ドーパントと記載する場合がある。本明細書においては、ドーピングとは、半導体基板にドナーまたはアクセプタを導入し、N型の導電型を示す半導体またはP型の導電型を示す半導体とすることを意味する。
【0027】
本明細書においてP+型またはN+型と記載した場合、P型またはN型よりもドーピング濃度が高いことを意味し、P-型またはN-型と記載した場合、P型またはN型よりもドーピング濃度が低いことを意味する。また、本明細書においてP++型またはN++型と記載した場合には、P+型またはN+型よりもドーピング濃度が高いことを意味する。同様にN--型またはP--型と記載した場合には、P-型またはN-型よりもドーピング濃度が低いことを意味する。
【0028】
図1Aは、半導体装置100の上面図の一例を示す。本例の半導体装置100は、トランジスタ部70およびダイオード部80を備える半導体チップである。例えば、半導体装置100は、逆導通IGBT(RC-IGBT:Reverse Conducting IGBT)である。本例のトランジスタ部70は、トランジスタ部70とダイオード部80との境界に位置する境界部90を含む。
【0029】
トランジスタ部70は、半導体基板10の裏面側に設けられたコレクタ領域22を半導体基板10の上面に投影した領域である。コレクタ領域22については後述する。トランジスタ部70は、IGBT等のトランジスタを含む。
【0030】
ダイオード部80は、半導体基板10の裏面に設けられたカソード領域82を半導体基板10の上面に投影した領域である。カソード領域82は、第1導電型を有する。本例のカソード領域82は、一例としてN+型である。ダイオード部80は、半導体基板10の上面においてトランジスタ部70と隣接して設けられた還流ダイオード(FWD:Free Wheel Diode)等のダイオードを含む。
【0031】
図1Aにおいては、半導体装置100のエッジ側であるチップ端部周辺の領域を示しており、他の領域を省略している。例えば、本例の半導体装置100のY軸方向の負側の領域には、エッジ終端構造部が設けられてよい。エッジ終端構造部は、半導体基板10の上面側の電界集中を緩和する。エッジ終端構造部は、例えばガードリング、フィールドプレート、リサーフおよびこれらを組み合わせた構造を有する。なお、本例では、便宜上、Y軸方向の負側のエッジについて説明するものの、半導体装置100の他のエッジについても同様である。
【0032】
半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板等であってもよい。本例の半導体基板10は、シリコン基板である。
【0033】
本例の半導体装置100は、半導体基板10のおもて面21において、ゲートトレンチ部40と、ダミートレンチ部30と、エミッタ領域12と、ベース領域14と、コンタクト領域15と、ウェル領域17とを備える。おもて面21については後述する。また、本例の半導体装置100は、半導体基板10のおもて面21の上方に設けられたエミッタ電極52およびゲート金属層50を備える。
【0034】
エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、エミッタ領域12、ベース領域14、コンタクト領域15およびウェル領域17の上方に設けられている。また、ゲート金属層50は、ゲートトレンチ部40およびウェル領域17の上方に設けられている。
【0035】
エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。エミッタ電極52の少なくとも一部の領域は、アルミニウム(Al)等の金属、または、アルミニウム‐シリコン合金(AlSi)、アルミニウム‐シリコン‐銅合金(AlSiCu)等の金属合金で形成されてよい。ゲート金属層50の少なくとも一部の領域は、アルミニウム(Al)等の金属、または、アルミニウム‐シリコン合金(AlSi)、アルミニウム‐シリコン‐銅合金(AlSiCu)、アルミニウム-銅合金(AlCu)等の金属合金で形成されてよい。エミッタ電極52およびゲート金属層50は、アルミニウム等で形成された領域の下層にチタンやチタン化合物、コバルトやコバルト化合物、ニッケルやニッケル化合物等で形成されたバリアメタルを有してよい。エミッタ電極52およびゲート金属層50は、互いに分離して設けられる。
【0036】
エミッタ電極52およびゲート金属層50は、層間絶縁膜38を挟んで、半導体基板10の上方に設けられる。層間絶縁膜38は、
図1Aでは省略されている。層間絶縁膜38には、コンタクトホール54、コンタクトホール55およびコンタクトホール56が貫通して設けられている。
【0037】
コンタクトホール55は、ゲート金属層50とトランジスタ部70内のゲート導電部とを接続する。コンタクトホール55の内部には、タングステン等で形成されたプラグが形成されてもよい。
【0038】
コンタクトホール56は、エミッタ電極52とダミートレンチ部30内のダミー導電部とを接続する。コンタクトホール56の内部には、タングステン等で形成されたプラグが形成されてもよい。
【0039】
接続部25は、エミッタ電極52またはゲート金属層50等のおもて面側電極と、半導体基板10とを電気的に接続する。一例において、接続部25は、ゲート金属層50とゲート導電部との間に設けられる。接続部25は、エミッタ電極52とダミー導電部との間にも設けられている。接続部25は、不純物がドープされたポリシリコン等の、導電性を有する材料である。本例の接続部25は、N型の不純物がドープされたポリシリコン(N+)である。接続部25は、酸化膜等の絶縁膜等を介して、半導体基板10のおもて面21の上方に設けられる。
【0040】
ゲートトレンチ部40は、予め定められた配列方向(本例ではX軸方向)に沿って予め定められた間隔で配列される。本例のゲートトレンチ部40は、半導体基板10のおもて面21に平行であって配列方向と垂直な延伸方向(本例ではY軸方向)に沿って延伸する2つの延伸部分41と、2つの延伸部分41を接続する接続部分43を有してよい。
【0041】
接続部分43は、少なくとも一部が曲線状に形成されることが好ましい。ゲートトレンチ部40の2つの延伸部分41の端部を接続することで、延伸部分41の端部における電界集中を緩和できる。ゲートトレンチ部40の接続部分43において、ゲート金属層50がゲート導電部と接続されてよい。
【0042】
ダミートレンチ部30は、エミッタ電極52と電気的に接続されたトレンチ部である。ダミートレンチ部30は、ゲートトレンチ部40と同様に、予め定められた配列方向(本例ではX軸方向)に沿って予め定められた間隔で配列される。本例のダミートレンチ部30は、ゲートトレンチ部40と同様に、半導体基板10のおもて面21においてU字形状を有してよい。即ち、ダミートレンチ部30は、延伸方向に沿って延伸する2つの延伸部分31と、2つの延伸部分31を接続する接続部分33を有してよい。
【0043】
本例のトランジスタ部70は、2つのゲートトレンチ部40と3つのダミートレンチ部30を繰り返し配列させた構造を有する。即ち、本例のトランジスタ部70は、2:3の比率でゲートトレンチ部40とダミートレンチ部30を有している。例えば、トランジスタ部70は、2本の延伸部分41の間に1本の延伸部分31を有する。また、トランジスタ部70は、ゲートトレンチ部40と隣接して、2本の延伸部分31を有している。
【0044】
但し、ゲートトレンチ部40とダミートレンチ部30の比率は本例に限定されない。ゲートトレンチ部40とダミートレンチ部30の比率は、1:1であってもよく、2:4であってもよい。また、トランジスタ部70は、全てのトレンチ部をゲートトレンチ部40として、ダミートレンチ部30を有さなくてもよい。
【0045】
ウェル領域17は、後述するドリフト領域18よりも半導体基板10のおもて面21側に設けられた第2導電型の領域である。ウェル領域17は、半導体装置100のエッジ側に設けられるウェル領域の一例である。ウェル領域17は、一例としてP-型である。ウェル領域17は、ゲート金属層50が設けられる側の活性領域の端部から、予め定められた範囲で形成される。ウェル領域17の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30の、ゲート金属層50側の一部の領域は、ウェル領域17に形成される。ゲートトレンチ部40およびダミートレンチ部30の延伸方向の端の底は、ウェル領域17に覆われてよい。
【0046】
コンタクトホール54は、トランジスタ部70において、エミッタ領域12およびコンタクト領域15の各領域の上方に形成される。コンタクトホール54は、Y軸方向両端に設けられたウェル領域17の上方には設けられていない。このように、層間絶縁膜には、1又は複数のコンタクトホール54が形成されている。1又は複数のコンタクトホール54は、延伸方向に延伸して設けられてよい。
【0047】
コンタクトホール54は、ダイオード部80において、第1導電型領域11の上方に設けられる。コンタクトホール54は、境界部90において、コンタクト領域15の上方に設けられる。いずれのコンタクトホール54も、Y軸方向両端に設けられたウェル領域17の上方には設けられていない。
【0048】
メサ部71は、半導体基板10のおもて面21と平行な面内において、トレンチ部に隣接して設けられたメサ部である。メサ部とは、隣り合う2つのトレンチ部に挟まれた半導体基板10の部分であって、半導体基板10のおもて面21から、各トレンチ部の最も深い底部の深さまでの部分であってよい。各トレンチ部の延伸部分を1つのトレンチ部としてよい。即ち、2つの延伸部分に挟まれる領域をメサ部としてよい。
【0049】
メサ部71は、トランジスタ部70において、ダミートレンチ部30またはゲートトレンチ部40の少なくとも1つに隣接して設けられる。メサ部71は、半導体基板10のおもて面21において、ウェル領域17と、エミッタ領域12と、ベース領域14と、コンタクト領域15とを有する。メサ部71では、エミッタ領域12およびコンタクト領域15が延伸方向において交互に設けられている。
【0050】
ベース領域14は、半導体基板10のおもて面21側に設けられた第2導電型の領域である。ベース領域14は、一例としてP-型である。ベース領域14は、半導体基板10のおもて面21において、メサ部71のY軸方向における両端部に設けられてよい。なお、
図1Aは、当該ベース領域14のY軸方向の一方の端部のみを示している。
【0051】
エミッタ領域12は、半導体基板10のおもて面21に設けられ、第1導電型領域11よりもドーピング濃度の高い領域である。エミッタ領域12は、ドリフト領域18よりもドーピング濃度の高い第1導電型の領域である。本例のエミッタ領域12は、一例としてN+型である。エミッタ領域12のドーパントの一例はヒ素(As)である。エミッタ領域12は、メサ部71のおもて面21において、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、メサ部71を挟んだ2本のトレンチ部の一方から他方まで、X軸方向に延伸して設けられてよい。エミッタ領域12は、コンタクトホール54の下方にも設けられている。
【0052】
また、エミッタ領域12は、ダミートレンチ部30と接してもよいし、接しなくてもよい。本例のエミッタ領域12は、ダミートレンチ部30と接している。
【0053】
コンタクト領域15は、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のコンタクト領域15は、一例としてP+型である。本例のコンタクト領域15は、メサ部71のおもて面21に設けられている。コンタクト領域15は、メサ部71を挟んだ2本のトレンチ部の一方から他方まで、X軸方向に設けられてよい。コンタクト領域15は、ゲートトレンチ部40またはダミートレンチ部30と接してもよいし、接しなくてもよい。本例のコンタクト領域15は、ダミートレンチ部30およびゲートトレンチ部40と接する。コンタクト領域15は、コンタクトホール54の下方にも設けられている。
【0054】
境界部90は、トランジスタ部70に設けられ、ダイオード部80と隣接する領域である。境界部90は、エミッタ領域12を有さなくてよい。一例において、境界部90のトレンチ部は、ダミートレンチ部30である。本例の境界部90は、X軸方向における両端がダミートレンチ部30となるように配置されている。
【0055】
メサ部91は、境界部90に設けられている。メサ部91は、半導体基板10のおもて面21において、コンタクト領域15を有する。本例のメサ部91は、Y軸方向の負側において、ベース領域14およびウェル領域17を有する。
【0056】
メサ部81は、ダイオード部80において、隣り合うダミートレンチ部30に挟まれた領域に設けられる。メサ部81は、半導体基板10のおもて面21において、第1導電型領域11を有する。本例のメサ部81は、Y軸方向の負側において、ベース領域14およびウェル領域17を有する。
【0057】
第1導電型領域11は、半導体基板10のおもて面21に設けられる。第1導電型領域11は、第1導電型を有する。本例の第1導電型領域11は、エミッタ電極52とショットキー接合する。第1導電型領域11は、エミッタ電極52とのショットキー接合が可能なドーピング濃度を有する。第1導電型領域11のドーピング濃度は、1E12cm-3以上、2E14cm-3以下であってよい。第1導電型領域11は、ドリフト領域18であってよい。
【0058】
エミッタ電極52は、複数のトレンチ部の間のメサ部に設けられた第1導電型領域11とショットキー接合する。本例のエミッタ電極52は、メサ部81に設けられた第1導電型領域11とショットキー接合する。
【0059】
本例の第1導電型領域11は、メサ部81に設けられているが、メサ部91に設けられてもよい。エミッタ領域12は、メサ部71に設けられているが、メサ部81およびメサ部91には設けられなくてよい。コンタクト領域15は、メサ部71およびメサ部91に設けられているが、メサ部81には設けられなくてよい。
【0060】
図1Bは、
図1Aにおけるa-a'断面の一例を示す。a-a'断面は、トランジスタ部70において、エミッタ領域12を通過するXZ面である。本例の半導体装置100は、a-a'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10および層間絶縁膜38の上方に形成される。
【0061】
ドリフト領域18は、半導体基板10に設けられた第1導電型の領域である。本例のドリフト領域18は、一例としてN--型である。ドリフト領域18は、半導体基板10において他のドーピング領域が形成されずに残存した領域であってよい。即ち、ドリフト領域18のドーピング濃度は半導体基板10のドーピング濃度であってよい。
【0062】
バッファ領域20は、半導体基板10の深さ方向における中心よりも半導体基板10の裏面23側であって、半導体基板10の深さ方向において、カソード領域82よりも半導体基板10のおもて面21側に設けられた第1導電型の領域である。本例のバッファ領域20は、ドリフト領域18よりも半導体基板10の裏面23側に設けられる。本例のバッファ領域20は、一例としてN-型である。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ベース領域14の下面側から広がる空乏層が、第2導電型のコレクタ領域22に到達することを防ぐフィールドストップ層として機能してよい。
【0063】
コレクタ領域22は、トランジスタ部70において、バッファ領域20の下方に設けられる。コレクタ領域22は、半導体基板10の裏面23に設けられ、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のコレクタ領域22は、一例としてP+型である。
【0064】
コレクタ電極24は、半導体基板10の裏面23に形成される。コレクタ電極24は、金属等の導電材料で形成される。
【0065】
ベース領域14は、ドリフト領域18の上方に設けられる第2導電型の領域である。ベース領域14は、エミッタ領域12の下方に設けられてよい。ベース領域14は、ゲートトレンチ部40に接して設けられる。ベース領域14は、ダミートレンチ部30に接して設けられてよい。
【0066】
エミッタ領域12は、ベース領域14とおもて面21との間に設けられる。エミッタ領域12は、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、ダミートレンチ部30と接してもよいし、接しなくてもよい。
【0067】
蓄積領域16は、ドリフト領域18よりも半導体基板10のおもて面21側に設けられる第1導電型の領域である。本例の蓄積領域16は、一例としてN-型である。蓄積領域16は、トランジスタ部70に設けられ、ダイオード部80には設けられていない。但し、蓄積領域16は、トランジスタ部70とダイオード部80の両方に設けられてよい。蓄積領域16は省略されてよい。
【0068】
蓄積領域16は、ゲートトレンチ部40に接して設けられてよい。蓄積領域16は、ダミートレンチ部30に接してもよいし、接しなくてもよい。蓄積領域16のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。蓄積領域16のイオン注入のドーズ量は、1.0E11cm-2以上、5.0E13cm-2以下であってよい。蓄積領域16を設けることで、キャリア注入促進効果(IE効果)を高めて、トランジスタ部70のオン電圧を低減できる。なお、Eは10のべき乗を意味し、例えば1.0E12cm-2は1.0×1012cm-2を意味する。注入エネルギーを変えて、複数回注入したプロファイルを適用してもよく、トレンチ溝に斜め回転注入で深さ方向にブロードなプロファイルを適用してもよい。
【0069】
1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30は、おもて面21に設けられる。各トレンチ部は、おもて面21からドリフト領域18まで設けられる。エミッタ領域12、ベース領域14、コンタクト領域15および蓄積領域16の少なくともいずれかが設けられる領域においては、各トレンチ部はこれらの領域も貫通して、ドリフト領域18に到達する。トレンチ部がドーピング領域を貫通するとは、ドーピング領域を形成してからトレンチ部を形成する順序で製造したものに限定されない。トレンチ部を形成した後に、トレンチ部の間にドーピング領域を形成したものも、トレンチ部がドーピング領域を貫通したものに含まれる。
【0070】
ゲートトレンチ部40は、おもて面21に形成されたゲートトレンチ、ゲート絶縁膜42およびゲート導電部44を有する。ゲート絶縁膜42は、ゲートトレンチの内壁を覆って形成される。ゲート絶縁膜42は、ゲートトレンチの内壁の半導体を酸化または窒化して形成してよい。ゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に形成される。ゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。ゲートトレンチ部40は、おもて面21において層間絶縁膜38により覆われる。
【0071】
ゲート導電部44は、半導体基板10の深さ方向において、ゲート絶縁膜42を挟んでメサ部71側で隣接するベース領域14と対向する領域を含む。ゲート導電部44に所定の電圧が印加されると、ベース領域14のうちゲートトレンチに接する界面の表層に、電子の反転層によるチャネルが形成される。
【0072】
ダミートレンチ部30は、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、おもて面21側に形成されたダミートレンチ、ダミー絶縁膜32およびダミー導電部34を有する。ダミー絶縁膜32は、ダミートレンチの内壁を覆って形成される。ダミー導電部34は、ダミートレンチの内部に形成され、且つ、ダミー絶縁膜32よりも内側に形成される。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミートレンチ部30は、おもて面21において層間絶縁膜38により覆われる。
【0073】
層間絶縁膜38は、おもて面21に設けられている。層間絶縁膜38の上方には、エミッタ電極52が設けられている。層間絶縁膜38には、エミッタ電極52と半導体基板10とを電気的に接続するための1又は複数のコンタクトホール54が設けられている。コンタクトホール55およびコンタクトホール56も同様に、層間絶縁膜38を貫通して設けられてよい。
【0074】
エミッタ電極52は、半導体基板10の上方に設けられ、第1導電型領域11とショットキー接合される。エミッタ電極52は、ショットキー接合電極の一例である。エミッタ電極52は、複数のトレンチ部の間のメサ部に設けられた第1導電型領域11とショットキー接合する。本例では、ショットキー接合電極とショットキー接合したメサ部の両端の複数のトレンチ部は、ショットキー接合電極の電位に設定されている。ショットキー接合電極の電位とは、エミッタ電位であってよい。本例では、メサ部81の両端のダミートレンチ部30は、エミッタ電位に設定されている。メサ部91の両端のダミートレンチ部30は、エミッタ電位に設定されてよい。
【0075】
第1ライフタイム制御領域151は、半導体基板10の内部に不純物を注入すること等により意図的にライフタイムキラーが形成された領域である。一例において、第1ライフタイム制御領域151は、半導体基板10にヘリウムを注入することで形成される。第1ライフタイム制御領域151を設けることにより、ターンオフ時間を低減し、テイル電流を抑制することにより、スイッチング時の損失を低減することができる。
【0076】
ライフタイムキラーは、キャリアの再結合中心である。ライフタイムキラーは、格子欠陥であってよい。例えば、ライフタイムキラーは、空孔、複空孔、これらと半導体基板10を構成する元素との複合欠陥、または転位であってよい。また、ライフタイムキラーは、ヘリウム、ネオンなどの希ガス元素、または、白金などの金属元素などでもよい。格子欠陥の形成には電子線が用いられてよい。
【0077】
ライフタイムキラー濃度とは、キャリアの再結合中心濃度である。ライフタイムキラー濃度は、格子欠陥の濃度であってよい。例えばライフタイムキラー濃度とは、空孔、複空孔などの空孔濃度であってよく、これらの空孔と半導体基板10を構成する元素との複合欠陥濃度であってよく、または転位濃度であってよい。また、ライフタイムキラー濃度とは、ヘリウム、ネオンなどの希ガス元素の化学濃度としてもよく、または、白金などの金属元素の化学濃度としてもよい。
【0078】
第1ライフタイム制御領域151は、半導体基板10の深さ方向において、半導体基板10の中心よりも裏面23側に設けられる。本例の第1ライフタイム制御領域151は、バッファ領域20に設けられる。本例の第1ライフタイム制御領域151は、XY平面において半導体基板10の全面に設けられており、マスクを使用せずに形成できる。第1ライフタイム制御領域151は、XY平面において半導体基板10の一部に設けられてもよい。第1ライフタイム制御領域151を形成するための不純物のドーズ量は、0.5E10cm-2以上、1.0E13cm-2以下であっても、5.0E10cm-2以上、5.0E11cm-2以下であってもよい。
【0079】
また、本例の第1ライフタイム制御領域151は、裏面23側からの注入により形成されている。これにより、半導体装置100のおもて面21側への影響を回避できる。例えば、第1ライフタイム制御領域151は、裏面23側からヘリウムを照射することにより形成される。ここで、第1ライフタイム制御領域151がおもて面21側からの注入により形成されているか、裏面23側からの注入により形成されているかは、SR法またはリーク電流の測定によって、おもて面21側の状態を取得することで判断できる。
【0080】
コンタクト領域15は、メサ部91において、ベース領域14の上方に設けられる。コンタクト領域15は、メサ部91において、ダミートレンチ部30に接して設けられる。他の断面において、コンタクト領域15は、メサ部71のおもて面21に設けられてよい。
【0081】
第1導電型領域11は、半導体基板10において、カソード領域82の上方に設けられる。本例の第1導電型領域11は、半導体基板10のおもて面21まで延伸して設けられたドリフト領域18である。本例の第1導電型領域11は、ドリフト領域18であるが、ドリフト領域18と異なる領域であってもよい。即ち、第1導電型領域11は、ドリフト領域18と異なるドーピング濃度を有してもよい。
【0082】
第1導電型領域11は、メサ部81において、一方のトレンチ部から隣接する他方のトレンチ部まで延伸して設けられてよい。第1導電型領域11は、おもて面21において、一方のトレンチ部から隣接する他方のトレンチ部まで延伸して設けられてよい。第1導電型領域11が設けられたメサ部81には、エミッタ領域12、コンタクト領域15および蓄積領域16が設けられなくてよい。
【0083】
カソード領域82は、半導体基板10の裏面23に設けられる。カソード領域82は、ダイオード部80において、バッファ領域20の下方に設けられる。コレクタ領域22とカソード領域82との境界は、トランジスタ部70とダイオード部80との境界である。即ち、本例の境界部90の下方には、コレクタ領域22が設けられている。本例のカソード領域82は、第1カソード部181および第2カソード部182を有する。
【0084】
第1カソード部181は、第1導電型領域11よりもドーピング濃度の高い第1導電型の領域である。一例において、第1カソード部181は、N+型である。
【0085】
第2カソード部182は、半導体基板10の裏面23において、第1カソード部181と隣接して設けられる第2導電型の領域である。即ち、第2カソード部182は、第1カソード部181と直接接してよい。一例において、第2カソード部182は、P+型である。
【0086】
第1カソード部181のドーピング濃度は、1E13cm-3以上、1E20cm-3以下であってよい。第2カソード部182のドーピング濃度は、1E13cm-3以上、1E18cm-3以下であってよい。第1カソード部181は、第2カソード部182を形成するためのイオン注入工程によって、P型のドーパントがイオン注入された後にN型のドーパントで打ち返すことによって形成されてよい。反対に、第2カソード部182は、第1カソード部181を形成するためのイオン注入工程によって、N型のドーパントがイオン注入された後にP型のドーパントで打ち返すことによって形成されてよい。
【0087】
第1カソード部181および第2カソード部182は、互いに接触した境界を形成するように配置される。第1カソード部181および第2カソード部182は、任意の方向において、交互に配置されてよい。本例の第1カソード部181および第2カソード部182は、トレンチ配列方向(例えば、X軸方向)において交互に配列されるが、トレンチ延伸方向(例えば、Y軸方向)において交互に配列されてもよい。第1カソード部181および第2カソード部182は、上面視において、ストライプ状に配置されてよい。第1カソード部181および第2カソード部182の一方はドット状に形成されてもよい。
【0088】
第1カソード部181および第2カソード部182は、半導体基板10の裏面23において、予め定められたピッチP1で交互に設けられる。ピッチP1は、第1カソード部181および第2カソード部182の繰り返し方向(本例ではX軸方向)における第1カソード部181の中心と、第1カソード部181および第2カソード部182の繰り返し方向(本例ではX軸方向)における第2カソード部182の中心との距離である。第1カソード部181および第2カソード部182がX軸方向と異なる。本例のピッチP1は、0.5μm以上、50.0μm以下である。
【0089】
トレンチ深さDtは、おもて面21からトレンチ部の下端までの深さである。トレンチ深さDtは、ダミートレンチ部30とゲートトレンチ部40とで同一であってよく、異なっていてもよい。トレンチ深さDtは、一例において、5μmである。
【0090】
メサ幅Wmは、メサ部のトレンチ配列方向における幅である。メサ幅Wmは、メサ部71、メサ部81およびメサ部91において同一であってよく、異なっていてもよい。メサ幅Wmは、一例において、1μmである。
【0091】
トレンチ深さDtと、メサ幅Wmは、Dt/Wm≧2を満たしてよい。トレンチ深さDtと、メサ幅Wmは、Dt/Wm≧5を満たしてよい。メサ幅Wmに対するトレンチ深さDtの比を大きくすることにより、後述する通り、ショットキー接合を有するダイオード部80の耐圧を向上することができる。
【0092】
第1ライフタイム制御領域151は、トランジスタ部70およびダイオード部80の両方に設けられる。これにより、本例の半導体装置100は、ダイオード部80におけるリカバリーを高速化して、スイッチング損失をさらに低減できる。
【0093】
第2ライフタイム制御領域152は、半導体基板10の深さ方向において、半導体基板10の中心よりもおもて面21側に設けられる。本例の第2ライフタイム制御領域152は、ドリフト領域18に設けられる。第2ライフタイム制御領域152は、トランジスタ部70およびダイオード部80の両方に設けられる。第2ライフタイム制御領域152は、おもて面21側から不純物を注入することにより形成されてもよく、裏面23側から不純物を注入することにより形成されてもよい。第2ライフタイム制御領域152は、ダイオード部80と境界部90に設けられ、トランジスタ部70の一部には設けられなくてもよい。
【0094】
第2ライフタイム制御領域152は、第1ライフタイム制御領域151の形成方法のうち、任意の方法で形成されてよい。第1ライフタイム制御領域151および第2ライフタイム制御領域152を形成するための元素およびドーズ量などは、同一であっても異なっていてもよい。
【0095】
本例の半導体装置100は、アノードピーク電流を減少させて、逆回復時間を短くすることができる。これによりダイオード損失Errを低減できる。
【0096】
図2Aは、半導体装置100の変形例の上面図である。本例の半導体装置100は、
図1Aの実施例と異なる境界部90の構造を備える。本例では、
図1Aの実施例と相違する点について特に説明する。
【0097】
境界部90は、半導体基板10のおもて面21において第1導電型領域11を有する。本例の第1導電型領域11は、ドリフト領域18である。
【0098】
本例のダイオード部80は、複数のゲートトレンチ部40を有する。ダイオード部80の全てのトレンチ部がゲートトレンチ部40であってもよい。本例のダイオード部80は、境界部90の近傍においてダミートレンチ部30を有する。
【0099】
エミッタ電極52とショットキー接合したメサ部81の両端には、ゲート電位に設定されたゲートトレンチ部40が設けられてよい。ダイオード部80は、ゲートトレンチ部40を設けることにより、後述の通り、ショットキー接合部近傍のポテンシャルエネルギーの上昇を抑えて、ショットキーバリアダイオードの逆回復耐圧を向上することができる。
【0100】
図2Bは、半導体装置100の変形例のb-b'断面を示す。b-b'断面は、トランジスタ部70において、エミッタ領域12を通過するXZ面である。本例では、
図1Bの実施例と相違する点について特に説明する。
【0101】
境界部90は、おもて面21に第1導電型領域11を備える。ダイオード部80は、メサ部91に隣接するメサ部81と対応する裏面23において第1カソード部181を備えてよい。即ち、コレクタ領域22は、第1カソード部181と隣接してよい。但し、コレクタ領域22は、第2カソード部182と隣接してもよい。境界部90の下方のコレクタ領域22は、第1カソード部181と隣接して設けられてよい。即ち、境界部90の下方のコレクタ領域22は、第1カソード部181と直接接してよい。
【0102】
本例の第1導電型領域11は、隣接する複数のゲートトレンチ部40に挟まれている。第1導電型領域11は、メサ部81において、一方のゲートトレンチ部40から他方のゲートトレンチ部40まで延伸して設けられてよい。
【0103】
図3は、半導体装置100の変形例の上面図である。本例の半導体装置100は、ダイオード部80を備えるが、トランジスタ部70を備えていない。本例のダイオード部80は、複数のダミートレンチ部30を備えるが、ゲートトレンチ部40を備えてもよい。本例の半導体装置100は、ショットキー接合電極としてアノード電極53を備える。ダミートレンチ部30は、ショットキー接合電極の電位としてアノード電位に設定されてよい。
【0104】
アノード電極53は、金属を含む材料で形成される。アノード電極53の少なくとも一部の領域は、アルミニウム(Al)等の金属、または、アルミニウム‐シリコン合金(AlSi)、アルミニウム‐シリコン‐銅合金(AlSiCu)、アルミニウム-銅合金(AlCu)等の金属合金で形成されてよい。アノード電極53は、アルミニウム等で形成された領域の下層にチタンやチタン化合物、コバルトやコバルト化合物、ニッケルやニッケル化合物等で形成されたバリアメタルを有してよい。
【0105】
図4は、比較例に係る半導体装置500の断面図である。半導体装置500は、PNダイオード部580を備える。PNダイオード部580は、おもて面21にアノード領域510を有し、裏面23にカソード領域520およびN-型領域530を有する。PNダイオード部580においてダイオード順方向への流れ出しを高速化するには、より低濃度のアノード領域510を形成する必要があるが、イオン注入の条件を制御するだけでは十分に低ドーピング濃度化することが困難な場合がある。
【0106】
図5Aは、ダイオード部80の電圧波形の一例を示す。本例では、トランジスタ部70をオンしたときのダイオード部80の電圧波形を示している。縦軸はダイオード部80の順方向電圧VA[V]を示し、横軸は時間[s]を示す。
【0107】
図5Bは、ダイオード部80の電流波形の一例を示す。縦軸はダイオード部80の順方向電流IA[A]を示し、横軸は時間[s]を示す。本例では、トランジスタ部70をオンしたときのダイオード部80の電流波形を示している。
【0108】
PND1は、予め定められたダイオード面積Aを有するPNダイオードである。PND1は、ピッチP1が5μmのRFC構造を有する。RFC構造とは、カソード領域にN型のカソード部とP型のカソード部を有する構造を指す。
【0109】
SBD1は、PND1よりもダイオード面積を縮小したショットキーバリアダイオードである。例えば、SBD1のダイオード面積は、0.004Aである。SBD1は、ピッチP1が5μmのRFC構造を備える。
【0110】
SBD2は、PND1よりもダイオード面積を縮小したショットキーバリアダイオードであるが非RFC構造である。非RFC構造のダイオードは、カソード領域にP型領域を有さずに全面にN型領域を有する。SBD2のダイオード面積は、SBD1と同じ0.004Aである。
【0111】
いずれの例においても、
図5Aの電圧波形の傾きが略同一となるように調整して、その条件に応じた電流波形を
図5Bで示している。ショットキーバリアダイオードでは、PNダイオードよりもダイオード面積を縮小した場合であっても、PNダイオードと同等のIV波形を得ることができる。即ち、ショットキーバリアダイオードでは、PNダイオードよりも少ないダイオード面積で同等の電流を流すことができる。
【0112】
図6Aは、PNダイオードの電気特性を示すリニアスケールのグラフである。
図6Bは、PNダイオードの電気特性を示す対数スケールのグラフである。縦軸は順方向電流IAを示し、横軸は順方向電圧VA[V]を示す。
【0113】
PND1は、ピッチP1が5μmのRFC構造を有する。PND2は、ピッチP1が50μmのRFC構造を有する。PND3は、非RFC構造のダイオードである。PND1およびPND2は、RFC構造を有しており、非RFC構造のPND3よりも電流の立ち上がりが改善している。PND1は、PND2よりもRFC構造のピッチを小さくすることにより、高電流時の電流を抑制することができる。
【0114】
ダイオード部は、RFC構造を有することにより、PNPバイポーラの効果によって、非RFC構造の場合よりも多くの電流を流すことができる。また、RFC構造のPNPバイポーラの効果によって電流の立ち上がりが改善する。ダイオード部がRFC構造を有することにより、シリーズ抵抗を高めて高電流時の電流を抑制できる。RFC構造のピッチP1を狭くすることにより、シリーズ抵抗を高めて高電流時に流れる電流を抑制できる。RFC構造のピッチP1が狭くなるほど、PNの境界において空乏層が形成される領域が大きくなるのでダイオード部のシリーズ抵抗が大きくなる。
【0115】
図7Aは、PNダイオードの逆回復時の電流波形を示す図である。本例では、PND1~PND3の各ダイオードの電流波形を比較している。PND1~PND3は、予め定められた同一のダイオード面積Aを有する。PND1~PND3の条件は、
図6Aおよび
図6Bで示したPND1~PND3の条件と同一であってよい。
【0116】
PND1およびPND2は、RFC構造を有することでアノードピーク電流を抑制することができる。また、PND1は、PND2よりもRFC構造のピッチP1を小さくすることで、シリーズ抵抗を高めて更にアノードピーク電流を抑制することができる。これにより、ダイオード部の逆回復時間を短くして、ダイオード損失Errを低減することができる。
【0117】
図7Bは、PNダイオードの逆回復時の電圧波形を示す図である。本例では、PND1~PND3の各ダイオードの電流波形を比較している。PND1~PND3は、予め定められた同一のダイオード面積Aを有する。
【0118】
PND1およびPND2は、RFC構造を有することで、ダイオード部の順方向電圧をより短時間で変化させることができる。また、PND1は、PND2よりもRFC構造のピッチP1を小さくすることで、ダイオード部の順方向電圧をより短時間で変化させることができる。このように、ピッチP1の小さなRFC構造を設けることで、ダイオード部の逆回復時間を短くして、ダイオード損失Errを低減することができる。
【0119】
図8は、ダイオード部80のポテンシャルエネルギーを示すグラフである。本例のダイオード部80は、ゲートトレンチ部40を有する。
【0120】
実線は、ゲートトレンチ部40で挟まれたメサ部81の中央におけるポテンシャルエネルギーの分布を示す。メサ部81の中央とは、トレンチ配列方向(即ち、X軸方向)におけるメサ部81の中心であってよい。破線は、ゲートトレンチ部40の中央におけるポテンシャルエネルギーの分布を示す。ゲートトレンチ部40の中央とは、トレンチ配列方向(即ち、X軸方向)におけるゲートトレンチ部40の中心であってよい。ゲートトレンチ部40で挟まれたメサ部81においては、カソード電極に電圧を印加してもダイオード部80のショットキー接合部への影響が少ない。これにより、ショットキー接合部近傍のポテンシャルエネルギーの上昇を抑えて、ダイオード部80の逆回復耐圧を向上することができる。
【0121】
図9は、比較例であるショットキーバリアダイオードの耐圧を示す。本例のダイオード部は複数のトレンチ部を有さない。そのため、比較例のショットキーバリアダイオードは、カソード電極による電圧の印加の影響を受けて、10V以下の低い耐圧を有する。
【0122】
図10は、実施例のショットキーバリアダイオードの耐圧を示す。本例のショットキーバリアダイオードは、複数のゲートトレンチ部40に挟まれたメサ部にショットキー接合を有する。これにより、
図9の比較例よりも高い耐圧を有する。本例のショットキーバリアダイオードは、1000V以上の耐圧を有してよい。
【0123】
図11は、ダイオード部80の耐圧のメサ幅依存性を示す図である。縦軸は順方向電流を示し、横軸は順方向電圧を示す。4つの実施例では、それぞれトレンチ深さとメサ幅との比Dt/Wmがそれぞれ異なる。本例では、Dt/Wm=1.375、Dt/Wm=2.75、Dt/Wm=5、およびDt/Wm=11の4種類の条件を用いたシミュレーション結果を示している。
【0124】
いずれの実施例においても複数のゲートトレンチ部40で挟まれたショットキー接合を有することにより、逆耐圧特性を向上することができる。Dt/Wmを2以上とすることにより、耐圧を維持しつつリーク電流を抑制することができる。また、Dt/Wmを5以上とすることにより、リーク電流をさらに抑制しつつ、耐圧を向上することができる。
【0125】
以上の通り、半導体装置100は、PNダイオードよりもバリア障壁が小さいショットキーバリアダイオードを有することにより、ダイオード順方向への流れ出しを改善して順方向バイアス時の動作を高速化できる。また、半導体装置100は、RFC構造を有することにより、アノードピーク電流を低減して、スイッチング損失を抑制することができる。
【0126】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0127】
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0128】
10・・・半導体基板、11・・・第1導電型領域、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、17・・・ウェル領域、18・・・ドリフト領域、20・・・バッファ領域、21・・・おもて面、22・・・コレクタ領域、23・・・裏面、24・・・コレクタ電極、25・・・接続部、・・・30・・・ダミートレンチ部、31・・・延伸部分、32・・・ダミー絶縁膜、33・・・接続部分、34・・・ダミー導電部、38・・・層間絶縁膜、40・・・ゲートトレンチ部、41・・・延伸部分、42・・・ゲート絶縁膜、43・・・接続部分、44・・・ゲート導電部、50・・・ゲート金属層、52・・・エミッタ電極、53・・・アノード電極、54・・・コンタクトホール、55・・・コンタクトホール、56・・・コンタクトホール、70・・・トランジスタ部、71・・・メサ部、80・・・ダイオード部、81・・・メサ部、82・・・カソード領域、90・・・境界部、91・・・メサ部、100・・・半導体装置、151・・・第1ライフタイム制御領域、152・・・第2ライフタイム制御領域、181・・・第1カソード部、182・・・第2カソード部、500・・・半導体装置、510・・・アノード領域、520・・・カソード領域、530・・・N-型領域、580・・・PNダイオード部