(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024014333
(43)【公開日】2024-02-01
(54)【発明の名称】半導体装置および半導体装置の製造方法
(51)【国際特許分類】
H01L 29/739 20060101AFI20240125BHJP
H01L 21/336 20060101ALI20240125BHJP
H01L 29/78 20060101ALI20240125BHJP
H01L 29/861 20060101ALI20240125BHJP
H01L 21/8234 20060101ALI20240125BHJP
【FI】
H01L29/78 655B
H01L29/78 658A
H01L29/78 657D
H01L29/78 655G
H01L29/91 C
H01L29/78 652Q
H01L29/78 653A
H01L29/78 652J
H01L27/06 102A
【審査請求】未請求
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2022117075
(22)【出願日】2022-07-22
(71)【出願人】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】辻 英徳
(72)【発明者】
【氏名】上野 勝典
(72)【発明者】
【氏名】高島 信也
(72)【発明者】
【氏名】吉村 尚
【テーマコード(参考)】
5F048
【Fターム(参考)】
5F048AC10
5F048BB05
5F048BB19
5F048BC03
5F048BC12
5F048BD07
5F048BF02
5F048BF07
(57)【要約】
【課題】水素イオンに起因して形成されるドナー濃度は、半導体基板の炭素濃度等に応じて変動する場合がある。
【解決手段】バッファ領域が有するべきキャリア濃度の分布に応じて、複数の濃度ピークに対応する複数の深さ位置に注入する水素イオンのドーズ量を設定する設定段階と、設定段階で設定した前記ドーズ量に応じて、半導体基板に水素イオンを注入する注入段階とを備え、設定段階において、複数の濃度ピークのうち、半導体基板の下面から最も遠い最深ピークに対する水素イオンのドーズ量を、半導体基板の炭素濃度に応じて設定し、且つ、最深ピーク以外の濃度ピークのうちの少なくとも一つの濃度ピークに対するドーズ量を、半導体基板の前記炭素濃度によらず設定する半導体装置の製造方法を提供する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
上面および下面を有する半導体基板に設けられた第1導電型のドリフト領域と、前記ドリフト領域および前記半導体基板の前記下面の間に設けられ、前記ドリフト領域よりもキャリア濃度が高い複数の濃度ピークを含む第1導電型のバッファ領域とを備える半導体装置の製造方法であって、
前記バッファ領域が有するべき前記キャリア濃度の分布に応じて、前記複数の濃度ピークに対応する複数の深さ位置に注入する水素イオンのドーズ量を設定する設定段階と、
前記設定段階で設定した前記ドーズ量に応じて、前記半導体基板に前記水素イオンを注入する注入段階と
を備え、
前記設定段階において、前記複数の濃度ピークのうち、前記半導体基板の前記下面から最も遠い最深ピークに対する前記水素イオンの前記ドーズ量を、前記半導体基板の炭素濃度に応じて設定し、且つ、前記最深ピーク以外の前記濃度ピークのうちの少なくとも一つの前記濃度ピークに対する前記ドーズ量を、前記半導体基板の前記炭素濃度によらずに設定する
半導体装置の製造方法。
【請求項2】
前記設定段階において、前記複数の濃度ピークのうち、前記最深ピーク以外の全ての前記濃度ピークに対する前記ドーズ量を、前記半導体基板の前記炭素濃度によらず設定する
請求項1に記載の半導体装置の製造方法。
【請求項3】
前記設定段階において、前記最深ピークの深さ位置に更に基づいて、前記最深ピークに対する前記ドーズ量を設定する
請求項2に記載の半導体装置の製造方法。
【請求項4】
前記複数の濃度ピークは、前記半導体基板の前記下面から2番目に近い第2浅ピークと、前記半導体基板の前記下面から2番目に遠い第2深ピークとを含み、
前記設定段階において、前記第2浅ピークから前記第2深ピークまでの前記キャリア濃度の積分値n2に更に基づいて、前記最深ピークに対する前記ドーズ量を設定する
請求項1から3のいずれか一項に記載の半導体装置の製造方法。
【請求項5】
前記設定段階において、前記第2深ピークよりも前記上面側の前記バッファ領域の前記キャリア濃度の積分値n1に更に基づいて、前記最深ピークに対する前記ドーズ量を設定する
請求項4に記載の半導体装置の製造方法。
【請求項6】
前記設定段階において、前記半導体基板の酸素濃度に更に基づいて、前記最深ピークに対する前記ドーズ量を設定する
請求項5に記載の半導体装置の製造方法。
【請求項7】
前記設定段階において、前記半導体基板の前記炭素濃度C、前記半導体基板の前記酸素濃度O、前記積分値n1および前記積分値n2の値の組み合わせに応じて、前記最深ピークに対して設定すべき前記ドーズ量の許容範囲が予め定められており、前記許容範囲内の前記ドーズ量を、前記最深ピークに対して設定する
請求項6に記載の半導体装置の製造方法。
【請求項8】
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
6.167×10-3×ln(x)+2.860×10-2≦y<0.4
を満たす場合は、前記最深ピークに対する前記ドーズ量を、8×1012[/cm2]以上に設定する
請求項7に記載の半導体装置の製造方法。
【請求項9】
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
1.129×10-2×ln(x)-2.660×10-1≦y<6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、前記最深ピークに対する前記ドーズ量を、4×1012[/cm2]以上、8×1012[/cm2]未満に設定する
請求項7に記載の半導体装置の製造方法。
【請求項10】
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
2.250×10-2×ln(x)-8.436×10-1≦y<1.129×10-2×ln(x)-2.660×10-1
を満たす場合は、前記最深ピークに対する前記ドーズ量を、2×1012[/cm2]以上、4×1012[/cm2]未満に設定する
請求項7に記載の半導体装置の製造方法。
【請求項11】
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
3.017×10-2×ln(x)-1.272≦y<2.250×10-2×ln(x)-8.436×10-1
を満たす場合は、前記最深ピークに対する前記ドーズ量を、5×1011[/cm2]以上、2×1012[/cm2]未満に設定する
請求項7に記載の半導体装置の製造方法。
【請求項12】
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
0.01≦y<3.017×10-2×ln(x)-1.272
を満たす場合は、前記最深ピークに対する前記ドーズ量を、5×1011[/cm2]未満に設定する
請求項7に記載の半導体装置の製造方法。
【請求項13】
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
y≧6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、前記最深ピークに対する前記ドーズ量を、8×1012[/cm2]以上に設定し、
1.129×10-2×ln(x)-2.660×10-1≦y<6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、前記最深ピークに対する前記ドーズ量を、4×1012[/cm2]以上、8×1012[/cm2]未満に設定し、
2.250×10-2×ln(x)-8.436×10-1≦y<1.129×10-2×ln(x)-2.660×10-1
を満たす場合は、前記最深ピークに対する前記ドーズ量を、2×1012[/cm2]以上、4×1012[/cm2]未満に設定し、
3.017×10-2×ln(x)-1.272≦y<2.250×10-2×ln(x)-8.436×10-1
を満たす場合は、前記最深ピークに対する前記ドーズ量を、5×1011[/cm2]以上、2×1012[/cm2]未満に設定し、
0.01≦y<3.017×10-2×ln(x)-1.272
を満たす場合は、前記最深ピークに対する前記ドーズ量を、5×1011[/cm2]未満に設定する
請求項7に記載の半導体装置の製造方法。
【請求項14】
上面および下面を有する半導体基板と、
前記半導体基板に設けられた第1導電型のドリフト領域と、
前記ドリフト領域および前記半導体基板の下面の間に設けられ、前記ドリフト領域よりもキャリア濃度が高い複数の濃度ピークを含む第1導電型のバッファ領域と
を備え、
前記複数の濃度ピークは、前記半導体基板の前記下面から2番目に近い第2浅ピークと、前記半導体基板の前記下面から最も遠い最深ピークと、前記半導体基板の前記下面から2番目に遠い第2深ピークとを含み、
前記第2深ピークよりも上側の前記バッファ領域の前記キャリア濃度の積分値をn1、前記第2浅ピークから前記第2深ピークまでの前記キャリア濃度の積分値をn2、前記半導体基板の炭素濃度をC、前記半導体基板の酸素濃度をOとし、
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
6.167×10-3×ln(x)+2.860×10-2≦y<0.4
を満たす場合は、前記第2深ピークよりも上側の前記バッファ領域の水素濃度の積分濃度が8×1012[/cm2]以上であり、
1.129×10-2×ln(x)-2.660×10-1≦y<6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、前記水素濃度の前記積分濃度が、4×1012[/cm2]以上、8×1012[/cm2]未満であり、
2.250×10-2×ln(x)-8.436×10-1≦y<1.129×10-2×ln(x)-2.660×10-1
を満たす場合は、前記水素濃度の前記積分濃度が、2×1012[/cm2]以上、4×1012[/cm2]未満であり、
3.017×10-2×ln(x)-1.272≦y<2.250×10-2×ln(x)-8.436×10-1
を満たす場合は、前記水素濃度の前記積分濃度が、5×1011[/cm2]以上、2×1012[/cm2]未満であり、
0.01≦y<3.017×10-2×ln(x)-1.272
を満たす場合は、前記水素濃度の前記積分濃度が、5×1011[/cm2]未満である
半導体装置。
【請求項15】
前記最深ピークに対する前記水素イオンの前記ドーズ量を、前記最深ピークにおける水素化学濃度の積分濃度で除した値は、1以上3以下である
請求項1に記載の半導体装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置および半導体装置の製造方法に関する。
【背景技術】
【0002】
従来、半導体基板に水素イオンを注入して、水素イオンに起因したドナーを形成する技術が知られている(例えば、特許文献1または2参照)。
特許文献1 特開2016-96338号公報
特許文献2 US2018/0122895号
【発明の概要】
【発明が解決しようとする課題】
【0003】
水素イオンに起因して形成されるドナー濃度は、半導体基板の炭素濃度等に応じて変動する場合がある。
【課題を解決するための手段】
【0004】
上記課題を解決するために、本発明の第1の態様においては、半導体装置の製造方法を提供する。半導体装置は、上面および下面を有する半導体基板に設けられた第1導電型のドリフト領域と、前記ドリフト領域および前記半導体基板の前記下面の間に設けられ、前記ドリフト領域よりもキャリア濃度が高い複数の濃度ピークを含む第1導電型のバッファ領域とを備えてよい。製造方法は、前記バッファ領域が有するべき前記キャリア濃度の分布に応じて、前記複数の濃度ピークに対応する複数の深さ位置に注入する水素イオンのドーズ量を設定する設定段階を備えてよい。製造方法は、前記設定段階で設定した前記ドーズ量に応じて、前記半導体基板に前記水素イオンを注入する注入段階を備えてよい。前記設定段階において、前記複数の濃度ピークのうち、前記半導体基板の前記下面から最も遠い最深ピークに対する前記水素イオンの前記ドーズ量を、前記半導体基板の炭素濃度に応じて設定し、且つ、前記最深ピーク以外の前記濃度ピークのうちの少なくとも一つの前記濃度ピークに対する前記ドーズ量を、前記半導体基板の前記炭素濃度によらずに設定してよい。
【0005】
上記何れかの製造方法は、前記設定段階において、前記複数の濃度ピークのうち、前記最深ピーク以外の全ての前記濃度ピークに対する前記ドーズ量を、前記半導体基板の前記炭素濃度によらず設定してよい。
【0006】
上記何れかの製造方法は、前記設定段階において、前記最深ピークの深さ位置に更に基づいて、前記最深ピークに対する前記ドーズ量を設定してよい。
【0007】
上記何れかの製造方法において、前記複数の濃度ピークは、前記半導体基板の前記下面から2番目に近い第2浅ピークと、前記半導体基板の前記下面から2番目に遠い第2深ピークとを含んでよい。上記何れかの製造方法は、前記設定段階において、前記第2浅ピークから前記第2深ピークまでの前記キャリア濃度の積分値n2に更に基づいて、前記最深ピークに対する前記ドーズ量を設定してよい。
【0008】
上記何れかの製造方法は、前記設定段階において、前記第2深ピークよりも前記上面側の前記バッファ領域の前記キャリア濃度の積分値n1に更に基づいて、前記最深ピークに対する前記ドーズ量を設定してよい。
【0009】
上記何れかの製造方法は、前記設定段階において、前記半導体基板の酸素濃度に更に基づいて、前記最深ピークに対する前記ドーズ量を設定してよい。
【0010】
上記何れかの製造方法は、前記設定段階において、前記半導体基板の前記炭素濃度C、前記半導体基板の前記酸素濃度O、前記積分値n1および前記積分値n2の値の組み合わせに応じて、前記最深ピークに対して設定すべき前記ドーズ量の許容範囲が予め定められており、前記許容範囲内の前記ドーズ量を、前記最深ピークに対して設定してよい。
【0011】
上記何れかの製造方法は、
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
6.167×10-3×ln(x)+2.860×10-2≦y<0.4
を満たす場合は、前記最深ピークに対する前記ドーズ量を、8×1012[/cm2]以上に設定してよい。
【0012】
上記何れかの製造方法は、
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
1.129×10-2×ln(x)-2.660×10-1≦y<6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、前記最深ピークに対する前記ドーズ量を、4×1012[/cm2]以上、8×1012[/cm2]未満に設定してよい。
【0013】
上記何れかの製造方法は、
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
2.250×10-2×ln(x)-8.436×10-1≦y<1.129×10-2×ln(x)-2.660×10-1
を満たす場合は、前記最深ピークに対する前記ドーズ量を、2×1012[/cm2]以上、4×1012[/cm2]未満に設定してよい。
【0014】
上記何れかの製造方法は、
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
3.017×10-2×ln(x)-1.272≦y<2.250×10-2×ln(x)-8.436×10-1
を満たす場合は、前記最深ピークに対する前記ドーズ量を、5×1011[/cm2]以上、2×1012[/cm2]未満に設定してよい。
【0015】
上記何れかの製造方法は、
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
0.01≦y<3.017×10-2×ln(x)-1.272
を満たす場合は、前記最深ピークに対する前記ドーズ量を、5×1011[/cm2]未満に設定してよい。
【0016】
上記何れかの製造方法は、
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であって、
y≧6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、前記最深ピークに対する前記ドーズ量を、8×1012[/cm2]以上に設定し、
1.129×10-2×ln(x)-2.660×10-1≦y<6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、前記最深ピークに対する前記ドーズ量を、4×1012[/cm2]以上、8×1012[/cm2]未満に設定し、
2.250×10-2×ln(x)-8.436×10-1≦y<1.129×10-2×ln(x)-2.660×10-1
を満たす場合は、前記最深ピークに対する前記ドーズ量を、2×1012[/cm2]以上、4×1012[/cm2]未満に設定し、
3.017×10-2×ln(x)-1.272≦y<2.250×10-2×ln(x)-8.436×10-1
を満たす場合は、前記最深ピークに対する前記ドーズ量を、5×1011[/cm2]以上、2×1012[/cm2]未満に設定し、
y<3.017×10-2×ln(x)-1.272
を満たす場合は、前記最深ピークに対する前記ドーズ量を、5×1011[/cm2]未満に設定してよい。
【0017】
本発明の第2の態様においては、半導体装置を提供する。上記半導体装置は、上面および下面を有する半導体基板を備えてよい。上記半導体装置は、前記半導体基板に設けられた第1導電型のドリフト領域を備えてよい。上記半導体装置は、前記ドリフト領域および前記半導体基板の下面の間に設けられ、前記ドリフト領域よりもキャリア濃度が高い複数の濃度ピークを含む第1導電型のバッファ領域を備えてよい。上記いずれかの半導体装置において、前記複数の濃度ピークは、前記半導体基板の前記下面から2番目に近い第2浅ピークと、前記半導体基板の前記下面から最も遠い最深ピークと、前記半導体基板の前記下面から2番目に遠い第2深ピークとを含んでよい。上記いずれかの半導体装置において、前記第2深ピークよりも上側の前記バッファ領域の前記キャリア濃度の積分値をn1、前記第2浅ピークから前記第2深ピークまでの前記キャリア濃度の積分値をn2、前記半導体基板の炭素濃度をC、前記半導体基板の酸素濃度をOとし、
x=O×((C/(1×1015))×exp(O/(1×1017))、
y=n1/(n1+n2)
とした場合に、
xは1×1017[/cm3]以上1×1022[/cm3]以下であってよい。
6.167×10-3×ln(x)+2.860×10-2≦y<0.4
を満たす場合は、前記第2深ピークよりも上側の前記バッファ領域の水素濃度の積分濃度が8×1012[/cm2]以上であってよい。
1.129×10-2×ln(x)-2.660×10-1≦y<6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、前記水素濃度の前記積分濃度が、4×1012[/cm2]以上、8×1012[/cm2]未満であってよい。
2.250×10-2×ln(x)-8.436×10-1≦y<1.129×10-2×ln(x)-2.660×10-1
を満たす場合は、前記水素濃度の前記積分濃度が、2×1012[/cm2]以上、4×1012[/cm2]未満であってよい。
3.017×10-2×ln(x)-1.272≦y<2.250×10-2×ln(x)-8.436×10-1
を満たす場合は、前記水素濃度の前記積分濃度が、5×1011[/cm2]以上、2×1012[/cm2]未満であってよい。
y<3.017×10-2×ln(x)-1.272
を満たす場合は、前記水素濃度の前記積分濃度が、5×1011[/cm2]未満であってよい。前記最深ピークに対する前記水素イオンの前記ドーズ量を、前記最深ピークにおける水素化学濃度の積分濃度で除した値は、1以上3以下であってよい。
【0018】
上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0019】
【
図1】本発明の一つの実施形態に係る半導体装置の製造方法の一例を説明する図である。
【
図2】設定段階S1212の一例を説明する図である。
【
図3】半導体基板10の炭素濃度毎の、バッファ領域20におけるキャリア濃度分布の一例を示す図である。
【
図4】炭素濃度に応じて最深ピーク204に対する水素イオンのドーズ量を調整した場合の、キャリア濃度分布の一例を示す図である。
【
図5】バッファ領域20のキャリア濃度分布と、キャリア濃度の積分値の一例を示す図である。
【
図6】積分濃度比(n1/(n1+n2))と、半導体基板10の酸素濃度および炭素濃度の関係の一例を示す図である。
【
図7】最深ピーク204に対して設定すべき水素イオンのドーズ量の許容範囲を示す図である。
【
図8】
図1から
図7において説明した製造方法で製造した半導体装置100の一例を示す上面図である。
【
図10】
図9におけるe-e断面の一例を示す図である。
【
図11】領域211における水素化学濃度の積分濃度を説明する図である。
【
図12】バッファ領域20における水素化学濃度分布の一例を示す図である。
【発明を実施するための形態】
【0020】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0021】
本明細書においては半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」の方向は、重力方向または半導体装置の実装時における方向に限定されない。
【0022】
本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。直交座標軸は、構成要素の相対位置を特定するに過ぎず、特定の方向を限定するものではない。例えば、Z軸は地面に対する高さ方向を限定して示すものではない。なお、+Z軸方向と-Z軸方向とは互いに逆向きの方向である。正負を記載せず、Z軸方向と記載した場合、+Z軸および-Z軸に平行な方向を意味する。
【0023】
本明細書では、半導体基板の上面および下面に平行な直交軸をX軸およびY軸とする。また、半導体基板の上面および下面と垂直な軸をZ軸とする。本明細書では、Z軸の方向を深さ方向と称する場合がある。また、本明細書では、X軸およびY軸を含めて、半導体基板の上面および下面に平行な方向を、水平方向と称する場合がある。
【0024】
半導体基板の深さ方向における中心から、半導体基板の上面までの領域を、上面側と称する場合がある。同様に、半導体基板の深さ方向における中心から、半導体基板の下面までの領域を、下面側と称する場合がある。
【0025】
本明細書において「同一」または「等しい」のように称した場合、製造ばらつき等に起因する誤差を有する場合も含んでよい。当該誤差は、例えば10%以内である。
【0026】
本明細書においては、不純物がドーピングされたドーピング領域の導電型をP型またはN型として説明している。本明細書においては、不純物とは、特にN型のドナーまたはP型のアクセプタのいずれかを意味する場合があり、ドーパントと記載する場合がある。本明細書においては、ドーピングとは、半導体基板にドナーまたはアクセプタを導入し、N型の導電型を示す半導体またはP型の導電型を示す半導体とすることを意味する。
【0027】
本明細書においては、ドーピング濃度とは、熱平衡状態におけるドナーの濃度またはアクセプタの濃度を意味する。本明細書においては、ネット・ドーピング濃度とは、ドナー濃度を正イオンの濃度とし、アクセプタ濃度を負イオンの濃度として、電荷の極性を含めて足し合わせた正味の濃度を意味する。一例として、ドナー濃度をND、アクセプタ濃度をNAとすると、任意の位置における正味のネット・ドーピング濃度はND-NAとなる。本明細書では、ネット・ドーピング濃度を単にドーピング濃度と記載する場合がある。
【0028】
ドナーは、半導体に電子を供給する機能を有している。アクセプタは、半導体から電子を受け取る機能を有している。ドナーおよびアクセプタは、不純物自体には限定されない。例えば、半導体中に存在する空孔(V)、酸素(O)および水素(H)が結合したVOH欠陥は、電子を供給するドナーとして機能する。あるいは、シリコン半導体中の格子間シリコン(Si-i)と水素とが結合した格子間Si-H欠陥、さらに格子間炭素と格子間酸素および水素が結合したCiOi-H欠陥も、電子を供給するドナーとして機能する。本明細書では、VOH欠陥、格子間Si-H欠陥またはCiOi-H欠陥を水素ドナーと称する場合がある。
【0029】
本明細書において半導体基板は、N型のバルク・ドナーが全体に分布している。バルク・ドナーは、半導体基板の元となるインゴットの製造時に、インゴット内に略一様に含まれたドーパントによるドナーである。本例のバルク・ドナーは、水素以外の元素である。バルク・ドナーのドーパントは、例えばリン、アンチモン、ヒ素、セレンまたは硫黄であるが、これに限定されない。本例のバルク・ドナーは、リンである。バルク・ドナーは、P型の領域にも含まれている。半導体基板は、半導体のインゴットから切り出したウエハであってよく、ウエハを個片化したチップであってもよい。半導体のインゴットは、チョクラルスキー法(CZ法)、磁場印加型チョクラルスキー法(MCZ法)、フロートゾーン法(FZ法)のいずれかで製造されよい。本例におけるインゴットは、MCZ法で製造されている。MCZ法で製造された基板に含まれる酸素濃度は1×1017~7×1017/cm3である。FZ法で製造された基板に含まれる酸素濃度は1×1015~5×1016/cm3である。酸素濃度が高い方が水素ドナーを生成しやすい傾向がある。バルク・ドナー濃度は、半導体基板の全体に分布しているバルク・ドナーの化学濃度を用いてよく、当該化学濃度の90%から100%の間の値であってもよい。また、半導体基板は、リン等のドーパントを含まないノンドープ基板を用いてもよい。その場合、ノンドーピング基板のバルク・ドナー濃度(D0)は例えば1×1010/cm3以上、5×1012/cm3以下である。ノンドーピング基板のバルク・ドナー濃度(D0)は、好ましくは1×1011/cm3以上である。ノンドーピング基板のバルク・ドナー濃度(D0)は、好ましくは5×1012/cm3以下である。尚、本発明における各濃度は、室温における値でよい。室温における値は、一例として300K(ケルビン)(約26.9℃)のときの値を用いてよい。
【0030】
本明細書においてP+型またはN+型と記載した場合、P型またはN型よりもドーピング濃度が高いことを意味し、P-型またはN-型と記載した場合、P型またはN型よりもドーピング濃度が低いことを意味する。また、本明細書においてP++型またはN++型と記載した場合には、P+型またはN+型よりもドーピング濃度が高いことを意味する。本明細書の単位系は、特に断りがなければSI単位系である。長さの単位をcmで表示することがあるが、諸計算はメートル(m)に換算してから行ってよい。
【0031】
本明細書において化学濃度とは、電気的な活性化の状態によらずに測定される不純物の原子密度を指す。化学濃度は、例えば二次イオン質量分析法(SIMS)により計測できる。上述したネット・ドーピング濃度は、電圧-容量測定法(CV法)により測定できる。電圧-容量測定法(CV法)により計測されネット・ドーピング濃度を、キャリア濃度として用いてよい。また、拡がり抵抗測定法(SR法)により計測されるキャリア濃度を、ネット・ドーピング濃度として用いてもよい。キャリアとは、電子または正孔の電荷キャリアを意味する。CV法またはSR法により計測されるキャリア濃度は、熱平衡状態における値としてよい。また、N型の領域においては、ドナー濃度がアクセプタ濃度よりも十分大きいので、当該領域におけるキャリア濃度を、ドナー濃度としてもよい。同様に、P型の領域においては、当該領域におけるキャリア濃度を、アクセプタ濃度としてもよい。本明細書では、N型領域のドーピング濃度をドナー濃度と称する場合があり、P型領域のドーピング濃度をアクセプタ濃度と称する場合がある。
【0032】
ドナー、アクセプタまたはネット・ドーピングの濃度分布がピークを有する場合、当該ピーク値を当該領域におけるドナー、アクセプタまたはネット・ドーピングの濃度としてよい。ドナー、アクセプタまたはネット・ドーピングの濃度がほぼ均一な場合等においては、当該領域におけるドナー、アクセプタまたはネット・ドーピングの濃度の平均値をドナー、アクセプタまたはネット・ドーピングの濃度としてよい。本明細書において、単位体積当りの濃度表示にatоms/cm3、または、/cm3を用いる。この単位は、半導体基板内のドナーまたはアクセプタ濃度、または、化学濃度に用いられる。atоms表記は省略してもよい。
【0033】
SR法により計測されるキャリア濃度が、ドナーまたはアクセプタの濃度より低くてもよい。拡がり抵抗を測定する際に電流が流れる範囲において、半導体基板のキャリア移動度が結晶状態の値よりも低い場合がある。キャリア移動度の低下は、格子欠陥等による結晶構造の乱れ(ディスオーダー)により、キャリアが散乱されることで生じる。キャリア濃度が低下する理由は、下記の通りである。SR法では、拡がり抵抗を測定し、拡がり抵抗の測定値からキャリア濃度を換算する。このとき、キャリアの移動度は結晶状態の移動度が用いられる。一方、格子欠陥が導入されている位置では、キャリア移動度は低下しているにもかかわらず、結晶状態のキャリア移動度によりキャリア濃度が算出される。そのため、実際のキャリア濃度、すなわちドナーまたはアクセプタの濃度よりも低い値となる。
【0034】
CV法またはSR法により計測されるキャリア濃度から算出したドナーまたはアクセプタの濃度は、ドナーまたはアクセプタを示す元素の化学濃度よりも低くてよい。一例として、シリコンの半導体においてドナーとなるリンまたはヒ素のドナー濃度、あるいはアクセプタとなるボロン(ホウ素)のアクセプタ濃度は、これらの化学濃度の99%程度である。一方、シリコンの半導体においてドナーとなる水素のドナー濃度は、水素の化学濃度の0.1%から10%程度である。
【0035】
図1は、本発明の一つの実施形態に係る半導体装置の製造方法の一例を説明する図である。半導体装置は、半導体基板に形成された半導体素子を有する。半導体基板は例えばMCZ法で形成されたシリコン基板であるが、これに限定されない。半導体素子は、例えばIGBT(Insulated Gate Bipolar Transistor)、ダイオード、RC(Reverse Conducting)-IGBT等のパワー半導体素子であるが、これに限定されない。
【0036】
本例の製造方法は、設計段階S1210および製造段階S1220を備える。設計段階S1210においては、半導体装置が有するべき耐圧等の特性に基づいて、半導体装置の構造を設計する。設計段階S1210では、半導体装置の各構成要素の位置、大きさ、キャリア濃度、および、半導体基板の各位置に注入すべきドーパントイオンのドーズ量等の少なくとも一つを決定する。製造段階S1220では、設計段階S1210で設計した構造に基づいて、半導体装置の各構成要素を製造する。製造段階S1220は、ドーパントイオンの注入、熱処理、露光、エッチング、成膜等の工程の少なくとも一つを含む。
【0037】
本例の半導体装置は、半導体基板に設けられたN-型のドリフト領域およびN+型のバッファ領域を含む。バッファ領域は、ドリフト領域および半導体基板の下面の間に設けられる。バッファ領域は、ドリフト領域よりもキャリア濃度が高い複数の濃度ピークを含む。バッファ領域は、例えばIGBTにおけるフィールドストップ層であるが、これに限定されない。半導体装置の構造例については後述する。
【0038】
本例の設計段階S1210は、設定段階S1212を有する。本例の製造段階S1220は、注入段階S1222を有する。設定段階S1212では、バッファ領域が有するべきキャリア濃度の分布に応じて、バッファ領域に注入する水素イオンのドーズ量を設定する。キャリア濃度の分布は、例えば半導体装置が有するべき耐圧に応じて決定される。本例のバッファ領域は複数の濃度ピークを有するので、設定段階S1212では、複数の濃度ピークに対応する複数の深さ位置に注入する水素イオンの各ドーズ量を設定する。注入段階S1222では、設定段階S1212で設定した各ドーズ量に応じて、半導体基板のそれぞれの深さ位置に水素イオンを注入する。
【0039】
半導体基板に水素イオンを注入すると、水素イオンの注入に起因した水素ドナーが形成される。水素ドナーは、例えば水素原子と、半導体基板中の酸素原子とが結合して形成される。水素ドナーは、例えば上述したVOH欠陥、格子間Si-H欠陥、CiOi-H欠陥である。水素ドナーが形成される濃度は、半導体基板に含まれる炭素濃度または酸素濃度によって変動する場合もある。MCZ法で形成された半導体基板には高濃度の炭素または酸素が含まれ、比較的に炭素濃度または酸素濃度のばらつきが大きい。例えばMCZ法の半導体基板における炭素濃度は、0.01×1016/cm3~1×1016/cm3の範囲でばらつく場合がある。同様に、例えばMCZ法の半導体基板における酸素濃度は、0.01×1018/cm3~1×1018/cm3の範囲でばらつく場合がある。
【0040】
水素ドナーの濃度が半導体基板の炭素濃度または酸素濃度に応じて変動するので、バッファ領域に注入する水素イオンのドーズ量は、半導体基板の炭素濃度または酸素濃度に応じて調整することが好ましい。しかし、複数の深さ位置に対する複数のドーズ量のそれぞれを調整すると、それぞれの深さ位置に対する水素イオンの注入工程の条件を、半導体基板の炭素濃度ごとに変更しなければならない。このため、製造工程が煩雑になってしまう。また、半導体装置の製造コストが上昇する場合もある。
【0041】
図2は、設定段階S1212および注入段階S1222の一例を説明する図である。
図2では、半導体基板10の断面の一部を示している。また半導体基板10の断面の横に、完成した半導体装置が有するべきキャリア濃度分布の一例を合わせて示している。半導体基板10は、円盤状のウエハであってよく、ウエハをダイシングして個片化したチップであってもよい。半導体基板10は、上面21および下面23を有する。本明細書では、上面21と平行な2つの直交軸をX軸およびY軸とし、上面21と垂直な軸をZ軸とする。本明細書では、Z軸と平行な方向を深さ方向と称する場合がある。また、Z軸上の位置を、深さ位置と称する場合がある。特に説明がない場合、深さ位置は、下面23からのZ軸上の距離を指す。
【0042】
半導体基板10には、N-型のドリフト領域18およびN+型のバッファ領域20が設けられる。ドリフト領域18のドーピング濃度は、バルク・ドーピング濃度と同一であってよく、バルク・ドーピング濃度より高くてもよい。バッファ領域20は、ドリフト領域18と下面23との間に配置される。バッファ領域20の深さ方向の長さは、半導体基板10の深さ方向の厚みの半分より小さくてよく、大きくてもよい。
【0043】
バッファ領域20と下面23との間には、半導体装置に形成する半導体素子に応じた領域が設けられてもよい。本例では、バッファ領域20と下面23との間には、P+型のコレクタ領域22が設けられている。本例の半導体基板10にはIGBTが形成される。他の例では、バッファ領域20と下面23との間には、N+型のカソード領域が設けられてもよい。この場合、半導体基板10にはダイオードが形成される。ドリフト領域18と上面21との間にも、半導体装置に形成する半導体素子に応じた構造が形成されるが、
図2では省略している。
【0044】
バッファ領域20は、ドリフト領域18よりもキャリア濃度が高い複数の濃度ピークを含む。
図2の例では、バッファ領域20は、下面23からの距離が小さい順に、濃度ピーク202-1、濃度ピーク202-2、濃度ピーク202-3、濃度ピーク202-4、および、最深ピーク204を有する。最深ピーク204は、バッファ領域20の複数の濃度ピークのうち、下面23から最も遠くに配置された濃度ピークである。本明細書において、濃度ピークは、濃度分布における山形の部分を指す。濃度ピークの頂点における濃度(極大値)を、当該濃度ピークの濃度として用いてよい。バッファ領域20におけるキャリア濃度の分布は、半導体装置が有するべき耐圧等の特性に応じて設計される。バッファ領域20の濃度ピークの個数は、2以上であってよく、3以上であってよく、4以上であってよい。バッファ領域20の濃度ピークの個数は、10以下であってよく、5以下であってよく、4以下であってよい。
図2の例では、バッファ領域20の濃度ピークの個数は5個である。
【0045】
注入段階S1222では、それぞれの濃度ピーク202および最深ピーク204を形成すべき深さ位置に、水素イオン(例えばプロトン)を注入する。水素イオンは下面23から注入してよい。水素イオンを注入する深さ位置は、水素イオンを加速する加速エネルギー(例えば加速電圧)で調整できる。例えば水素イオンの平均飛程が、それぞれの濃度ピークの頂点の位置Z1、Z2、Z3、Z4、Zdとなるように、水素イオンの加速エネルギーを調整する。
【0046】
それぞれの深さ位置に対する水素イオンのドーズ量は、形成すべき濃度ピークの頂点の濃度に応じて定められる。半導体基板10には、注入された水素イオンのドーズ量に応じた濃度の水素ドナーが形成される。ただし上述したように、形成される水素ドナーの濃度は、半導体基板10の炭素濃度または酸素濃度に応じて変動する。
【0047】
本例の設定段階S1212では、バッファ領域20の複数の濃度ピークのうち、最深ピーク204に対する水素イオンのドーズ量を、半導体基板10の炭素濃度または酸素濃度に応じて設定する。半導体基板10の炭素濃度または酸素濃度は、最深ピーク204の深さ位置Zdにおける値を用いてよく、バッファ領域20の全体における平均値を用いてよく、半導体基板10の全体における平均値を用いてもよい。また、設定段階S1212では、バッファ領域20の濃度ピークのうち、最深ピーク204以外の濃度ピーク202のうちの少なくとも一つの濃度ピーク202に対するドーズ量を、半導体基板10の炭素濃度または酸素濃度によらず設定する。設定段階S1212では、2つ以上の濃度ピーク202に対するドーズ量を、半導体基板10の炭素濃度または酸素濃度によらず設定してよく、全ての濃度ピーク202に対するドーズ量を、半導体基板10の炭素濃度または酸素濃度によらず設定してもよい。最深ピーク204に対する水素イオンのドーズ量は、半導体基板10の炭素濃度に応じて設定してもよく、半導体基板10の酸素濃度に応じて設定してもよく、半導体基板10の炭素濃度および酸素濃度の両方に応じて設定してもよい。
【0048】
設定段階S1212では、半導体基板10の炭素濃度が所定の基準濃度であると仮定して、キャリア濃度分布に応じた設定ドーズ量を決定してよい。そして、半導体基板10の実際の炭素濃度または酸素濃度が、基準濃度からどれくらい乖離しているかに応じて、最深ピーク204に対する設定ドーズ量を調整してよい。半導体基板10の実際の炭素濃度または酸素濃度が高いほど、水素ドナーが形成されやすくなる。設定段階S1212では、半導体基板10の実際の炭素濃度または酸素濃度が高いほど、最深ピーク204に対する設定ドーズ量を低く調整してよい。設定段階S1212では、少なくとも一つの濃度ピーク202に対する設定ドーズ量を、炭素濃度または酸素濃度に応じて調整せずに維持してよい。設定段階S1212では、2つ以上の濃度ピーク202の設定ドーズ量を維持してよく、全ての濃度ピーク202の設定ドーズ量を維持してもよい。
【0049】
設定段階S1212では、実際に形成されるバッファ領域20におけるキャリア濃度の積分値が、設計したキャリア濃度分布から定まる設計値に近づくように、最深ピーク204に対する水素イオンのドーズ量を調整してよい。設定段階S1212では、当該積分値と設計値との差分が所定の許容範囲内となるように、最深ピーク204に対する水素イオンのドーズ量を調整してよい。当該許容範囲は、設計値の±10%であってよく、±5%であってよく、±2%であってもよい。最深ピーク204に対するドーズ量を変更した場合に当該積分値がどれくらい変動するかの情報は、予め実験的に取得してよく、コンピュータを用いたシミュレーションにより取得してもよい。
【0050】
本例によれば、少なくとも一つの濃度ピーク202に対する設定ドーズ量を、炭素濃度または酸素濃度に応じて変更しないので、設定段階S1212および注入段階S1222を簡素化できる。また、半導体装置の製造コストの上昇を抑制できる。
【0051】
水素ドナーは、水素イオンの飛程近傍だけでなく、水素イオンが通過した通過領域にも形成される。例えば深さ位置Zdに水素イオンを注入した場合、下面23から深さ位置Zdまでが水素イオンの通過領域となる。当該通過領域にも、水素イオンのドーズ量に応じた水素ドナーが形成される。これは、水素イオンの通過領域にも格子欠陥が形成されるためと考えられる。このため、最深ピーク204に対するドーズ量を調整することで、深さ位置Zdの近傍におけるキャリア濃度に加えて、通過領域におけるキャリア濃度も調整できる。従って、最深ピーク204に対する水素イオンのドーズ量を調整することで、バッファ領域20の全体的なキャリア濃度を調整できる。
【0052】
設定段階S1212では、最深ピーク204の深さ位置Zdに更に基づいて、最深ピーク204に対するドーズ量を設定してもよい。上述したように、水素イオンを注入した場合、水素イオンの通過領域にも水素ドナーが形成される。深さ位置Zdによって通過領域の長さが変化する。このため、最深ピーク204に対するドーズ量を調整したときの、水素ドナーの形成量の積分値は、深さ位置Zdに応じて変化する。設定段階S1212では、最深ピーク204の深さ位置Zdが下面23から遠いほど、最深ピーク204に対するドーズ量を小さくしてよい。
【0053】
図3は、半導体基板10の炭素濃度毎の、バッファ領域20におけるキャリア濃度分布の一例を示す図である。
図3では、ドリフト領域18のドーピング濃度はバルク・ドーピング濃度Dbである。
図3では、半導体基板10の炭素濃度が1×10
15/cm
3の例を実線で示し、炭素濃度が4×10
15/cm
3の例を破線で示している。2つの例において、それぞれの深さ位置に対する水素イオンのドーズ量は同一である。具体的には、深さ位置Z1に対する水素イオンドーズ量は5×10
14/cm
2であり、深さ位置Z2に対する水素イオンドーズ量は3×10
13/cm
2であり、深さ位置Z3に対する水素イオンドーズ量は5×10
12/cm
2であり、深さ位置Z4に対する水素イオンドーズ量は5×10
12/cm
2であり、深さ位置Zdに対する水素イオンドーズ量は1×10
13/cm
2である。
【0054】
図3に示すように、炭素濃度が比較的に低い例(実線)では、バッファ領域20のキャリア濃度が全体的に小さくなっている。このように、バッファ領域20に形成される水素ドナーの濃度は、炭素濃度に応じて変動する。
【0055】
図4は、炭素濃度に応じて最深ピーク204に対する水素イオンのドーズ量を調整した場合の、キャリア濃度分布の一例を示す図である。濃度ピーク202に対する水素イオンのドーズ量は、
図3の例と同様である。
【0056】
図4において実線で示した例は、半導体基板10の炭素濃度が1×10
15/cm
3であり、深さ位置Zdに対する水素イオンドーズ量は2×10
13/cm
2である。つまり
図4の実線の例では、
図3の実線の例に対して、深さ位置Zdにおける水素イオンドーズ量が2倍になっている。このため、最深ピーク204の濃度が高くなっている。
【0057】
図4において破線で示した例は、半導体基板10の炭素濃度が4×10
15/cm
3であり、深さ位置Zdに対する水素イオンドーズ量は3×10
12/cm
2である。つまり
図4の破線の例では、
図3の破線の例に対して、深さ位置Zdにおける水素イオンドーズ量が30%になっている。このため、最深ピーク204の濃度が低くなっている。
【0058】
図4に示した2つの例では、バッファ領域20におけるキャリア濃度の積分値がほぼ等しい。このように、深さ位置Zdに対する水素イオンドーズ量を、炭素濃度に応じて調整することで、バッファ領域20におけるキャリア濃度の積分値をほぼ一定の値に調整できる。
【0059】
図5は、バッファ領域20のキャリア濃度分布と、キャリア濃度の積分値の一例を示す図である。
図5に示すキャリア濃度分布は、深さ位置Zdに対する水素イオンのドーズ量を、炭素濃度に応じて調整する前の分布である。積分濃度は、バッファ領域20とドリフト領域18との境界位置Zbから、下面23に向かってキャリア濃度を積分した値である。
【0060】
本例のバッファ領域20の複数の濃度ピークは、半導体基板10の下面23に最も近い第1浅ピークと、2番目に近い第2浅ピークを有する。
図5の例では、濃度ピーク202-1が第1浅ピークに相当し、濃度ピーク202-2が第2浅ピークに相当する。また、バッファ領域20の複数の濃度ピークは、半導体基板10の下面23から2番目に遠い第2深ピークを含む。
図5の例では、濃度ピーク202-4が第2深ピークに相当する。
【0061】
濃度ピーク202-1と、濃度ピーク202-2との境界の深さ位置をZ5とする。深さ位置Z5は、濃度ピーク202-1と濃度ピーク202-2との間において、キャリア濃度が極小値となる位置である。濃度ピーク202-1と濃度ピーク202-2との間において、キャリア濃度が極小値となる領域が連続する平坦部分が存在する場合、当該平坦部分の深さ方向における中心位置を、深さ位置Z5としてよい。濃度ピーク202-4と、最深ピーク204との境界の深さ位置をZ6とする。深さ位置Z6は、濃度ピーク202-4と最深ピーク204との間において、キャリア濃度が極小値となる位置である。濃度ピーク202-4と最深ピーク204との間において、キャリア濃度が極小値となる領域が連続する平坦部分が存在する場合、当該平坦部分の深さ方向における中心位置を、深さ位置Z6としてよい。
【0062】
本例の設定段階S1212では、濃度ピーク202-2から濃度ピーク202-4までのキャリア濃度の深さ方向の積分値n2に更に基づいて、最深ピーク204に対する水素イオンのドーズ量を調整する。濃度ピーク202-2から濃度ピーク202-4までの範囲を、領域212とする。領域212は深さ位置Z5からZ6までの領域である。
【0063】
上述したように、領域212におけるキャリア濃度は、半導体基板10の炭素濃度または酸素濃度に応じて変動する。また、領域212におけるキャリア濃度の変動量は、領域212におけるキャリア濃度の大きさに応じて変化する。例えば、領域212におけるキャリア濃度が大きければ、炭素濃度または酸素濃度に応じたキャリア濃度の変動量も大きくなる傾向がある。このため、領域212が有するべきキャリア濃度の積分値に応じて、最深ピーク204に対する水素イオンのドーズ量を調整することで、領域212におけるキャリア濃度の変動を、最深ピーク204におけるキャリア濃度の増減で、より精度よく相殺できる。領域212におけるキャリア濃度の積分値に応じて、水素イオンのドーズ量をどの程度調整すべきかは、実験的に予め取得してよく、シミュレーションにより取得してもよい。
【0064】
半導体基板10の上面21側から広がる空乏層が、コレクタ領域22等に到達しないように、濃度ピーク202-1のキャリア濃度は、他の濃度ピーク202に比べて大きい値に設定される。例えば濃度ピーク202-1のキャリア濃度は、他の濃度ピーク202のキャリア濃度の10倍以上である。このような場合、領域212に濃度ピーク202-1を含めると、領域212における積分値は、濃度ピーク202-1のキャリア濃度でほぼ決まってしまう。このため設定段階S1212では、濃度ピーク202-1を含めない領域212における積分濃度に基づいて、最深ピーク204に対する水素イオンのドーズ量を設定している。積分濃度に含めない濃度ピークとは、以下の濃度ピークであってよい。例えば、アバランシェ降伏が生じる電圧の90%以上の電圧を半導体装置100に印加した場合に、ドリフト領域18およびバッファ領域20を広がる空乏層の端部(空乏層端)を含む濃度ピークであってよく、空乏層端よりも下面23側に位置する濃度ピークであってよい。
【0065】
本例の設定段階S1212では、濃度ピーク202-4よりも上面21側のバッファ領域20のキャリア濃度の積分値n1に更に基づいて、最深ピーク204に対する水素イオンのドーズ量を設定する。濃度ピーク202-4よりも上面21側のバッファ領域20の範囲を、領域211とする。領域211は、深さ位置Z6からZbまでの領域である。
【0066】
図1から
図4において説明した例では、最深ピーク204に対する水素イオンのドーズ量を調整する。この場合、
図4に示したように、最深ピーク204のキャリア濃度が変動する。一方で、最深ピーク204のキャリア濃度が大きく変動すると、半導体装置の特性が変動してしまう場合がある。半導体装置の電気的特性は、領域211におけるキャリア濃度の積分濃度に依存し、当該積分濃度は最深ピーク204に対する水素イオンのドーズ量に依存する。このため、半導体装置の特性が大きく変動しない範囲で、最深ピーク204に対する水素イオンのドーズ量を調整することが好ましい。
【0067】
本例の設定段階S1212では、領域211および領域212における積分濃度(n1+n2)に対する、領域211の積分濃度n1の比(n1/(n1+n2))に基づいて、水素イオンのドーズ量を調整する。また、水素ドナーの形成量は、半導体基板10の酸素濃度によっても変動する。設定段階S1212では、半導体基板10の酸素濃度に更に基づいて、最深ピーク204に対する水素イオンのドーズ量を設定してよい。半導体基板10の酸素濃度は、深さ位置Zdにおける値を用いてよく、バッファ領域20の全体における平均値を用いてよく、半導体基板10の全体における平均値を用いてもよい。
【0068】
図6は、積分濃度比(n1/(n1+n2))と、半導体基板10の酸素濃度および炭素濃度の関係の一例を示す図である。
図6の例では、半導体基板10の炭素濃度をC、酸素濃度をOとして、横軸をO×((C/(1×10
15))×exp(O/(1×10
17))としている。また、
図6の縦軸は、積分濃度比(n1/(n1+n2))である。
図6には、最深ピーク204に対する水素イオンのドーズ量が、1×10
13/cm
2、5×10
12/cm
2、3×10
12/cm
2、1×10
12/cm
2、3×10
11/cm
2の各例における特性を示している。
【0069】
上述したように、水素ドナーの形成量は、半導体基板10の炭素濃度または酸素濃度に依存し、特に酸素濃度に依存する。酸素濃度Oおよび炭素濃度Cを用いて、横軸xをO×((C/(1×10
15))×exp(O/(1×10
17))としたところ、
図6において破線で示すように、対数グラフ上のそれぞれの特性を、直線でほぼ近似できた。これは、積分濃度比が概ね酸素濃度に依存するとともに、炭素濃度からも影響を受けることを示している。炭素濃度の影響は、酸素濃度が高いほど強くなる傾向がある。当該影響を示すために、酸素濃度Oに、(C/(1×10
15))×exp(O/(1×10
17)を乗算した値を横軸としている。C/(1×10
15)の部分は、炭素濃度Cを1×10
15/cm
3にて規格化(無次元化)している。exp(O/(1×10
17)の部分は、規格化した炭素濃度Cに対する、酸素濃度Oの寄与係数である。寄与係数は無次元である。すなわち、横軸xは、酸素濃度Oの寄与係数を乗じた規格化炭素濃度を、酸素濃度Oに乗じることにより、水素ドナーのドナー濃度に対する酸素と炭素の相互作用を表してよい。横軸のパラメータxの単位は、atoms/cm
3であり、単に /cm
3と記載することがある。
【0070】
図6に示すように、最深ピーク204における水素イオンのドーズ量が大きいほど、積分濃度比(n1/(n1+n2))は大きくなる。また、パラメータx=O×((C/(1×10
15))×exp(O/(1×10
17))が大きくなるほど、積分濃度比(n1/(n1+n2))は大きくなる。
【0071】
図6に示すような関係から、半導体基板10の酸素濃度Oおよび炭素濃度Cと、バッファ領域20が有するべき積分濃度n1および積分濃度n2が定まれば、最深ピーク204に対して設定すべき水素イオンのドーズ量が定まる。設定段階S1212では、
図6から定まる水素イオンのドーズ量に応じて、最深ピーク204における水素イオンのドーズ量を決定してよい。半導体基板10の酸素濃度O、炭素濃度Cと、バッファ領域20が有するべき積分濃度n1、積分濃度n2の値の組み合わせに応じて、最深ピーク204に対して設定すべきドーズ量の許容範囲が予め定められてよい。当該許容範囲は、
図6に示したような、パラメータxと、積分濃度比(n1/(n1+n2))との関係から定めてよい。
【0072】
図7は、最深ピーク204に対して設定すべき水素イオンのドーズ量の許容範囲を示す図である。本例では、
図6において破線で示した複数の近似直線から、当該許容範囲を決定している。
図7においては、それぞれの近似直線を破線で示しており、許容範囲の境界線301-1~301-4を一点鎖線で示している。パラメータxの範囲は、1×10
17/cm
3以上1×10
22/cm
3以下であってよい。
【0073】
それぞれの境界線301は、2つの近似直線の中間の直線である。
図7では、最深ピーク204の水素イオンのドーズ量が1×10
13/cm
2である場合の近似直線と、最深ピーク204の水素イオンのドーズ量が5×10
12/cm
2である場合の近似直線との中間線を、境界線301-1とする。最深ピーク204の水素イオンのドーズ量が5×10
12/cm
2である場合の近似直線と、最深ピーク204の水素イオンのドーズ量が3×10
12/cm
2である場合の近似直線との中間線を、境界線301-2とする。最深ピーク204の水素イオンのドーズ量が3×10
12/cm
2である場合の近似直線と、最深ピーク204の水素イオンのドーズ量が1×10
12/cm
2である場合の近似直線との中間線を、境界線301-3とする。最深ピーク204の水素イオンのドーズ量が1×10
12/cm
2である場合の近似直線と、最深ピーク204の水素イオンのドーズ量が3×10
11/cm
2である場合の近似直線との中間線を、境界線301-4とする。
【0074】
パラメータx、yを下式のように定義する。ln(x)は、xの自然対数である。
x=O×((C/(1×1015))×exp(O/(1×1017))
y=n1/(n1+n2)
境界線301-1は下式で表される。
y=6.167×10-3×ln(x)+2.860×10-2
境界線301-2は下式で表される。
y=1.129×10-2×ln(x)-2.660×10-1
境界線301-3は下式で表される。
y=2.250×10-2×ln(x)-8.436×10-1
境界線301-4は下式で表される。
y=3.017×10-2×ln(x)-1.272
【0075】
図7に示すグラフにおいて、半導体基板10の酸素濃度O、炭素濃度Cと、バッファ領域20が有するべき積分濃度n1、積分濃度n2の値の組み合わせで定まるパラメータx、yが、境界線301-1より上の領域に存在する場合、設定段階S1212において、最深ピーク204に対するドーズ量を、8×10
12/cm
2以上に設定してよい。
つまり、
6.167×10
-3×ln(x)+2.860×10
-2≦y<0.4
を満たす場合、設定段階S1212において、最深ピーク204に対するドーズ量を、8×10
12/cm
2以上に設定してよい。最深ピーク204に対するドーズ量は、9×10
12/cm
2以上に設定してもよい。この場合において、最深ピーク204に対するドーズ量を、1.2×10
13/cm
2未満に設定してよい。また、最深ピーク204に対するドーズ量を、1.1×10
13/cm
2未満に設定してもよい。
【0076】
図7に示すグラフにおいて、パラメータx、yが、境界線301-1と境界線301-2との間に存在する場合、設定段階S1212において、最深ピーク204に対するドーズ量を、4×10
12/cm
2以上、8×10
12/cm
2未満に設定してよい。
つまり、
1.129×10
-2×ln(x)-2.660×10
-1≦y<6.167×10
-3×ln(x)+2.860×10
-2
を満たす場合、設定段階S1212において、最深ピーク204に対するドーズ量を、4×10
12/cm
2以上、8×10
12/cm
2未満に設定してよい。この場合において、最深ピーク204に対するドーズ量を、4×10
12/cm
2以上に設定してもよい。この場合において、最深ピーク204に対するドーズ量を、7×10
12/cm
2以下に設定してもよい。
【0077】
図7に示すグラフにおいて、パラメータx、yが、境界線301-2と境界線301-3との間に存在する場合、設定段階S1212において、最深ピーク204に対するドーズ量を、2×10
12/cm
2以上、4×10
12/cm
2未満に設定してよい。
つまり、
2.250×10
-2×ln(x)-8.436×10
-1≦y<1.129×10
-2×ln(x)-2.660×10
-1
を満たす場合、設定段階S1212において、最深ピーク204に対するドーズ量を、2×10
12/cm
2以上、4×10
12/cm
2未満に設定してよい。この場合において、最深ピーク204に対するドーズ量を、2.5×10
12/cm
2以上に設定してもよい。この場合において、最深ピーク204に対するドーズ量を、3.5×10
12/cm
2以下に設定してもよい。
【0078】
図7に示すグラフにおいて、パラメータx、yが、境界線301-3と境界線301-4との間に存在する場合、設定段階S1212において、最深ピーク204に対するドーズ量を、5×10
11/cm
2以上、2×10
12/cm
2未満に設定してよい。
つまり、
3.017×10
-2×ln(x)-1.272≦y<2.250×10
-2×ln(x)-8.436×10
-1
を満たす場合、設定段階S1212において、最深ピーク204に対するドーズ量を、5×10
11/cm
2以上、2×10
12/cm
2未満に設定してよい。この場合において、最深ピーク204に対するドーズ量を、8×10
11/cm
2以上に設定してもよい。この場合において、最深ピーク204に対するドーズ量を、1×10
12/cm
2以下に設定してもよい。
【0079】
図7に示すグラフにおいて、パラメータx、yが、境界線301-4より下に存在する場合、設定段階S1212において、最深ピーク204に対するドーズ量を、5×10
11/cm
2未満に設定してよい。
つまり、
0.01≦y<3.017×10
-2×ln(x)-1.272
を満たす場合、設定段階S1212において、最深ピーク204に対するドーズ量を、5×10
11/cm
2未満に設定してよい。最深ピーク204に対するドーズ量は、4×10
11/cm
2以下に設定してもよい。この場合において、最深ピーク204に対するドーズ量を、1×10
11/cm
2以上に設定してよく、2×10
11/cm
2以上に設定してもよい。
【0080】
図8は、
図1から
図7において説明した製造方法で製造した半導体装置100の一例を示す上面図である。
図8においては、各部材を半導体基板10の上面に投影した位置を示している。
図8においては、半導体装置100の一部の部材だけを示しており、一部の部材は省略している。
【0081】
半導体装置100は、半導体基板10を備えている。半導体基板10は、半導体材料で形成された基板である。一例として半導体基板10はシリコン基板である。半導体基板10は、上面視において端辺162を有する。本明細書で単に上面視と称した場合、半導体基板10の上面側から見ることを意味している。本例の半導体基板10は、上面視において互いに向かい合う2組の端辺162を有する。
図8においては、X軸およびY軸は、いずれかの端辺162と平行である。またZ軸は、半導体基板10の上面と垂直である。
【0082】
半導体基板10には活性部160が設けられている。活性部160は、半導体装置100が動作した場合に半導体基板10の上面と下面との間で、深さ方向に主電流が流れる領域である。活性部160の上方には、エミッタ電極が設けられているが
図8では省略している。
【0083】
活性部160には、IGBT等のトランジスタ素子を含むトランジスタ部70と、還流ダイオード(FWD)等のダイオード素子を含むダイオード部80の少なくとも一方が設けられている。
図8の例では、トランジスタ部70およびダイオード部80は、半導体基板10の上面における所定の配列方向(本例ではX軸方向)に沿って、交互に配置されている。他の例では、活性部160には、トランジスタ部70およびダイオード部80の一方だけが設けられていてもよい。
【0084】
図8においては、トランジスタ部70が配置される領域には記号「I」を付し、ダイオード部80が配置される領域には記号「F」を付している。本明細書では、上面視において配列方向と垂直な方向を延伸方向(
図8ではY軸方向)と称する場合がある。トランジスタ部70およびダイオード部80は、それぞれ延伸方向に長手を有してよい。つまり、トランジスタ部70のY軸方向における長さは、X軸方向における幅よりも大きい。同様に、ダイオード部80のY軸方向における長さは、X軸方向における幅よりも大きい。トランジスタ部70およびダイオード部80の延伸方向と、後述する各トレンチ部の長手方向とは同一であってよい。
【0085】
ダイオード部80は、半導体基板10の下面と接する領域に、N+型のカソード領域を有する。本明細書では、カソード領域が設けられた領域を、ダイオード部80と称する。つまりダイオード部80は、上面視においてカソード領域と重なる領域である。半導体基板10の下面には、カソード領域以外の領域には、P+型のコレクタ領域が設けられてよい。本明細書では、ダイオード部80を、後述するゲート配線までY軸方向に延長した延長領域81も、ダイオード部80に含める場合がある。延長領域81の下面には、コレクタ領域が設けられている。
【0086】
トランジスタ部70は、半導体基板10の下面と接する領域に、P+型のコレクタ領域を有する。また、トランジスタ部70は、半導体基板10の上面側に、N型のエミッタ領域、P型のベース領域、ゲート導電部およびゲート絶縁膜を有するゲート構造が周期的に配置されている。
【0087】
半導体装置100は、半導体基板10の上方に1つ以上のパッドを有してよい。本例の半導体装置100は、ゲートパッド164を有している。半導体装置100は、アノードパッド、カソードパッドおよび電流検出パッド等のパッドを有してもよい。各パッドは、端辺162の近傍に配置されている。端辺162の近傍とは、上面視における端辺162と、エミッタ電極との間の領域を指す。半導体装置100の実装時において、各パッドは、ワイヤ等の配線を介して外部の回路に接続されてよい。
【0088】
ゲートパッド164には、ゲート電位が印加される。ゲートパッド164は、活性部160のゲートトレンチ部の導電部に電気的に接続される。半導体装置100は、ゲートパッド164とゲートトレンチ部とを接続するゲート配線を備える。
図8においては、ゲート配線に斜線のハッチングを付している。
【0089】
本例のゲート配線は、外周ゲート配線130と、活性側ゲート配線131とを有している。外周ゲート配線130は、上面視において活性部160と半導体基板10の端辺162との間に配置されている。本例の外周ゲート配線130は、上面視において活性部160を囲んでいる。上面視において外周ゲート配線130に囲まれた領域を活性部160としてもよい。また、外周ゲート配線130は、ゲートパッド164と接続されている。外周ゲート配線130は、半導体基板10の上方に配置されている。外周ゲート配線130は、アルミニウム等を含む金属配線であってよい。
【0090】
活性側ゲート配線131は、活性部160に設けられている。活性部160に活性側ゲート配線131を設けることで、半導体基板10の各領域について、ゲートパッド164からの配線長のバラツキを低減できる。
【0091】
活性側ゲート配線131は、活性部160のゲートトレンチ部と接続される。活性側ゲート配線131は、半導体基板10の上方に配置されている。活性側ゲート配線131は、不純物がドープされたポリシリコン等の半導体で形成された配線であってよい。
【0092】
活性側ゲート配線131は、外周ゲート配線130と接続されてよい。本例の活性側ゲート配線131は、活性部160を挟む一方の外周ゲート配線130から他方の外周ゲート配線130まで、活性部160をY軸方向の略中央で横切るように、X軸方向に延伸して設けられている。活性側ゲート配線131により活性部160が分割されている場合、それぞれの分割領域において、トランジスタ部70およびダイオード部80がX軸方向に交互に配置されてよい。
【0093】
半導体装置100は、ポリシリコン等で形成されたPN接合ダイオードである不図示の温度センス部や、活性部160に設けられたトランジスタ部の動作を模擬する不図示の電流検出部を備えてもよい。
【0094】
本例の半導体装置100は、上面視において、活性部160と端辺162との間に、エッジ終端構造部90を備える。本例のエッジ終端構造部90は、外周ゲート配線130と端辺162との間に配置されている。エッジ終端構造部90は、半導体基板10の上面側の電界集中を緩和する。エッジ終端構造部90は、活性部160を囲んで環状に設けられたガードリング、フィールドプレートおよびリサーフのうちの少なくとも一つを備えていてよい。
【0095】
図9は、
図8における領域Dの拡大図である。領域Dは、トランジスタ部70、ダイオード部80、および、活性側ゲート配線131を含む領域である。本例の半導体装置100は、半導体基板10の上面側の内部に設けられたゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15を備える。ゲートトレンチ部40およびダミートレンチ部30は、それぞれがトレンチ部の一例である。また、本例の半導体装置100は、半導体基板10の上面の上方に設けられたエミッタ電極52および活性側ゲート配線131を備える。エミッタ電極52および活性側ゲート配線131は互いに分離して設けられる。
【0096】
エミッタ電極52および活性側ゲート配線131と、半導体基板10の上面との間には層間絶縁膜が設けられるが、
図9では省略している。本例の層間絶縁膜には、コンタクトホール54が、当該層間絶縁膜を貫通して設けられる。
図9においては、それぞれのコンタクトホール54に斜線のハッチングを付している。
【0097】
エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15の上方に設けられる。エミッタ電極52は、コンタクトホール54を通って、半導体基板10の上面におけるエミッタ領域12、コンタクト領域15およびベース領域14と接触する。また、エミッタ電極52は、層間絶縁膜に設けられたコンタクトホールを通って、ダミートレンチ部30内のダミー導電部と接続される。エミッタ電極52は、Y軸方向におけるダミートレンチ部30の先端において、ダミートレンチ部30のダミー導電部と接続されてよい。
【0098】
活性側ゲート配線131は、層間絶縁膜に設けられたコンタクトホールを通って、ゲートトレンチ部40と接続する。活性側ゲート配線131は、Y軸方向におけるゲートトレンチ部40の先端部41において、ゲートトレンチ部40のゲート導電部と接続されてよい。活性側ゲート配線131は、ダミートレンチ部30内のダミー導電部とは接続されない。
【0099】
エミッタ電極52は、金属を含む材料で形成される。
図9においては、エミッタ電極52が設けられる範囲を示している。例えば、エミッタ電極52の少なくとも一部の領域はアルミニウムまたはアルミニウム‐シリコン合金、例えばAlSi、AlSiCu等の金属合金で形成される。エミッタ電極52は、アルミニウム等で形成された領域の下層に、チタンやチタン化合物等で形成されたバリアメタルを有してよい。さらにコンタクトホール内において、バリアメタルとアルミニウム等に接するようにタングステン等を埋め込んで形成されたプラグを有してもよい。
【0100】
ウェル領域11は、活性側ゲート配線131と重なって設けられている。ウェル領域11は、活性側ゲート配線131と重ならない範囲にも、所定の幅で延伸して設けられている。本例のウェル領域11は、コンタクトホール54のY軸方向の端から、活性側ゲート配線131側に離れて設けられている。ウェル領域11は、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のベース領域14はP-型であり、ウェル領域11はP+型である。
【0101】
トランジスタ部70およびダイオード部80のそれぞれは、配列方向に複数配列されたトレンチ部を有する。本例のトランジスタ部70には、配列方向に沿って1以上のゲートトレンチ部40と、1以上のダミートレンチ部30とが交互に設けられている。本例のダイオード部80には、複数のダミートレンチ部30が、配列方向に沿って設けられている。本例のダイオード部80には、ゲートトレンチ部40が設けられていない。
【0102】
本例のゲートトレンチ部40は、配列方向と垂直な延伸方向に沿って延伸する2つの直線部分39(延伸方向に沿って直線状であるトレンチの部分)と、2つの直線部分39を接続する先端部41を有してよい。
図9における延伸方向はY軸方向である。
【0103】
先端部41の少なくとも一部は、上面視において曲線状に設けられることが好ましい。2つの直線部分39のY軸方向における端部どうしを先端部41が接続することで、直線部分39の端部における電界集中を緩和できる。
【0104】
トランジスタ部70において、ダミートレンチ部30はゲートトレンチ部40のそれぞれの直線部分39の間に設けられる。それぞれの直線部分39の間には、1本のダミートレンチ部30が設けられてよく、複数本のダミートレンチ部30が設けられていてもよい。ダミートレンチ部30は、延伸方向に延伸する直線形状を有してよく、ゲートトレンチ部40と同様に、直線部分29と先端部31とを有していてもよい。
図9に示した半導体装置100は、先端部31を有さない直線形状のダミートレンチ部30と、先端部31を有するダミートレンチ部30の両方を含んでいる。
【0105】
ウェル領域11の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30のY軸方向の端部は、上面視においてウェル領域11に設けられる。つまり、各トレンチ部のY軸方向の端部において、各トレンチ部の深さ方向の底部は、ウェル領域11に覆われている。これにより、各トレンチ部の当該底部における電界集中を緩和できる。
【0106】
配列方向において各トレンチ部の間には、メサ部が設けられている。メサ部は、半導体基板10の内部において、トレンチ部に挟まれた領域を指す。一例としてメサ部の上端は半導体基板10の上面である。メサ部の下端の深さ位置は、トレンチ部の下端の深さ位置と同一である。本例のメサ部は、半導体基板10の上面において、トレンチに沿って延伸方向(Y軸方向)に延伸して設けられている。本例では、トランジスタ部70にはメサ部60が設けられ、ダイオード部80にはメサ部61が設けられている。本明細書において単にメサ部と称した場合、メサ部60およびメサ部61のそれぞれを指している。
【0107】
それぞれのメサ部には、ベース領域14が設けられる。メサ部において半導体基板10の上面に露出したベース領域14のうち、活性側ゲート配線131に最も近く配置された領域をベース領域14-eとする。
図9においては、それぞれのメサ部の延伸方向における一方の端部に配置されたベース領域14-eを示しているが、それぞれのメサ部の他方の端部にもベース領域14-eが配置されている。それぞれのメサ部には、上面視においてベース領域14-eに挟まれた領域に、第1導電型のエミッタ領域12および第2導電型のコンタクト領域15の少なくとも一方が設けられてよい。本例のエミッタ領域12はN+型であり、コンタクト領域15はP+型である。エミッタ領域12およびコンタクト領域15は、深さ方向において、ベース領域14と半導体基板10の上面との間に設けられてよい。
【0108】
トランジスタ部70のメサ部60は、半導体基板10の上面に露出したエミッタ領域12を有する。エミッタ領域12は、ゲートトレンチ部40に接して設けられている。ゲートトレンチ部40に接するメサ部60は、半導体基板10の上面に露出したコンタクト領域15が設けられていてよい。
【0109】
メサ部60におけるコンタクト領域15およびエミッタ領域12のそれぞれは、X軸方向における一方のトレンチ部から、他方のトレンチ部まで設けられる。一例として、メサ部60のコンタクト領域15およびエミッタ領域12は、トレンチ部の延伸方向(Y軸方向)に沿って交互に配置されている。
【0110】
他の例においては、メサ部60のコンタクト領域15およびエミッタ領域12は、トレンチ部の延伸方向(Y軸方向)に沿ってストライプ状に設けられていてもよい。例えばトレンチ部に接する領域にエミッタ領域12が設けられ、エミッタ領域12に挟まれた領域にコンタクト領域15が設けられる。
【0111】
ダイオード部80のメサ部61には、エミッタ領域12が設けられていない。メサ部61の上面には、ベース領域14およびコンタクト領域15が設けられてよい。メサ部61の上面においてベース領域14-eに挟まれた領域には、それぞれのベース領域14-eに接してコンタクト領域15が設けられてよい。メサ部61の上面においてコンタクト領域15に挟まれた領域には、ベース領域14が設けられてよい。ベース領域14は、コンタクト領域15に挟まれた領域全体に配置されてよい。
【0112】
それぞれのメサ部の上方には、コンタクトホール54が設けられている。コンタクトホール54は、ベース領域14-eに挟まれた領域に配置されている。本例のコンタクトホール54は、コンタクト領域15、ベース領域14およびエミッタ領域12の各領域の上方に設けられる。コンタクトホール54は、ベース領域14-eおよびウェル領域11に対応する領域には設けられない。コンタクトホール54は、メサ部60の配列方向(X軸方向)における中央に配置されてよい。
【0113】
ダイオード部80において、半導体基板10の下面と隣接する領域には、N+型のカソード領域82が設けられる。半導体基板10の下面において、カソード領域82が設けられていない領域には、P+型のコレクタ領域22が設けられてよい。カソード領域82およびコレクタ領域22は、半導体基板10の下面23と、バッファ領域20との間に設けられている。
図9においては、カソード領域82およびコレクタ領域22の境界を点線で示している。
【0114】
カソード領域82は、Y軸方向においてウェル領域11から離れて配置されている。これにより、比較的にドーピング濃度が高く、且つ、深い位置まで形成されているP型の領域(ウェル領域11)と、カソード領域82との距離を確保して、耐圧を向上できる。本例のカソード領域82のY軸方向における端部は、コンタクトホール54のY軸方向における端部よりも、ウェル領域11から離れて配置されている。他の例では、カソード領域82のY軸方向における端部は、ウェル領域11とコンタクトホール54との間に配置されていてもよい。
【0115】
図10は、
図9におけるe-e断面の一例を示す図である。e-e断面は、エミッタ領域12およびカソード領域82を通過するXZ面である。本例の半導体装置100は、当該断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。
【0116】
層間絶縁膜38は、半導体基板10の上面に設けられている。層間絶縁膜38は、ホウ素またはリン等の不純物が添加されたシリケートガラス等の絶縁膜、熱酸化膜、および、その他の絶縁膜の少なくとも一層を含む膜である。層間絶縁膜38には、
図9において説明したコンタクトホール54が設けられている。
【0117】
エミッタ電極52は、層間絶縁膜38の上方に設けられる。エミッタ電極52は、層間絶縁膜38のコンタクトホール54を通って、半導体基板10の上面21と接触している。コレクタ電極24は、半導体基板10の下面23に設けられる。エミッタ電極52およびコレクタ電極24は、アルミニウム等の金属材料で形成されている。本明細書において、エミッタ電極52とコレクタ電極24とを結ぶ方向(Z軸方向)を深さ方向と称する。
【0118】
半導体基板10は、N型またはN-型のドリフト領域18を有する。ドリフト領域18は、トランジスタ部70およびダイオード部80のそれぞれに設けられている。
【0119】
トランジスタ部70のメサ部60には、N+型のエミッタ領域12およびP-型のベース領域14が、半導体基板10の上面21側から順番に設けられている。ベース領域14の下方にはドリフト領域18が設けられている。メサ部60には、N+型の蓄積領域16が設けられてもよい。蓄積領域16は、ベース領域14とドリフト領域18との間に配置される。
【0120】
エミッタ領域12は半導体基板10の上面21に露出しており、且つ、ゲートトレンチ部40と接して設けられている。エミッタ領域12は、メサ部60の両側のトレンチ部と接していてよい。エミッタ領域12は、ドリフト領域18よりもドーピング濃度が高い。
【0121】
ベース領域14は、エミッタ領域12の下方に設けられている。本例のベース領域14は、エミッタ領域12と接して設けられている。ベース領域14は、メサ部60の両側のトレンチ部と接していてよい。
【0122】
蓄積領域16は、ベース領域14の下方に設けられている。蓄積領域16は、ドリフト領域18よりもドーピング濃度が高いN+型の領域である。すなわち蓄積領域16は、ドナー濃度がドリフト領域18よりも高い。ドリフト領域18とベース領域14との間に高濃度の蓄積領域16を設けることで、キャリア注入促進効果(IE効果)を高めて、オン電圧を低減できる。蓄積領域16は、各メサ部60におけるベース領域14の下面全体を覆うように設けられてよい。
【0123】
ダイオード部80のメサ部61には、半導体基板10の上面21に接して、P-型のベース領域14が設けられている。ベース領域14の下方には、ドリフト領域18が設けられている。メサ部61において、ベース領域14の下方に蓄積領域16が設けられていてもよい。
【0124】
トランジスタ部70およびダイオード部80のそれぞれにおいて、ドリフト領域18の下にはN+型のバッファ領域20が設けられてよい。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ドリフト領域18よりもドーピング濃度の高い濃度ピークを有してよい。濃度ピークのドーピング濃度とは、濃度ピークの頂点におけるドーピング濃度を指す。また、ドリフト領域18のドーピング濃度は、ドーピング濃度分布がほぼ平坦な領域におけるドーピング濃度の平均値を用いてよい。
【0125】
バッファ領域20は、半導体基板10の深さ方向(Z軸方向)において、2つ以上の濃度ピークを有してよい。バッファ領域20の濃度ピークは、例えば水素(プロトン)またはリンの化学濃度ピークと同一の深さ位置に設けられていてよい。バッファ領域20は、ベース領域14の下端から広がる空乏層が、P+型のコレクタ領域22およびN+型のカソード領域82に到達することを防ぐフィールドストップ層として機能してよい。本明細書では、バッファ領域20の上端の深さ位置をZfとする。深さ位置Zfは、ドーピング濃度が、ドリフト領域18のドーピング濃度より高くなる位置であってよい。
【0126】
トランジスタ部70において、バッファ領域20の下には、P+型のコレクタ領域22が設けられる。コレクタ領域22のアクセプタ濃度は、ベース領域14のアクセプタ濃度より高い。コレクタ領域22は、ベース領域14と同一のアクセプタを含んでよく、異なるアクセプタを含んでもよい。コレクタ領域22のアクセプタは、例えばボロンである。
【0127】
ダイオード部80において、バッファ領域20の下には、N+型のカソード領域82が設けられる。カソード領域82のドナー濃度は、ドリフト領域18のドナー濃度より高い。カソード領域82のドナーは、例えば水素またはリンである。なお、各領域のドナーおよびアクセプタとなる元素は、上述した例に限定されない。コレクタ領域22およびカソード領域82は、半導体基板10の下面23に露出しており、コレクタ電極24と接続している。コレクタ電極24は、半導体基板10の下面23全体と接触してよい。エミッタ電極52およびコレクタ電極24は、アルミニウム等の金属材料で形成される。
【0128】
半導体基板10の上面21側には、1以上のゲートトレンチ部40、および、1以上のダミートレンチ部30が設けられる。各トレンチ部は、半導体基板10の上面21から、ベース領域14を貫通して、ドリフト領域18に到達している。エミッタ領域12、コンタクト領域15および蓄積領域16の少なくともいずれかが設けられている領域においては、各トレンチ部はこれらのドーピング領域も貫通して、ドリフト領域18に到達している。トレンチ部がドーピング領域を貫通するとは、ドーピング領域を形成してからトレンチ部を形成する順序で製造したものに限定されない。トレンチ部を形成した後に、トレンチ部の間にドーピング領域を形成したものも、トレンチ部がドーピング領域を貫通しているものに含まれる。
【0129】
上述したように、トランジスタ部70には、ゲートトレンチ部40およびダミートレンチ部30が設けられている。ダイオード部80には、ダミートレンチ部30が設けられ、ゲートトレンチ部40が設けられていない。本例においてダイオード部80とトランジスタ部70のX軸方向における境界は、カソード領域82とコレクタ領域22の境界である。
【0130】
ゲートトレンチ部40は、半導体基板10の上面21に設けられたゲートトレンチ、ゲート絶縁膜42およびゲート導電部44を有する。ゲート絶縁膜42は、ゲートトレンチの内壁を覆って設けられる。ゲート絶縁膜42は、ゲートトレンチの内壁の半導体を酸化または窒化して形成してよい。ゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に設けられる。つまりゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。
【0131】
ゲート導電部44は、深さ方向において、ベース領域14よりも長く設けられてよい。当該断面におけるゲートトレンチ部40は、半導体基板10の上面21において層間絶縁膜38により覆われる。ゲート導電部44は、ゲート配線に電気的に接続されている。ゲート導電部44に所定のゲート電圧が印加されると、ベース領域14のうちゲートトレンチ部40に接する界面の表層に電子の反転層によるチャネルが形成される。
【0132】
ダミートレンチ部30は、当該断面において、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、半導体基板10の上面21に設けられたダミートレンチ、ダミー絶縁膜32およびダミー導電部34を有する。ダミー導電部34は、エミッタ電極52に電気的に接続されている。ダミー絶縁膜32は、ダミートレンチの内壁を覆って設けられる。ダミー導電部34は、ダミートレンチの内部に設けられ、且つ、ダミー絶縁膜32よりも内側に設けられる。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミー導電部34は、ゲート導電部44と同一の材料で形成されてよい。例えばダミー導電部34は、ポリシリコン等の導電材料で形成される。ダミー導電部34は、深さ方向においてゲート導電部44と同一の長さを有してよい。
【0133】
本例のゲートトレンチ部40およびダミートレンチ部30は、半導体基板10の上面21において層間絶縁膜38により覆われている。なお、ダミートレンチ部30およびゲートトレンチ部40の底部は、下側に凸の曲面状(断面においては曲線状)であってよい。本明細書では、ゲートトレンチ部40の下端の深さ位置をZtとする。
【0134】
図10に示すバッファ領域20は、
図1から
図7において説明したバッファ領域20と同様のキャリア濃度分布を有する。つまりバッファ領域20は、半導体基板10の炭素濃度C等に応じて、最深ピーク204に対する水素イオンのドーズ量が調整されたキャリア濃度分布を有する。
【0135】
半導体装置100のバッファ領域20における水素化学濃度の積分濃度が、
図1から
図7において説明した水素イオンのドーズ量に相当する。例えば、最深ピーク204に対する水素イオンのドーズ量は、濃度ピーク202-4よりも上面21側のバッファ領域20(すなわち
図5の領域211)における水素化学濃度の深さ方向の積分濃度に対応する。
【0136】
従って、
図7において説明した例と同様に、パラメータx、yがいずれの条件を満たすかに応じて、領域211における水素化学濃度の深さ方向の積分濃度の許容範囲が定められる。領域211の当該積分濃度は、当該許容範囲内であってよい。これにより、半導体基板10の酸素濃度および炭素濃度のばらつきの影響を抑制して、所定の積分値n1/(n1+n2)に近いバッファ領域20のキャリア濃度分布を得ることができる。パラメータxの範囲は、1×10
17/cm
3以上1×10
22/cm
3以下であってよい。
【0137】
具体的には、
6.167×10-3×ln(x)+2.860×10-2≦y<0.4
を満たす場合は、領域211における水素化学濃度の積分濃度が8×1012/cm2以上であってよい。領域211における水素化学濃度の積分濃度は、9×1012/cm2以上であってもよい。領域211における水素化学濃度の積分濃度は、1.2×1013/cm2未満であってよく、1.1×1013/cm2未満であってもよい。
【0138】
1.129×10-2×ln(x)-2.660×10-1≦y<6.167×10-3×ln(x)+2.860×10-2
を満たす場合は、領域211における水素化学濃度の積分濃度が4×1012/cm2以上、8×1012/cm2未満であってよい。領域211における水素化学濃度の積分濃度は、4×1012/cm2以上であってよく、7×1012/cm2以下であってもよい。
【0139】
2.250×10-2×ln(x)-8.436×10-1≦y<1.129×10-2×ln(x)-2.660×10-1
を満たす場合は、領域211における水素化学濃度の積分濃度が2×1012/cm2以上、4×1012/cm2未満であってよい。領域211における水素化学濃度の積分濃度は、2.5×1012/cm2以上であってよく、3.5×1012/cm2以下であってもよい。
【0140】
3.017×10-2×ln(x)-1.272≦y<2.250×10-2×ln(x)-8.436×10-1
を満たす場合は、領域211における水素化学濃度の積分濃度が5×1011/cm2以上、2×1012/cm2未満であってよい。領域211における水素化学濃度の積分濃度は、8×1011/cm2以上であってよく、1×1012/cm2以下であってもよい。
【0141】
0.01≦y<3.017×10-2×ln(x)-1.272
を満たす場合は、領域211における水素化学濃度の積分濃度が5×1011/cm2未満であってよい。領域211における水素化学濃度の積分濃度は、5×1011/cm2未満であってよく、4×1011/cm2以下であってよく、1×1011/cm2以上であってよく、2×1011/cm2以上であってもよい。
【0142】
図11は、領域211における水素化学濃度の積分濃度を説明する図である。バッファ領域20における水素化学濃度分布は、1つ以上の濃度ピーク222と、最深ピーク224とを有する。最深ピーク224は、キャリア濃度分布の最深ピーク204と対応する。濃度ピーク222は、キャリア濃度分布の濃度ピーク202と対応する。
【0143】
領域211における水素化学濃度の積分濃度は、深さ位置Z6から深さ位置Zbまでの水素化学濃度を、深さ方向に積分した値である。つまり、
図11において斜線のハッチングを付した部分の面積に相当する。なお、領域211における水素化学濃度の積分濃度と、最深ピーク204に対する水素イオンのドーズ量とを比較したところ、誤差は数%以下であった。最深ピーク204に対する水素イオンのドーズ量を、領域211における水素化学濃度の積分濃度で除した値αは、1以上3以下であってよく、1以上2以下であってよく、1以上1.5以下であってよく、1以上1.1以下であってよい。
【0144】
図12は、バッファ領域20における水素化学濃度分布の一例を示す図である。
図12では、SIMS分析による水素化学濃度分布を示している。バッファ領域20における水素化学濃度分布には、バックグラウンド成分(測定限界に起因するノイズ)が含まれる場合がある。
図12においては、それぞれのピーク間にノイズが生じている。
【0145】
図10および
図11において説明した水素化学濃度は、測定値からバックグラウンド成分を除去して算出した値を用いてよい。バックグラウンド成分の値は、バッファ領域20における水素化学濃度の測定値の最小値BG2を用いてよく、当該測定値において値が細かく変動している部分の平均値BG1を用いてもよい。平均値BG1は、バッファ領域20の水素化学濃度分布からガウス分布状の各ピークの範囲を除外し、残存した部分の平均値を用いてもよい。これにより、水素化学濃度を精度よく測定できる。
【0146】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0147】
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0148】
10・・・半導体基板、11・・・ウェル領域、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、18・・・ドリフト領域、20・・・バッファ領域、21・・・上面、22・・・コレクタ領域、23・・・下面、24・・・コレクタ電極、29・・・直線部分、30・・・ダミートレンチ部、31・・・先端部、32・・・ダミー絶縁膜、34・・・ダミー導電部、38・・・層間絶縁膜、39・・・直線部分、40・・・ゲートトレンチ部、41・・・先端部、42・・・ゲート絶縁膜、44・・・ゲート導電部、52・・・エミッタ電極、54・・・コンタクトホール、60、61・・・メサ部、70・・・トランジスタ部、80・・・ダイオード部、81・・・延長領域、82・・・カソード領域、90・・・エッジ終端構造部、100・・・半導体装置、130・・・外周ゲート配線、131・・・活性側ゲート配線、160・・・活性部、162・・・端辺、164・・・ゲートパッド、202・・・濃度ピーク、204・・・最深ピーク、211、212・・・領域、222・・・濃度ピーク、224・・・最深ピーク、301・・・境界線