IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日東電工株式会社の特許一覧

特開2024-147601レンズ部、積層体、表示体、表示体の製造方法および表示方法
<>
  • 特開-レンズ部、積層体、表示体、表示体の製造方法および表示方法 図1
  • 特開-レンズ部、積層体、表示体、表示体の製造方法および表示方法 図2
  • 特開-レンズ部、積層体、表示体、表示体の製造方法および表示方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024147601
(43)【公開日】2024-10-16
(54)【発明の名称】レンズ部、積層体、表示体、表示体の製造方法および表示方法
(51)【国際特許分類】
   G02B 5/30 20060101AFI20241008BHJP
   H10K 50/86 20230101ALI20241008BHJP
   H10K 59/10 20230101ALI20241008BHJP
   H10K 50/858 20230101ALI20241008BHJP
   G02F 1/1335 20060101ALI20241008BHJP
   G02F 1/13363 20060101ALI20241008BHJP
   G02F 1/13 20060101ALI20241008BHJP
   B32B 7/023 20190101ALI20241008BHJP
   G02B 27/02 20060101ALN20241008BHJP
【FI】
G02B5/30
H10K50/86
H10K59/10
H10K50/858
G02F1/1335 510
G02F1/13363
G02F1/13 505
B32B7/023
G02B27/02 Z
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2024107179
(22)【出願日】2024-07-03
(62)【分割の表示】P 2022077632の分割
【原出願日】2022-05-10
(71)【出願人】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】100122471
【弁理士】
【氏名又は名称】籾井 孝文
(74)【代理人】
【識別番号】100143650
【弁理士】
【氏名又は名称】山元 美佐
(72)【発明者】
【氏名】後藤 周作
(57)【要約】
【課題】VRゴーグルの軽量化、高精細化を実現し得るレンズ部を提供すること。
【解決手段】本発明の実施形態によるレンズ部は、ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射し、反射型偏光部材および前記反射型偏光部材の前方に配置される吸収型偏光部材を含む反射部と、前記表示素子と前記反射部との間の光路上に配置される第一レンズ部と、前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射部で反射された光を前記反射部に向けて反射させるハーフミラーと、前記ハーフミラーと前記反射部との間の光路上に配置される第2のλ/4部材と、を備え、前記反射型偏光部材と前記吸収型偏光部材との積層体に、前記反射型偏光部材側から、前記反射型偏光部材の反射軸方向の偏光を入射させたときの反射軸透過率は0.5%以下である。
【選択図】図1
【特許請求の範囲】
【請求項1】
偏光部材、第1のλ/4部材、第2のλ/4部材、反射型偏光部材および吸収型偏光部材を含む光学部材セットであって、
前記光学部材セットに含まれる各部材は、表示素子から前方に向けて出射された光が、前記偏光部材および前記第1のλ/4部材を通過し、前記反射型偏光部材で反射し、さらに前記第2のλ/4部材を通過した後に前方側に反射して、前記反射型偏光部材および前記吸収型偏光部材を通過するように配置され、
前記反射型偏光部材と前記吸収型偏光部材との積層体に、前記反射型偏光部材側から、前記反射型偏光部材の反射軸方向の偏光を入射させたときの反射軸透過率は0.5%以下である、
光学部材セット。
【請求項2】
前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに平行に配置される、請求項1に記載の光学部材セット。
【請求項3】
前記偏光部材、前記第1のλ/4部材および前記第2のλ/4部材は、前記偏光部材の吸収軸と前記第1のλ/4部材の遅相軸とのなす角度が40°~50°となり、かつ、前記偏光部材の吸収軸と前記第2のλ/4部材の遅相軸とのなす角度が40°~50°となるように配置される、請求項1に記載の光学部材セット。
【請求項4】
請求項1から3のいずれかに記載の光学部材セットで用いられ、
前記反射型偏光部材と前記吸収型偏光部材とを有する積層体である、
前記光学部材セット用積層体。
【請求項5】
前記反射型偏光部材と前記吸収型偏光部材とは接着層を介して積層される、請求項4に記載の光学部材セット用積層体。
【請求項6】
前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに平行に配置される、請求項4に記載の光学部材セット用積層体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レンズ部、積層体、表示体、表示体の製造方法および表示方法に関する。
【背景技術】
【0002】
液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。
【0003】
近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルは様々な場面での利用が検討されていることから、その軽量化、高精細化等が望まれている。軽量化は、例えば、VRゴーグルに用いられるレンズを薄型化することで達成され得る。一方で、薄型レンズを用いた表示システムに適した光学部材の開発も望まれている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2021-103286号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記に鑑み、本発明はVRゴーグルの軽量化、高精細化を実現し得るレンズ部の提供を主たる目的とする。
【課題を解決するための手段】
【0006】
1.本発明の実施形態によるレンズ部は、ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射し、反射型偏光部材および前記反射型偏光部材の前方に配置される吸収型偏光部材を含む反射部と、前記表示素子と前記反射部との間の光路上に配置される第一レンズ部と、前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射部で反射された光を前記反射部に向けて反射させるハーフミラーと、前記ハーフミラーと前記反射部との間の光路上に配置される第2のλ/4部材と、を備え、前記反射型偏光部材と前記吸収型偏光部材との積層体に、前記反射型偏光部材側から、前記反射型偏光部材の反射軸方向の偏光を入射させたときの反射軸透過率は0.5%以下である。
2.上記1に記載のレンズ部において、上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに平行に配置されてもよい。
3.上記1または2に記載のレンズ部において、上記第一レンズ部と上記ハーフミラーとは一体であってもよい。
4.上記1から3のいずれかに記載のレンズ部は、上記反射部の前方に配置される第二レンズ部を備えてもよい。
5.上記1から4のいずれかに記載のレンズ部において、上記表示素子に含まれる上記偏光部材の吸収軸と上記第1のλ/4部材の遅相軸とのなす角度は40°~50°であってもよく、上記表示素子に含まれる上記偏光部材の吸収軸と上記第2のλ/4部材の遅相軸とのなす角度は40°~50°であってもよい。
【0007】
6.本発明の実施形態による積層体は、上記1から5のいずれかに記載のレンズ部の上記反射部に用いられ、上記反射型偏光部材と上記吸収型偏光部材とを有する。
7.上記6に記載の積層体において、上記反射型偏光部材と上記吸収型偏光部材とは接着層を介して積層されてもよい。
8.上記6または7に記載の積層体において、上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに平行に配置されてもよい。
【0008】
9.本発明の実施形態による表示体は、上記1から5のいずれかに記載のレンズ部を有する。
10.本発明の実施形態による表示体の製造方法は、上記1から5のいずれかに記載のレンズ部を有する表示体の製造方法である。
【0009】
11.本発明の実施形態による表示方法は、偏光部材および第1のλ/4部材を介して出射された画像を表す光を、ハーフミラーおよび第一レンズ部を通過させるステップと、前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、前記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で前記ハーフミラーに向けて反射させるステップと、前記反射部および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射部の前記反射型偏光部材を透過可能にするステップと、前記反射型偏光部材を透過した光を、吸収型偏光部材を透過させるステップと、を有し、前記反射型偏光部材と前記吸収型偏光部材との積層体に、前記反射型偏光部材側から、前記反射型偏光部材の反射軸方向の偏光を入射させたときの反射軸透過率は0.5%以下である。
【発明の効果】
【0010】
本発明の実施形態によるレンズ部によれば、VRゴーグルの軽量化、高精細化を実現し得る。
【図面の簡単な説明】
【0011】
図1】本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。
図2図1に示す表示システムの反射部に用いられる積層体の一例を示す模式的な断面図である。
図3】反射型偏光フィルムに含まれる多層構造の一例を示す模式的な斜視図である。
【発明を実施するための形態】
【0012】
以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
【0013】
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
【0014】
図1は本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。図1では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射部14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射部14は、表示素子12の表示面12a側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射部14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射部14との間の光路上に配置されている。
【0015】
ハーフミラーから前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射部14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。
【0016】
表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材(代表的には、偏光フィルム)を通過して出射され、第1の直線偏光とされている。
【0017】
第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得るλ/4部材である(以下、第一位相差部材を第1のλ/4部材と称する場合がある)。なお、第一位相差部材20は、表示素子12に一体に設けられてもよい。
【0018】
ハーフミラー18は、表示素子12から出射された光を透過させ、反射部14で反射された光を反射部14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。
【0019】
第二位相差部材22は、反射部14およびハーフミラー18で反射させた光を、反射型偏光部材を含む反射部14を透過させ得るλ/4部材である(以下、第二位相差部材を第2のλ/4部材と称する場合がある)。なお、第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。
【0020】
第1のλ/4部材20から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第2のλ/4部材22により第2の直線偏光に変換される。第2のλ/4部材22から出射された第2の直線偏光は、反射部14に含まれる反射型偏光部材を透過せずにハーフミラー18に向けて反射される。このとき、反射部14に含まれる反射型偏光部材に入射した第2の直線偏光の偏光方向は、反射型偏光部材の反射軸と同方向である。そのため、反射部に入射した第2の直線偏光は、反射型偏光部材で反射される。
【0021】
反射部14で反射された第2の直線偏光は第2のλ/4部材22により第2の円偏光に変換され、第2のλ/4部材22から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された第2の円偏光は、第一レンズ部16を通過し、第2のλ/4部材22により第3の直線偏光に変換される。第3の直線偏光は、反射部14に含まれる反射型偏光部材を透過する。このとき、反射部14に含まれる反射型偏光部材に入射した第3の直線偏光の偏光方向は、反射型偏光部材の透過軸と同方向である。そのため、反射部14に入射した第3の直線偏光は、反射型偏光部材を透過する。
【0022】
反射部14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。
【0023】
例えば、表示素子12に含まれる偏光部材の吸収軸と反射部14に含まれる反射型偏光部材の反射軸とは、互いに略平行に配置されてもよいし、略直交に配置されてもよい。表示素子12に含まれる偏光部材の吸収軸と第一位相差部材20の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。
【0024】
第一位相差部材20の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。
【0025】
第一位相差部材20は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第一位相差部材20のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。
【0026】
第二位相差部材22の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。
【0027】
第二位相差部材22は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第二位相差部材22のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。
【0028】
反射部14は、反射型偏光部材に加え、吸収型偏光部材を含んでいてもよい。吸収型偏光部材は、反射型偏光部材の前方に配置され得る。反射型偏光部材の反射軸と吸収型偏光部材の吸収軸とは互いに略平行に配置され得、反射型偏光部材の透過軸と吸収型偏光部材の透過軸とは互いに略平行に配置され得る。反射部14が吸収型偏光部材を含む場合、反射部14は反射型偏光部材と吸収型偏光部材とを有する積層体を含んでいてもよい。
【0029】
図2は、図1に示す表示システムの反射部に用いられる積層体の一例を示す模式的な断面図である。積層体30は、反射型偏光部材32と吸収型偏光部材34とを含み、反射型偏光部材32と吸収型偏光部材34とは接着層36を介して積層されている。接着層を用いることにより、反射型偏光部材32と吸収型偏光部材34とが固定され、反射軸と吸収軸(透過軸と透過軸)との軸配置のズレを防止することができる。また、反射型偏光部材32と吸収型偏光部材34との間に形成され得る空気層による悪影響を抑制することができる。接着層36は、接着剤で形成されてもよいし、粘着剤で形成されてもよい。接着層36の厚みは、例えば0.05μm~30μmであり、好ましくは3μm~20μmであり、さらに好ましくは5μm~15μmである。
【0030】
上記反射型偏光部材は、その透過軸に平行な偏光(代表的には、直線偏光)をその偏光状態を維持したまま透過させ、それ以外の偏光状態の光を反射し得る。反射型偏光部材としては、代表的には、多層構造を有するフィルム(反射型偏光フィルムと称する場合がある)で構成される。この場合、反射型偏光部材の厚みは、例えば10μm~150μmであり、好ましくは20μm~100μmであり、さらに好ましくは30μm~60μmである。
【0031】
図3は、反射型偏光フィルムに含まれる多層構造の一例を示す模式的な斜視図である。多層構造32aは、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとを交互に有する。多層構造を構成する層の総数は、50~1000であってもよい。例えば、A層のx軸方向の屈折率nxはy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一であり、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となり得る。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。
【0032】
上記A層は、代表的には、延伸により複屈折性を発現する材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。上記B層は、代表的には、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。上記多層構造は、共押出と延伸とを組み合わせて形成され得る。例えば、A層を構成する材料とB層を構成する材料とを押し出した後、多層化する(例えば、マルチプライヤーを用いて)。次いで、得られた多層積層体を延伸する。図示例のx軸方向は、延伸方向に対応し得る。
【0033】
反射型偏光フィルムの市販品として、例えば、3M社製の商品名「DBEF」、「APF」、日東電工社製の商品名「APCF」が挙げられる。
【0034】
反射型偏光部材(反射型偏光フィルム)の直交透過率(Tc)は、例えば0.01%~3%であり得る。反射型偏光部材(反射型偏光フィルム)の単体透過率(Ts)は、例えば43%~49%であり、好ましくは45%~47%である。反射型偏光部材(反射型偏光フィルム)の偏光度(P)は、例えば92%~99.99%であり得る。
【0035】
上記吸収型偏光部材は、代表的には、二色性物質を含む樹脂フィルム(吸収型偏光膜と称する場合がある)を含み得る。吸収型偏光膜の厚みは、例えば1μm以上20μm以下であり、2μm以上15μm以下であってもよく、12μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよい。
【0036】
上記吸収型偏光膜は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。
【0037】
単層の樹脂フィルムから作製する場合、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理等を施すことにより吸収型偏光膜を得ることができる。中でも、PVA系フィルムをヨウ素で染色し一軸延伸して得られる吸収型偏光膜が好ましい。
【0038】
上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。
【0039】
上記二層以上の積層体を用いて作製する場合の積層体としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる吸収型偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる吸収型偏光膜の光学特性は向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を吸収型偏光膜の保護層としてもよく)、樹脂基材/吸収型偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。
【0040】
吸収型偏光部材(吸収型偏光膜)の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。吸収型偏光部材(吸収型偏光膜)の単体透過率(Ts)は、例えば41.0%~45.0%であり、好ましくは42.0%以上である。吸収型偏光部材(吸収型偏光膜)の偏光度(P)は、例えば99.0%~99.997%であり、好ましくは99.9%以上である。
【0041】
反射部の(反射部に反射軸方向の偏光を入射させたときの)反射軸透過率は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。このような反射軸透過率を満足することにより、ユーザの残像(ゴースト)の視認を抑制することができ、優れた表示特性を実現し得る。
【0042】
反射部の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。このような直交透過率を満足することにより、ユーザの残像(ゴースト)の視認を抑制することができ、優れた表示特性を実現し得る。反射部の単体透過率(Ts)は、好ましくは40.0%~45.0%であり、より好ましくは41.0%以上である。反射部の偏光度(P)は、好ましくは99.0%~99.997%であり、より好ましくは99.9%以上である。
【0043】
上記反射部の光学特性は、反射型偏光部材の光学特性に相当してもよく、反射型偏光部材と吸収型偏光部材との積層体の光学特性に相当してもよい。上記反射部の光学特性は、反射型偏光部材に吸収型偏光部材を組み合わせることで、極めて良好に達成され得る。
【実施例0044】
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みは下記の測定方法により測定した値である。
<厚み>
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
【0045】
[実施例1-1]
(偏光膜1の作製)
熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセネックスZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が42.0%以上となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
このようにして、樹脂基材上に厚み5μmの偏光膜1(吸収型偏光膜)を形成した。
【0046】
(吸収型偏光フィルムの作製)
得られた吸収型偏光膜の表面(積層体の偏光膜1側の面)に、保護層として厚み25μmのシクロオレフィン系樹脂フィルムを、紫外線硬化型接着剤を介して貼り合わせた。具体的には、硬化後の接着剤層の厚みが約1μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をシクロオレフィン系樹脂フィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離し、シクロオレフィン系樹脂フィルム/吸収型偏光膜の構成を有する吸収型偏光フィルムを得た。
【0047】
(反射部用フィルムの作製)
反射型偏光フィルム(日東電工社製の「APCFG4」)に、吸収型偏光フィルムを、反射型偏光フィルムの反射軸と吸収型偏光膜の吸収軸とが互いに平行に配置されるように、粘着剤を介して貼り合わせ、反射部用フィルム(積層フィルム)を得た。
【0048】
[実施例1-2および実施例1-3]
偏光膜1の作製において、染色処理の条件を変更したこと以外は実施例1-1と同様にして、反射部用フィルムを得た。
【0049】
[実施例1-4]
偏光膜1のかわりに下記の偏光膜2を用いたこと以外は実施例1-1と同様にして、反射部用を得た。
(偏光膜2の作製)
厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、商品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理をこの順で施した後、最後に乾燥処理を施すことにより、厚み12μmの偏光膜2を作製した。
上記膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光膜の単体透過率が42.0%以上となるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。次いで、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。次いで、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、70℃で5分間乾燥処理して偏光膜2を得た。
【0050】
[実施例1-5]
偏光膜2の作製において、染色処理の条件を変更したこと以外は実施例1-4と同様にして、反射部用フィルムを得た。
【0051】
[実施例2-1から実施例2-5]
反射型偏光フィルムとして日東電工社製の「APCFG5」を用いたこと以外は実施例1-1から実施例1-5と同様にして、反射部用フィルムを得た。
【0052】
[比較例1]
反射部用フィルムとして、日東電工社製の「APCFG4」(後述の方法により測定されるTsは46.8%であり、Pは96.4%である)を用いた。
【0053】
[比較例2]
反射部用フィルムとして、日東電工社製の「APCFG5」(後述の方法により測定されるTsは47.0%であり、Pは93.1%である)を用いた。
【0054】
実施例および比較例について、下記の評価を行った。評価結果を表1にまとめる。
<評価>
・単体透過率および偏光度
吸収型偏光膜(吸収型偏光フィルム)について、紫外可視分光光度計(大塚電子社製、「LPF200」)を用いて、単体透過率Ts、平行透過率Tpおよび直交透過率Tcを測定した。Ts、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
また、得られたTpおよびTcから、下記式により偏光度Pを求めた。
偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
・反射軸透過率
反射部用フィルムについて、紫外可視分光光度計(大塚電子社製、「LPF200」)を用いて、反射部用フィルムに含まれる反射型偏光フィルムの反射軸方向の偏光を、反射型偏光フィルム側から入射させ、反射軸透過率を測定した。
【0055】
【表1】
【0056】
本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。
【産業上の利用可能性】
【0057】
本発明の実施形態に係るレンズ部は、例えば、VRゴーグル等の表示体に用いられ得る。
【符号の説明】
【0058】
2 表示システム
4 レンズ部
12 表示素子
14 反射部
16 第一レンズ部
18 ハーフミラー
20 第一位相差部材
22 第二位相差部材
24 第二レンズ部
30 積層体
32 反射型偏光部材
34 吸収型偏光部材
36 接着層
図1
図2
図3