IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソニー株式会社の特許一覧

特開2024-13990情報処理システム、情報処理装置、及び情報処理方法
<>
  • 特開-情報処理システム、情報処理装置、及び情報処理方法 図1
  • 特開-情報処理システム、情報処理装置、及び情報処理方法 図2
  • 特開-情報処理システム、情報処理装置、及び情報処理方法 図3
  • 特開-情報処理システム、情報処理装置、及び情報処理方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024013990
(43)【公開日】2024-02-01
(54)【発明の名称】情報処理システム、情報処理装置、及び情報処理方法
(51)【国際特許分類】
   G08G 1/00 20060101AFI20240125BHJP
   G01S 13/87 20060101ALI20240125BHJP
   G01S 13/86 20060101ALI20240125BHJP
   G01S 13/931 20200101ALI20240125BHJP
【FI】
G08G1/00 A
G01S13/87
G01S13/86
G01S13/931
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022116499
(22)【出願日】2022-07-21
(71)【出願人】
【識別番号】000002185
【氏名又は名称】ソニーグループ株式会社
(74)【代理人】
【識別番号】100121131
【弁理士】
【氏名又は名称】西川 孝
(74)【代理人】
【識別番号】100082131
【弁理士】
【氏名又は名称】稲本 義雄
(74)【代理人】
【識別番号】100168686
【弁理士】
【氏名又は名称】三浦 勇介
(72)【発明者】
【氏名】平石 一貴
【テーマコード(参考)】
5H181
5J070
【Fターム(参考)】
5H181AA01
5H181BB16
5H181CC03
5H181CC04
5H181CC12
5H181CC14
5H181FF04
5H181FF05
5H181FF10
5J070AB24
5J070AC01
5J070AC02
5J070AC06
5J070AC13
5J070AF03
5J070AK40
5J070BA01
5J070BD01
5J070BD06
5J070BD08
5J070BD10
(57)【要約】
【課題】より簡単な構成で、より確実に、車両の走行中にセンサ間の時刻同期を行うことができるようにする。
【解決手段】車両に搭載される第1のセンサによって生成された第1のセンシングデータに基づいて、車両の速度に関する第1の速度情報を算出し、車両に搭載される第2のセンサによって生成された第2のセンシングデータに基づいて、車両の速度に関する第2の速度情報を算出する算出部と、第1の速度情報及び第2の速度情報に基づいて、第1のセンサ又は第2のセンサの少なくともいずれか一方の時刻情報を補正する補正部とを備える情報処理装置が提供される。本開示は、例えば、車両に搭載される車載機に適用することができる。
【選択図】図1
【特許請求の範囲】
【請求項1】
車両に搭載される第1のセンサと、
前記車両に搭載される第2のセンサと、
前記第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出する算出部と、
前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する補正部と
を備える情報処理システム。
【請求項2】
車両に搭載される第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記車両に搭載される第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出する第1の算出部と、
前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する補正部と
を備える情報処理装置。
【請求項3】
前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサと前記第2のセンサの間の時刻オフセット量に応じた時刻補正量を算出する第2の算出部をさらに備え、
前記補正部は、前記時刻補正量に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する
請求項2に記載の情報処理装置。
【請求項4】
前記第2の算出部は、前記車両の特定の走行状態における、前記第1の速度情報による第1の時刻と前記第2の速度情報による第2の時刻との差分に応じた前記時刻補正量を算出する
請求項3に記載の情報処理装置。
【請求項5】
前記特定の走行状態は、前記車両の加速又は減速に応じた状態を含む
請求項4に記載の情報処理装置。
【請求項6】
前記第1のセンサは、第1のミリ波レーダであり、
前記第2のセンサは、前記第1のミリ波レーダと異なる箇所に設置された第2のミリ波レーダである
請求項2に記載の情報処理装置。
【請求項7】
前記第1のセンサは、ミリ波レーダであり、
前記第2のセンサは、前記ミリ波レーダを除いた他のセンサである
請求項2に記載の情報処理装置。
【請求項8】
前記他のセンサは、カメラ、LiDARセンサ、又はIMUである
請求項7に記載の情報処理装置。
【請求項9】
前記車両に搭載される車載装置として構成される
請求項2に記載の情報処理装置。
【請求項10】
情報処理装置が、
車両に搭載される第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記車両に搭載される第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出し、
前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する
情報処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、情報処理システム、情報処理装置、及び情報処理方法に関し、特に、より簡単な構成で、より確実に、車両の走行中にセンサ間の時刻同期を行うことができるようにした情報処理システム、情報処理装置、及び情報処理方法に関する。
【背景技術】
【0002】
自動運転や先進運転システムなどでは、車両周辺環境の認識のために、ミリ波レーダが活用されている。ミリ波レーダを用いて全方位を認識するためには、従来から用いられているフロントレーダのみではなく、前後左右、車両コーナなどにもレーダを搭載して検出可能範囲を広げる必要がある。この際、各レーダのデータを統合処理するためには、データの時刻同期が必要となる。
【0003】
レーダ間の同期は一般的に、PTP(Precision Time Protocol)を用いた各レーダの時刻同期、又は外部トリガ信号による照射タイミングの同期により実現可能である。しかし、前者の同期手法では、システムにPTP対応の機器が必要であり、後者の同期手法では、外部トリガ信号を物理的に入力する必要があることから、これらの手法を用いた場合には高コスト化につながってしまう。
【0004】
そこで、従来では、検出したターゲットとの距離の時間差分から、停止状態から走行状態、又はその逆のイベントを検出し、レーダ間の時刻同期を行う技術が提案されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2019-212015号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に開示されている技術では、イベント発生時のみでしか時刻同期が実施されず、車両が連続走行する場合に誤差が生じる恐れがある。そのため、簡単な構成で、確実に、車両の走行中にセンサ間の時刻同期を行うための技術の提案が求められていた。
【0007】
本開示はこのような状況に鑑みてなされたものであり、より簡単な構成で、より確実に、車両の走行中にセンサ間の時刻同期を行うことができるようにするものである。
【課題を解決するための手段】
【0008】
本開示の一側面の情報処理システムは、車両に搭載される第1のセンサと、前記車両に搭載される第2のセンサと、前記第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出する算出部と、前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する補正部とを備える情報処理システムである。
【0009】
本開示の一側面の情報処理装置は、車両に搭載される第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記車両に搭載される第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出する第1の算出部と、前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する補正部とを備える情報処理装置である。
【0010】
本開示の一側面の情報処理方法は、情報処理装置が、車両に搭載される第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記車両に搭載される第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出し、前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する情報処理方法である。
【0011】
本開示の一側面の情報処理システム、情報処理装置、及び情報処理方法においては、車両に搭載される第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報が算出され、前記車両に搭載される第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報が算出され、前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報が補正される。
【0012】
なお、本開示の一側面の情報処理装置は、独立した装置であってもよいし、1つの装置を構成している内部ブロックであってもよい。
【図面の簡単な説明】
【0013】
図1】本開示を適用した車載システムの一実施の形態の構成例を示すブロック図である。
図2】自車速度情報の算出方法の詳細を説明する図である。
図3】時刻補正量の算出方法と時刻情報の補正方法の詳細を説明する図である。
図4】センサ間時刻同期処理の流れを説明するフローチャートである。
【発明を実施するための形態】
【0014】
<装置構成>
図1は、本開示を適用した車載システムの一実施の形態の構成例を示すブロック図である。
【0015】
車載システム1は、車両に搭載されるシステムであり、複数のセンサにより車両の周辺のセンシングを行い、センシングで得られたセンシングデータを処理する。車載システム1は、車載装置10と、複数のセンサから構成される。車載装置10は、車載システム1が搭載される車両の任意の箇所に設置される複数のセンサと接続され、各センサから出力されるセンシングデータを収集して必要な処理を行う。以下、車載システム1が搭載される車両を、自車両(自車)ともいう。
【0016】
複数のセンサは、例えば、レーダ20-1乃至20-N(N:2以上の整数)と、カメラ30と、LiDAR(Light Detection and Ranging)センサ40と、IMU(Inertial Measurement Unit)50とを含む。複数のセンサは、自車両におけるフロント部、サイド部、リア部、ルーフ部、又はコーナ部などの任意の箇所にそれぞれ設置される。
【0017】
レーダ20-1は、ミリ波(30GHz~300GHzの周波数の電波)を用いた測定を行うミリ波レーダで構成される。レーダ20-1は、自車両の周辺にミリ波を放射するとともに、物体によって反射された反射波を検出することで、物体の位置等を検出する。レーダ20-2乃至20-Nは、レーダ20-1と同様に、ミリ波レーダで構成される。以下、レーダ20-1乃至20-Nを区別する必要がない場合、レーダ20と記述する。
【0018】
カメラ30は、光学系、イメージセンサ、及び信号処理回路等で構成され、周期的に繰り返し自車両の周辺を撮像する。LiDARセンサ40は、自車両の周辺にレーザ光を照射して散乱光を測定することで、対象までの距離等を検出する。IMU50は、加速度計を有し、自車両の加速度を測定する。
【0019】
レーダ20、カメラ30、LiDARセンサ40、及びIMU50を含む複数のセンサによって生成されたデータは、センシングデータ(車両データ)として、車載装置10に出力される。レーダ20は、物体の位置等に関する情報を含むデータを出力する。カメラ30は、撮像で得られた画像情報を含むデータを出力する。LiDARセンサ40は、対象までの距離等に関する情報を含むデータを出力する。IMU50は、自車両の加速度に関する情報を含むデータを出力する。
【0020】
図1においては、複数のセンサとして、レーダ20と、カメラ30と、LiDARセンサ40と、IMU50を例示しているが、他のセンサが用いられてもよい。例えば、GPS衛星からの信号を受信して現在位置の測位を行うGPS(Global Positioning System)受信機を用いて、自車両の位置に関する情報を含むデータが出力されてもよい。なお、GPSは、測位システムの一例であり、他の測位システムを利用しても構わない。
【0021】
車載装置10は、ECU(Electronic Control Unit)等で構成される。車載装置10は、処理部100を有する。処理部100は、センシングデータ取得部101、補正前データ記録部102、自車速度算出部103、時刻補正量算出部104、補正量記録部105、及び時刻補正部106を有する。
【0022】
センシングデータ取得部101は、自車両に搭載された複数のセンサのそれぞれから出力されるセンシングデータを取得し、補正前データ記録部102及び自車速度算出部103に供給する。補正前データ記録部102は、センシングデータ取得部101から供給されるセンシングデータを、補正前データとして一時的に記録する。
【0023】
自車速度算出部103は、センシングデータ取得部101から供給されるセンシングデータに基づいて、自車両の速度(自車速度)に関する自車速度情報を算出し、時刻補正量算出部104に供給する。自車速度情報は、各センサからのセンシングデータに基づき、センサごとに算出される。例えば、レーダ20-1からのセンシングデータに基づく自車速度情報SI1と、レーダ20-2からのセンシングデータに基づく自車速度情報SI2とがそれぞれ算出される。
【0024】
時刻補正量算出部104は、自車速度算出部103から供給される自車速度情報に基づいて、時刻補正量を算出し、補正量記録部105に供給する。補正量記録部105は、時刻補正量算出部104から供給される時刻補正量を記録する。
【0025】
時刻補正量は、センサごとに算出された自車速度情報に基づき、各センサ間の時刻オフセット量から求められる。例えば、自車両の特定の走行状態において、自車速度情報SI1による時刻t1と、自車速度情報SI2による時刻t2との差分(時刻オフセット量)に応じた時刻補正量TC12が算出される。自車両の走行状態は、自車速度情報SI1と自車速度情報SI2に基づいて特定することができる。特定の走行状態は、例えば、自車両の加速又は減速に応じた状態(自車両の動き出しなど)を含む。
【0026】
時刻補正部106は、補正前データ記録部102に記録された補正前データと、補正量記録部105に記録された時刻補正量を取得する。時刻補正部106は、時刻補正量に基づいて、補正前データの時刻情報を補正する。例えば、自車速度情報SI1と自車速度情報SI2から得られる時刻補正量TC12に基づき、レーダ20-1からのセンシングデータ、又はレーダ20-2からのセンシングデータの少なくとも一方の時刻情報が補正される。これにより、処理部100では、後段の処理で、レーダ20-1とレーダ20-2のセンシングデータに対する処理(例えば、データを統合する統合処理)を行うに際して、データの時刻同期が実現される。
【0027】
以上のように構成される車載システム1では、自車両に搭載された複数のセンサにより生成されたセンシングデータが収集され、各センサのセンシングデータから算出可能な自車速度情報に基づき、センサの時刻情報が補正されるようにして、自車両の走行中に、センサ間の時刻同期を実現している。
【0028】
なお、図1の説明では、レーダ20-1とレーダ20-2の間でデータの時刻同期を行う場合を例示したが、カメラ30、LiDARセンサ40、IMU50等の他のセンサにより生成されたセンシングデータから自車速度情報が算出可能である場合には、他のセンサの自車速度情報を用いて、レーダ20と他のセンサの間でデータの時刻同期を行ってもよい。あるいは、他のセンサ間でデータの時刻同期を行っても構わない。
【0029】
車載装置10において、処理部100は、ハードウェア又はソフトウェアで実現される。例えば、センシングデータ取得部101、自車速度算出部103、時刻補正量算出部104、及び時刻補正部106は、プロセッサがプログラムを実行することで実現される。補正前データ記録部102、及び補正量記録部105は、ROM(Read Only Memory)、RAM(Random Access Memory)、SSD(Solid State Drive)、HDD(Hard Disk Drive)等の記憶装置により実現される。
【0030】
<自車速度算出方法>
次に、自車速度算出部103における自車速度情報の算出方法の詳細を説明する。
【0031】
図2は、自車速度情報の算出方法の例を説明する図である。図2においては、走行中の車両を上空から見下ろしたときの様子を模式的に表している。図2には、2台の車両211,212と、その周辺の建物221乃至224を図示している。また、説明の都合上、x軸とy軸を記載している。車両211には、図1の車載システム1が搭載されている。建物221乃至224は、車両211の周辺にある静止物の一例である。
【0032】
図2では、車両211に搭載された複数のレーダ20により生成されたセンシングデータ(レーダデータ)を用いて、車両211の自車速度情報を算出する場合を示している。レーダ20は、車両211の周辺にミリ波を放射してその反射波を検出することで、建物221乃至224等の静止物の位置(距離及び方位)を検出する。例えば、建物221乃至224の検出距離rと検出角度φとして、(r1, φ1), (r2, φ2),(r3, φ3),(r4, φ4)が検出される。
【0033】
この場合において、レーダ20からミリ波を放射したときに、静止物からの反射点のドップラ速度vrと、自車速度vx, vyとの関係は、静止物の検出角度φを用いて、下記の式(1)で表すことができる。
【0034】
vr = cos(φ)vx + sin(φ)vy ・・・(1)
【0035】
このとき、反射点には、車両212等の動体からの反射点も含まれてしまう。ここでは、多くの走行シーンで建物やガードレール等の静止物からの反射点の数が支配的になることを考慮して、RANSAC(Random Sample Consensus)等の外れ値に対してロバストな最尤推定法を用いることで、動体からの反射点に影響されることなく、自車速度を求めることができる。RANSACは、ロバスト推定のアルゴリズムの1つで、与えられた観測値に含まれる外れ値の影響を抑えることができる。ただし、他のアルゴリズムを用いてもよく、例えば、最小二乗法を用いて自車速度を求めてもよい。
【0036】
ゆえに、建物やガードレール等の静止物からの検出点が複数ある際には、下記の式(2)に示すような行列で表すことができる。式(2)では、建物221乃至224からの4つの検出点がある場合を例示している。
【0037】
【数1】
【0038】
ここで、vx, vyは、車載システム1が搭載された車両(自車両)の移動速度である。複数のレーダ20を有する車載システム1において、vx, vyは、各レーダ20でそれぞれ求めることが可能であり、理論上すべて同じ値になる。そのため、vx, vyが時間変化する際に、変化するタイミングが一致するような時刻補正量を算出し、検出結果に補正を加えることで、レーダ20の間のデータの時刻同期が可能になる。
【0039】
また、自車速度情報(vx, vy)を得ることが可能な他のセンサが存在する場合、他のセンサのセンシングデータから算出した自車速度情報を用いることで、レーダ20は、他のセンサともデータの時刻同期が可能となる。あるいは、他のセンサ間でのデータの時刻同期も可能である。
【0040】
例えば、カメラ30で生成された画像情報を用いる場合、画像情報を解析して現在位置を推定することで、自車速度が求められる。LiDARセンサ40で生成された距離情報を用いる場合、SLAM(Simultaneous Localization and Mapping)を用いてマップ情報から自車両がどのように移動するかを推定することで、自車速度が求められる。IMU50で生成された加速度情報を用いる場合、加速度情報から自車速度が求められる。GPS受信機で生成された位置情報を用いる場合、測定される位置情報の時間差から自車速度が求められる。
【0041】
<時刻補正量算出と時刻情報補正の方法>
次に、時刻補正量算出部104における時刻補正量の算出方法と、時刻補正部106における時刻情報の補正方法の詳細を説明する。
【0042】
図3は、自車速度情報に基づいた時刻補正量の算出方法の例を示した図である。図3においては、縦軸を走行中の車両211に搭載されたレーダ20から取得されたセンシングデータ(レーダデータ)を用いて算出したvx(単位:m/s)とし、横軸を時間(単位:秒)として、プロットした図を示している。
【0043】
レーダ20-1から取得したレーダデータを用いて求めたvxを、時系列でプロットすることで、vxの変化が線L1により表される。レーダ20-2から取得したレーダデータを用いて求めたvxを、時系列でプロットすることで、vxの変化が線L2により表される。このとき、線L1に注目すれば、レーダ20-1のレーダデータから得られるvxが示す情報により、41秒の近辺で車両211が動き出していると推定される。一方で、線L2に注目すれば、レーダ20-2のレーダデータから得られるvxが示す情報により、42.5秒の近辺で車両211が動き出していると推定される。つまり、自車速度情報により車両211が動き出すと推定された時刻が、レーダ20ごとにずれている。
【0044】
これらの時刻の差分をΔtとしたとき、Δtは、レーダ20-1とレーダ20-2の間の時刻オフセット量である。時刻補正量算出部104では、レーダ20-1とレーダ20-2の間の時刻オフセット量に応じた時刻補正量が算出される。そして、時刻補正部106では、レーダ20-2から取得されるレーダデータの時刻情報に、時刻補正量を用いた補正が施される。これにより、レーダ20-1のレーダデータとレーダ20-2のレーダデータとの間の時刻同期が実施される。
【0045】
ここでの時刻補正量の算出、すなわち、Δtの算出に用いる自車速度情報はvxだけでなく、vyでも同様のことが可能である。例えば、vxとvyのうち、より変化量が大きい方の値を、自車両の走行中に適宜判定して時刻補正量の算出のための指標として用いることができる。あるいは、vxとvyの両方の値を用いた所定の演算を行い、その演算結果を時刻補正量の算出のための指標としてもよい。
【0046】
例えば、車両211が市街地の走行している場合に、走行中の車両211が減速したとき、まず、自車速度算出部103により、マスタとするレーダ20-1のレーダデータから自車速度情報SI1が算出される。次に、自車速度算出部103により、レーダ20-2のレーダデータから自車速度情報SI2が算出され、自車速度情報SI1と比較することで、走行中の車両211の減速のタイミングが推定される。ここでは、走行中の車両211の走行状態として、車両211の減速に応じた状態が推定された場合を示すが、例えば、車両211の加速に応じた状態等の他の状態が推定される場合もある。
【0047】
このとき、時刻補正量算出部104は、減速のタイミングにずれが生じている場合には、レーダ20-2の自車速度情報SI2による減速の時刻t2が、レーダ20-1の自車速度情報SI1による減速の時刻t1とタイミングが一致するように、それらの時刻のオフセット量(Δt)に応じた時刻補正量を算出する。この時刻補正量を用いて、時刻補正部106が、レーダ20-2のレーダデータの時刻情報を補正することで、レーダ20-1とレーダ20-2の間の時刻同期が実現される。
【0048】
また、他のセンサ(レーダ20以外のセンサ)からのセンシングデータを用いて自車速度情報を算出可能な場合には、それらの自車速度情報を用いて時刻補正量を算出することができる。例えば、カメラ30からの画像情報、LiDARセンサ40からの距離情報、又はIMU50からの加速度情報から算出した自車速度情報SI0を、各レーダ20のレーダデータから算出した自車速度情報SIxと比較して、自車速度情報Sixによる減速の時刻が、自車速度情報SI0による減速の時刻とタイミングが一致するように、レーダ20ごとにオフセット量(Δt)に応じた時刻補正量を算出する。これらの時刻補正量を用いて、各レーダ20のレーダデータの時刻情報を補正することで、全てのレーダ20(各レーダ20の間)と他のセンサの間の時刻同期が同時に実現可能となる。
【0049】
<センサ間時刻同期処理>
次に、図4のフローチャートを参照して、図1の車載システム1により実行されるセンサ間時刻同期処理の流れを説明する。
【0050】
ステップS11では、センシングデータ取得部101が、複数のセンサのそれぞれにより生成されたセンシングデータを取得する。複数のセンサは、レーダ20、カメラ30、LiDARセンサ40、IMU50等のセンサである。
【0051】
ステップS12では、自車速度算出部103が、各センサから取得したセンシングデータに基づいて、センサごとに自車速度情報を算出する。例えば、自車速度算出部103は、レーダ20-1により生成されたレーダデータに基づいて、自車速度情報SI1を算出する。また、自車速度算出部103は、レーダ20-2により生成されたレーダデータに基づいて、自車速度情報SI2を算出する。
【0052】
ステップS13では、時刻補正量算出部104が、センサごとに算出された自車速度情報に基づいて、各センサ間の時刻オフセット量に応じた時刻補正量を算出する。例えば、時刻補正量算出部104は、自車両の特定の走行状態(加速又は減速に応じた状態)における、自車速度情報SI1による時刻t1と、自車速度情報SI2による時刻t2との差分(時刻オフセット量)に応じた時刻補正量TC12を算出する。
【0053】
ステップS14では、時刻補正部106が、時刻補正量に基づいて、対象のセンサの時刻情報を補正する。例えば、時刻補正部106は、自車速度情報SI1と自車速度情報SI2から得られる時刻補正量TC12に基づいて、レーダ20-2により生成されたレーダデータの時刻情報を補正する。ここで、レーダ20-1とレーダ20-2のどちらの時刻情報を補正するかは、マスタとしたレーダ20に応じて決定される。この例では、レーダ20-1をマスタとしているため、レーダ20-2の時刻情報が補正される。どちらのレーダ20をマスタとするかは任意であり、レーダ20-1又はレーダ20-2の少なくともいずれか一方の時刻情報が補正される。
【0054】
このように、レーダ20-1とレーダ20-2の間の時刻同期が実現されるため、後段の処理では、レーダ20-1により生成されたレーダデータと、レーダ20-2により生成されたレーダデータとの統合処理が行われる際に、時刻同期されたレーダデータを処理することができる。ステップS14の処理が終了すると、一連の処理は終了する。
【0055】
以上のように、車載システム1では、自車両に搭載された複数のセンサからのセンシングデータが収集され、各センサのセンシングデータから算出可能な自車速度情報に基づき、センサの時刻情報が補正されるようにして、自車両の走行中に、センサ間の時刻同期を実現している。これにより、より簡単な構成で、より確実に、車両の走行中にセンサ間の時刻同期を行うことができる。
【0056】
すなわち、各センサのセンシングデータを統合処理するためには、データの時刻同期が必要となるが、車載システム1では、各センサのセンシングデータから算出可能な自車速度情報に基づき、センサの時刻情報を補正することで、データの時刻同期を実現している。そのため、PTPを用いた各レーダの時刻同期や外部トリガ信号による照射タイミングの同期などの手法と比べて、PTP対応の機器や外部トリガ信号を物理的に入力する必要がなく、より簡単な構成で、車両の走行中にセンサ間の時刻同期を行うことができる。
【0057】
また、上述した特許文献1には、検出したターゲットとの距離の時間差分から、停止状態から走行状態、又はその逆のイベントを検出し、レーダ間の時刻同期を行う技術が開示されているが、イベント発生時のみでしか同期が実施されず、連続走行時に誤差が生じる恐れがある。また、検出したターゲットとの距離の時間差分から時刻同期を行うため、ターゲットとなる対象が動体であった場合に同期ずれが生じる恐れがある。一方で、車載システム1では、自車両の走行中に、各センサのセンシングデータから自車速度情報を算出して、その自車速度情報に基づきセンサの時刻情報を補正しているため、イベント発生とは関係なく、自車両の走行中にセンサ間の時刻同期を行うことができる。また、車載システム1では、RANSAC等の外れ値に対してロバストな最尤推定法を用いることで、ターゲットとなる対象が動体であった場合に同期ずれが生じることもない。そのため、より確実に、車両の走行中にセンサ間の時刻同期を行うことができる。
【0058】
<変形例>
上述した説明では、レーダ20を除いた他のセンサとして、カメラ30、LiDARセンサ40、IMU50を示したが、他のセンサとして列挙したセンサは一例であり、自車速度情報を直接又は間接的に求めることが可能なセンサであればよい。レーダ20は、ミリ波レーダで構成されるとしたが、他の周波数帯の電波を用いた測定を行うレーダであってもよい。
【0059】
各センサのセンシングデータの統合処理は、処理部100で行うことは勿論、車載装置10の他のブロック、あるいは車載装置10と接続された他の装置で行われてもよい。他の装置で統合処理を行う場合、センサ間で時刻同期されたデータが、車載装置10から他の装置に出力される。車載装置10と他の装置とは、所定の通信方式に従い、有線又は無線により電気的に接続される。また、車載装置10と複数のセンサは、所定の通信方式に従い、有線又は無線により電気的に接続される。
【0060】
データ(情報)を処理する処理部100を有する車載装置10は、情報処理装置の一例である。また、情報処理装置としての車載装置10を有する車載システム1は、情報処理システムの一例である。
【0061】
なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
【0062】
また、本開示は、以下のような構成をとることができる。
【0063】
(1)
車両に搭載される第1のセンサと、
前記車両に搭載される第2のセンサと、
前記第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出する算出部と、
前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する補正部と
を備える情報処理システム。
(2)
車両に搭載される第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記車両に搭載される第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出する第1の算出部と、
前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する補正部と
を備える情報処理装置。
(3)
前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサと前記第2のセンサの間の時刻オフセット量に応じた時刻補正量を算出する第2の算出部をさらに備え、
前記補正部は、前記時刻補正量に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する
前記(2)に記載の情報処理装置。
(4)
前記第2の算出部は、前記車両の特定の走行状態における、前記第1の速度情報による第1の時刻と前記第2の速度情報による第2の時刻との差分に応じた前記時刻補正量を算出する
前記(3)に記載の情報処理装置。
(5)
前記特定の走行状態は、前記車両の加速又は減速に応じた状態を含む
前記(4)に記載の情報処理装置。
(6)
前記第1のセンサは、第1のミリ波レーダであり、
前記第2のセンサは、前記第1のミリ波レーダと異なる箇所に設置された第2のミリ波レーダである
前記(2)乃至(5)のいずれかに記載の情報処理装置。
(7)
前記第1のセンサは、ミリ波レーダであり、
前記第2のセンサは、前記ミリ波レーダを除いた他のセンサである
前記(2)乃至(5)のいずれかに記載の情報処理装置。
(8)
前記他のセンサは、カメラ、LiDARセンサ、又はIMUである
前記(7)に記載の情報処理装置。
(9)
前記車両に搭載される車載装置として構成される
前記(2)に記載の情報処理装置。
(10)
情報処理装置が、
車両に搭載される第1のセンサによって生成された第1のセンシングデータに基づいて、前記車両の速度に関する第1の速度情報を算出し、前記車両に搭載される第2のセンサによって生成された第2のセンシングデータに基づいて、前記車両の速度に関する第2の速度情報を算出し、
前記第1の速度情報及び前記第2の速度情報に基づいて、前記第1のセンサ又は前記第2のセンサの少なくともいずれか一方の時刻情報を補正する
情報処理方法。
【符号の説明】
【0064】
1 車載システム, 10 車載装置, 20-1乃至20-N,20 レーダ, 30 カメラ, 40 LiDARセンサ, 50 IMU, 100 処理部, 101 センシングデータ取得部, 102 補正前データ記録部, 103 自車速度算出部, 104 時刻補正量算出部, 105 補正量記録部, 106 時刻補正部
図1
図2
図3
図4