IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東洋紡株式会社の特許一覧

特開2024-149533食品包装用ガスバリア性ポリアミドフィルムの製造方法
<>
  • 特開-食品包装用ガスバリア性ポリアミドフィルムの製造方法 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024149533
(43)【公開日】2024-10-18
(54)【発明の名称】食品包装用ガスバリア性ポリアミドフィルムの製造方法
(51)【国際特許分類】
   B32B 27/34 20060101AFI20241010BHJP
   B32B 9/00 20060101ALI20241010BHJP
   B65D 65/40 20060101ALI20241010BHJP
【FI】
B32B27/34
B32B9/00 A
B65D65/40 D
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2024122136
(22)【出願日】2024-07-29
(62)【分割の表示】P 2020143699の分割
【原出願日】2020-08-27
(71)【出願人】
【識別番号】000003160
【氏名又は名称】東洋紡株式会社
(72)【発明者】
【氏名】後藤 考道
(72)【発明者】
【氏名】遠藤 卓郎
(57)【要約】
【課題】耐衝撃性及び耐摩擦ピンホール性に優れるとともに、廃棄ポリアミド製品からケミカルリサイクルしたポリアミド6を用いたガスバリア性ポリアミドフィルムの製造方法を提供すること。
【解決手段】ポリアミド6を70質量%以上含むポリアミド樹脂からなり、前記ポリアミド6のうち4~90質量%がケミカルリサイクルしたポリアミド6であり、メカニカルリサイクルしたポリアミド6を5~60質量%含む二軸延伸ポリアミドフィルムの少なくとも片面に無機薄膜層が積層された食品包装用ガスバリア性ポリアミドフィルムの製造方法。
【選択図】なし
【特許請求の範囲】
【請求項1】
ポリアミド6を70質量%以上含むポリアミド樹脂からなり、前記ポリアミド6のうち4~90質量%がケミカルリサイクルしたポリアミド6であり、メカニカルリサイクルしたポリアミド6を5~60質量%含む二軸延伸ポリアミドフィルムの少なくとも片面に無機薄膜層が積層されたことを特徴とする食品包装用ガスバリア性ポリアミドフィルムの製造方法。
【請求項2】
基材層(A層)の少なくとも片面に表面層(B層)が積層された二軸延伸ポリアミドフィルムの少なくとも片面に無機薄膜層が積層されたガスバリア性ポリアミドフィルムの製造方法であって、基材層(A層)はポリアミド6を100質量%含むポリアミド樹脂からなり、前記ポリアミド6のうち5~90質量%がケミカルリサイクルしたポリアミド6であり、メカニカルリサイクルしたポリアミド6を5~80質量%含む二軸延伸ポリアミドフィルムであり、B層がポリアミド6を70質量%以上含み、メカニカルリサイクルしたポリアミド6を0~30質量%含むポリアミド樹脂組成物からなることを特徴とする食品包装用ガスバリア性ポリアミドフィルムの製造方法。
【請求項3】
食品包装用ガスバリア性ポリアミドフィルムが下記の(a)~(c)を満足することを特徴とする前記請求項1又は2に記載の食品包装用ガスバリア性ポリアミドフィルムの製造方法。
(a)突刺し強度が0.65N/μm以上、
(b)衝撃強度が0.9J/15μm以上。
(c)耐摩擦ピンホールテストでピンホール発生までの距離が2900cm以上。
【請求項4】
食品包装用ガスバリア性ポリアミドフィルムが下記の(d)及び(e)を満足することを特徴とする前記請求項1~3いずれか1項に記載の食品包装用ガスバリア性ポリアミドフィルムの製造方法。
(d)ヘイズが2.6%以下、
(e)動摩擦係数が1.0以下。
【請求項5】
ポリエチレン系シーラントフィルムと貼り合わせた後の耐水ラミネート強度が4.0N/15mm以上であることを特徴とする請求項1~4いずれか1項に記載の食品包装用ガスバリア性ポリアミドフィルムの製造方法。
【請求項6】
請求項1~5いずれか1項に記載の食品包装用ガスバリア性ポリアミドフィルムの製造方法によって得られた食品包装用ガスバリア性ポリアミドフィルムにシーラントフィルムを積層した食品包装用積層フィルムの製造方法。
【請求項7】
請求項6に記載された食品包装用積層フィルムの製造方法によって得られた食品包装用積層フィルムを用いた食品包装用包装袋の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐衝撃性及び耐摩擦ピンホール性に優れるとともに、廃棄ポリアミド製品からケミカルリサイクルしたポリアミド6を用いたガスバリア性ポリアミドフィルムに関するものである。本発明のガスバリア性ポリアミドフィルムは、食品包装用フィルムなどに好適に使用される。
【背景技術】
【0002】
近年、循環型社会の構築を求める声の高まりとともに、材料分野においてもエネルギーと同様に化石燃料からの脱却が望まれている。
また近年では、海洋プラスチック汚染が大きな問題となっている。
海洋ごみのうちプラスチックが海へと流出すると、紫外線や物理的な摩耗によって破片となり、微小なプラスチック粒子(マイクロプラスチック)となる。海洋生物がこうした粒子を捕食することで、粒子中に含まれる、あるいは吸着している化学物質に曝露される可能性、さらには食物連鎖を通して、上位の捕食者にも影響が及ぶ可能性があり、このことが地球規模での問題となっている。
上記の海洋プラスチックごみの多くは陸から流れ着いたもので、そのほとんどは使い捨てを想定したプラスチック容器包装である一方、釣り糸や漁網なども含まれている。
このような背景から、海洋プラスチックごみを減らすにはこれらのプラスチックごみをリサイクルし、有効活用することでプラスチックごみを削減することが重要である。
【0003】
一方、従来から、ポリアミド6に代表される脂肪族ポリアミドからなる二軸延伸フィルムは、耐衝撃性と耐屈曲ピンホール性に優れており、各種の包装材料フィルムとして広く使用されている。これら包装用として用いられているこれらポリアミドフィルムにおいても、先に述べたプラスチックごみの一因であることから、リサイクル素材の利用が求められている。
【0004】
ナイロン6をリサイクルする方法としては、焼却して熱エネルギーとして回収するサーマルリサイクル法、溶融した後に再成型して再利用するマテリアルリサイクル法、および化学的に解重合してナイロンの原料にまで戻し、ナイロン製造等に再利用するケミカルリサイクル法がある。
【0005】
これらのうち、ケミカルリサイクル法はナイロン6を原料のカプロラクタムにまで分解してから回収し、ナイロン6の原料として再利用できることから、産業上有用なリサイクル方法といえる。
【0006】
例えば特許文献1では、ナイロン製衣料製品の使用済み品を回収した後、解重合を行ってε-カプロラクタムを回収し、精製し、重合し、溶融紡糸や成形によりナイロン繊維やナイロン成形品へと、リサイクル方法が開示されている。
かかる技術によれば、回収された衣料製品を素材原料まで戻して再利用するというリサイクルが可能となる。また、回収衣料製品を分解し精製することによって高純度で品質良
好な素材原料(原料モノマ)を得ることができるので、リサイクル使用により品質良好なナイロン6製品が得られるし、繰り返しリサイクルも可能となる。さらにまた、回収衣料製品の回収・選別作業が大幅に軽減されるといったものである。
【0007】
上述したケミカルリサイクル法によってリサイクルされたナイロン樹脂は、これまで主に繊維や成形品の原料として用いられてきたが、食品包装用のフィルムとしては実用化されていなかった。
【0008】
また、ポリアミドフィルムにアルミニウム、酸化アルミニウム、酸化ケイ素などの薄膜を蒸着などで積層したガスバリア性フィルムが、食品包装分野で広く使用されており、これらについてもより環境負荷を少なくすることが求められている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平7-301204号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、かかる従来技術に鑑み創案されたものである。本発明の目的は、耐衝撃性及び耐摩擦ピンホール性に優れるとともに、廃棄ポリアミド製品からケミカルリサイクルしたポリアミド6を用いたガスバリア性ポリアミドフィルムを提供することにある。
【課題を解決するための手段】
【0011】
即ち、本発明は、以下の構成よりなる。
〔1〕ポリアミド6を70質量%以上含むポリアミド樹脂からなり、前記ポリアミド6のうち4~90質量%がケミカルリサイクルしたポリアミド6である二軸延伸ポリアミドフィルムの少なくとも片面に無機薄膜層が積層されたことを特徴とするガスバリア性ポリアミドフィルム。
〔2〕二軸延伸ポリアミドフィルムが、メカニカルリサイクルしたポリアミド6を5~60質量%含むことを特徴とする〔1〕に記載のガスバリア性ポリアミドフィルム。
〔3〕基材層(A層)の少なくとも片面に表面層(B層)が積層された二軸延伸ポリアミドフィルムの少なくとも片面に無機薄膜層が積層されたガスバリア性ポリアミドフィルムであって、基材層(A層)は前記の二軸延伸ポリアミドフィルムであり、B層がポリアミド6を70質量%以上含むポリアミド樹脂組成物からなることを特徴とするガスバリア性ポリアミドフィルム。
〔4〕基材層(A層)がメカニカルリサイクルしたポリアミド6を5~80質量%含有し、表面層(B層)がメカニカルリサイクルしたポリアミド6を0~30質量%含むことを特徴とする〔3〕に記載のガスバリア性ポリアミドフィルム
〔5〕ガスバリア性ポリアミドフィルムが下記の(a)~(c)を満足することを特徴とする前記〔1〕~〔4〕いずれか1項に記載のガスバリア性ポリアミドフィルム。
(a)突刺し強度が0.65N/μm以上、
(b)衝撃強度が0.9J/15μm以上。
(c)耐摩擦ピンホールテストでピンホール発生までの距離が2900cm以上。
〔6〕ガスバリア性ポリアミドフィルムが下記の(d)及び(e)を満足することを特徴とする前記〔1〕~〔5〕いずれか1項に記載のガスバリア性ポリアミドフィルム。
(d)ヘイズが2.6%以下、
(e)動摩擦係数が1.0以下。
〔7〕ポリエチレン系シーラントフィルムと貼り合わせた後の耐水ラミネート強度が4.0N/15mm以上であることを特徴とする〔1〕~〔6〕いずれか1項に記載のガスバリア性ポリアミドフィルム。
〔8〕〔1〕~〔7〕いずれか1項に記載のガスバリア性ポリアミドフィルムにシーラントフィルムを積層した積層フィルム。
〔9〕〔8〕に記載された積層フィルムを用いた包装袋。
【発明の効果】
【0012】
本発明によれば、廃棄ポリアミド製品からケミカルリサイクルしたポリアミド6をブレンドした二軸延伸ポリアミドに無機薄膜層を積層することにより、耐衝撃性、耐屈曲ピンホール性に優れ、かつガスバリア性の優れた環境負荷低減が可能なポリアミドフィルムが得られる。
【図面の簡単な説明】
【0013】
図1】耐摩擦ピンホール性評価装置の概略図
【符号の説明】
【0014】
1:堅牢度試験機のヘッド部
2:段ボール板
3:サンプル保持用の台紙
4:4つ折りしたフィルムサンプル
5:擦る振幅方向
【発明を実施するための形態】
【0015】
以下、本発明のガスバリア性ポリアミドフィルムを詳細に説明する。
本発明のガスバリア性ポリアミドフィルムは、ポリアミド6を70質量%以上含むポリアミド樹脂からなり、前記ポリアミド6のうち5~90質量%がケミカルリサイクルしたポリアミド6である二軸延伸ポリアミドフィルム(A層)の少なくとも片面に無機薄膜層を有することを特徴とするガスバリア性ポリアミドフィルムである。また、前記A層の少なくとも片面にB層が積層された二軸延伸ポリアミドフィルムの少なくとも片面に無機薄膜層が積層されたガスバリア性ポリアミドフィルムであって、B層はポリアミド6樹脂70質量%以上を含むことを特徴とするガスバリア性ポリアミドフィルムである。
【0016】
[二軸延伸ポリアミドフィルム又は基材層(A層)]
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)は、ポリアミド6樹脂を70質量%以上含むことで、ポリアミド6樹脂からなる二軸延伸ポリアミドフィルムが本来持つ、優れた衝撃強度などの機械的強度や酸素などのガスバリア性が得られる。
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)は、A層は、少なくともポリアミド6を70質量%以上含むポリアミド樹脂層であって、前記ポリアミド6のうち5~90質量%が廃棄プラスチック製品、廃棄タイヤゴム、繊維、漁網などの廃棄ポリアミド6製品からケミカルリサイクルしたポリアミド6からなる。
本発明における二軸延伸ポリアミドフィルム又はA層は、廃棄プラスチック製品、廃棄タイヤゴム、繊維、漁網などの廃棄ポリアミド6製品からケミカルリサイクルしたポリアミド6を5~90質量%含むことで、従来ごみとして廃棄されていたポリアミド製品からリサイクルされた原料を用いた環境負荷が低減された二軸延伸ポリアミドフィルムであることに加え、特定の延伸方法を選択することにより耐突き刺し性や耐摩擦ピンホール性が同時に優れたガスバリア性ポリアミドフィルムが得られる。
[ポリアミド6]
本発明に使用するポリアミド6は、通常、ε-カプロラクタムの開環重合によって製造される。開環重合で得られたポリアミド6は、通常、熱水でラクタムモノマーを除去した後、乾燥してから押出し機で溶融押出しされる。
本発明に使用するポリアミド6の相対粘度は、1.8~4.5であることが好ましく、より好ましくは、2.6~3.2である。相対粘度が1.8より小さい場合は、フィルムの衝撃強度が不足する。4.5より大きい場合は、押出機の負荷が大きくなり延伸前の未延伸フィルムを得るのが困難になる。
【0017】
[ケミカルリサイクルしたポリアミド6]
A層に使用する上記ポリアミド6としては、通常使用されている化石燃料由来のモノマーから重合されたものに加え、廃棄プラスチック製品、廃棄タイヤゴム、繊維、漁網などの廃棄ポリアミド6製品からケミカルリサイクルしたポリアミド6が用いられる。
【0018】
廃棄ポリアミド6製品からケミカルリサイクルしたポリアミド6を得る方法としては、例えば、先に挙げた特許文献1に開示された方法を用いることができる。すなわち、ナイロン(ポリアミド)製製品の使用済み品を回収した後、解重合を行ってε-カプロラクタムを回収し、精製し、重合する方法を用いることができる。
【0019】
<解重合条件>
A層に用いるケミカルリサイクルしたポリアミド6を製造する際に行う解重合においては、通常、ポリアミド6繊維は加熱により解重合される。解重合は、触媒を用いても用いなくても良い。また解重合は、水の不存在下(乾式)でも、存在下(湿式)でも実施することができる。
【0020】
A層で用いるケミカルリサイクルしたポリアミド6を製造する際に行う解重合の圧力は、減圧、常圧、加圧のいずれであっても良い。解重合の温度は、通常、100℃から400℃であり、好ましくは、200℃から350℃、さらに好ましくは220℃から300℃である。温度が低いと、ポリアミド6製品が溶融しないため解重合速度が遅くなる。温度が高いと、不必要なポリアミド6のモノマー(すなわちカプロラクタム)の分解が起こり、回収カプロラクタムの純度が低下する恐れがある。
【0021】
A層で用いるケミカルリサイクルしたポリアミド6を製造する際に行う解重合において触媒を用いる場合は、通常、酸触媒、あるいは塩基触媒などが用いられる。酸触媒としては、りん酸、ホウ酸、硫酸、有機酸、有機スルホン酸、固体酸、およびこれらの塩、また塩基触媒としては、アルカリ水酸化物、アルカリ塩、アルカリ土類水酸化物、アルカリ土類塩、有機塩基、固体塩基などが挙げられる。好ましくは、リン酸、ホウ酸、有機酸、アルカリ水酸化物、アルカリ塩などが挙げられる。さらに好ましくはリン酸、リン酸ナトリウム、リン酸カリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどが挙げられる。
【0022】
上記解重合において用いる酸触媒の使用量は、通常、ポリアミド6繊維成分に対して、0.01から50質量%であることが好ましい。より好ましくは0.01から20質量%、さらに好ましくは、0.5から10質量%である。触媒使用量は少ないと、反応速度が遅くなり、多いと、副反応が多くなるうえ、触媒コストがかさみ経済的に不利になる。
【0023】
上記解重合は、水の不存在下(乾式)でも、存在下(湿式)でも実施することができる。湿式解重合の場合の水の使用量は繊維などのポリアミド6製品成分に対して、0.1から50質量倍が好ましい。より好ましくは、0.5から20質量倍、さらに好ましくは、1から10質量倍である。水の使用量は、少ないと、反応速度が遅くなり、多いと、回収カプロラクタム水溶液の濃度が低くなり、カプロラクタムの取得上、不利になる。
【0024】
上記の方法で回収されたカプロラクタムの回収方法は特に制限なく採用される。例えば、乾式解重合を行う場合、生成したカプロラクタムを反応装置から減圧蒸留により留出させ、回収カプロラクタムを得る。解重合反応が終了してから、減圧蒸留によりカプロラクタムを取り出しても良い。あるいは反応の進行とともに、連続的に取り出しても良い。
湿式解重合を行う場合は、生成したカプロラクタムを反応装置から水とともに留出させ、回収カプロラクタム水溶液を得る。解重合反応が終了してから、減圧蒸留によりカプロラクタムを取り出しても良い。あるいは反応の進行とともに、連続的に取り出しても良い。
さらに高純度のカプロラクタムを得る方法としては、回収したカプロラクタムを精密蒸留する方法、微量の水酸化ナトリウムを添加して減圧蒸留する方法、活性炭処理する方法、イオン交換処理する方法、再結晶する方法などの精製方法と組み合わせることができる。
【0025】
[メカニカルリサイクルしたポリアミド6]
A層には、さらに二軸延伸ポリアミドフィルムの製造工程や加工工程で発生した廃材をメカニカルリサイクルしたポリアミド6を添加することができる。
【0026】
上記で言うメカニカルリサイクルしたポリアミド6は、例えば、二軸延伸ポリアミドフィルムを製造する際に生成する規格外の出荷できないフィルムや切断端材(耳トリム)として発生する屑材を回収し、溶融押し出しや圧縮成形でペレット化させた原料である。
【0027】
A層に添加するメカニカルリサイクルしたポリアミド6の添加量の下限としては、10質量%が好ましく、より好ましくは15質量%、さらに好ましくは20%質量である。メカニカルリサイクルしたポリアミド6の添加量が上記未満であると、フィルム中のリサイクル比率が低くなる。
A層に添加するメカニカルリサイクルしたポリアミド6の添加量の上限としては50質量%が好ましく、さらに好ましくは40質量%、さらに好ましくは30質量%である。添加するメカニカルリサイクルポリアミドの添加量が上記を超えると、フィルムの着色が強くなる場合やヘイズ値が高く場合など、フィルムの外観を損ねる可能性がある。あるいはフィルムの製造中に劣化物が増え、製膜性を悪化させてしまう可能性がある。
【0028】
[副材料、添加剤]
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、他の熱可塑性樹脂、滑剤、熱安定剤、酸化防止剤、帯電防止剤や防曇剤、紫外線吸収剤、染料、顔料等の各種の添加剤を必要に応じて含有させることができる。
【0029】
<他の熱可塑性樹脂>
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、本発明の目的を損なわない範囲で、上記のポリアミド6と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂の他に熱可塑性樹脂を含むことができる。例えば、ポリアミド12、ポリアミド66、ポリアミド6・12共重合体、ポリアミド6・66共重合体、ポリアミドMXD6、などのポリアミド系樹脂が挙げられる。
必要に応じてポリアミド系以外の熱可塑性樹脂、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル系重合体、ポリエチレン、ポリプロピレン等のポリオレフィン系重合体等を含有させてもよい。
これらの熱可塑性樹脂の原料はバイオマス由来であると、地上の二酸化炭素の増減に影響を与えないので、環境負荷を低減できるので好ましい。
【0030】
<滑剤>
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、滑り性を良くして取扱い易くするために、滑剤として微粒子や脂肪酸アミドなどの有機潤滑剤を含有させることが好ましい。
【0031】
前記微粒子としては、シリカ、カオリン、ゼオライト等の無機微粒子、アクリル系、ポリスチレン系等の高分子系有機微粒子等の中から適宜選択して使用することができる。なお、透明性と滑り性の面から、シリカ微粒子を用いることが好ましい。
前記微粒子の好ましい平均粒子径は0.5~5.0μmであり、より好ましくは1.0~3.0μmである。平均粒子径が0.5μm未満であると、良好な滑り性を得るのに多量の添加量が要求される。一方、5.0μmを超えると、フィルムの表面粗さが大きくなりすぎて外観が悪くなる傾向がある。
【0032】
前記シリカ微粒子を使用する場合、シリカの細孔容積の範囲は、0.5~2.0ml/gであると好ましく、0.8~1.6ml/gであるとより好ましい。細孔容積が0.5ml/g未満であると、ボイドが発生し易くなりフィルムの透明性が悪化し、細孔容積が2.0ml/gを超えると、微粒子による表面の突起ができにくくなる傾向がある。
【0033】
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、滑り性を良くする目的で脂肪酸アマイド及び/又は脂肪酸ビスアマイドを含有させることができる。脂肪酸アマイド及び/又は脂肪酸ビスアマイドとしては、エルカ酸アマイド、ステアリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、エチレンビスオレイン酸アマイドなどが挙げられる。
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)の脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量は、好ましくは0.01~0.40質量%であり、さらに好ましくは0.05~0.30質量%である。脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量が上記範囲未満となると、滑り性が悪くなる傾向がある。一方、上記範囲を越えると、濡れ性が悪くなる傾向がある。
【0034】
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、滑り性を良くする目的でポリアミドMXD6、ポリアミド12、ポリアミド66、ポリアミド6・12共重合体、ポリアミド6・66共重合体などのポリアミド樹脂を添加することができる。特にポリアミドMXD6が好ましく、1~10質量%添加することが好ましい。
【0035】
<酸化防止剤>
本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、酸化防止剤を含有させることができる。
酸化防止剤としては、フェノール系酸化防止剤が好ましい。フェノール系酸化防止剤は、完全ヒンダードフェノール系化合物又は部分ヒンダードフェノール系化合物が好ましい。例えば、テトラキス-〔メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート〕メタン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス〔1,1-ジメチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル〕2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン等が挙げられる。
上記フェノール系酸化防止剤を含有させることにより、二軸延伸ポリアミドフィルム又は基材層(A層)の製膜操業性が向上する。特に、原料にリサイクルしたフィルムを用いる場合、樹脂の熱劣化が起こりやすく、これに起因する製膜操業不良が発生し、生産コスト上昇を招く傾向にある。これに対して、酸化防止剤を含有させることで、樹脂の熱劣化が抑制され操業性が向上する。
【0036】
[B層(表面層)]
本発明におけるB層は、ポリアミド6を70質量%以上含む層である。
本発明におけるB層は、ポリアミド6を70質量%以上含むことで優れた衝撃強度などの機械的強度や酸素などのガスバリア性を持った二軸延伸ポリアミドフィルム得られる。
上記ポリアミド6としては、前記のA層で使用するポリアミド6と同様に新たな原料から重合されたポリアミド6、ケミカルリサイクルしたポリアミド6、メカニカルリサイクルしたポリアミド6が使用できる。
本発明におけるB層には、他の熱可塑性樹脂、滑剤、熱安定剤、酸化防止剤、帯電防止剤や防曇剤、紫外線吸収剤、染料、顔料等の各種の添加剤をB層の表面に持たせる機能に応じて含有させることができる。
B層を包装袋の外側に用いる場合は、耐摩擦ピンホール性が必要なので、ポリアミド系エラストマーやポリオレフィン系エラストマーのような軟らかい樹脂やボイドを多量に発生させる物質を含有させることは好ましくない。また、耐摩擦ピンホール性を良くしたい場合は、メカニカルリサイクルしたポリアミド6の含有量を30質量%より少なくした方が良く、15質量%以下がより好ましい。
【0037】
本発明におけるB層には、本発明の目的を損なわない範囲で、上記のポリアミド6の他に熱可塑性樹脂を含むことができる。例えば、ポリアミドMXD6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド6・12共重合体、ポリアミド6・66共重合体などのポリアミド系樹脂が挙げられる。
必要に応じてポリアミド系以外の熱可塑性樹脂、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル系重合体、ポリエチレン、ポリプロピレン等のポリオレフィン系重合体等を含有させてもよい。
【0038】
本発明におけるB層には、フィルム滑り性を良くするために、滑剤として微粒子や有機潤滑剤を含有させることが好ましい。
滑り性を良くすることで、フィルムの取扱い性が向上するとともに、擦れによる包装袋の破袋を減少させる。
【0039】
上記の微粒子としては、シリカ、カオリン、ゼオライト等の無機微粒子、アクリル系、ポリスチレン系等の高分子系有機微粒子等の中から適宜選択して使用することができる。なお、透明性と滑り性の面から、シリカ微粒子を用いることが好ましい。
【0040】
上記の微粒子の好ましい平均粒子径は0.5~5.0μmであり、より好ましくは1.0~3.0μmである。平均粒子径が0.5μm未満であると、良好な滑り性を得るのに多量の添加量が要求される。一方、5.0μmを超えると、フィルムの表面粗さが大きくなりすぎて外観が悪くなる傾向がある。
【0041】
上記のシリカ微粒子を使用する場合、シリカの細孔容積の範囲は、0.5~2.0ml/gであると好ましく、0.8~1.6ml/gであるとより好ましい。細孔容積が0.5ml/g未満であると、ボイドが発生し易くなりフィルムの透明性が悪化する。細孔容積が2.0ml/gを超えると、微粒子による表面の突起ができにくくなる傾向がある。
【0042】
上記の有機潤滑剤としては、脂肪酸アマイド及び/又は脂肪酸ビスアマイドを含有させることができる。脂肪酸アマイド及び/又は脂肪酸ビスアマイドとしては、エルカ酸アマイド、ステアリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、エチレンビスオレイン酸アマイドなどが挙げられる。
B層に添加する脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量は、好ましくは0.01~0.40質量%であり、さらに好ましくは0.05~0.30質量%である。脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量が上記範囲未満となると、滑り性が悪くなる傾向がある。一方、上記範囲を越えると、濡れ性が悪くなる傾向がある。
【0043】
本発明におけるB層には、フィルムの滑り性を良くする目的でポリアミド6以外のポリアミド系樹脂、例えば、ポリアミドMXD6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド6・12共重合体、ポリアミド6・66共重合体などを添加することができる。特にポリアミドMXD6が好ましく、1~10質量%添加することが好ましい。1質量%未満ではフィルムの滑り性改善効果が少ない。10質量%より多い場合は、フィルムの滑り性改善効果が飽和する。
ポリアミドMXD6樹脂はメタキシリレンジアミンとアジピン酸の重縮合で製造される。
上記のポリアミドMXD6の相対粘度は、1.8~4.5であることが好ましく、より好ましくは、2.0~3.2である。相対粘度が1.8より小さい場合や4.5より大きい場合は、押出機でポリアミド樹脂との混練がしにくい場合がある。
【0044】
また、B層には接着性を良くする目的でポリアミド6以外のポリアミド系樹脂を添加することもできる。この場合、ポリアミド6・12共重合体、ポリアミド6・66共重合体などの共重合ポリアミド樹脂が好ましい。
【0045】
本発明のガスバリア性ポリアミドフィルムのA層及び/又はB層に、滑剤、酸化防止剤などの副材料や添加剤を添加する方法としては、樹脂重合時や押出し機での溶融押出し時に添加できる。高濃度のマスターバッチを作製してマスターバッチをフィルム生産時にポリアミド樹脂に添加してもよい。こうした公知の方法により行うことができる。
【0046】
[無機薄膜層]
本発明のガスバリア性ポリアミドフィルムは、二軸延伸ポリアミドフィルムの表面に無機薄膜層(C層)を設けることで、ガスバリア性を付与することが出来る。
無機薄膜層は金属又は無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の質量比でAlが20~70質量%の範囲であることが好ましい。Al濃度が20質量%未満であると、水蒸気バリア性が低くなる場合がある。一方、70質量%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO2等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl2O3等の各種アルミニウム酸化物又はそれらの混合物である。
【0047】
無機薄膜層の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。
【0048】
無機薄膜層を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiO2とAl2O3の混合物、あるいはSiO2とAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。
【0049】
[保護層]
本発明においては、無機薄膜層(C層)の上に保護層を形成させることもできる。無機薄膜層は完全に密な膜ではなく微小な欠損部分が点在している場合がある。そこで無機薄膜層上に後述する特定の保護層用樹脂組成物を塗布して保護層を形成することにより、無機薄膜層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。
【0050】
本発明のガスバリア性ポリアミドフィルムの無機薄膜層の表面に形成する保護層に用いる樹脂組成物としては、ウレタン系樹脂、ポリエステル系樹脂、アクリル系樹脂、チタネート系樹脂、イソシアネート系樹脂、イミン系樹脂、ポリブタジエン系樹脂等の樹脂に、エポキシ系硬化剤、イソシアネート系硬化剤、メラミン系硬化剤等の硬化剤を添加したものが挙げられる。
前記ウレタン樹脂は、ウレタン結合の極性基が無機薄膜層と相互作用するとともに、非晶部分の存在により柔軟性をも有するため、屈曲負荷がかかった際にも無機薄膜層へのダメージを抑えることができるため好ましい。
前記ウレタン樹脂の酸価は10~60mgKOH/gの範囲内であるのが好ましい。より好ましくは15~55mgKOH/gの範囲内、さらに好ましくは20~50mgKOH/gの範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層は高極性の無機薄膜上に均一に堆積することができるため、コート外観が良好となる。
【0051】
前記ウレタン樹脂は、ガラス転移温度(Tg)が80℃以上であることが好ましく、より好ましくは90℃以上である。Tgを80℃以上にすることで、湿熱処理過程(昇温~保温~降温)における分子運動による保護層の膨潤を低減できる。
【0052】
前記ウレタン樹脂は、ガスバリア性向上の面から、芳香族又は芳香脂肪族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用いることがより好ましい。
その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。
【0053】
本発明においては、ウレタン樹脂中の芳香族又は芳香脂肪族ジイソシアネートの割合を、ポリイソシアネート成分(F)100モル%中、50モル%以上(50~100モル%)の範囲とすることが好ましい。芳香族又は芳香脂肪族ジイソシアネートの合計量の割合は、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。このような樹脂として、三井化学株式会社から市販されている「タケラック(登録商標)WPB」シリーズは好適に用いることが出来る。芳香族又は芳香脂肪族ジイソシアネートの合計量の割合が50モル%未満であると、良好なガスバリア性が得られない可能性がある。
【0054】
前記ウレタン樹脂は、無機薄膜層との親和性向上の観点から、カルボン酸基(カルボキシル基)を有することが好ましい。ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボン酸基を有するポリオール化合物を共重合成分として導入すればよい。また、カルボン酸基含有ウレタン樹脂を合成後、塩形成剤により中和すれば、水分散体のウレタン樹脂を得ることができる。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン等のトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリン等のN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミン等のN-ジアルキルアルカノールアミン類等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。
【0055】
[ガスバリア性ポリアミドフィルムの製造方法]
本発明のガスバリア性ポリアミドフィルムは、本発明における二軸延伸ポリアミドフィルムに前記の方法で無機薄膜層を形成することで製造する。
<二軸延伸ポリアミドフィルムの製膜方法>
本発明における二軸延伸ポリアミドフィルムは、公知の製造方法により製造することができる。例えば、逐次二軸延伸法、同時二軸延伸法が挙げられる。逐次二軸延伸法は、製膜速度が上げられるので、製造コスト的に有利であるので好ましい。
本発明における二軸延伸ポリアミドフィルムの作製方法についてさらに説明する。
まず、押出機を用いて原料樹脂を溶融押出しし、Tダイからフィルム状に押出し、冷却ロール上にキャストして冷却し、未延伸フィルムを得る。
樹脂の溶融温度は好ましくは200~300℃である。上記未満であると未溶融物などが発生し、欠点などの外観不良が発生することがあり、上記を超えると樹脂の劣化などが観察され、分子量低下、外観低下が発生することがある。
基材層(A層)に表面層(B層)を積層する場合は、フィードブロックやマルチマニホールドなどを使用した共押出法で未延伸フィルムを得ることが好ましい。
【0056】
冷却ロール温度は、-30~80℃が好ましく、更に好ましくは0~50℃である。
Tダイから押出されたフィルム状溶融物を回転冷却ドラムにキャストし冷却して未延伸フィルムを得るには、例えば、エアナイフを使用する方法や静電荷を印荷する静電密着法等が好ましく適用できる。特に後者が好ましく使用される。
【0057】
また、キャストした未延伸フィルムの冷却ロールの反対面も冷却することが好ましい。例えば、未延伸フィルムの冷却ロールの反対面に、槽内の冷却用液体を接触させる方法、スプレーノズルで蒸散する液体を塗布する方法、高速流体を吹き付けて冷却する方法等を併用することが好ましい。このようにして得られた未延伸フィルムを二軸方向に延伸して二軸延伸ポリアミドフィルムを得る。
【0058】
MD方向の延伸方法としては、一段延伸又は二段延伸等の多段延伸が使用できる。後述するように、一段での延伸ではなく、二段延伸などの多段のMD方向の延伸が物性面およびMD方向及びTD方向の物性の均一さ(等方性)の面で好ましい。
逐次二軸延伸法におけるMD方向の延伸は、ロール延伸が好ましい。
【0059】
MD方向の延伸温度の下限は好ましくは50℃であり、より好ましくは55℃であり、さらに好ましくは60℃である。50℃未満であると樹脂が軟化せず、延伸が困難となることがある。
MD方向の延伸温度の上限は好ましくは120℃であり、より好ましくは115℃であり、さらに好ましくは110℃である。120℃を超えると樹脂が軟らかくなりすぎ安定した延伸ができないことがある。
【0060】
MD方向の延伸倍率(多段で延伸する場合は、それぞれの倍率を乗じた全延伸倍率)の下限は好ましくは2.2倍であり、より好ましくは2.5倍であり、さらに好ましくは2.8倍である。2.2倍未満であるとMD方向の厚み精度が低下するほか、結晶化度が低くなりすぎて衝撃強度が低下することがある。
MD方向の延伸倍率の上限は好ましくは5.0倍であり、より好ましくは4.5倍であり、最も好ましくは4.0倍である。5.0倍を超えると後続の延伸が困難となることがある。
【0061】
また、MD方向の延伸を多段で行う場合には、それぞれの延伸で上述のような延伸が可能であるが、倍率については、全MD方向の延伸倍率の積は5.0以下となるよう、延伸倍率を調整することが必要である。例えば、二段延伸の場合であれば、一段目の延伸を1.5~2.1倍、二段目の延伸を1.5~1.8倍が好ましい。
【0062】
MD方向に延伸したフィルムは、テンターでTD方向に延伸し、熱固定し、リラックス処理(緩和処理ともいう)する。
TD方向の延伸温度の下限は好ましくは50℃であり、より好ましくは55℃であり、さらに好ましくは60℃である。50℃未満であると樹脂が軟化せず、延伸が困難となることがある。
TD方向の延伸温度の上限は好ましくは190℃であり、より好ましくは185℃であり、さらに好ましくは180℃である。190℃を超えると結晶化してしまい、延伸が困難となることがある。
【0063】
TD方向の延伸倍率(多段で延伸する場合は、それぞれの倍率を乗じた全延伸倍率)の下限は好ましくは2.8であり、より好ましくは3.2倍であり、さらに好ましくは3.5倍であり、特に好ましくは3.8倍である。2.8未満であるとTD方向の厚み精度が低下するほか、結晶化度が低くなりすぎて衝撃強度が低下することがある。
TD方向の延伸倍率の上限は好ましくは5.5倍であり、より好ましくは5.0倍であり、さらに好ましくは4.7であり、特に好ましくは4.5であり、最も好ましくは4.3倍である。5.5倍を超えると著しく生産性が低下することがある。
【0064】
熱固定温度の選択は本発明において重要な要素である、熱固定温度を高くするに従い、フィルムの結晶化および配向緩和が進み、衝撃強度を向上させ、熱収縮率を低減させることができる。一方、熱固定温度が低い場合には結晶化および配向緩和が不十分で熱収縮率を十分に低減させることができない。)また、熱固定温度が高くなりすぎると、樹脂の劣化が進み、急速に衝撃強度などフィルムの強靱性が失われる。
【0065】
熱固定温度の下限は好ましくは180℃であり、より好ましくは200℃である。熱固定温度が低いと熱収縮率が大きくなりすぎてラミネート後の外観が低下する、ラミネート強度が低下する傾向がある。
熱固定温度の上限は好ましくは230℃であり、より好ましくは220℃である。熱固定温度が高すぎると、衝撃強度が低下する傾向がある。
【0066】
熱固定の時間は0.5~20秒であることが好ましい。さらには1~15秒である。熱固定時間は熱固定温度や熱固定ゾーンでの風速とのかね合いで適正時間とすることができる。熱固定条件が弱すぎると、結晶化及び配向緩和が不十分となり上記問題が起こる。熱固定条件が強すぎるとフィルム強靱性が低下する。
【0067】
熱固定処理した後にリラックス処理をすることは熱収縮率の制御に有効である。リラックス処理する温度は熱固定処理温度から樹脂のガラス転移温度(Tg)までの範囲で選べるが、好ましくは熱固定処理温度-10℃~Tg+10℃が好ましい。リラックス温度が高すぎると、収縮速度が速すぎて歪みなどの原因となるため好ましくない。逆にリラックス温度が低すぎるとリラックス処理とならず、単に弛むだけとなり熱収縮率が下がらず、寸法安定性が悪くなる。
【0068】
リラックス処理のリラックス率の下限は、好ましくは0.5%であり、より好ましくは1%である。0.5%未満であると熱収縮率が十分に下がらないことがある。
リラックス率の上限は好ましくは20%であり、より好ましくは15%であり、さらに好ましくは10%である。20%を超えるとテンター内でたるみが発生し、生産が困難になることがある。
【0069】
無機薄膜層やシーラントフィルムとの接着強度を上げるため、積層延伸ポリアミドフィルム表面及び/又は接着改質層の表面にコロナ処理や火炎処理等を施してもよい。また、積層延伸ポリアミドフィルムと接着改質層の接着強度を上げるため、積層延伸ポリアミドフィルムの接着改質層側の表面にコロナ処理や火炎処理等を施してもよい。
【0070】
[ガスバリア性フィルムの厚み構成]
本発明におけるガスバリア性ポリアミドフィルムの厚みは、特に制限されるものではないが、包装材料として使用する場合、通常100μm以下であり、一般には5~50μmの厚みのものが使用され、特に8~30μmのものが使用される。
【0071】
本発明におけるガスバリア性ポリアミドフィルムが基材層と表面層の積層構成である場合、B層に滑り性を付与する場合と耐摩擦ピンホール性を付与する場合は、これらの機能を発現させるために、表面層(B層)の厚みは0.5~8μmが好ましい。また、リサイクル比率を高くするためには、基材層(A層)の厚みを、A層とB層の合計厚みの50~93%が好ましく、70~93%とすることがより好ましい。
【0072】
[ガスバリア性ポリアミドフィルムの特性]
本発明のガスバリア性ポリアミドフィルムは、実施例に記載した測定方法によるゲルボフレックステスターを用いたひねり屈曲試験を温度1℃で1000回実施した時のピンホール欠点数が20個未満であることが好ましい。より好ましくは10個未満である。屈曲試験後のピンホール欠点数が少ないほど耐屈曲ピンホール性が優れており、ピンホール数が10個以下であれば、輸送時などに包装袋に負荷がかかってもピンホールが発生しにくい包装袋が得られる。
【0073】
更に、本発明のガスバリア性ポリアミドフィルムは、耐摩擦ピンホールテストでピンホール発生までの距離が2000cm以上であることが好ましい。より好ましくは2900cm以上、更に好ましくは3000cm以上である。ピンホールが発生する距離が長いほど耐摩擦ピンホール性に優れており、ピンホールが発生する距離が2900cm以上であれば、輸送時などに包装袋が段ボール箱などと擦れてもピンホールが発生しにくい包装袋が得られる。
本発明においては、A層とB層の原料組成物を適正化することで、上記の耐屈曲ピンホール性と耐摩擦ピンホール性の両方の特性が優れているガスバリア性ポリアミドフィルムを得ることができる。これらの特性を持った本発明のガスバリア性ポリアミドフィルムは、輸送時にピンホールが発生しにくいので包装用フィルムとして極めて有用である。
【0074】
本発明のガスバリア性ポリアミドフィルムは、160℃、10分での熱収縮率が流れ方向(以下MD方向と略記する)及び幅方向(以下TD方向と略記する)ともに0.6~5.0%の範囲が好ましく、より好ましくは、0.6~3.0%である。熱収縮率が、5.0%を超える場合には、ラミネートや印刷など、次工程で熱がかかる場合にカールや収縮が発生する場合がある。また、シーラントフィルムとのラミネート強度が弱くなる場合がある。熱収縮率を0.6%未満とすることは可能ではあるが、力学的に脆くなる場合がある。また、生産性が悪化するので好ましくない。
【0075】
耐衝撃性に優れることが二軸延伸ポリアミドフィルムの特長であるので、本発明の易接着性ポリアミドフィルムの衝撃強度は、0.7J/15μm以上が好ましい。より好ましい衝撃強度は、0.9J/15μm以上である。衝撃強度は大きい方が好ましいが、1.5J/15μmより大きくすることは難しい。
本発明の易接着性ポリアミドフィルムの突刺し強度は、0.65N/μm以上が好ましい。より好ましい耐突刺し強度は、0.70N/μm以上である。突刺し強度は、大きい方が好ましいが、1.0N/μmより大きくすることは難しい。
本発明の易接着性ポリアミドフィルムの面配向係数は、0.045以上が好ましい。より好ましい面配向係数は、0.050以上である。面配向係数は大きい方が衝撃強度及び突刺し強度が大きくなり好ましいが、0.080より大きくするには延伸倍率をより高くする必要があり、延伸工程で破断しやすくなり難しい。
【0076】
本発明のガスバリア性ポリアミドフィルムのヘイズ値は、10%以下であることが好ましい。より好ましくは5%以下、更に好ましくは2.6%以下である。
ヘイズ値が小さいと透明性や光沢が良いので、包装袋に使用した場合、きれいな印刷ができ商品価値を高める。
フィルムの滑り性を良くするために微粒子を添加するとヘイズ値が大きくなるので、微粒子は表面層のB層のみに入れるかより多く含有させ、A層の含有量は少なくする方が、滑り性が良くヘイズ値が小さいフィルムが得られるので好ましい。
【0077】
本発明のガスバリア性ポリアミドフィルムは、実施例に記載したポリエチレン系シーラントと貼り合わせた後のラミネート強度は、4.0N/15mm以上が好ましい。
本発明のガスバリア性ポリアミドフィルムは、通常シーラントフィルムとラミネートしてから包装袋に加工される。上記のラミネート強度が4.0N/15mm以上であれば、各種の積層構成で本発明のガスバリア性ポリアミドフィルムを使用して包装袋を作製した場合に、シール部の強度が十分に得られ、破れにくい強い包装袋が得られる。
ラミネート強度を4.0N/15mm以上にするために、本発明のガスバリア性ポリアミドフィルムは、コロナ処理、コーティング処理、火炎処理等を施すことができる。
【0078】
さらに、本発明のガスバリア性ポリアミドフィルムは、用途に応じて寸法安定性を良くするために熱処理や調湿処理を施すことも可能である。加えて、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したり、印刷加工、金属物や無機酸化物等の蒸着加工を施したりすることも可能である。なお蒸着加工にて形成される蒸着膜としては、アルミニウムの蒸着膜、ケイ素酸化物やアルミニウム酸化物の単一物もしくは混合物の蒸着膜が好適に用いられる。さらにこれらの蒸着膜上に保護層などをコーティングすることにより、酸素や水素バリア性などを向上させることができる。
【0079】
本発明のガスバリア性ポリアミドフィルムは、シーラントフィルムなどを積層した積層フィルムにしてから、ボトムシール袋、サイドシール袋、三方シール袋、ピロー袋、スタンディングパウチ、ガゼット袋、角底袋などの包装袋に加工される。
シーラントフィルムとしては、未延伸線状低密度ポリエチレンフィルム、未延伸ポリプロピレンフィルム、エチレン-ビニルアルコール共重合樹脂フィルムなどが挙げられる。
本発明のガスバリア性ポリアミドフィルムを使用した積層フィルムの層構成としては、本発明の実施形態に係るガスバリア性ポリアミドフィルムを積層フィルム中に有するものであれば特に限定されない。また、積層フィルムに使用するフィルムは、石化由来原料でもバイオマス由来原料でも良いが、バイオマス由来の原料を用いて重合されたポリ乳酸、ポリエチレンテレフタレート、ポリブチレンサクシネート、ポリエチレン、ポリエチレンフラノエートなどの方が環境負荷の低減という点で好ましい。
【0080】
本発明の積層フィルムの層構成の例としては、/で層の境界を表わすと、例えば、ONY/接/LLDPE、ONY/接/CPP、ONY/接/Al/接/CPP、ONY/接/Al/接/LLDPE、ONY/PE/Al/接/LLDPE、ONY/接/Al/PE/LLDPE、PET/接/ONY/接/LLDPE、PET/接/ONY/PE/LLDPE、PET/接/ONY/接/Al/接/LLDPE、PET/接/Al/接/ONY/接/LLDPE、PET/接/Al/接/ONY/PE/LLDPE、PET/PE/Al/PE/ONY/PE/LLDPE、PET/接/ONY/接/CPP、PET/接/ONY/接/Al/接/CPP、PET/接/Al/接/ONY/接/CPP、ONY/接/PET/接/LLDPE、ONY/接/PET/PE/LLDPE、ONY/接/PET/接/CPP、ONY//Al//PET//LLDPE、ONY/接/Al/接/PET/PE/LLDPE、ONY/PE/LLDPE、ONY/PE/CPP、ONY/PE/Al/PE、ONY/PE/Al/PE/LLDPE、OPP/接/ONY/接/LLDPE、ONY/接/EVOH/接/LLDPE、ONY/接/EVOH/接/CPP、ONY/接/アルミ又は無機酸化物蒸着PET/接/LLDPE、ONY/接/アルミ蒸着PET/接/ONY/接/LLDPE、ONY/接/アルミ蒸着PET/PE/LLDPE、ONY/PE/アルミ蒸着PET/PE/LLDPE、ONY/接/アルミ蒸着PET/接/CPP、PET/接/アルミ蒸着PET/接/ONY/接/LLDPE、CPP/接/ONY/接/LLDPE、ONY/接/アルミ蒸着LLDPE、ONY/接/アルミ蒸着CPPなどが挙げられる。
なお上記層構成に用いた各略称は以下の通りである。
ONY:本発明のガスバリア性ポリアミドフィルム、PET:延伸ポリエチレンテレフタレートフィルム、LLDPE:未延伸線状低密度ポリエチレンフィルム、CPP:未延伸ポリプロピレンフィルム、OPP:延伸ポリプロピレンフィルム、PE:押出しラミネート又は未延伸の低密度ポリエチレンフィルム、Al:アルミニウム箔、EVOH:エチレン-ビニルアルコール共重合樹脂、接:フィルム同士を接着させる接着剤層、アルミ又は無機酸化物蒸着はアルミニウム又は無機酸化物が蒸着されていることを表わす。
【実施例0081】
次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。特に記載しない場合は、測定は23℃、相対湿度65%の環境の測定室で行った。
【0082】
(1)フィルムのリサイクル比率
フィルムのリサイクル比率はフィルム全体の原料に対して、ケミカルリサイクルした原料とメカニカルリサイクルした原料の割合を計算して%で示した。
(2)フィルムの厚み
フィルムのTD方向に10等分して(幅が狭いフィルムについては厚みを測定できる幅が確保できる幅になるよう当分する)、MD方向に100mmのフィルムを10枚重ねで切り出し、温度23℃、相対湿度65%の環境下で2時間以上コンディショニングする。テスター産業製厚み測定器で、それぞれのサンプルの中央の厚み測定し、その平均値を厚みとした。
【0083】
(3)フィルムのヘイズ値
(株)東洋精機製作所社製の直読ヘイズメーターを使用し、JIS-K-7105に準拠し測定した。
(4)フィルムの動摩擦係数
JIS-C2151に準拠し、下記条件によりフィルム巻外面同士の動摩擦係数を評価した。なお、試験片の大きさは、幅130mm、長さ250mm、試験速度は150mm/分で行った。
【0084】
(5)フィルムの衝撃強度
(株)東洋精機製作所製のフィルムインパクトテスターを使用し測定した。測定値は、厚み15μm当たりに換算してJ(ジュール)/15μmで表した。
(6)フィルムの面配向度
サンプルについてJIS K 7142-1996 A法により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(Nx)、幅方向の屈折率(Ny)、厚み方向の屈折率(Nz)を測定し、式(1)の計算式により面配向係数を算出した。
面配向係数(ΔP)=(Nx+Ny)/2-Nz (1)
(7)フィルムの突刺し強度
得られたポリエステルフィルムを5cm角にサンプリングし、株式会社イマダ製デジタルフォースゲージ「ZTS-500N」、電動計測スタンド「MX2-500N」及び突刺し治具「TKS-250N」を用いて、JIS Z1707に準じてフィルムの突刺し強度を測定した。単位はN/μmで示した。
【0085】
(8)フィルムの耐屈曲ピンホール性
理学工業社製のゲルボフレックステスターを使用し、下記の方法により屈曲疲労ピンホール数を測定した。
実施例で作製したガスバリア性ポリアミドフィルムの無機薄膜層の面にポリエステル系接着剤を塗布後、厚み40μmの線状低密度ポリエチレンフィルム(L-LDPEフィルム:東洋紡株式会社製、L4102)をドライラミネートし、40℃の環境下で3日間エージングを行いラミネートフィルムとした。得られたラミネートフィルムを12インチ×8インチに裁断し、直径3.5インチの円筒状にし、円筒状フィルムの一方の端をゲルボフレックステスターの固定ヘッド側に、他方の端を可動ヘッド側に固定し、初期の把持間隔を7インチとした。ストロークの最初の3.5インチで440度のひねりを与え、その後2.5インチは直線水平運動で全ストロークを終えるような屈曲疲労を、40回/分の速さで1000回行い、ラミネートフィルムに発生したピンホール数を数えた。なお、測定は1℃の環境下で行った。テストフィルムのL-LDPEフィルム側を下面にしてろ紙(アドバンテック、No.50)の上に置き、4隅をセロテープ(登録商標)で固定した。インク(パイロット製インキ(品番INK-350-ブルー)を純水で5倍希釈したもの)をテストフィルム上に塗布し、ゴムローラーを用いて一面に延展させた。不要なインクをふき取った後、テストフィルムを取り除き、ろ紙に付いたインクの点の数を計測した。
【0086】
(9)フィルムの耐摩擦ピンホール性
堅牢度試験機(東洋精機製作所)を使用し、下記の方法により摩擦試験を行い、ピンホール発生距離を測定した。
上記耐屈曲ピンホール性評価で作製したものと同様のラミネートフィルムを、四つ折りにして角を尖らせたテストサンプルを作製し、堅牢度試験機にて、振幅:25cm、振幅速度:30回/分、加重:100g重で、段ボール内面に擦りつけた。段ボールは、K280×P180×K210(AF)=(表材ライナー×中芯材×裏材ライナー(フルートの種類))を使用した。
ピンホール発生距離は、以下の手順に従い算出した。ピンホール発生距離が長いほど、耐摩擦ピンホール性が優れている。
まず、振幅100回距離2500cmで摩擦テストを行った。ピンホールが開かなかった場合は振幅回数20回距離500cm増やして摩擦テストを行った。またピンホールが開かなかった場合は更に振幅回数20回距離500cm増やして摩擦テストを行った。これを繰り返しピンホールが開いた距離に×をつけて水準1とした。振幅100回距離2500cmでピンホールが開いた場合は振幅回数20回距離500cm減らして摩擦テストを行った。またピンホールが開いた場合は更に振幅回数20回距離500cm減らして摩擦テストを行った。これを繰り返しピンホールが開かなかった距離に○をつけて水準1とした。
次に水準2として、水準1で最後が○だった場合は、振幅回数を20回増やして摩擦テストを行い、ピンホールが開かなかったら○、ピンホールが開いたら×を付けた。水準1で最後が×だった場合は、振幅回数を20回減らして摩擦テストを行い、ピンホールが開かなかったら○、ピンホールが開いたら×を付けた。
更に水準3~20として、前の水準で○だった場合は、振幅回数を20回増やして摩擦テストを行い、ピンホールが開かなかったら○、ピンホールが開いたら×を付ける。前の水準で×だった場合は、振幅回数を20回減らして摩擦テストを行い、ピンホールが開かなかったら○、ピンホールが開いたら×を付ける。これを繰り返し、水準3~20に○又は×をつける。
例えば、表1のような結果が得られた。表1を例にしてピンホール発生距離の求め方を説明する。
各距離の○と×の試験数を数える。
最もテスト回数の多かった距離を中央値とし、係数をゼロとする。それより距離が長い場合は、500cmごとに係数を+1、+2、+3・・・、距離が短い場合は、500cmごとに係数を-1、-2、-3・・・とした。
水準1~20までの全ての試験で、穴が開かなかった試験数と穴が開いた試験数を比較して、次のA及びBの場合についてそれぞれの式で摩擦ピンホール発生距離を算出した。
A;全ての試験で、穴が開かなかった試験数が穴が開いた試験数以上の場合
摩擦ピンホール発生距離=中央値+500×(Σ(係数×穴が開かなかった試験数)/穴が開かなかった試験数)+1/2)
B:全ての試験で、穴が開かなかった試験数が穴が開いた試験数未満の場合
摩擦ピンホール発生距離=中央値+500×(Σ(係数×穴が開いた試験数)/穴が開いた試験数)-1/2)
【0087】
【表1】
【0088】
(10)フィルムの熱収縮率
試験温度160℃、加熱時間10分間とした以外は、JIS C2318に記載の寸法変化試験法に準じて下記式によって熱収縮率を測定した。
熱収縮率=[(処理前の長さ-処理後の長さ)/処理前の長さ]×100(%)
【0089】
(11)ポリエチレン系シーラントとのラミネート強度
耐屈曲ピンホール性評価の説明に記載した方法と同様にして作製したラミネートフィルムを幅15mm×長さ200mmの短冊状に切断し、ラミネートフィルムの一端をポリアミドフィルムと線状低密度ポリエチレンフィルムとの界面で剥離し、(株式会社島津製作所製、オートグラフ)を用い、温度23℃、相対湿度50%、引張り速度200mm/分、剥離角度90°の条件下でラミネート強度をMD方向とTD方向にそれぞれ3回測定しその平均値で評価した。
【0090】
(12)耐水ラミネート強度(水付着条件下でのラミネート強度)
(11)のラミネート強度を測定する際に、上記短冊状ラミネートフィルムの剥離界面に水をスポイトで垂らしながらラミネート強度を測定した。MD方向とTD方向にそれぞれ3回測定し平均値で評価した。
【0091】
(13)原料ポリアミドの相対粘度
0.25gのポリアミドを25mlのメスフラスコ中で1.0g/dlの濃度になるように96%硫酸で溶解したポリアミド溶液を20℃にて相対粘度を測定した。
(14)原料ポリアドの融点
JIS K7121に準じてセイコーインスルメンツ社製、SSC5200型示差走査熱量測定器を用いて、窒素雰囲気中で、試料重量:10mg、昇温開始温度:30℃、昇温速度:20℃/分で測定し、吸熱ピーク温度(Tmp)を融点として求めた。
【0092】
(15)接着性改質層の塗布量
ガスバリア性ポリアミドフィルムを10cm×10cmの面積に切り出し、フィルムの接着性改質層面をメチルエチルケトン/トルエン=1/1の混合有機溶剤を染み込ませた布で拭き取り、拭き取り前後の重量を精密天秤(島津製作所社製AUW120D)で測定した。測定した重量差から平方メートル当たりに換算し、塗布量(g/m)を算出した。
【0093】
[石油化学由来の原料から新たに重合したポリアミド6(a-1)]
石油化学由来の原料から新たに重合したポリアミド6(a-1)としては、東洋紡株式会社製、相対粘度2.8、融点220℃のポリアミド6を使用した。
[ケミカルリサイクルしたポリアミド6(a-2)の製造]
廃材から回収したポリアミド6繊維と、解重合触媒である75質量%のリン酸水溶液を解重合装置に仕込み、窒素雰囲気下で260℃まで加熱した。過熱水蒸気を解重合装置へ吹き込みながら反応を開始し、解重合装置から連続的に留出するε-カプロラクタム・水蒸気を冷却して、ε-カプロラクタム留出液を回収した。回収した留出液をエバポレーターで濃縮し得られたε-カプロラクタムを再重合してケミカルリサイクルポリアミド6を得た。ポリアミド6(a-2)の相対粘度は、2.7、融点は221℃であった。
【0094】
[メカニカルリサイクルしたポリアミド6(a-3)の製造]
後述する実施例1で示した方法により得られた延伸フィルムから出た規格外フィルムおよび切断端材(耳トリム)として発生した屑材を回収・粉砕し、シリンダー温度270℃の押出機で混練り、ペレット化させた後、100℃、減圧下で乾燥してメカニカルリサイクルしたポリアミド6を得た。ポリアミド6(a-3)の相対粘度は2.6、融点は221℃であった。
【0095】
(実施例1)
押出機1台と380mm巾の単層Tダイよりなる装置を使用し、Tダイから下記の樹脂組成物の溶融樹脂をフィルム状に押出し、20℃に温調した冷却ロールにキャストし静電密着させて厚み200μmの未延伸フィルムを得た。
樹脂組成物はポリアミドA(ポリアミド6、東洋紡株式会社製、相対粘度2.8、融点220℃)85質量部、及びポリアミドBが5.0質量部、多孔質シリカ微粒子(富士シリシア化学株式会社製、平均粒子径2.0μm、細孔容積1.6ml/g)0.45質量部及び脂肪酸ビスアマイド(共栄社化学株式会社製エチエンビスステアリン酸アミド)0.15質量部からなるポリアミド樹脂組成物である。
なお、二軸延伸ポリアミドフィルムの厚みは、合計厚みが15μmになるように押出し機の吐出量を調整した。
得られた未延伸フィルムを、ロール式延伸機に導き、ロールの周速差を利用して、80℃でMD方向に1.73倍延伸した後、70℃でさらに1.85倍延伸した。引き続き、連続的にテンター式延伸機に導き、110℃で予熱した後、TD方向に120℃で1.2倍、130℃で1.7倍、160℃で2.0倍延伸して、218℃で熱固定処理した後、218℃で7%緩和処理を行い、ついで無機薄膜層を積層する側の表面をコロナ放電処理してフィルムをロール状に巻き取った後スリットし、400mmの幅のフィルムロールを得た。
【0096】
スリットしたフィルムに無機薄膜層として二酸化ケイ素と酸化アルミニウムの複合酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO(純度99.9%)とA1(純度99.9%)とを用いた。このようにして得られたフィルム(無機薄膜層/接着層含有フィルム)における無機薄膜層(SiO/A1複合酸化物層)の膜厚は13nmであった。またこの複合酸化物層の組成は、SiO/A1(質量比)=60/40であった。
【0097】
更にワイヤーバーコート法によって、上記の蒸着で形成された無機薄膜層上にメタキシリレン基含有ウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)WPB341」;固形分30%)からなる水/アルコール系塗工液を塗布し、200℃で15秒乾燥させ、保護層を積層した。乾燥後の塗布量は固形分として0.19g/mであった。
以上のようにして、二軸延伸ポリアミドフィルム/無機薄膜層/保護層の順に積層されたガスバリア性ポリアミドフィルムを作製した。
【0098】
(実施例2~7)
ポリアミド樹脂組成物、延伸倍率、熱固定温度などの製膜条件を表2のように変更した以外は、実施例1と同様の方法でガスバリア性ポリアミドフィルムを得た。得られたガスバリア性ポリアミドフィルムの評価結果を表2に示した。
【0099】
ただし実施例7においては、無機薄膜層として以下の方法で酸化アルミニウムからなる無機薄膜層を積層した。
フィルムを連続式真空蒸着機の巻出し側にセットし、連続式真空蒸着機を10-4Torr以下に減圧し、冷却金属ドラムを介して走行させ、冷却ドラムの下部よりアルミナ製るつぼに純度99.99%の金属アルミニウムを装填し、金属アルミニウムを加熱蒸発させ、その蒸気中に酸素を供給し酸化反応させながらフィルム上に付着堆積させ、厚さ30nmの酸化アルミニウム膜を形成した。
【0100】
(実施例8)
実施例8においては、以下の同時二軸延伸方法を用いてガスバリア性ポリアミドフィルムを得た。
押出機1台と380mm巾の単層Tダイよりなる装置を使用し、Tダイから実施例4と同じ樹脂組成物の溶融樹脂をフィルム状に押出し、20℃に温調した冷却ロールにキャストし静電密着させて厚み160μmのシートを得た。得られたシートを50℃に調整した温水槽に送り2分間の浸水処理を施して水分率約4%に調整した。このシートの幅方向の端部をテンター式同時二軸延伸機のクリップに保持させ、180℃で縦横両軸方向に3.3倍に延伸した後、210℃で熱固定処理し、さらに210℃で5%横方向に緩和処理を行い、ついで無機薄膜層を積層する側の表面をコロナ放電処理してフィルムをロール状に巻き取った後スリットし、400mmの幅のフィルムロールを得た。
【0101】
(比較例1)
ポリアミド樹脂組成物、延伸倍率、熱固定温度などの製膜条件を表2のように変更した以外は、実施例1と同様の方法で、石油化学由来の原料から新たに重合したポリアミド6(a-1)のみを原料として使用した無機薄膜層を持たない二軸延伸ポリアミドフィルムを得た。
【0102】
【表2】
【0103】
表2に示したとおり、実施例に示したケミカルリサイクルしたポリアミド6(a-2)を使用したガスバリア性ポリアミドフィルムまたはケミカルリサイクルしたポリアミド6(a-2)とメカニカルリサイクルしたポリアミド6(a-3)を使用したガスバリア性ポリアミドフィルムは、耐衝撃性や突刺し強度、耐屈曲ピンホール性、ガスバリア性のいずれの特性も良好であり、ガスバリア性が要求される包装用フィルムとして優れていた。
一方、比較例1のリサイクルしていない石油化学由来の原料から新たに重合したポリアミド6(a-1)のみを原料として使用した無機薄膜層を持たない二軸延伸ポリアミドフィルムは、実施例と同等の衝撃強度や突刺し強度を持った二軸延伸ポリアミドフィルムを得ることができたが、酸素透過度が高くガスバリア性が要求される包装用フィルムには適していなかった。
【0104】
(実施例9)
押出機2台と380mm巾の共押出Tダイよりなる装置を使用し、フィードブロック法でB層/A層/B層の構成で積層してTダイから溶融樹脂をフィルム状に押出し、20℃に温調した冷却ロールにキャストし静電密着させて厚み200μmの未延伸フィルムを得た。
A層とB層の樹脂組成物は以下のとおりである。
A層を構成する樹脂組成物:ポリアミド樹脂(a-1)としてポリアミド6(東洋紡株式会社製、相対粘度2.8、融点220℃)95質量部、及びポリアミド樹脂(a-2)5質量部からなるポリアミド樹脂組成物。
B層を構成する樹脂組成物:ポリアミド樹脂(a-1)としてポリアミド6(東洋紡株式会社製、相対粘度2.8、融点220℃)95質量部、及びポリアミド樹脂(a-2)5.0質量部、多孔質シリカ微粒子(富士シリシア化学株式会社製、平均粒子径2.0μm、細孔容積1.6ml/g)0.45質量部及び脂肪酸ビスアマイド(共栄社化学株式会社製エチエンビスステアリン酸アミド)0.15質量部からなる樹脂組成物。
【0105】
なお、二軸延伸ポリアミドフィルムの厚みは、合計厚みが15μm、基材層(A層)の厚みが12μm、表裏の表層(B層)の厚みがそれぞれ1.5μmずつになるように、フィードブロックの構成と押出し機の吐出量を調整した。
得られた未延伸フィルムを、ロール式延伸機に導き、ロールの周速差を利用して、80℃でMD方向に1.73倍延伸した後、70℃でさらに1.85倍延伸した。引き続き、この一軸延伸フィルムにロールコーターで下記の塗布液(A)を塗布した後、70℃の温風で乾燥させつつ、連続的にテンター式延伸機に導き、110℃で予熱した後、TD方向に120℃で1.2倍、130℃で1.7倍、160℃で2.0倍延伸して、218℃で熱固定処理した後、218℃で7%緩和処理を行い、ついで無機薄膜層を積層する側の表面をコロナ放電処理してフィルムをロール状に巻き取った後スリットし、400mmの幅のフィルムロールを得た。
【0106】
スリットしたフィルムに実施例1と同様に無機薄膜層と保護層を積層し、二軸延伸ポリアミドフィルム/無機薄膜層/保護層の順に積層されたガスバリア性ポリアミドフィルムを作製した。
【0107】
(実施例10~17)
ポリアミド樹脂組成物、延伸倍率、熱固定温度などの製膜条件を表3のように変更した以外は、実施例9と同様の方法でガスバリア性ポリアミドフィルムを得た。得られたガスバリア性ポリアミドフィルムの評価結果を表3に示した。
ただし、実施例16においては、無機薄膜層として実施例7と同じく酸化アルミニウム薄膜層を積層した。
また、実施例17においては、実施例8と同じく同時二軸延伸法を用いて、ガスバリア性ポリアミドフィルムを得た。
【0108】
(比較例1)
ポリアミド樹脂組成物、延伸倍率、熱固定温度などの製膜条件を表3のように変更した以外は、実施例1と同様の方法で、石油化学由来の原料から新たに重合したポリアミド6(a-1)のみを原料として使用した無機薄膜層を持たない二軸延伸ポリアミドフィルムを得た。
【0109】
(参考例1、2)
ポリアミド樹脂組成物、延伸倍率、熱固定温度などの製膜条件を表3のように変更した以外は、実施例9と同様の方法で、表面層(B層)にメカニカルリサイクルしたポリアミド6(a-3)を多く配合したガスバリア性ポリアミドフィルムを得た。得られたガスバリア性ポリアミドフィルムの評価結果を表3に示した。
【0110】
【表3】
【0111】
表3に示したとおり、実施例に示したケミカルリサイクルしたポリアミド6(a-2)を使用したガスバリア性ポリアミドフィルムまたはケミカルリサイクルしたポリアミド6(a-2)とメカニカルリサイクルしたポリアミド6(a-3)を使用したガスバリア性ポリアミドフィルムは、耐衝撃性や突刺し強度、耐屈曲ピンホール性、ガスバリア性のいずれの特性も良好であり、ガスバリア性が要求される包装用フィルムとして優れていた。
一方、比較例2のリサイクルしていない石油化学由来の原料から新たに重合したポリアミド6(a-1)のみを原料として使用した無機薄膜層を持たない二軸延伸ポリアミドフィルムは、実施例と同等の衝撃強度や突刺し強度を持った二軸延伸ポリアミドフィルムを得ることができたが、酸素透過度が高くガスバリア性が要求される包装用フィルムには適していなかった。
【0112】
なお、参考例1及び2では表面層(B層)にメカニカルリサイクルしたポリアミド6を多く使用した。この場合、実施例8~15の表面層のメカニカルリサイクルしたポリアミド6の含有量が10質量%以下のフィルムに比べて、透明性(ヘイズ)と耐摩擦ピンホール性が劣っていた。
【0113】
(施例18)
実施例1-2で作製したガスバリア性ポリアミドフィルムを使用して以下の(1)~(9)の構成の積層体を作製し、(1)~(9)の積層体を使用して三方シールタイプ及びピロータイプの包装袋を作製した。外観が良好で落下衝撃テストで破れにくい包装袋を作製できた。
(1)ガスバリア性ポリアミドフィルム層/印刷層/ポリウレタン系接着剤層/直鎖状低密度ポリエチレンフィルムシーラント層。
(2)ガスバリア性ポリアミドフィルム層/印刷層/ポリウレタン系接着剤層/無延伸ポリプロピレンフィルムシーラント層。
(3)二軸延伸PETフィルム層/印刷層/ポリウレタン系接着剤層/ガスバリア性ポリアミドフィルム層/ポリウレタン系接着剤層/無延伸ポリプロピレンフィルムシーラント層。
(4)二軸延伸PETフィルム層/印刷層/ポリウレタン系接着剤層/ガスバリア性ポリアミドフィルム層/ポリウレタン系接着剤層/直鎖状低密度ポリエチレンフィルムシーラント層。
【産業上の利用可能性】
【0114】
本発明のガスバリア性ポリアミドフィルムは、耐衝撃性及び耐屈曲ピンホール性と耐摩擦ピンホール性が同時に優れ、かつガスバリア性が優れているので、各種のガスバリア性必要とされる食品包装及び工業用の包装材料として好適に用いることができる。更に、廃棄ポリアミド製品からケミカルリサイクルしたポリアミド6を用いたることで、環境負荷を低減に寄与することができる。
図1