IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社半導体エネルギー研究所の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024153634
(43)【公開日】2024-10-29
(54)【発明の名称】半導体装置
(51)【国際特許分類】
   H01L 29/786 20060101AFI20241022BHJP
   H01L 21/336 20060101ALI20241022BHJP
   H10K 59/12 20230101ALI20241022BHJP
   G09F 9/30 20060101ALI20241022BHJP
【FI】
H01L29/78 617K
H01L29/78 616A
H01L29/78 618B
H01L29/78 617M
H01L29/78 617L
H10K59/12
G09F9/30 338
G09F9/30 348A
H01L29/78 617S
【審査請求】有
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2024106641
(22)【出願日】2024-07-02
(62)【分割の表示】P 2020554603の分割
【原出願日】2019-10-21
(31)【優先権主張番号】P 2018207226
(32)【優先日】2018-11-02
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】中田 昌孝
(72)【発明者】
【氏名】井口 貴弘
(72)【発明者】
【氏名】保坂 泰靖
(72)【発明者】
【氏名】重信 匠
(57)【要約】      (修正有)
【課題】電気特性の良好な半導体装置、信頼性の高い半導体装置及び電気特性の安定した半導体装置を提供する。
【解決手段】半導体装置は、半導体層、第1の絶縁層110、金属酸化物層114、導電層112及び絶縁領域150を有する。第1の絶縁層は、半導体層の上面及び側面を覆い、導電層は、第1の絶縁層上に位置する。金属酸化物層は、第1の絶縁層と導電層との間に位置し、金属酸化物層の端部は、導電層の端部よりも内側に位置する。絶縁領域は、金属酸化物層と隣接し、且つ、第1の絶縁層と導電層との間に位置する。また、半導体層は、領域108C、一対の領域108L及び一対の領域108Nと、を有する。領域108Cは、金属酸化物層及び導電層と重なる。領域108Lは、領域108Cを挟み、絶縁領域及び導電層と重なる。領域108Nは、領域108C及び一対の領域108Lを挟み、且つ、導電層と重ならない。
【選択図】図2
【特許請求の範囲】
【請求項1】
半導体層と、第1の絶縁層と、金属酸化物層と、導電層と、絶縁領域と、を有し、
前記第1の絶縁層は、前記半導体層上に位置する領域を有し、
前記導電層は、前記第1の絶縁層上に位置する領域を有し、
断面視において、前記金属酸化物層は、前記第1の絶縁層と前記導電層との間に位置する領域を有し、
断面視において、前記金属酸化物層の端部は、前記導電層の端部よりも内側に位置する領域を有し、
断面視において、前記絶縁領域は、前記金属酸化物層と隣接し、且つ前記第1の絶縁層と前記導電層との間に位置する領域を有し、
前記半導体層は、第1の領域と、一対の第2の領域と、一対の第3の領域と、を有し、
前記第1の領域は、前記金属酸化物層及び前記導電層と重なり、且つチャネル形成領域としての機能を有し、
前記第2の領域は、前記第1の領域を挟み、前記絶縁領域及び前記導電層と重なり、且つ前記金属酸化物層と重ならない領域であり、
前記第3の領域は、前記第1の領域及び一対の前記第2の領域を挟み、且つ前記導電層と重ならない領域であり、
前記第3の領域は、前記第1の領域よりも低抵抗である部分を含み、
前記第2の領域は、前記第3の領域よりも高抵抗である部分を含み、
前記第1の絶縁層は、前記第1の領域の上面及び側面、前記第2の領域の上面及び側面、並びに前記第3の領域の上面及び側面を覆う領域を有し、
前記第3の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第1の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記半導体層及び前記金属酸化物層はそれぞれ、インジウムを含み、
前記絶縁領域は、空隙を有する半導体装置。
【請求項2】
半導体層と、第1の絶縁層と、金属酸化物層と、導電層と、絶縁領域と、を有し、
前記第1の絶縁層は、前記半導体層上に位置する領域を有し、
前記導電層は、前記第1の絶縁層上に位置する領域を有し、
断面視において、前記金属酸化物層は、前記第1の絶縁層と前記導電層との間に位置する領域を有し、
断面視において、前記金属酸化物層の端部は、前記導電層の端部よりも内側に位置し、
断面視において、前記絶縁領域は、前記金属酸化物層と隣接し、且つ前記第1の絶縁層と前記導電層との間に位置する領域を有し、
前記半導体層は、第1の領域と、一対の第2の領域と、一対の第3の領域と、を有し、
前記第1の領域は、前記金属酸化物層及び前記導電層と重なり、且つチャネル形成領域としての機能を有し、
前記第2の領域は、前記第1の領域を挟み、前記絶縁領域及び前記導電層と重なり、且つ前記金属酸化物層と重ならない領域であり、
前記第3の領域は、前記第1の領域及び一対の前記第2の領域を挟み、且つ前記導電層と重ならない領域であり、
前記第3の領域は、前記第1の領域よりも低抵抗である部分を含み、
前記第2の領域は、前記第3の領域よりも高抵抗である部分を含み、
前記第1の絶縁層は、前記第1の領域の上面及び側面、前記第2の領域の上面及び側面、並びに前記第3の領域の上面及び側面を覆う領域を有し、
前記第3の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第1の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記第2の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第1の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記半導体層及び前記金属酸化物層はそれぞれ、インジウムを含み、
前記絶縁領域は、空隙を有する半導体装置。
【請求項3】
半導体層と、第1の絶縁層と、金属酸化物層と、導電層と、絶縁領域と、を有し、
前記第1の絶縁層は、前記半導体層上に位置する領域を有し、
前記導電層は、前記第1の絶縁層上に位置する領域を有し、
断面視において、前記金属酸化物層は、前記第1の絶縁層と前記導電層との間に位置する領域を有し、
断面視において、前記金属酸化物層の端部は、前記導電層の端部よりも内側に位置し、
断面視において、前記絶縁領域は、前記金属酸化物層と隣接し、且つ前記第1の絶縁層と前記導電層との間に位置する領域を有し、
前記半導体層は、第1の領域と、一対の第2の領域と、一対の第3の領域と、を有し、
前記第1の領域は、前記金属酸化物層及び前記導電層と重なり、且つチャネル形成領域としての機能を有し、
前記第2の領域は、前記第1の領域を挟み、前記絶縁領域及び前記導電層と重なり、且つ前記金属酸化物層と重ならない領域であり、
前記第3の領域は、前記第1の領域及び一対の前記第2の領域を挟み、且つ前記導電層と重ならない領域であり、
前記第3の領域は、前記第1の領域よりも低抵抗である部分を含み、
前記第2の領域は、前記第3の領域よりも高抵抗である部分を含み、
前記第1の絶縁層は、前記第1の領域の上面及び側面、前記第2の領域の上面及び側面、並びに前記第3の領域の上面及び側面を覆う領域を有し、
前記第3の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第1の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記第3の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第2の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記半導体層及び前記金属酸化物層はそれぞれ、インジウムを含み、
前記絶縁領域は、空隙を有する半導体装置。
【請求項4】
請求項1乃至請求項3のいずれか一において、
前記絶縁領域と、前記第1の絶縁層とは、比誘電率が異なる半導体装置。
【請求項5】
請求項1乃至請求項4のいずれか一において、
前記第3の領域は、第1の元素を含み、
前記第1の元素は、ホウ素、リン、アルミニウム、及びマグネシウムから選ばれる一以上である半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、半導体装置、及びその作製方法に関する。本発明の一態様は、表示装置に関する。
【0002】
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
【背景技術】
【0003】
トランジスタに適用可能な半導体材料として、金属酸化物を用いた酸化物半導体が注目されている。例えば、特許文献1では、複数の酸化物半導体層を積層し、当該複数の酸化物半導体層の中で、チャネルとなる酸化物半導体層がインジウム及びガリウムを含み、且つインジウムの割合をガリウムの割合よりも大きくすることで、電界効果移動度(単に移動度、またはμFEという場合がある)を高めた半導体装置が開示されている。
【0004】
半導体層に用いることのできる金属酸化物は、スパッタリング法などを用いて形成できるため、大型の表示装置を構成するトランジスタの半導体層に用いることができる。また、多結晶シリコンや非晶質シリコンを用いたトランジスタの生産設備の一部を改良して利用することが可能なため、設備投資を抑えられる。また、金属酸化物を用いたトランジスタは、非晶質シリコンを用いた場合に比べて高い電界効果移動度を有するため、駆動回路を設けた高性能の表示装置を実現できる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2014-7399号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の一態様は、電気特性の良好な半導体装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い半導体装置を提供することを課題の一とする。本発明の一態様は、電気特性の安定した半導体装置を提供することを課題の一とする。本発明の一態様は、新規の半導体装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一とする。本発明の一態様は、新規の表示装置を提供することを課題の一とする。
【0007】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
【課題を解決するための手段】
【0008】
本発明の一態様は、半導体層と、第1の絶縁層と、金属酸化物層と、導電層と、絶縁領域と、を有する半導体装置である。第1の絶縁層は、半導体層の上面及び側面を覆い、導電層は、第1の絶縁層上に位置する。金属酸化物層は、第1の絶縁層と導電層との間に位置し、金属酸化物層の端部は、導電層の端部よりも内側に位置する。絶縁領域は、金属酸化物層と隣接し、且つ第1の絶縁層と導電層との間に位置する。また、半導体層は、第1の領域と、一対の第2の領域と、一対の第3の領域と、を有する。第1の領域は、金属酸化物層及び導電層と重なる。第2の領域は、第1の領域を挟み、且つ絶縁領域及び導電層と重なる。第3の領域は、第1の領域及び一対の第2の領域を挟み、且つ導電層と重ならない。第3の領域は、第1の領域よりも低抵抗である部分を含むことが好ましい。第2の領域は、第3の領域よりも高抵抗である部分を含むことが好ましい。
【0009】
前述の半導体装置において、絶縁領域と、第1の絶縁層とは、比誘電率が異なることが好ましい。
【0010】
前述の半導体装置において、絶縁領域は、空隙を有することが好ましい。
【0011】
前述の半導体装置において、さらに第2の絶縁層を有し、第2の絶縁層は、第1の絶縁層の上面と接し、絶縁領域は、第2の絶縁層を含むことが好ましい。
【0012】
前述の半導体装置において、第1の絶縁層は、酸化物又は窒化物を含み、第2の絶縁層は、酸化物又は窒化物を含むことが好ましい。
【0013】
前述の半導体装置において、第1の絶縁層は、シリコン及び酸素を含み、第2の絶縁層は、シリコン及び酸素を含むことが好ましい。
【0014】
前述の半導体装置において、第1の絶縁層は、シリコン及び酸素を含み、第2の絶縁層は、シリコン及び窒素を含むことが好ましい。
【0015】
前述の半導体装置において、さらに第3の絶縁層を有し、第3の絶縁層は、第2の絶縁層の上面と接し、第3の絶縁層は、窒化物を含むことが好ましい。
【0016】
前述の半導体装置において、第3の絶縁層は、シリコン及び窒素を含むことが好ましい。
【0017】
前述の半導体装置において、第3の領域は、第1の元素を含み、第1の元素は、ホウ素、リン、アルミニウム、及びマグネシウムから選ばれる一以上であることが好ましい。
【0018】
前述の半導体装置において、半導体層及び金属酸化物層はそれぞれ、インジウムを含み、半導体層と、金属酸化物層とは、インジウムの含有率が概略等しいことが好ましい。
【発明の効果】
【0019】
本発明の一態様によれば、電気特性の良好な半導体装置を提供できる。または、信頼性の高い半導体装置を提供できる。または、電気特性の安定した半導体装置を提供できる。または、新規の半導体装置を提供できる。または、信頼性の高い表示装置を提供できる。または、新規の表示装置を提供できる。
【0020】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
【図面の簡単な説明】
【0021】
図1図1Aは、トランジスタの構成例を示す上面図である。図1B図1Cは、トランジスタの構成例を示す断面図である。
図2図2A図2Bは、トランジスタの構成例を示す断面図である。
図3図3A図3Bは、トランジスタの構成例を示す断面図である。
図4図4A図4Bは、トランジスタの構成例を示す断面図である。
図5図5Aは、トランジスタの構成例を示す上面図である。図5B図5Cは、トランジスタの構成例を示す断面図である。
図6図6A図6Bは、トランジスタの構成例を示す断面図である。
図7図7A図7Bは、トランジスタの構成例を示す断面図である。
図8図8A図8B図8C図8D図8Eは、トランジスタの作製方法を説明する断面図である。
図9図9A図9B図9Cは、トランジスタの作製方法を説明する断面図である。
図10図10A図10B図10Cは、トランジスタの作製方法を説明する断面図である。
図11図11A図11B図11Cは、トランジスタの作製方法を説明する断面図である。
図12図12A図12B図12Cは、表示装置の上面図である。
図13図13は、表示装置の断面図である。
図14図14は、表示装置の断面図である。
図15図15は、表示装置の断面図である。
図16図16は、表示装置の断面図である。
図17図17Aは、表示装置のブロック図である。図17B図17Cは、表示装置の回路図である。
図18図18A図18C図18Dは、表示装置の回路図である。図18Bは、表示装置のタイミングチャートである。
図19図19A図19Bは、表示モジュールの構成例である。
図20図20A図20Bは、電子機器の構成例である。
図21図21A図21B図21C図21D図21Eは、電子機器の構成例である。
図22図22A図22B図22C図22D図22E図22F図22Gは、電子機器の構成例である。
図23図23A図23B図23C図23Dは、電子機器の構成例である。
図24図24は、断面のSTEM像である。
図25図25は、トランジスタのId-Vg特性を示す図、及び断面のSTEM像である。
図26図26は、トランジスタのId-Vg特性を示す図、及び断面のSTEM像である。
図27図27は、トランジスタのId-Vg特性を示す図、及び断面のSTEM像である。
図28図28は、トランジスタの信頼性試験結果を示す図である。
図29図29は、試料の断面構造を示す図である。
図30図30は、試料のシート抵抗を示す図である。
図31図31は、断面のSTEM像である。
【発明を実施するための形態】
【0022】
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
【0023】
本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。
【0024】
本明細書等にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではない。
【0025】
本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
【0026】
本明細書等において、トランジスタが有するソースとドレインの機能は、トランジスタの極性や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、ソースやドレインの用語は、入れ替えて用いることができるものとする。
【0027】
なお、本明細書等において、トランジスタのチャネル長方向とは、ソース領域とドレイン領域間を最短距離で結ぶ直線に平行な方向のうちの1つをいう。すなわち、チャネル長方向は、トランジスタがオン状態のときに半導体層を流れる電流の方向のうちの1つに相当する。また、チャネル幅方向とは、当該チャネル長方向に直交する方向をいう。なお、トランジスタの構造や形状によっては、チャネル長方向及びチャネル幅方向は1つに定まらない場合がある。
【0028】
本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有する素子などが含まれる。
【0029】
本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」や「絶縁層」という用語は、「導電膜」や「絶縁膜」という用語に相互に交換することが可能な場合がある。
【0030】
なお、本明細書等において「上面形状が概略一致」とは、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置することや、上層が下層の外側に位置することもあり、この場合も「上面形状が概略一致」という。
【0031】
本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い(pチャネル型トランジスタでは、Vthよりも高い)状態をいう。
【0032】
本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
【0033】
本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
【0034】
なお、本明細書等において、表示装置の一態様であるタッチパネルは表示面に画像等を表示する機能と、表示面に指やスタイラスなどの被検知体が触れる、押圧する、または近づくことなどを検出するタッチセンサとしての機能と、を有する。したがってタッチパネルは入出力装置の一態様である。
【0035】
タッチパネルは、例えばタッチセンサ付き表示パネル(または表示装置)、タッチセンサ機能つき表示パネル(または表示装置)とも呼ぶことができる。タッチパネルは、表示パネルとタッチセンサパネルとを有する構成とすることもできる。または、表示パネルの内部または表面にタッチセンサとしての機能を有する構成とすることもできる。
【0036】
本明細書等では、タッチパネルの基板に、コネクターやICが実装されたものを、タッチパネルモジュール、表示モジュール、または単にタッチパネルなどと呼ぶ場合がある。
【0037】
(実施の形態1)
本実施の形態では、本発明の一態様の半導体装置、およびその作製方法について説明する。特に本実施の形態では、半導体装置の一例として、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタについて説明する。
【0038】
本発明の一態様は、被形成面上に、チャネルが形成される半導体層と、半導体層上に絶縁層と、絶縁層上に金属酸化物層と、導電層と、を有するトランジスタである。また、本発明の一態様であるトランジスタは、金属酸化物層と隣接する絶縁領域を有することが好ましい。絶縁領域は、ゲート絶縁層と導電層との間に位置する。半導体層は、半導体特性を示す金属酸化物(以下、酸化物半導体ともいう)を含んで構成されることが好ましい。
【0039】
金属酸化物層の端部は、導電層の端部よりも内側に位置するように設けられていることが好ましい。言い換えると、導電層は、金属酸化物層の端部よりも外側に突出した部分を有することが好ましい。金属酸化物層及び導電層の一部は、ゲート電極と機能する。
【0040】
絶縁領域は、絶縁層と比誘電率が異なることが好ましい。例えば、絶縁領域は、空隙を含んでもよい。また、絶縁層は、半導体層の上面及び側面を覆って設けられることが好ましい。絶縁層及び絶縁領域の一部は、ゲート絶縁層として機能する。
【0041】
半導体層は、金属酸化物層及び導電層と重なる第1の領域と、絶縁領域及び導電層と重なる第2の領域と、導電層と重ならない第3の領域を有する。第1の領域は、チャネル形成領域として機能する領域である。第3の領域は、第1の領域よりも低抵抗な領域であり、ソース領域またはドレイン領域として機能する領域である。また第2の領域は、第3の領域よりも高抵抗な領域であることが好ましい。
【0042】
第2の領域は、絶縁領域を挟んでゲート電極として機能する導電層と重なるため、オーバーラップ領域(Lov領域)とも呼ぶことができる。また、第2の領域は、ゲートの電界が掛からない、または第1の領域よりも掛かりにくいバッファ領域として機能する。本発明の一態様であるトランジスタは、半導体層中のチャネル形成領域である第1の領域と、ソース領域またはドレイン領域として機能する第3の領域との間に、第2の領域を有する。第2の領域を有することにより、トランジスタのソース-ドレイン耐圧を向上させることができ、高電圧で駆動する場合であっても信頼性の高いトランジスタを実現できる。
【0043】
以下では、より具体的な例について、図面を参照して説明する。
【0044】
<構成例1>
図1Aは、トランジスタ100の上面図であり、図1Bは、図1Aに示す一点鎖線A1-A2における切断面の断面図に相当し、図1Cは、図1Aに示す一点鎖線B1-B2における切断面の断面図に相当する。なお、図1Aにおいて、トランジスタ100の構成要素の一部(ゲート絶縁層等)を省略して図示している。また、一点鎖線A1-A2方向はチャネル長方向、一点鎖線B1-B2方向はチャネル幅方向に相当する。また、トランジスタの上面図については、以降の図面においても図1Aと同様に、構成要素の一部を省略して図示するものとする。
【0045】
トランジスタ100は、基板102上に設けられ、絶縁層103、半導体層108、絶縁層110、金属酸化物層114、導電層112、絶縁層118等を有する。島状の半導体層108は、絶縁層103上に設けられる。絶縁層110は、絶縁層103の上面、半導体層108の上面及び側面に接して設けられる。金属酸化物層114及び導電層112は、絶縁層110上にこの順に積層して設けられ、半導体層108と重畳する部分を有する。絶縁層118は、絶縁層110の上面、並びに導電層112の上面及び側面を覆って設けられている。図1B中の一点鎖線で囲った領域Pの拡大図を、図2Aに示す。
【0046】
図2Aに示すように、トランジスタ100は金属酸化物層114と隣接する絶縁領域150を有する。絶縁領域150は、絶縁層110と導電層112との間に位置する。
【0047】
金属酸化物層114として導電性材料を用いることができる。導電層112及び金属酸化物層114の一部は、ゲート電極として機能する。絶縁層110及び絶縁領域150の一部は、ゲート絶縁層として機能する。トランジスタ100は、半導体層108上にゲート電極が設けられた、いわゆるトップゲート型のトランジスタである。
【0048】
金属酸化物層114の端部は、絶縁層110上において、導電層112の端部よりも内側に位置する。言い換えると、導電層112は、絶縁層110上において、金属酸化物層114の端部よりも外側に突出した部分を有する。
【0049】
半導体層108は、半導体特性を示す金属酸化物(以下、酸化物半導体ともいう)を含んで構成される。半導体層108は、少なくともインジウムと酸素とを含むことが好ましい。半導体層108がインジウムの酸化物を含むことで、キャリア移動度を高めることができ、例えばアモルファスシリコンよりも大きな電流を流すことのできるトランジスタを実現できる。また、半導体層108は、これらに加えて亜鉛を含んでいてもよい。また、半導体層108は、ガリウムを含んでいてもよい。
【0050】
半導体層108として、代表的には、酸化インジウム、インジウム亜鉛酸化物(In-Zn酸化物)、インジウムガリウム亜鉛酸化物(In-Ga-Zn酸化物、IGZOとも表記する)などを用いることができる。また、インジウムスズ酸化物(In-Sn酸化物)、またはシリコンを含むインジウムスズ酸化物などを用いることもできる。なお半導体層108に用いることのできる材料の詳細については、後述する。
【0051】
ここで、半導体層108の組成は、トランジスタ100の電気的特性や、信頼性に大きく影響する。例えば、半導体層108中のインジウムの含有量を多くすることで、キャリア移動度が向上し、電界効果移動度の高いトランジスタを実現することができる。
【0052】
半導体層108は、領域108Cと、領域108Cを挟む一対の領域108Lと、その外側に一対の領域108Nとを有する。
【0053】
領域108Cは、導電層112及び金属酸化物層114と重なり、チャネル形成領域として機能する。
【0054】
領域108Lは、導電層112及び絶縁領域150と重なる。また、領域108Lは、導電層112と重なり、且つ金属酸化物層114とは重ならないとも言える。領域108Lは、導電層112にゲート電圧が与えられた場合に、チャネルが形成されうる領域である。しかし、領域108Lは、絶縁領域150を介して導電層112と重畳するため、領域108Lに与えられる電界は、領域108Cに与えられる電界よりも弱くなる。その結果、領域108Lは、領域108Cよりも高抵抗な領域となり、ドレイン電界を緩和させるためのバッファ領域として機能する。さらに、例えば領域108Lのキャリア濃度が極めて低く、領域108Cと同程度である場合であっても、導電層112の電界によってチャネルが形成されうる。
【0055】
このように、チャネル形成領域である領域108Cと、ソース領域またはドレイン領域である領域108Nとの間に、領域108Lを設けることにより、高いドレイン耐圧と、高いオン電流とを兼ね備え、信頼性の高いトランジスタを実現することができる。
【0056】
領域108Nは、導電層112及び金属酸化物層114のいずれとも重ならず、ソース領域またはドレイン領域として機能する。
【0057】
図2Aでは、トランジスタ100のチャネル長方向における導電層112の幅、つまり領域108C及び領域108Lの幅をL1で示している。また、トランジスタ100のチャネル長方向における絶縁領域の幅、つまり領域108Lの幅をL2で示している。
【0058】
低抵抗の領域108Nは、領域108Cよりもキャリア濃度の高い領域であり、ソース領域、及びドレイン領域として機能する。領域108Nは、領域108Cよりも低抵抗な領域、キャリア濃度の高い領域、酸素欠損量の多い領域、水素濃度の高い領域、または、不純物濃度の高い領域とも言うことができる。
【0059】
領域108Nの電気抵抗は低いほど好ましく、例えば、領域108Nのシート抵抗は、1Ω/□以上1×10Ω/□未満、好ましくは1Ω/□以上8×10Ω/□以下とすることが好ましい。また、チャネルが形成されていない状態における領域108Cの電気抵抗は高いほど好ましく、例えば領域108Cのシート抵抗は、1×10Ω/□以上、好ましくは5×10Ω/□以上、より好ましくは1×1010Ω/□以上であることが好ましい。
【0060】
領域108Lは、領域108Cと比較して、抵抗が同程度または低い領域、キャリア濃度が同程度または高い領域、酸素欠陥密度が同程度または高い領域、不純物濃度が同程度または高い領域ともいうことができる。
【0061】
領域108Lは、領域108Nと比較して、抵抗が同程度または高い領域、キャリア濃度が同程度または低い領域、酸素欠陥密度が同程度または低い領域、不純物濃度が同程度または低い領域ともいうことができる。
【0062】
領域108Lのシート抵抗は、1×10Ω/□以上1×10Ω/□以下が好ましく、さらには1×10Ω/□以上1×10Ω/□以下が好ましく、さらには1×10Ω/□以上1×10Ω/□以下が好ましい。前述の抵抗の範囲とすることで、電気特性が良好でかつ信頼性の高いトランジスタとすることができる。なお、シート抵抗は、抵抗の値から算出できる。このような領域108Lを、領域108Nと領域108Cとの間に設けることで、トランジスタ100のソース-ドレイン耐圧を高めることができる。
【0063】
なお、領域108L中のキャリア濃度は均一でなくてもよく、領域108N側から領域108C側にかけてキャリア濃度が小さくなるような勾配を有している場合がある。例えば、領域108L中の水素濃度または酸素欠損の濃度のいずれか一方、または両方が、領域108N側から領域108C側にかけて濃度が小さくなるような勾配を有していてもよい。
【0064】
後述するように、領域108Lを自己整合的に形成することが可能となるため、領域108Lを形成するためのフォトマスクを必要とせず、作製コストを低減できる。また、自己整合的に領域108Lを形成することにより、領域108Lと導電層112の相対的な位置ずれが生じることがないため、半導体層108中の領域108Lの幅を概略一致させることができる。
【0065】
半導体層108中の領域108Cと領域108Nの間に、ゲートの電界が掛からない、または領域108Cよりも掛かりにくいオフセット領域として機能する領域108Lをばらつきなく安定して形成できる。その結果、トランジスタのソース-ドレイン耐圧を向上させることができ、信頼性の高いトランジスタを実現できる。
【0066】
領域108Lの幅L2は、5nm以上2μm以下が好ましく、さらには10nm以上1μm以下が好ましく、さらに15nm以上500nm以下が好ましい。領域108Lを設けることにより、ドレイン付近に電界が集中することが緩和され、特にドレイン電圧が高い状態でのトランジスタの劣化を抑制できる。また、特に、領域108Lの幅L2を大きくすることで、効果的にドレイン付近への電界集中を抑制することができる。一方、幅L2が500nmよりも長いとソース-ドレイン抵抗が高まり、トランジスタの駆動速度が遅くなる場合がある。幅L2を前述の範囲とすることで、信頼性が高く、かつ駆動速度の速いトランジスタ、半導体装置とすることができる。なお、領域108Lの幅L2は、半導体層108の厚さ、絶縁層110の厚さ、トランジスタ100を駆動する際のソース-ドレイン間に印加する電圧の大きさに応じて決定することができる。
【0067】
領域108Cと領域108Nの間に領域108Lを設けることにより、領域108Cと領域108Nの境界での電流密度を緩和でき、チャネルとソース又はドレインの境界における発熱が抑制され、信頼性の高いトランジスタ、半導体装置とすることができる。
【0068】
トランジスタ100は、絶縁領域150が空隙130を含んでもよい。または、絶縁領域150が空隙130及び絶縁層118のいずれか一以上を含んでもよい。図2Aは、絶縁領域150が空隙130を含み、かつ絶縁層118を含まない例を示している。また、図2Aは、絶縁層118が金属酸化物層114の側面と接触せずに設けられる例を示している。図2Bは、絶縁領域150が空隙130及び絶縁層118を含む例を示している。また、図2Bは、絶縁層118が金属酸化物層114の側面の一部と接触して設けられる例を示している。図3Aは、絶縁領域150が絶縁層118を含み、かつ空隙130を含まない例を示している。また、図3Aは、絶縁層118が金属酸化物層114の側面と接触して設けられる例を示している。
【0069】
なお、図2A示すように絶縁領域150が空隙130を含み、かつ絶縁層118を含まない場合、絶縁領域150は空気を有し、絶縁領域150の比誘電率εrは空気と同じく概ね1となる。これに対し、例えば、絶縁層110として用いることができる酸化シリコンの比誘電率εrは概ね4.0乃至4.5、窒化シリコンの比誘電率εrは概ね7.0であり、絶縁層110の比誘電率εrは1より大きい。また、図2Bに示すように絶縁領域150が空隙130及び絶縁層118を含む場合、断面における空隙130及び絶縁層118の面積比から絶縁領域150の比誘電率εrを算出でき、絶縁領域150の比誘電率εrは1より大きくなる。したがって、絶縁領域150が空隙130を含む場合、絶縁領域150と絶縁層110との比誘電率が異なる。
【0070】
なお、本明細書等において比誘電率が異なるとは、2つの比誘電率の内、比誘電率が小さい一方の比誘電率に対する比誘電率が大きい他方の比誘電率の比が、2.0以上であることを指す。
【0071】
図1A及び図1Bに示すように、トランジスタ100は、絶縁層118上に導電層120a及び導電層120bを有していてもよい。導電層120a及び導電層120bは、ソース電極またはドレイン電極として機能する。導電層120a及び導電層120bは、それぞれ絶縁層118、及び絶縁層110に設けられた開口部141aまたは開口部141bを介して、領域108Nに電気的に接続される。
【0072】
導電層112として、金属または合金を含む導電膜を用いると、電気抵抗が抑制できるため好ましい。なお、導電層112に酸化物導電膜を用いてもよい。
【0073】
金属酸化物層114は、絶縁層110中に酸素を供給する機能を有する。また、絶縁層110と導電層112との間に位置する金属酸化物層114は、絶縁層110に含まれる酸素が導電層112側に拡散することを防ぐバリア膜として機能する。さらに金属酸化物層114は、導電層112に含まれる水素や水が絶縁層110側に拡散することを防ぐバリア膜としても機能する。金属酸化物層114は、例えば少なくとも絶縁層110よりも酸素及び水素を透過しにくい材料を用いることが好ましい。
【0074】
金属酸化物層114により、導電層112にアルミニウムや銅などの酸素を吸引しやすい金属材料を用いた場合であっても、絶縁層110から導電層112へ酸素が拡散することを防ぐことができる。また、導電層112が水素を含む場合であっても、導電層112から絶縁層110を介して半導体層108へ水素が拡散することを防ぐことができる。その結果、半導体層108のチャネル形成領域におけるキャリア密度を極めて低いものとすることができる。
【0075】
金属酸化物層114として、金属酸化物を用いることができる。例えば、酸化インジウム、インジウム亜鉛酸化物、インジウムスズ酸化物(ITO)、シリコンを含有したインジウムスズ酸化物(ITSO)等のインジウムを有する酸化物を用いることができる。インジウムを含む導電性酸化物は、導電性が高いため好ましい。また、ITSOはシリコンを含有することにより結晶化しづらく、平坦性が高いことから、ITSO上に形成される膜との密着性が高くなる。また、金属酸化物層114として、酸化亜鉛、ガリウムを含有した酸化亜鉛等の金属酸化物を用いることができる。金属酸化物層114として、これらを積層した構造を用いてもよい。
【0076】
金属酸化物層114として、半導体層108と同一の元素を一以上含む酸化物材料を用いることが好ましい。特に、上記半導体層108に適用可能な酸化物半導体材料を用いることが好ましい。このとき、金属酸化物層114として、半導体層108と同じスパッタリングターゲットを用いて形成した金属酸化物膜を適用することで、装置を共通にすることができるため好ましい。
【0077】
金属酸化物層114は、スパッタリング装置を用いて形成することが好ましい。例えば、スパッタリング装置を用いて酸化物膜を形成する場合、酸素ガスを含む雰囲気で形成することで、絶縁層110や半導体層108中に好適に酸素を添加することができる。
【0078】
半導体層108の領域108Nは、不純物元素を含む領域である。当該不純物元素として、例えば水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、ヒ素、アルミニウム、または希ガスなどが挙げられる。なお、希ガスの代表例は、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。特に、ホウ素またはリンを含むことが好ましい。またこれら不純物元素を2以上含んでいてもよい。
【0079】
後述するように、領域108Nに不純物を添加する処理は、導電層112をマスクとして、絶縁層110を介して行うことができる。
【0080】
領域108Nは、不純物濃度が、1×1019atoms/cm以上、1×1023atoms/cm以下、好ましくは5×1019atoms/cm以上、5×1022atoms/cm以下、より好ましくは1×1020atoms/cm以上、1×1022atoms/cm以下である領域を含むことが好ましい。
【0081】
領域108Nに含まれる不純物の濃度は、例えば二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)や、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)等の分析法により分析することができる。XPS分析を用いる場合には、表面側または裏面側からのイオンスパッタリングとXPS分析を組み合わせることで、深さ方向の濃度分布を知ることができる。
【0082】
領域108Nにおいて、不純物元素は酸化した状態で存在していることが好ましい。例えば不純物元素としてホウ素、リン、マグネシウム、アルミニウム、シリコンなどの酸化しやすい元素を用いることが好ましい。このような酸化しやすい元素は、半導体層108中の酸素と結合して酸化した状態で安定に存在しうるため、後の工程で高い温度(例えば400℃以上、600℃以上、または800℃以上)がかかった場合であっても、脱離することが抑制される。また、不純物元素が半導体層108中の酸素を奪うことで、領域108N中に多くの酸素欠損が生成される。この酸素欠損と、膜中の水素とが結合することでキャリア供給源となるため、領域108Nは極めて低抵抗な状態となる。
【0083】
例えば、不純物元素としてホウ素を用いた場合、領域108Nに含まれるホウ素は酸素と結合した状態で存在しうる。このことは、XPS分析において、B結合に起因するスペクトルピークが観測されることで確認できる。また、XPS分析において、ホウ素元素が単体で存在する状態に起因するスペクトルピークが観測されない、または測定下限付近に観測されるバックグラウンドノイズに埋もれる程度にまでピーク強度が極めて小さくなる。
【0084】
なお、作製工程中にかかる熱の影響などにより、領域108Nに含まれる上記不純物元素の一部が、領域108L及び領域108Cに拡散する場合がある。領域108L及び領域108C中の不純物元素の濃度はそれぞれ、領域108N中の不純物元素の濃度の10分の1以下であることが好ましく、さらには100分の1以下であることが好ましい。
【0085】
半導体層108のチャネル形成領域に接する絶縁層103と絶縁層110には、酸化物膜を用いることが好ましい。例えば、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜などの酸化物膜を用いることができる。これにより、トランジスタ100の作製工程における熱処理などで、絶縁層103や絶縁層110から脱離した酸素を半導体層108のチャネル形成領域に供給し、半導体層108中の酸素欠損を低減できる。
【0086】
なお、本明細書等において、酸化窒化物とはその組成として窒素よりも酸素の含有量が多い物質を指し、酸化窒化物は酸化物に含まれる。窒化酸化物とはその組成として酸素よりも窒素の含有量が多い物質を指し、窒化酸化物は窒化物に含まれる。
【0087】
半導体層108と接する絶縁層110は、化学量論的組成よりも過剰に酸素を含有する領域を有することがより好ましい。別言すると、絶縁層110は、酸素を放出することが可能な絶縁膜を有する。例えば、酸素雰囲気下にて絶縁層110を形成すること、成膜後の絶縁層110に対して酸素雰囲気下での熱処理、プラズマ処理等を行うこと、または、絶縁層110上に酸素雰囲気下で酸化物膜を成膜することなどにより、絶縁層110中に酸素を供給することもできる。
【0088】
例えば、絶縁層110は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。また、CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法や、熱CVD法などがある。
【0089】
特に、絶縁層110は、プラズマCVD法により形成することが好ましい。
【0090】
絶縁層110は、半導体層108上に成膜されるため、出来るだけ半導体層108にダメージを与えない条件で成膜された膜であることが好ましい。例えば、成膜速度(成膜レートともいう)が十分に低い条件で成膜することができる。
【0091】
酸化窒化シリコン膜の成膜に用いる成膜ガスには、例えばシラン、ジシランなどのシリコンを含む堆積性ガスと、酸素、オゾン、一酸化二窒素、二酸化窒素などの酸化性ガスと、を含む原料ガスを用いることができる。また原料ガスに加えて、アルゴンやヘリウム、窒素などの希釈ガスを含んでもよい。
【0092】
絶縁層110は、半導体層108の領域108Cと接する領域、すなわち導電層112及び金属酸化物層114と重畳する領域を有する。また、絶縁層110は、半導体層108の領域108Lと接し、且つ金属酸化物層114と重畳しない領域を有する。また、絶縁層110は、半導体層108の領域108Nと接し、且つ導電層112と重畳しない領域を有する。
【0093】
絶縁層110の、領域108Nと重畳する領域110iには、上述した不純物元素が含まれる場合がある。このとき、領域108Nと同様に、絶縁層110中の不純物元素が酸素と結合した状態で存在することが好ましい。このような酸化しやすい元素は、絶縁層110中の酸素と結合して酸化した状態で安定に存在しうるため、後の工程で高い温度がかかった場合でも脱離することが抑制される。また特に絶縁層110中に加熱により脱離しうる酸素(過剰酸素ともいう)が含まれる場合には、当該過剰酸素と不純物元素とが結合して安定化するため、絶縁層110から領域108Nへ酸素が供給されることを抑制することができる。また、酸化した状態の不純物元素が含まれる絶縁層110の一部は、酸素が拡散しにくい状態となるため、絶縁層110よりも上側から当該絶縁層110を介して領域108Nに酸素が供給されることが抑制され、領域108Nの抵抗が高くなることを抑制できる。
【0094】
絶縁層103は、図1B及び図1Cに示すように、絶縁層110と接する界面またはその近傍に、上述した不純物元素を含む領域103iを有している。また、図2Aに示すように、領域103iは、領域108Nと接する界面またはその近傍にも設けられていてもよい。このとき、領域108Nと重なる部分の不純物濃度は、絶縁層110と接する部分よりも低い濃度となる。
【0095】
絶縁層110及び絶縁層103はそれぞれ、積層構造を有してもよい。絶縁層110及び絶縁層103がそれぞれ積層構造を有する例を、図3Bに示す。絶縁層110は、半導体層108側から絶縁層110a、絶縁層110b、及び絶縁層110cが積層された積層構造を有する。また、絶縁層103は、基板102側から絶縁層103a、絶縁層103b、絶縁層103c、及び絶縁層103dが積層された、積層構造を有する。なお、図3Bでは、明瞭化のため、領域110i及び領域103iを省略して図示している。
【0096】
積層構造を有する絶縁層110の一例について、説明する。
【0097】
絶縁層110aは、半導体層108と接する領域を有する。絶縁層110cは、金属酸化物層114と接する領域を有する。絶縁層110bは、絶縁層110aと絶縁層110cの間に位置する。
【0098】
絶縁層110a、絶縁層110b、及び絶縁層110cは、それぞれ酸化物を含む絶縁膜であることが好ましい。このとき、絶縁層110a、絶縁層110b及び絶縁層110cは、それぞれ同じ成膜装置で連続して成膜されることが好ましい。
【0099】
例えば、絶縁層110a、絶縁層110b、及び絶縁層110cとしては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜および酸化ネオジム膜を一種以上含む絶縁層を用いることができる。
【0100】
半導体層108と接する絶縁層110は、酸化物絶縁膜の積層構造を有することが好ましく、化学量論的組成よりも過剰に酸素を含有する領域を有することがより好ましい。別言すると、絶縁層110は、酸素を放出することが可能な絶縁膜を有する。例えば、酸素雰囲気下にて絶縁層110を形成すること、成膜後の絶縁層110に対して酸素雰囲気下での熱処理、プラズマ処理等を行うこと、または、絶縁層110上に酸素雰囲気下で酸化物膜を成膜することなどにより、絶縁層110中に酸素を供給することもできる。
【0101】
例えば、絶縁層110a、絶縁層110b及び絶縁層110cは、スパッタリング法、化学気相堆積(CVD)法、真空蒸着法、パルスレーザー堆積(PLD)法、原子層堆積(ALD)法等を用いて形成することができる。また、CVD法としては、プラズマ化学気相堆積(PECVD)法や、熱CVD法などがある。
【0102】
特に、絶縁層110a、絶縁層110b及び絶縁層110cは、プラズマCVD法により形成することが好ましい。
【0103】
絶縁層110aは、半導体層108上に成膜されるため、出来るだけ半導体層108にダメージを与えない条件で成膜された膜であることが好ましい。例えば、成膜速度(成膜レートともいう)が十分に低い条件で成膜することができる。
【0104】
例えば、絶縁層110aとして、プラズマCVD法により酸化窒化シリコン膜を形成する場合、低電力の条件で形成することにより、半導体層108に与えるダメージを極めて小さくすることができる。本発明の一態様のトランジスタ100は、半導体層108の上面に接する絶縁層110aとして、半導体層108に与えるダメージが低減された成膜方法で形成した膜が用いられている。そのため、半導体層108と絶縁層110の界面における欠陥準位密度が低減され、高い信頼性を有するトランジスタ100とすることができる。
【0105】
酸化窒化シリコン膜の成膜に用いる成膜ガスには、例えばシラン、ジシランなどのシリコンを含む堆積性ガスと、酸素、オゾン、一酸化二窒素、二酸化窒素などの酸化性ガスと、を含む原料ガスを用いることができる。また原料ガスに加えて、アルゴンやヘリウム、窒素などの希釈ガスを含んでもよい。
【0106】
例えば、成膜ガスの全流量に対する堆積性ガスの流量の割合(以下、単に流量比ともいう)を小さくすることで、成膜速度を低くでき、緻密で欠陥の少ない膜を成膜することができる。
【0107】
絶縁層110bは、絶縁層110aよりも成膜速度の高い条件で成膜された膜であることが好ましい。これにより、生産性を向上させることができる。
【0108】
例えば絶縁層110bは、絶縁層110aよりも堆積性ガスの流量比を増やした条件とすることで、成膜速度を高めた条件で成膜することができる。
【0109】
絶縁層110cは、その表面の欠陥が低減され、水などの大気中に含まれる不純物が吸着しにくい、極めて緻密な膜であることが好ましい。例えば、絶縁層110aと同様に、成膜速度が十分に低い条件で成膜することができる。
【0110】
絶縁層110cは絶縁層110b上に成膜するため、絶縁層110aと比較して絶縁層110cの成膜時に半導体層108へ与える影響は小さい。そのため、絶縁層110cは、絶縁層110aよりも高い電力の条件で成膜することができる。堆積性ガスの流量比を減らし、比較的高い電力で成膜することで、緻密で表面の欠陥が低減された膜とすることができる。
【0111】
すなわち、成膜速度が高い方から、絶縁層110b、絶縁層110a、絶縁層110cの順となるような条件で成膜された積層膜を、絶縁層110に用いることができる。また、絶縁層110は、絶縁層110b、絶縁層110a、絶縁層110cの順で、ウェットエッチングまたはドライエッチングに対する同一条件下でのエッチング速度が高い。
【0112】
絶縁層110bは、絶縁層110a及び絶縁層110cよりも厚く形成することが好ましい。成膜速度の最も早い絶縁層110bを厚く形成することで、絶縁層110の成膜工程に係る時間を短縮することができる。
【0113】
ここで、絶縁層110aと絶縁層110bの境界、及び絶縁層110bと絶縁層110cの境界は不明瞭である場合があるため、図3Bでは、これらの境界を破線で明示している。なお、絶縁層110aと絶縁層110bは、膜密度が異なるため、絶縁層110の断面における透過型電子顕微鏡(TEM:Transmission Electron Microscopy)像などにおいて、これらの境界をコントラストの違いとして観察することができる場合がある。同様に、絶縁層110bと絶縁層110cの境界も観察することができる場合がある。
【0114】
積層構造を有する絶縁層103の一例について、説明する。
【0115】
絶縁層103は、基板102側から、絶縁層103a、絶縁層103b、絶縁層103c、及び絶縁層103dが積層された積層構造を有する。絶縁層103aは基板102と接する。また、絶縁層103dは、半導体層108と接する。
【0116】
第2のゲート絶縁層として機能する絶縁層103は、耐圧が高いこと、膜の応力が小さいこと、水素や水を放出しにくいこと、膜中の欠陥が少ないこと、基板102に含まれる不純物の拡散を抑制すること、のうち、1つ以上を満たすことが好ましく、これら全てを満たすことが最も好ましい。
【0117】
絶縁層103が有する4つの絶縁膜のうち、基板102側に位置する絶縁層103a、絶縁層103b、及び絶縁層103cには、窒素を含む絶縁膜を用いることが好ましい。一方、半導体層108と接する絶縁層103dには、酸素を含む絶縁膜を用いることが好ましい。また、絶縁層103が有する4つの絶縁膜は、それぞれプラズマCVD装置を用いて、大気に触れることなく連続して成膜することが好ましい。
【0118】
絶縁層103a、絶縁層103b、及び絶縁層103cとしては、例えば窒化シリコン膜、窒化酸化シリコン膜、窒化アルミニウム膜、窒化ハフニウム膜などの窒素を含む絶縁膜を用いることができる。また、絶縁層103cとして、上記絶縁層110に用いることのできる絶縁膜を援用できる。
【0119】
絶縁層103aと絶縁層103cは、これよりも下側からの不純物の拡散を防止できる、緻密な膜であることが好ましい。絶縁層103aは、基板102に含まれる不純物を、絶縁層103cは、絶縁層103bに含まれる水素や水を、それぞれブロックできる膜であることが好ましい。そのため、絶縁層103a及び絶縁層103cには、絶縁層103bよりも成膜速度の低い条件で成膜した絶縁膜を適用することができる。
【0120】
一方、絶縁層103bは、応力が小さく、成膜速度の高い条件で成膜された絶縁膜を用いることが好ましい。また、絶縁層103bは、絶縁層103a及び絶縁層103cよりも厚く形成されていることが好ましい。
【0121】
例えば絶縁層103a、絶縁層103b、及び絶縁層103cのそれぞれに、プラズマCVD法で成膜した窒化シリコン膜を用いた場合であっても、絶縁層103bが、他の2つの絶縁膜よりも膜密度が小さい膜となる。したがって、絶縁層103の断面における透過型電子顕微鏡像などにおいて、コントラストの違いとして観察することができる場合がある。なお、絶縁層103aと絶縁層103bの境界、及び絶縁層103bと絶縁層103cの境界は不明瞭である場合があるため、図3Bでは、これらの境界を破線で明示している。
【0122】
半導体層108と接する絶縁層103dは、その表面に水などの不純物が吸着しにくい、緻密な絶縁膜とすることが好ましい。また、可能な限り欠陥が少なく、水や水素などの不純物が低減された絶縁膜を用いることが好ましい。例えば、絶縁層103dとして、上記絶縁層110が有する絶縁層110cと同様の絶縁膜を用いることができる。
【0123】
このような積層構造を有する絶縁層103により、極めて信頼性の高いトランジスタを実現することができる。
【0124】
絶縁層118は、トランジスタ100を保護する保護層として機能する。絶縁層110として、例えば酸化物または窒化物などの無機絶縁材料を用いることができる。より具体的な例としては、酸化シリコン、酸化窒化シリコン、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化アルミニウム、酸化ハフニウム、ハフニウムアルミネートなどの無機絶縁材料を用いることができる。
【0125】
絶縁層118は、段差被覆性の高い材料を用いることが好ましい。または、絶縁層118は、段差被覆性の高い成膜方法を用いて形成することが好ましい。絶縁層118の形成には、例えば、PECVD法を好適に用いることができる。なお、導電層112と絶縁層110との段差により、該層の上に設けられる絶縁層118の被覆性が低下し、絶縁層118の段切れや低密度な領域(鬆ともいう)が形成される場合がある。絶縁層118の段切れや低密度な領域(鬆ともいう)が形成されると、外部から水、水素などの不純物が侵入し、トランジスタの信頼性の低下につながる恐れがある。段差被覆性の高い絶縁層118を用いることにより、信頼性の高いトランジスタとすることができる。
【0126】
導電層112及び金属酸化物層114を形成する際に、絶縁層110の一部の膜厚が薄くなる場合がある。金属酸化物層114と重ならない領域の絶縁層110の膜厚が、金属酸化物層114と重なる領域の絶縁層110の膜厚より薄い例を、図4Aに示す。また、導電層112と重ならない領域の絶縁層110の膜厚が、導電層112と重なる領域の絶縁層110の膜厚より薄い例を、図4Bに示す。なお、図3Bで示したように、絶縁層110を積層構造とする場合は、金属酸化物層114と重ならない領域に絶縁層110cが残存することが好ましい。重ならない領域に絶縁層110cが残存する構成とすることで、絶縁層110に水が吸着することを効率良く抑制できる。導電層112と重なる領域の絶縁層110cの厚さは1nm以上50nm以下、好ましくは2nm以上40nm以下、さらに好ましくは3nm以上30nm以下とする。
【0127】
<構成例2>
図5Aは、トランジスタ100Aの上面図であり、図5Bはトランジスタ100Aのチャネル長方向の断面図であり、図5Cはトランジスタ100Aのチャネル幅方向の断面図である。
【0128】
トランジスタ100Aは、基板102と絶縁層103との間に導電層106を有する点で、構成例1と主に相違している。導電層106は半導体層108及び導電層112と重なる領域を有する。
【0129】
トランジスタ100Aにおいて、導電層112は、第2のゲート電極(トップゲート電極ともいう)としての機能を有し、導電層106は、第1のゲート電極(ボトムゲート電極ともいう)としての機能を有する。また、絶縁層110の一部は、第2のゲート絶縁層として機能し、絶縁層103の一部は、第1のゲート絶縁層として機能する。
【0130】
半導体層108の、導電層112及び導電層106の少なくとも一方と重なる部分は、チャネル形成領域として機能する。なお以下では説明を容易にするため、半導体層108の導電層112と重なる部分をチャネル形成領域と呼ぶ場合があるが、実際には導電層112と重ならずに、導電層106と重なる部分(領域108Nを含む部分)にもチャネルが形成しうる。
【0131】
図5Cに示すように、導電層106は、金属酸化物層114、絶縁層110、及び絶縁層103に設けられた開口部142を介して、導電層112と電気的に接続されていてもよい。これにより、導電層106と導電層112には、同じ電位を与えることができる。
【0132】
導電層106は、導電層112、導電層120a、または導電層120bと同様の材料を用いることができる。特に導電層106に銅を含む材料を用いると、配線抵抗を低減できるため好ましい。
【0133】
図5A及び図5Cに示すように、チャネル幅方向において、導電層112及び導電層106が、半導体層108の端部よりも外側に突出していることが好ましい。このとき、図5Cに示すように、半導体層108のチャネル幅方向の全体が、絶縁層110と絶縁層103を介して、導電層112と導電層106に覆われた構成となる。
【0134】
このような構成とすることで、半導体層108を一対のゲート電極によって生じる電界で、電気的に取り囲むことができる。このとき特に、導電層106と導電層112に同じ電位を与えることが好ましい。これにより、半導体層108にチャネルを誘起させるための電界を効果的に印加できるため、トランジスタ100Aのオン電流を増大させることができる。そのため、トランジスタ100Aを微細化することも可能となる。
【0135】
なお、導電層112と導電層106とを接続しない構成としてもよい。このとき、一対のゲート電極の一方に定電位を与え、他方にトランジスタ100Aを駆動するための信号を与えてもよい。このとき、一方のゲート電極に与える電位により、トランジスタ100Aを他方のゲート電極で駆動する際のしきい値電圧を制御することもできる。
【0136】
絶縁層103は、積層構造を有することが好ましい。例えば、絶縁層103を、導電層106側から、絶縁層103a、絶縁層103b、絶縁層103c、及び絶縁層103dが積層された積層構造とすることができる(図3B参照)。導電層106と接する絶縁層103aは、導電層106に含まれる金属元素をブロックできる膜であることが好ましい。絶縁層103a、絶縁層103b、絶縁層103c、及び絶縁層103dについては前述の記載を参照できるため、詳細な説明は省略する。
【0137】
なお、導電層106として、絶縁層103に拡散しにくい金属膜または合金膜を用いる場合などでは、絶縁層103aを設けずに、絶縁層103b、絶縁層103c、及び絶縁層103dの3つの絶縁膜が積層された構成としてもよい。
【0138】
このような積層構造を有する絶縁層103により、極めて信頼性の高いトランジスタを実現することができる。
【0139】
<構成例3>
図6Aはトランジスタ100Bのチャネル長方向の断面図であり、図6Bはトランジスタ100Bのチャネル幅方向の断面図である。トランジスタ100Bの上面図は図5Aを参照できるため、記載を省略する。
【0140】
トランジスタ100Bは、構成例2で例示したトランジスタ100Aと比較して、絶縁層118上に絶縁層116を有する点で、主に相違している。
【0141】
絶縁層116は、絶縁層110の上面を覆って設けられている。絶縁層116は、絶縁層116より上からの不純物が半導体層108に拡散することを抑制する機能を有する。導電層120a及び導電層120bは、それぞれ絶縁層116、絶縁層118及び絶縁層110に設けられた開口部141aまたは開口部141bを介して、領域108Nに電気的に接続される。
【0142】
絶縁層116としては、例えば、窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどの、窒化物を含む絶縁膜を好適に用いることができる。特に窒化シリコンは、水素や酸素に対するブロッキング性を有するため、外部から半導体層への水素の拡散と、半導体層から外部への酸素の脱離の両方を防ぐことができ、信頼性の高いトランジスタを実現できる。
【0143】
絶縁層116として金属窒化物を用いる場合、アルミニウム、チタン、タンタル、タングステン、クロム、またはルテニウムの窒化物を用いることが好ましい。特に、アルミニウムまたはチタンを含むことが特に好ましい。例えば、アルミニウムをスパッタリングターゲットに用い、成膜ガスとして窒素を含むガスを用いた反応スパッタリング法により形成した窒化アルミニウム膜は、成膜ガスの全流量に対する窒素ガスの流量を適切に制御することで、極めて高い絶縁性と、水素や酸素に対する極めて高いブロッキング性とを兼ね備えた膜とすることができる。そのため、このような金属窒化物を含む絶縁膜を半導体層108に接して設けることで、半導体層108の抵抗を低くするとともに、半導体層108から酸素が脱離すること、及び半導体層108へ水素が拡散することを好適に防ぐことができる。
【0144】
金属窒化物として、窒化アルミニウムを用いた場合、当該窒化アルミニウムを含む絶縁層の厚さを5nm以上とすることが好ましい。このように薄い膜であっても、水素及び酸素に対する高いブロッキング性と、半導体層の抵抗を低くする機能とを両立することができる。なお、当該絶縁層の厚さはどれだけ厚くてもよいが、生産性を考慮し、500nm以下、好ましくは200nm以下、より好ましくは50nm以下とすることが好ましい。
【0145】
絶縁層116に窒化アルミニウム膜を用いる場合、組成式がAlN(xは0より大きく2以下の実数、好ましくは、xは0.5より大きく1.5以下の実数)を満たす膜を用いることが好ましい。これにより、絶縁性に優れ、且つ熱伝導性に優れた膜とすることができるため、トランジスタ100Bを駆動したときに生じる熱の放熱性を高めることができる。
【0146】
絶縁層116として、窒化アルミニウムチタン膜、窒化チタン膜などを用いることができる。
【0147】
絶縁層118上に絶縁層116を設ける構成とすることで、オン電流の高いトランジスタとすることができる。また、しきい値電圧を制御することのできるトランジスタとすることができる。また、信頼性の高いトランジスタとすることができる。
【0148】
<構成例4>
図7Aはトランジスタ100Cのチャネル長方向の断面図であり、図7Bはトランジスタ100Cのチャネル幅方向の断面図である。トランジスタ100Cの上面図は図5Aを参照できるため、記載を省略する。
【0149】
トランジスタ100Cは、構成例2で例示したトランジスタ100Aと比較して、絶縁層118と絶縁層110との間に絶縁層116を有する点で、主に相違している。
【0150】
絶縁層116は、絶縁層118の上面、並びに導電層の上面及び側面を覆って設けられている。また、絶縁層116は金属酸化物層114の側面と接触して設けられてもよい。また、絶縁層116は金属酸化物層114の側面の一部と接触して設けられてもよい。絶縁層116は、絶縁層116より上からの不純物が半導体層108に拡散することを抑制する機能を有する。
【0151】
絶縁層118と絶縁層110との間に絶縁層116を設ける構成とすることで、オン電流の高いトランジスタとすることができる。また、しきい値電圧を制御することのできるトランジスタとすることができる。また、信頼性の高いトランジスタとすることができる。
【0152】
<作製方法例>
以下では、本発明の一態様のトランジスタの作製方法の例について説明する。ここでは、構成例2で例示したトランジスタ100Aを例に挙げて説明する。
【0153】
なお、半導体装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD)法、真空蒸着法、パルスレーザー堆積(PLD)法、原子層堆積(ALD)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD)法や、熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
【0154】
半導体装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
【0155】
半導体装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いて加工することができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
【0156】
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
【0157】
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra-violet)光やX線を用いてもよい。また、露光に用いる光に代えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
【0158】
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
【0159】
図8A乃至図11Cは、トランジスタ100Aの作製工程の各段階におけるチャネル長方向及びチャネル幅方向の断面図を並べて示している。
【0160】
〔導電層106の形成〕
基板102上に導電膜を成膜し、これをエッチングにより加工して、ゲート電極として機能する導電層106を形成する(図8A)。
【0161】
このとき、図8Aに示すように、導電層106の端部がテーパ形状となるように加工することが好ましい。これにより、次に形成する絶縁層103の段差被覆性を高めることができる。
【0162】
導電層106となる導電膜として、銅を含む導電膜を用いることで、配線抵抗を小さくすることができる。例えば大型の表示装置に適用する場合や、解像度の高い表示装置とする場合には、銅を含む導電膜を用いることが好ましい。また、導電層106に銅を含む導電膜を用いた場合であっても、絶縁層103により銅が半導体層108側に拡散することが抑制されるため、信頼性の高いトランジスタを実現できる。
【0163】
〔絶縁層103の形成〕
続いて、基板102及び導電層106を覆って、絶縁層103を形成する。絶縁層103は、PECVD法、ALD法、スパッタリング法などを用いて形成することができる。
【0164】
ここでは、絶縁層103として、絶縁層103a、絶縁層103b、絶縁層103c、及び絶縁層103dを積層して形成する。
【0165】
特に、絶縁層103を構成する各絶縁層は、PECVD法により形成することが好ましい。絶縁層103の形成方法は、上記構成例1の記載を援用できる。
【0166】
絶縁層103を形成した後に、絶縁層103に対して酸素を供給する処理を行ってもよい。例えば、酸素雰囲気下でのプラズマ処理または加熱処理などを行うことができる。または、プラズマイオンドーピング法やイオン注入法により、絶縁層103に酸素を供給してもよい。
【0167】
〔半導体層108の形成〕
続いて、絶縁層103上に金属酸化物膜108fを成膜する(図8B)。
【0168】
金属酸化物膜108fは、金属酸化物ターゲットを用いたスパッタリング法により形成することが好ましい。
【0169】
金属酸化物膜108fは、可能な限り欠陥の少ない緻密な膜とすることが好ましい。また、金属酸化物膜108fは、可能な限り水素や水などの不純物が低減され、高純度な膜であることが好ましい。特に、金属酸化物膜108fとして、結晶性を有する金属酸化物膜を用いることが好ましい。
【0170】
金属酸化物膜108fを成膜する際に、酸素ガスと、不活性ガス(例えば、ヘリウムガス、アルゴンガス、キセノンガスなど)と、を混合させてもよい。なお、金属酸化物膜108fを成膜する際の成膜ガス全体に占める酸素ガスの割合(以下、酸素流量比ともいう)が高いほど、金属酸化物膜108fの結晶性を高めることができ、信頼性の高いトランジスタを実現できる。一方、酸素流量比が低いほど、金属酸化物膜108fの結晶性が低くなり、オン電流が高められたトランジスタとすることができる。
【0171】
金属酸化物膜108fを成膜する際、基板温度が高いほど、結晶性が高く、緻密な金属酸化物膜とすることができる。一方、基板温度が低いほど、結晶性が低く、電気伝導性の高い金属酸化物膜とすることができる。
【0172】
金属酸化物膜108fの成膜条件は、基板温度を室温以上250℃以下、好ましくは室温以上200℃以下、より好ましくは基板温度を室温以上140℃以下とすればよい。例えば基板温度を、室温以上140℃未満とすると、生産性が高くなり好ましい。また、基板温度を室温とする、または基板を加熱しない状態で、金属酸化物膜108fを成膜することにより、結晶性を低くすることができる。
【0173】
金属酸化物膜108fを成膜する前に、絶縁層103の表面に吸着した水や水素、有機物等を脱離させるための処理、及び絶縁層103中に酸素を供給する処理のいずれか一以上を行うことが好ましい。例えば、減圧雰囲気下にて70℃以上200℃以下の温度で加熱処理を行うことができる。または、酸素を含む雰囲気下におけるプラズマ処理を行ってもよい。または、一酸化二窒素(NO)などの酸化性気体を含む雰囲気下におけるプラズマ処理により、絶縁層103に酸素を供給してもよい。一酸化二窒素ガスを含むプラズマ処理を行うと、絶縁層103の表面の有機物を好適に除去しつつ、酸素を供給することができる。このような処理の後、絶縁層103の表面を大気に暴露することなく、連続して金属酸化物膜108fを成膜することが好ましい。
【0174】
なお、半導体層108として、複数の半導体層を積層した積層構造とする場合には、先に形成する金属酸化物膜を成膜した後に、その表面を大気に曝すことなく連続して、次の金属酸化物膜を成膜することが好ましい。
【0175】
続いて、金属酸化物膜108fの一部をエッチングすることにより、島状の半導体層108を形成する(図8C)。
【0176】
金属酸化物膜108fの加工には、ウェットエッチング法またはドライエッチング法のいずれか一方、または双方を用いればよい。このとき、半導体層108と重ならない絶縁層103の一部がエッチングされ、薄くなる場合がある。例えば、絶縁層103のうち、絶縁層103dがエッチングにより消失し、絶縁層103cの表面が露出する場合もある。
【0177】
ここで、金属酸化物膜108fの成膜後、または半導体層108に加工した後に、加熱処理を行うことが好ましい。加熱処理により、金属酸化物膜108fまたは半導体層108中に含まれる、または表面に吸着した水素または水を除去することができる。また、加熱処理により、金属酸化物膜108fまたは半導体層108の膜質が向上する(例えば欠陥の低減、結晶性の向上など)場合がある。
【0178】
加熱処理により、絶縁層103から金属酸化物膜108f、または半導体層108に酸素を供給することもできる。このとき、半導体層108に加工する前に加熱処理を行うことがより好ましい。
【0179】
加熱処理の温度は、代表的には150℃以上基板の歪み点未満、または200℃以上500℃以下、または250℃以上450℃以下、または300℃以上450℃以下とすることができる。
【0180】
加熱処理は、希ガス、または窒素を含む雰囲気で行うことができる。または、当該雰囲気で加熱した後、酸素を含む雰囲気で加熱してもよい。または、乾燥空気雰囲気で加熱してもよい。なお、上記加熱処理の雰囲気に水素、水などができるだけ含まれないことが好ましい。該加熱処理は、電気炉、またはRTA(Rapid Thermal Anneal)装置等を用いることができる。RTA装置を用いることで、加熱処理時間を短縮することができる。
【0181】
なお、当該加熱処理は不要であれば行わなくてもよい。また、ここでは加熱処理は行わず、後の工程で行われる加熱処理と兼ねてもよい。また、後の工程での高温下の処理(例えば成膜工程など)などで、当該加熱処理と兼ねることができる場合もある。
【0182】
〔絶縁層110の形成〕
続いて、絶縁層103及び半導体層108を覆って、絶縁層110を形成する(図8D)。
【0183】
特に、絶縁層110を構成する各絶縁層は、PECVD法により形成することが好ましい。絶縁層110を構成する各層の形成方法は、上記構成例1の記載を援用できる。
【0184】
絶縁層110の成膜前に、半導体層108の表面に対してプラズマ処理を行なうことが好ましい。当該プラズマ処理により、半導体層108の表面に吸着する水などの不純物を低減することができる。そのため、半導体層108と絶縁層110との界面における不純物を低減できるため、信頼性の高いトランジスタを実現できる。特に、半導体層108の形成から、絶縁層110の成膜までの間に半導体層108の表面が大気に曝される場合には好適である。プラズマ処理として、例えば酸素、オゾン、窒素、一酸化二窒素、アルゴンなどの雰囲気下で行うことができる。また、プラズマ処理と絶縁層110の成膜とは、大気に曝すことなく連続して行われることが好ましい。
【0185】
ここで、絶縁層110を成膜した後に、加熱処理を行うことが好ましい。加熱処理により、絶縁層110中に含まれる、または表面に吸着した水素または水を除去することができる。また、絶縁層110中の欠陥を低減することができる。
【0186】
加熱処理の条件は、上記の記載を援用できる。
【0187】
なお、当該加熱処理は不要であれば行わなくてもよい。また、ここでは加熱処理は行わず、後の工程で行われる加熱処理と兼ねてもよい。また、後の工程での高温下の処理(例えば成膜工程など)などで、当該加熱処理と兼ねることができる場合もある。
【0188】
〔金属酸化物膜114fの形成〕
続いて、絶縁層110上に、金属酸化物膜114fを形成する(図8E)。
【0189】
金属酸化物膜114fは、例えば酸素を含む雰囲気下で成膜することが好ましい。特に、酸素を含む雰囲気下でスパッタリング法により形成することが好ましい。これにより、金属酸化物膜114fの成膜時に絶縁層110に酸素を供給することができる。
【0190】
金属酸化物膜114fを、上記半導体層108の場合と同様の金属酸化物を含む酸化物ターゲットを用いたスパッタリング法により形成する場合には、上記の記載を援用できる。
【0191】
例えば金属酸化物膜114fの成膜条件として、成膜ガスに酸素を用い、金属ターゲットを用いた反応性スパッタリング法により、金属酸化物膜を形成してもよい。金属ターゲットとして、例えばアルミニウムを用いた場合には、酸化アルミニウム膜を成膜することができる。
【0192】
金属酸化物膜114fの膜厚が厚いほど、後の金属酸化物層114形成時に領域108Lの幅L2を小さくすることができる。金属酸化物膜114fの膜厚が薄いほど、後の金属酸化物層114形成時に領域108Lの幅L2を大きくすることができる。このように、金属酸化物膜114fの膜厚を調整することにより、領域108Lの幅L2を制御できる。
【0193】
金属酸化物膜114fの成膜条件を調整することにより、領域108Lの幅L2を制御できる。例えば、金属酸化物膜114fの成膜時に、成膜装置の成膜室内の圧力が低いほど、金属酸化物膜114fの結晶性が高くなり、後の金属酸化物層114形成時に領域108Lの幅L2を小さくすることができる。成膜室内の圧力が高いほど、金属酸化物膜114fの結晶性が低くなり、後の金属酸化物層114形成時に領域108Lの幅L2を大きくすることができる。このように、金属酸化物膜114fの成膜時の成膜室内の圧力を調整することにより、領域108Lの幅L2を制御できる。
【0194】
金属酸化物膜114fの成膜時に、電源電力が高いほど、金属酸化物膜114fの結晶性が高くなり、後の金属酸化物層114形成時に領域108Lの幅L2を小さくすることができる。電源電力が低いほど、金属酸化物膜114fの結晶性が低くなり、後の金属酸化物層114形成時に領域108Lの幅L2を大きくすることができる。このように、金属酸化物膜114fの成膜時の電源電力を調整することにより、領域108Lの幅L2を制御できる。
【0195】
金属酸化物膜114fの成膜時の基板温度が高いほど、金属酸化物膜114fの結晶性が高くなり、後の金属酸化物層114形成時に領域108Lの幅L2を小さくすることができる。基板温度が低いほど、金属酸化物膜114fの結晶性が低くなり、後の金属酸化物層114形成時に領域108Lの幅L2を大きくすることができる。このように、金属酸化物膜114fの成膜時の基板温度を調整することにより、領域108Lの幅L2を制御できる。
【0196】
金属酸化物層114として、半導体層108と同一の元素を一以上含む酸化物材料を用いる場合、金属酸化物膜108fの成膜時の基板温度と、金属酸化物膜114fの成膜時の基板温度とを同じにすることが好ましい。このとき、金属酸化物膜114fとして、金属酸化物膜108fと同じスパッタリングターゲット、同じ基板温度を用いて形成した金属酸化物膜を適用することで、装置を共通にすることができるため好ましい。
【0197】
金属酸化物膜114fの成膜時に、成膜装置の成膜室内に導入する成膜ガスの全流量に対する酸素流量の割合(酸素流量比)、または成膜室内の酸素分圧が高いほど、金属酸化物膜114fの結晶性が高くなり、後の金属酸化物層114形成時に領域108Lの幅L2を小さくすることができる。成膜室内の酸素流量比、または成膜室内の酸素分圧が低いほど、金属酸化物膜114fの結晶性が低くなり、後の金属酸化物層114形成時に領域108Lの幅L2を大きくすることができる。このように、金属酸化物膜114fの成膜時の成膜室内の酸素流量比、または成膜室内の酸素分圧を調整することにより、領域108Lの幅L2を制御できる。
【0198】
なお、金属酸化物膜114fの成膜時に、成膜装置の成膜室内に導入する成膜ガスの全流量に対する酸素流量の割合(酸素流量比)、または成膜室内の酸素分圧が高いほど、絶縁層110中に供給される酸素を増やすことができ、好ましい。酸素流量比または酸素分圧は、例えば、0%より高く100%以下、好ましくは10%以上100%以下、より好ましくは20%以上100%以下、さらに好ましくは30%以上100%以下、さらに好ましくは40%以上100%以下とする。特に、酸素流量比を100%とし、酸素分圧を100%にできるだけ近づけることが好ましい。
【0199】
このように、酸素を含む雰囲気下でスパッタリング法により金属酸化物膜114fを形成することにより、金属酸化物膜114fの成膜時に、絶縁層110へ酸素を供給するとともに、絶縁層110から酸素が脱離することを防ぐことができる。その結果、絶縁層110に極めて多くの酸素を閉じ込めることができる。
【0200】
前述した金属酸化物膜114fの膜厚、成膜条件(圧力など)をそれぞれ組み合わせることで、領域108Lの幅L2を制御することが好ましい。
【0201】
金属酸化物膜114fの成膜後に、加熱処理を行うことが好ましい。加熱処理により、絶縁層110に含まれる酸素を、半導体層108に供給することができる。金属酸化物膜114fが絶縁層110を覆った状態で加熱することにより、絶縁層110から外部へ酸素が脱離することを防ぎ、半導体層108に多くの酸素を供給することができる。その結果、半導体層108中の酸素欠損を低減でき、信頼性の高いトランジスタを実現できる。
【0202】
加熱処理の条件は、上記の記載を援用できる。
【0203】
なお、当該加熱処理は不要であれば行わなくてもよい。また、ここでは加熱処理は行わず、後の工程で行われる加熱処理と兼ねてもよい。また、後の工程での高温下の処理(例えば成膜工程など)などで、当該加熱処理と兼ねることができる場合もある。
【0204】
〔開口部142、導電膜112fの形成〕
続いて、金属酸化物膜114f、絶縁層110、及び絶縁層103の一部をエッチングすることで、導電層106に達する開口部142を形成する。これにより、後に形成する導電層112と導電層106とを、開口部142を介して電気的に接続することができる。
【0205】
続いて、金属酸化物膜114f上に、導電層112となる導電膜112fを成膜する(図9A)。
【0206】
導電膜112fは、低抵抗な金属または合金材料を用いることが好ましい。また、導電膜112fとして、水素を放出しにくい材料であり、また水素が拡散しにくい材料を用いることが好ましい。また、導電膜112fとして、酸化しにくい材料を用いることが好ましい。
【0207】
例えば導電膜112fは、金属または合金を含むスパッタリングターゲットを用いたスパッタリング法により成膜することが好ましい。
【0208】
例えば、導電膜112fとして、酸化しにくく、水素が拡散しにくい導電膜と、低抵抗な導電膜とを積層した積層膜とすることが好ましい。
【0209】
〔導電層112、金属酸化物層114の形成1〕
続いて、導電膜112f上にレジストマスク115を形成する(図9B)。その後、レジストマスク115に覆われていない領域において、導電膜112f及び金属酸化物膜114fを除去し、導電層112及び金属酸化物層114を形成する(図9C)。
【0210】
導電層112及び金属酸化物層114の形成には、ウェットエッチング法を好適に用いることができる。ウェットエッチング法には、例えば、シュウ酸、リン酸、酢酸、硝酸、塩酸又は硫酸の一以上を有するエッチャントを用いることができる。特に、導電層112に銅を有する材料を用いる場合は、リン酸、酢酸及び硝酸を有するエッチャントを好適に用いることができる。
【0211】
金属酸化物層114のエッチング速度が導電層112のエッチング速度より速い構成とすることにより、同一の工程で金属酸化物層114及び導電層112を形成できる。さらに、導電層112の端部より、金属酸化物層114の端部を内側にすることができる。また、エッチング時間を調整することにより、領域108Lの幅L2を制御できる。また、同一の工程で形成できることにより、工程を簡略にすることができ、生産性を高められる。
【0212】
導電層112及び金属酸化物層114の形成にウェットエッチング法を用いる場合、図9Cに示すように、導電層112及び金属酸化物層114の端部が、レジストマスク115の輪郭よりも内側に位置する場合がある。その場合は、レジストマスク115の幅よりも導電層112の幅L1が小さくなるため、所望の導電層112の幅L1となるようにレジストマスク115の幅を大きくしておけばよい。
【0213】
続いて、レジストマスク115を除去する。
【0214】
このように、絶縁層110をエッチングせずに、半導体層108の上面及び側面、並びに絶縁層103を覆った構造とすることで、導電層112等の形成の際に、半導体層108や絶縁層103の一部がエッチングされ、薄膜化することを防ぐことができる。
【0215】
〔導電層112、金属酸化物層114の形成2〕
図9B及び図9Cに示した導電層112、金属酸化物層114の形成方法と異なる方法について、説明する。
【0216】
導電膜112f上にレジストマスク115を形成する(図10A)。
【0217】
続いて、異方性エッチングを用いて、導電膜112fをエッチングし、導電層112を形成する(図10B)。異方性エッチングとして、ドライエッチングを好適に用いることができる。
【0218】
続いて、ウェットエッチングを用いて、金属酸化物膜114fをエッチングし、金属酸化物層114を形成する(図10C)。このとき、導電層112の端部より、金属酸化物層114の端部を内側になるようにエッチング時間を調整する。また、エッチング時間を調整することにより、領域108Lの幅L2を制御できる。
【0219】
導電層112及び金属酸化物層114の形成には、異方性のエッチング法を用いて導電膜112f及び金属酸化物膜114fをエッチングした後に、等方性のエッチング法を用いて導電膜112f及び金属酸化物膜114fの側面をエッチングして、端面を後退させてもよい(サイドエッチングともいう)。これにより、平面視において、導電層112よりも内側に位置する、金属酸化物層114を形成できる。
【0220】
なお、導電層112及び金属酸化物層114の形成には異なるエッチング条件または手法を用いて、少なくとも2回に分けてエッチングしてもよい。例えば、導電膜112fを先にエッチングし、続いて異なるエッチング条件で金属酸化物膜114fをエッチングしてもよい。
【0221】
導電層112及び金属酸化物層114の形成の際に、金属酸化物層114と接しない領域の絶縁層110の膜厚が薄くなる場合がある(図2A図2B図3A図3B参照)。
【0222】
続いて、レジストマスク115を除去する。
【0223】
〔不純物元素の供給処理〕
続いて、導電層112をマスクとして、絶縁層110を介して半導体層108に不純物元素140を供給(添加、または注入ともいう)する処理を行う(図11A)。これにより、半導体層108の導電層112に覆われない領域に、領域108Nを形成することができる。このとき、半導体層108の導電層112と重なる領域には、導電層112がマスクとなり、不純物元素140は供給されない。
【0224】
不純物元素140の供給は、プラズマイオンドーピング法、またはイオン注入法を好適に用いることができる。これらの方法は、深さ方向の濃度プロファイルを、イオンの加速電圧とドーズ量等により、高い精度で制御することができる。プラズマイオンドーピング法を用いることで、生産性を高めることができる。また質量分離を用いたイオン注入法を用いることで、供給される不純物元素の純度を高めることができる。
【0225】
不純物元素140の供給処理において、半導体層108と絶縁層110との界面、または半導体層108中の界面に近い部分、または絶縁層110中の当該界面に近い部分が、最も高い濃度となるように、処理条件を制御することが好ましい。これにより、一度の処理で半導体層108と絶縁層110の両方に、最適な濃度の不純物元素140を供給することができる。
【0226】
不純物元素140としては、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、ヒ素、アルミニウム、マグネシウム、シリコン、または希ガスなどが挙げられる。なお、希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。特に、ホウ素、リン、アルミニウム、マグネシウム、またはシリコンを用いることが好ましい。
【0227】
不純物元素140の原料ガスとして、上記不純物元素を含むガスを用いることができる。ホウ素を供給する場合、代表的にはBガスやBFガスなどを用いることができる。またリンを供給する場合には、代表的にはPHガスを用いることができる。また、これらの原料ガスを希ガスで希釈した混合ガスを用いてもよい。
【0228】
その他、原料ガスとして、CH、N、NH、AlH、AlCl、SiH、Si、F、HF、H、(CMg、及び希ガス等を用いることができる。また、イオン源は気体に限られず、固体や液体を加熱して気化させたものを用いてもよい。
【0229】
不純物元素140の添加は、絶縁層110及び半導体層108の組成や密度、厚さなどを考慮して、加速電圧やドーズ量などの条件を設定することで制御することができる。
【0230】
例えば、イオン注入法またはプラズマイオンドーピング法でホウ素の添加を行う場合、加速電圧は例えば5kV以上100kV以下、好ましくは7kV以上70kV以下、より好ましくは10kV以上50kV以下の範囲とすることができる。またドーズ量は、例えば1×1013ions/cm以上1×1017ions/cm以下、好ましくは1×1014ions/cm以上5×1016ions/cm以下、より好ましくは1×1015ions/cm以上、3×1016ions/cm以下の範囲とすることができる。
【0231】
イオン注入法またはプラズマイオンドーピング法でリンイオンの添加を行う場合、加速電圧は、例えば10kV以上100kV以下、好ましくは30kV以上90kV以下、より好ましくは40kV以上80kV以下の範囲とすることができる。またドーズ量は、例えば1×1013ions/cm以上1×1017ions/cm以下、好ましくは1×1014ions/cm以上5×1016ions/cm以下、より好ましくは1×1015ions/cm以上、3×1016ions/cm以下の範囲とすることができる。
【0232】
なお、不純物元素140の供給方法はこれに限られず、例えばプラズマ処理や、加熱による熱拡散を利用した処理などを用いてもよい。プラズマ処理法の場合、添加する不純物元素を含むガス雰囲気にてプラズマを発生させて、プラズマ処理を行うことによって、不純物元素を添加することができる。上記プラズマを発生させる装置としては、ドライエッチング装置、アッシング装置、プラズマCVD装置、高密度プラズマCVD装置等を用いることができる。
【0233】
本発明の一態様では、絶縁層110を介して不純物元素140を半導体層108に供給することができる。そのため、半導体層108が結晶性を有する場合であっても、不純物元素140の供給の際に半導体層108が受けるダメージが軽減され、結晶性が損なわれてしまうことを抑制できる。そのため、結晶性の低下により電気抵抗が増大してしまうような場合には好適である。
【0234】
〔絶縁層118の形成〕
続いて、絶縁層110、金属酸化物層114、及び導電層112を覆って、絶縁層118を形成する(図11B)。
【0235】
絶縁層118をプラズマCVD法により形成する場合、成膜温度が高すぎると、領域108N等に含まれる不純物が、半導体層108のチャネル形成領域を含む周辺部に拡散することや、領域108Nの電気抵抗が上昇してしまう恐れがあるため、絶縁層118の成膜温度は、これらのことを考慮して決定すればよい。
【0236】
例えば、絶縁層118の成膜温度としては、例えば150℃以上400℃以下、好ましくは180℃以上360℃以下、より好ましくは200℃以上250℃以下とすることが好ましい。絶縁層118を低温で成膜することにより、チャネル長の短いトランジスタであっても、良好な電気特性を付与することができる。
【0237】
絶縁層118の形成後、加熱処理を行ってもよい。当該加熱処理により、より安定して低抵抗の領域108Nとすることができる場合がある。例えば、加熱処理を行うことにより、不純物元素140が適度に拡散して局所的に均一化され、理想的な不純物元素の濃度勾配を有する領域108Nが形成されうる。なお、加熱処理の温度が高すぎる(例えば500℃以上)と、不純物元素140がチャネル形成領域内にまで拡散し、トランジスタの電気特性や信頼性の悪化を招く恐れがある。
【0238】
加熱処理の条件は、上記の記載を援用できる。
【0239】
なお、当該加熱処理は不要であれば行わなくてもよい。また、ここでは加熱処理は行わず、後の工程で行われる加熱処理と兼ねてもよい。また、後の工程での高温下の処理(例えば成膜工程など)がある場合には、当該加熱処理と兼ねることができる場合もある。
【0240】
〔開口部141a、開口部141bの形成〕
続いて、絶縁層118及び絶縁層110の一部をエッチングすることで、領域108Nに達する開口部141a及び開口部141bを形成する。
【0241】
〔導電層120a、導電層120bの形成〕
続いて、開口部141a及び開口部141bを覆うように、絶縁層118上に導電膜を成膜し、当該導電膜を所望の形状に加工することで、導電層120a及び導電層120bを形成する(図11C)。
【0242】
以上の工程により、トランジスタ100Aを作製することができる。例えば、トランジスタ100Aを表示装置の画素に適用する場合には、この後に、保護絶縁層、平坦化層、画素電極、または配線のうち1以上を形成する工程を追加すればよい。
【0243】
以上が、作製方法例1についての説明である。
【0244】
なお、構成例1で例示したトランジスタ100を作製する場合には、上記作製方法例1における導電層106の形成工程、及び開口部142の形成工程を省略すればよい。また、トランジスタ100とトランジスタ100Aとは、同じ工程を経て同一基板上に形成することができる。
【0245】
<半導体装置の構成要素>
以下では、本実施の形態の半導体装置に含まれる構成要素について説明する。
【0246】
〔基板〕
基板102の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有している必要がある。例えば、シリコンや炭化シリコンを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板、ガラス基板、セラミック基板、石英基板、サファイア基板等を、基板102として用いてもよい。また、これらの基板上に半導体素子が設けられたものを、基板102として用いてもよい。
【0247】
基板102として、可撓性基板を用い、可撓性基板上に直接、半導体装置を形成してもよい。または、基板102と半導体装置の間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板102より分離し、他の基板に転載するために用いることができる。その際、半導体装置は耐熱性の劣る基板や可撓性の基板にも転載できる。
【0248】
〔導電膜〕
ゲート電極として機能する導電層112及び導電層106、並びにソース電極またはドレイン電極の一方として機能する導電層120a及び、他方として機能する導電層120bは、クロム、銅、アルミニウム、金、銀、亜鉛、モリブデン、タンタル、チタン、タングステン、マンガン、ニッケル、鉄、コバルトから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いてそれぞれ形成することができる。
【0249】
導電層112、導電層106、導電層120a、及び導電層120bには、In-Sn酸化物、In-W酸化物、In-W-Zn酸化物、In-Ti酸化物、In-Ti-Sn酸化物、In-Zn酸化物、In-Sn-Si酸化物、In-Ga-Zn酸化物等の酸化物導電体または金属酸化物膜を適用することもできる。
【0250】
ここで、酸化物導電体(OC:OxideConductor)について説明を行う。例えば、半導体特性を有する金属酸化物に酸素欠損を形成し、該酸素欠損に水素を添加すると、伝導帯近傍にドナー準位が形成される。この結果、金属酸化物は、導電性が高くなり導電体化する。導電体化された金属酸化物を、酸化物導電体ということができる。
【0251】
導電層112等として、上記酸化物導電体(金属酸化物)を含む導電膜と、金属または合金を含む導電膜の積層構造としてもよい。金属または合金を含む導電膜を用いることで、配線抵抗を小さくすることができる。このとき、ゲート絶縁膜として機能する絶縁層と接する側には酸化物導電体を含む導電膜を適用することが好ましい。
【0252】
導電層112、導電層106、導電層120a、導電層120bには、上述の金属元素の中でも、特にチタン、タングステン、タンタル、及びモリブデンの中から選ばれるいずれか一つまたは複数を有すると好適である。特に、窒化タンタル膜を用いると好適である。当該窒化タンタル膜は、導電性を有し、銅、酸素、または水素に対して高いバリア性を有し、さらに自身からの水素の放出が少ないため、半導体層108と接する導電膜、または半導体層108の近傍の導電膜として、好適に用いることができる。
【0253】
〔半導体層〕
半導体層108は、金属酸化物を含むことが好ましい。
【0254】
例えば半導体層108は、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特にMはアルミニウム、ガリウム、イットリウム、またはスズから選ばれた一種または複数種とすることが好ましい。
【0255】
半導体層108がIn-M-Zn酸化物の場合、In-M-Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=1:3:2、In:M:Zn=1:3:4、In:M:Zn=1:3:6、In:M:Zn=2:2:1、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等が挙げられる。
【0256】
スパッタリングターゲットとして、多結晶の酸化物を含むターゲットを用いると、結晶性を有する半導体層108を形成しやすくなるため好ましい。なお、成膜される半導体層108の原子数比は、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。例えば、半導体層108に用いるスパッタリングターゲットの組成がIn:Ga:Zn=4:2:4.1[原子数比]の場合、成膜される半導体層108の組成は、In:Ga:Zn=4:2:3[原子数比]の近傍となる場合がある。
【0257】
なお、原子数比がIn:Ga:Zn=4:2:3またはその近傍と記載する場合、Inを4としたとき、Gaが1以上3以下であり、Znが2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍であると記載する場合、Inを5としたときに、Gaが0.1より大きく2以下であり、Znが5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍であると記載する場合、Inを1としたときに、Gaが0.1より大きく2以下であり、Znが0.1より大きく2以下である場合を含む。
【0258】
半導体層108は、エネルギーギャップが2eV以上、好ましくは2.5eV以上である。このように、シリコンよりもエネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
【0259】
半導体層108には、キャリア濃度の低い金属酸化物を用いることが好ましい。金属酸化物のキャリア濃度を低くする場合においては、金属酸化物中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、金属酸化物中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
【0260】
特に、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、金属酸化物中に酸素欠損を形成する場合がある。金属酸化物中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となる場合がある。さらに、酸素欠損に水素が入った欠陥はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。
【0261】
酸素欠損に水素が入った欠陥は、金属酸化物のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、金属酸化物においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、金属酸化物のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
【0262】
よって、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
【0263】
チャネル形成領域の金属酸化物のキャリア濃度は、1×1018cm-3以下であることが好ましく、1×1017cm-3未満であることがより好ましく、1×1016cm-3未満であることがさらに好ましく、1×1013cm-3未満であることがさらに好ましく、1×1012cm-3未満であることがさらに好ましい。なお、チャネル形成領域の金属酸化物のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10-9cm-3とすることができる。
【0264】
半導体層108は、非単結晶構造であることが好ましい。非単結晶構造は、例えば、後述するCAAC構造、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC構造は最も欠陥準位密度が低い。
【0265】
以下では、CAAC(c-axis aligned crystal)について説明する。CAACは結晶構造の一例を表す。
【0266】
CAAC構造とは、複数のナノ結晶(最大径が10nm未満である結晶領域)を有する薄膜などの結晶構造の一つであり、各ナノ結晶はc軸が特定の方向に配向し、かつa軸及びb軸は配向性を有さずに、ナノ結晶同士が粒界を形成することなく連続的に連結しているといった特徴を有する結晶構造である。特にCAAC構造を有する薄膜は、各ナノ結晶のc軸が、薄膜の厚さ方向、被形成面の法線方向、または薄膜の表面の法線方向に配向しやすいといった特徴を有する。
【0267】
CAAC-OS(Oxide Semiconductor)は結晶性の高い酸化物半導体である。一方、CAAC-OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC-OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC-OSを有する酸化物半導体は熱に強く、信頼性が高い。
【0268】
ここで、結晶学において、単位格子を構成するa軸、b軸、及びc軸の3つの軸(結晶軸)について、特異的な軸をc軸とした単位格子を取ることが一般的である。特に層状構造を有する結晶では、層の面方向に平行な2つの軸をa軸及びb軸とし、層に交差する軸をc軸とすることが一般的である。このような層状構造を有する結晶の代表的な例として、六方晶系に分類されるグラファイトがあり、その単位格子のa軸及びb軸は劈開面に平行であり、c軸は劈開面に直交する。例えば層状構造であるYbFe型の結晶構造をとるInGaZnOの結晶は六方晶系に分類することができ、その単位格子のa軸及びb軸は層の面方向に平行となり、c軸は層(すなわちa軸及びb軸)に直交する。
【0269】
微結晶構造を有する酸化物半導体膜(微結晶酸化物半導体膜)は、TEMによる観察像では、明確に結晶部を確認することができない場合がある。微結晶酸化物半導体膜に含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大きさであることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微結晶であるナノ結晶(nc:nanocrystal)を有する酸化物半導体膜を、nc-OS(nanocrystalline Oxide Semiconductor)膜と呼ぶ。また、nc-OS膜は、例えば、TEMによる観察像では、結晶粒界を明確に確認できない場合がある。
【0270】
nc-OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc-OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かない場合がある。例えば、nc-OS膜に対し、結晶部よりも大きい径のX線を用いるXRD装置を用いて構造解析を行うと、out-of-plane法による解析では、結晶面を示すピークが検出されない。また、nc-OS膜に対し、結晶部よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc-OS膜に対し、結晶部の大きさと近いか結晶部より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、円を描くように(リング状に)輝度の高い領域が観測され、当該リング状の領域内に複数のスポットが観測される場合がある。
【0271】
nc-OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低い。ただし、nc-OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc-OS膜は、CAAC-OS膜と比べて欠陥準位密度が高くなる。従って、nc-OS膜はCAAC-OS膜と比べて、キャリア密度が高く、電子移動度が高くなる場合がある。従って、nc-OS膜を用いたトランジスタは、高い電界効果移動度を示す場合がある。
【0272】
nc-OS膜は、CAAC-OS膜と比較して、成膜時の酸素流量比を小さくすることで形成することができる。また、nc-OS膜は、CAAC-OS膜と比較して、成膜時の基板温度を低くすることでも形成することができる。例えば、nc-OS膜は、基板温度を比較的低温(例えば130℃以下の温度)とした状態、または基板を加熱しない状態でも成膜することができるため、大型のガラス基板や、樹脂基板などを使う場合に適しており、生産性を高めることができる。
【0273】
金属酸化物の結晶構造の一例について説明する。In-Ga-Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、基板温度を100℃以上130℃以下として、スパッタリング法により形成した金属酸化物は、nc(nano crystal)構造及びCAAC構造のいずれか一方の結晶構造、またはこれらが混在した構造をとりやすい。一方、基板温度を室温(R.T.)として形成した金属酸化物は、ncの結晶構造をとりやすい。なお、ここでいう室温(R.T.)とは、基板を加熱しない場合の温度を含む。
【0274】
[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud-Aligned Composite)-OSの構成について説明する。
【0275】
なお、CAAC(c-axis aligned crystal)は結晶構造の一例を表し、CAC(Cloud-Aligned Composite)は機能、または材料の構成の一例を表す。
【0276】
CAC-OSまたはCAC-metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC-OSまたはCAC-metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OSまたはCAC-metal oxideに付与できる。CAC-OSまたはCAC-metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
【0277】
CAC-OSまたはCAC-metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
【0278】
CAC-OSまたはCAC-metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
【0279】
CAC-OSまたはCAC-metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC-OSまたはCAC-metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC-OSまたはCAC-metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
【0280】
すなわち、CAC-OSまたはCAC-metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
【0281】
以上が、金属酸化物の構成についての説明である。
【0282】
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
【0283】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0284】
(実施の形態2)
本実施の形態では、先の実施の形態で例示したトランジスタを有する表示装置の一例について説明する。
【0285】
<構成例>
図12Aに、表示装置700の上面図を示す。表示装置700は、シール材712により貼り合された第1の基板701と第2の基板705を有する。また第1の基板701、第2の基板705、及びシール材712で封止される領域において、第1の基板701上に画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706が設けられる。また画素部702には、複数の表示素子が設けられる。
【0286】
第1の基板701の第2の基板705と重ならない部分に、FPC716(FPC:Flexible printed circuit)が接続されるFPC端子部708が設けられている。FPC716によって、FPC端子部708及び信号線710を介して、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706のそれぞれに各種信号等が供給される。
【0287】
ゲートドライバ回路部706は、複数設けられていてもよい。また、ゲートドライバ回路部706及びソースドライバ回路部704は、それぞれ半導体基板等に別途形成され、パッケージされたICチップの形態であってもよい。当該ICチップは、第1の基板701上、またはFPC716に実装することができる。
【0288】
画素部702、ソースドライバ回路部704及びゲートドライバ回路部706が有するトランジスタに、本発明の一態様の半導体装置であるトランジスタを適用することができる。
【0289】
画素部702に設けられる表示素子としては、液晶素子、発光素子などが挙げられる。液晶素子としては、透過型の液晶素子、反射型の液晶素子、半透過型の液晶素子などを用いることができる。また、発光素子としては、LED(Light Emitting Diode)、OLED(Organic LED)、QLED(Quantum-dot LED)、半導体レーザなどの、自発光性の発光素子が挙げられる。また、シャッター方式または光干渉方式のMEMS(Micro Electro Mechanical Systems)素子や、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、または電子粉流体(登録商標)方式等を適用した表示素子などを用いることもできる。
【0290】
図12Bに示す表示装置700Aは、第1の基板701に代えて、可撓性を有する樹脂層743が適用され、フレキシブルディスプレイとして用いることのできる表示装置の例である。
【0291】
表示装置700Aは、画素部702が矩形形状でなく、角部が円弧状の形状を有している。また、図12B中の領域P1に示すように、画素部702、及び樹脂層743の一部が切り欠かれた切欠き部を有する。一対のゲートドライバ回路部706は、画素部702を挟んで両側に設けられる。またゲートドライバ回路部706は、画素部702の角部において、円弧状の輪郭に沿って設けられている。
【0292】
樹脂層743は、FPC端子部708が設けられる部分が突出した形状を有している。また樹脂層743のFPC端子部708を含む一部は、図12B中の領域P2で裏側に折り返すことができる。樹脂層743の一部を折り返すことで、FPC716を画素部702の裏側に重ねて配置した状態で、表示装置700Aを電子機器に実装することができ、電子機器の省スペース化を図ることができる。
【0293】
表示装置700Aに接続されるFPC716には、IC717が実装されている。IC717は、例えばソースドライバ回路としての機能を有する。このとき、表示装置700Aにおけるソースドライバ回路部704は、保護回路、バッファ回路、デマルチプレクサ回路等の少なくとも一を含む構成とすることができる。
【0294】
図12Cに示す表示装置700Bは、大型の画面を有する電子機器に好適に用いることのできる表示装置である。例えばテレビジョン装置、モニタ装置、パーソナルコンピュータ(ノート型またはデスクトップ型を含む)、タブレット端末、デジタルサイネージなどに好適に用いることができる。
【0295】
表示装置700Bは、複数のソースドライバIC721と、一対のゲートドライバ回路部722を有する。
【0296】
複数のソースドライバIC721は、それぞれFPC723に取り付けられている。また、複数のFPC723は、一方の端子が第1の基板701に、他方の端子がプリント基板724にそれぞれ接続されている。FPC723を折り曲げることで、プリント基板724を画素部702の裏側に配置して、電子機器に実装することができ、電子機器の省スペース化を図ることができる。
【0297】
一方、ゲートドライバ回路部722は、第1の基板701上に形成されている。これにより、狭額縁の電子機器を実現できる。
【0298】
このような構成とすることで、大型で且つ高解像度の表示装置を実現できる。例えば画面サイズが対角30インチ以上、40インチ以上、50インチ以上、または60インチ以上の表示装置を実現できる。また、解像度が4K2K、または8K4Kなどといった極めて高解像度の表示装置を実現できる。
【0299】
<断面構成例>
以下では、表示素子として液晶素子を用いる構成、及びEL素子を用いる構成について、図13乃至図16を用いて説明する。なお、図13乃至図15は、それぞれ図12Aに示す一点鎖線Q-Rにおける断面図である。また図16は、図12Bに示した表示装置700A中の一点鎖線S-Tにおける断面図である。図13及び図14は、表示素子として液晶素子を用いた構成であり、図15及び図16は、EL素子を用いた構成である。
【0300】
<表示装置の共通部分に関する説明>
図13乃至図16に示す表示装置は、引き回し配線部711と、画素部702と、ソースドライバ回路部704と、FPC端子部708と、を有する。引き回し配線部711は、信号線710を有する。画素部702は、トランジスタ750及び容量素子790を有する。ソースドライバ回路部704は、トランジスタ752を有する。図14では、容量素子790が無い場合を示している。
【0301】
トランジスタ750及びトランジスタ752は、実施の形態1で例示したトランジスタを適用できる。
【0302】
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物半導体膜を有する。該トランジスタは、オフ電流を低くできる。よって、画像信号等の電気信号の保持時間を長くでき、画像信号等の書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくできるため、消費電力を低減する効果を奏する。
【0303】
本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを表示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するドライバトランジスタを同一基板上に形成することができる。すなわち、シリコンウェハ等により形成された駆動回路を適用しない構成も可能であり、表示装置の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。
【0304】
図13図15、及び図16に示す容量素子790は、トランジスタ750が有する第1のゲート電極と同一の膜を加工して形成される下部電極と、半導体層と同一の金属酸化物を加工して形成される上部電極と、を有する。上部電極は、トランジスタ750のソース領域及びドレイン領域と同様に低抵抗化されている。また、下部電極と上部電極との間には、トランジスタ750の第1のゲート絶縁層として機能する絶縁膜の一部が設けられる。すなわち、容量素子790は、一対の電極間に誘電体膜として機能する絶縁膜が挟持された積層型の構造である。また、上部電極には、トランジスタのソース電極及びドレイン電極と同一の膜を加工して得られる配線が接続されている。
【0305】
トランジスタ750、トランジスタ752、及び容量素子790上には平坦化絶縁膜770が設けられている。
【0306】
画素部702が有するトランジスタ750と、ソースドライバ回路部704が有するトランジスタ752とは、異なる構造のトランジスタを用いてもよい。例えば、いずれか一方にトップゲート型のトランジスタを適用し、他方にボトムゲート型のトランジスタを適用した構成としてもよい。なお、上記ゲートドライバ回路部706についてもソースドライバ回路部704と同様に、トランジスタ750と同じ構造のトランジスタを用いてもよいし、異なる構造のトランジスタを用いてもよい。
【0307】
信号線710は、トランジスタ750やトランジスタ752のソース電極及びドレイン電極等と同じ導電膜で形成されている。このとき、銅元素を含む材料等の低抵抗な材料を用いると、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となるため好ましい。
【0308】
FPC端子部708は、一部が接続電極として機能する配線760、異方性導電膜780、及びFPC716を有する。配線760は、異方性導電膜780を介してFPC716が有する端子と電気的に接続される。ここでは、配線760は、トランジスタ750やトランジスタ752のソース電極及びドレイン電極等と同じ導電膜で形成されている。
【0309】
第1の基板701及び第2の基板705として、例えばガラス基板、またはプラスチック基板等の可撓性を有する基板を用いることができる。第1の基板701に可撓性を有する基板を用いる場合には、第1の基板701とトランジスタ750等との間に、水や水素に対するバリア性を有する絶縁層を設けることが好ましい。
【0310】
第2の基板705側には、遮光膜738と、着色膜736と、これらに接する絶縁膜734と、が設けられる。
【0311】
<液晶素子を用いる表示装置の構成例>
図13に示す表示装置700は、液晶素子775と、スペーサ778と、を有する。液晶素子775は、導電層772、導電層774、及びこれらの間に液晶層776を有する。導電層774は、第2の基板705側に設けられ、共通電極としての機能を有する。また、導電層772は、トランジスタ750が有するソース電極またはドレイン電極と電気的に接続される。導電層772は、平坦化絶縁膜770上に形成され、画素電極として機能する。
【0312】
導電層772には、可視光に対して透光性を有する材料、または反射性を有する材料を用いることができる。透光性を有する材料として、例えば、インジウム、亜鉛、スズ等を含む酸化物材料を用いるとよい。反射性を有する材料として、例えば、アルミニウム、銀等を含む材料を用いるとよい。
【0313】
導電層772に反射性の材料を用いると、表示装置700は反射型の液晶表示装置となる。一方、導電層772に透光性の材料を用いると、透過型の液晶表示装置となる。反射型の液晶表示装置の場合、視認側に偏光板を設ける。一方、透過型の液晶表示装置の場合、液晶素子を挟むように一対の偏光板を設ける。
【0314】
図14に示す表示装置700は、横電界方式(例えば、FFSモード)の液晶素子775を用いる例を示す。導電層772上に絶縁層773を介して、共通電極として機能する導電層774が設けられる。導電層772と導電層774との間に生じる電界によって、液晶層776の配向状態を制御することができる。
【0315】
図14において、導電層774、絶縁層773、導電層772の積層構造により保持容量を構成することができる。そのため、別途容量素子を設ける必要がなく、開口率を高めることができる。
【0316】
図13及び図14には図示しないが、液晶層776と接する配向膜を設ける構成としてもよい。また、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)、及びバックライト、サイドライトなどの光源を適宜設けることができる。
【0317】
液晶層776には、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、高分子ネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。
【0318】
液晶素子のモードとしては、TN(Twisted Nematic)モード、VA(Vertical Alignment)モード、IPS(In-Plane-Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro-cell)モード、OCB(Optically Compensated Birefringence)モード、ECB(Electrically Controlled Birefringence)モード、ゲストホストモードなどを用いることができる。
【0319】
液晶層776に高分子分散型液晶や、高分子ネットワーク型液晶などを用いた、散乱型の液晶を用いることもできる。このとき、着色膜736を設けずに白黒表示を行う構成としてもよいし、着色膜736を用いてカラー表示を行う構成としてもよい。
【0320】
液晶素子の駆動方法として、継時加法混色法に基づいてカラー表示を行う、時間分割表示方式(フィールドシーケンシャル駆動方式ともいう)を適用してもよい。その場合、着色膜736を設けない構成とすることができる。時間分割表示方式を用いた場合、例えばR(赤色)、G(緑色)、B(青色)のそれぞれの色を呈する副画素を設ける必要がないため、画素の開口率を向上させることや、精細度を高められることなどの利点がある。
【0321】
<発光素子を用いる表示装置>
図15に示す表示装置700は、発光素子782を有する。発光素子782は、導電層772、EL層786、及び導電膜788を有する。EL層786は、有機化合物、または無機化合物などの発光材料を有する。
【0322】
発光材料としては、蛍光材料、燐光材料、熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料、無機化合物(量子ドット材料など)などを用いることができる。
【0323】
図15に示す表示装置700には、平坦化絶縁膜770上に導電層772の一部を覆う絶縁膜730が設けられる。ここで、発光素子782は透光性の導電膜788を有し、トップエミッション型の発光素子である。なお、発光素子782は、導電層772側に光を射出するボトムエミッション構造や、導電層772側及び導電膜788側の双方に光を射出するデュアルエミッション構造としてもよい。
【0324】
着色膜736は発光素子782と重なる位置に設けられている。遮光膜738は絶縁膜730と重なる位置、引き回し配線部711、及びソースドライバ回路部704に設けられている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。また、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、EL層786を画素毎に島状または画素列毎に縞状に形成する、すなわち塗り分けにより形成する場合においては、着色膜736を設けない構成としてもよい。
【0325】
図16には、フレキシブルディスプレイに好適に適用できる表示装置の構成を示している。図16は、図12Bに示した表示装置700A中の一点鎖線S-Tにおける断面図である。
【0326】
図16に示す表示装置700Aは、図15で示した第1の基板701に代えて、支持基板745、接着層742、樹脂層743、及び絶縁層744が積層された構成を有する。トランジスタ750や容量素子790等は、樹脂層743上に設けられた絶縁層744上に設けられている。
【0327】
支持基板745は、有機樹脂やガラス等を含み、可撓性を有する程度に薄い基板である。樹脂層743は、ポリイミドやアクリルなどの有機樹脂を含む層である。絶縁層744は、酸化シリコン、酸化窒化シリコン、窒化シリコン等の無機絶縁膜を含む。樹脂層743と支持基板745とは、接着層742によって貼り合わされている。樹脂層743は、支持基板745よりも薄いことが好ましい。
【0328】
図16に示す表示装置700Aは、図15で示した第2の基板705に代えて保護層740を有する。保護層740は、封止膜732と貼り合わされている。保護層740として、ガラス基板や樹脂フィルムなどを用いることができる。また、保護層740として、偏光板、散乱板などの光学部材や、タッチセンサパネルなどの入力装置、またはこれらを2つ以上積層した構成を適用してもよい。
【0329】
発光素子782が有するEL層786は、絶縁膜730及び導電層772上に島状に設けられている。EL層786を、副画素毎に発光色が異なるように作り分けることで、着色膜736を用いずにカラー表示を実現することができる。また、発光素子782を覆って、保護層741が設けられている。保護層741は発光素子782に水などの不純物が拡散することを防ぐ機能を有する。保護層741は、無機絶縁膜を用いることが好ましい。また、無機絶縁膜と有機絶縁膜をそれぞれ一以上含む積層構造とすることがより好ましい。
【0330】
図16では、折り曲げ可能な領域P2を示している。領域P2では、支持基板745、接着層742のほか、絶縁層744等の無機絶縁膜が設けられていない部分を有する。また、領域P2において、配線760を覆って樹脂層746が設けられている。折り曲げ可能な領域P2に無機絶縁膜をできるだけ設けず、且つ、金属または合金を含む導電層と、有機材料を含む層のみを積層した構成とすることで、曲げた際にクラックが生じることを防ぐことができる。また、領域P2に支持基板745を設けないことで、極めて小さい曲率半径で、表示装置700Aの一部を曲げることができる。
【0331】
<表示装置に入力装置を設ける構成例>
図13乃至図16に示す表示装置700または表示装置700Aに、入力装置を設けてもよい。当該入力装置は、例えば、タッチセンサ等が挙げられる。
【0332】
例えばセンサの方式としては、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式など様々な方式を用いることができる。または、これら2つ以上を組み合わせて用いてもよい。
【0333】
なお、タッチパネルの構成は、入力装置を一対の基板の間に形成する、所謂インセル型のタッチパネル、入力装置を表示装置700上に形成する、所謂オンセル型のタッチパネル、または入力装置を表示装置700に貼り合わせて用いる、所謂アウトセル型のタッチパネルなどがある。
【0334】
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
【0335】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0336】
(実施の形態3)
本実施の形態では、本発明の一態様の半導体装置を有する表示装置について、図17を用いて説明を行う。
【0337】
図17Aに示す表示装置は、画素部502と、駆動回路部504と、保護回路506と、端子部507と、を有する。なお、保護回路506は、設けない構成としてもよい。
【0338】
画素部502や駆動回路部504が有するトランジスタに、本発明の一態様のトランジスタを適用することができる。また保護回路506にも、本発明の一態様のトランジスタを適用してもよい。
【0339】
画素部502は、X行Y列(X、Yはそれぞれ独立に2以上の自然数)に配置された複数の表示素子を駆動する複数の画素回路501を有する。
【0340】
駆動回路部504は、ゲート線GL_1乃至ゲート線GL_Xに走査信号を出力するゲートドライバ504a、データ線DL_1乃至データ線DL_Yにデータ信号を供給するソースドライバ504bなどの駆動回路を有する。ゲートドライバ504aは、少なくともシフトレジスタを有する構成とすればよい。またソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。また、シフトレジスタなどを用いてソースドライバ504bを構成してもよい。
【0341】
端子部507は、外部の回路から表示装置に電源、制御信号、及び画像信号等を入力するための端子が設けられた部分をいう。
【0342】
保護回路506は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該配線と別の配線とを導通状態にする回路である。図17Aに示す保護回路506は、例えば、ゲートドライバ504aと画素回路501の間の配線であるゲート線GL、またはソースドライバ504bと画素回路501の間の配線であるデータ線DL等の各種配線に接続される。
【0343】
ゲートドライバ504aとソースドライバ504bは、それぞれ画素部502と同じ基板上に設けられていてもよいし、ゲートドライバ回路またはソースドライバ回路が別途形成された基板(例えば、単結晶半導体膜または多結晶半導体膜で形成された駆動回路基板)をCOGやTAB(Tape Automated Bonding)によって、画素部502が設けられる基板に実装する構成としてもよい。
【0344】
図17Aに示す複数の画素回路501は、例えば、図17Bまたは図17Cに示す構成とすることができる。
【0345】
図17Bに示す画素回路501は、液晶素子570と、トランジスタ550と、容量素子560と、を有する。また画素回路501には、データ線DL_n、ゲート線GL_m、電位供給線VL等が接続されている。
【0346】
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の電極の一方に異なる電位を与えてもよい。
【0347】
図17Cに示す画素回路501は、トランジスタ552と、トランジスタ554と、容量素子562と、発光素子572と、を有する。また画素回路501には、データ線DL_n、ゲート線GL_m、電位供給線VL_a、及び電位供給線VL_b等が接続されている。
【0348】
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。トランジスタ554のゲートに与えられる電位に応じて、発光素子572に流れる電流が制御されることにより、発光素子572からの発光輝度が制御される。
【0349】
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
【0350】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0351】
(実施の形態4)
以下では、画素に表示される階調を補正するためのメモリを備える画素回路と、これを有する表示装置について説明する。実施の形態1で例示したトランジスタは、以下で例示する画素回路に用いられるトランジスタに適用することができる。
【0352】
<回路構成>
図18Aに、画素回路400の回路図を示す。画素回路400は、トランジスタM1、トランジスタM2、容量C1、及び回路401を有する。また画素回路400には、配線S1、配線S2、配線G1、及び配線G2が接続される。
【0353】
トランジスタM1は、ゲートが配線G1と、ソース及びドレインの一方が配線S1と、他方が容量C1の一方の電極と、それぞれ接続する。トランジスタM2は、ゲートが配線G2と、ソース及びドレインの一方が配線S2と、他方が容量C1の他方の電極、及び回路401と、それぞれ接続する。
【0354】
回路401は、少なくとも一の表示素子を含む回路である。表示素子として様々な素子を用いることができるが、代表的には有機EL素子やLED素子などの発光素子、液晶素子、またはMEMS(Micro Electro Mechanical Systems)素子等を適用することができる。
【0355】
トランジスタM1と容量C1とを接続するノードをノードN1、トランジスタM2と回路401とを接続するノードをノードN2とする。
【0356】
画素回路400は、トランジスタM1をオフ状態とすることで、ノードN1の電位を保持することができる。また、トランジスタM2をオフ状態とすることで、ノードN2の電位を保持することができる。また、トランジスタM2をオフ状態とした状態で、トランジスタM1を介してノードN1に所定の電位を書き込むことで、容量C1を介した容量結合により、ノードN1の電位の変位に応じてノードN2の電位を変化させることができる。
【0357】
ここで、トランジスタM1、トランジスタM2のうちの一方または両方に、実施の形態1で例示した、酸化物半導体が適用されたトランジスタを適用することができる。そのため極めて低いオフ電流により、ノードN1またはノードN2の電位を長期間に亘って保持することができる。なお、各ノードの電位を保持する期間が短い場合(具体的には、フレーム周波数が30Hz以上である場合等)には、シリコン等の半導体を適用したトランジスタを用いてもよい。
【0358】
<駆動方法例>
続いて、図18Bを用いて、画素回路400の動作方法の一例を説明する。図18Bは、画素回路400の動作に係るタイミングチャートである。なおここでは説明を容易にするため、配線抵抗などの各種抵抗や、トランジスタや配線などの寄生容量、及びトランジスタのしきい値電圧などの影響は考慮しない。
【0359】
図18Bに示す動作では、1フレーム期間を期間T1と期間T2とに分ける。期間T1はノードN2に電位を書き込む期間であり、期間T2はノードN1に電位を書き込む期間である。
【0360】
〔期間T1〕
期間T1では、配線G1と配線G2の両方に、トランジスタをオン状態にする電位を与える。また、配線S1には固定電位である電位Vrefを供給し、配線S2には第1データ電位Vを供給する。
【0361】
ノードN1には、トランジスタM1を介して配線S1から電位Vrefが与えられる。また、ノードN2には、トランジスタM2を介して第1データ電位Vが与えられる。したがって、容量C1には電位差V-Vrefが保持された状態となる。
【0362】
〔期間T2〕
続いて期間T2では、配線G1にはトランジスタM1をオン状態とする電位を与え、配線G2にはトランジスタM2をオフ状態とする電位を与える。また、配線S1には第2データ電位Vdataを供給する。配線S2には所定の定電位を与える、またはフローティング状態としてもよい。
【0363】
ノードN1には、トランジスタM1を介して第2データ電位Vdataが与えられる。このとき、容量C1による容量結合により、第2データ電位Vdataに応じてノードN2の電位が電位dVだけ変化する。すなわち、回路401には、第1データ電位Vwと電位dVを足した電位が入力されることとなる。なお、図18Bでは電位dVが正の値であるように示しているが、負の値であってもよい。すなわち、第2のデータ電位Vdataが電位Vrefより低くてもよい。
【0364】
ここで、電位dVは、容量C1の容量値と、回路401の容量値によって概ね決定される。容量C1の容量値が回路401の容量値よりも十分に大きい場合、電位dVは第2データ電位Vdataに近い電位となる。
【0365】
このように、画素回路400は、2種類のデータ信号を組み合わせて表示素子を含む回路401に供給する電位を生成することができるため、画素回路400内で階調の補正を行うことが可能となる。
【0366】
画素回路400は、配線S1及び配線S2に接続されるソースドライバが供給可能な最大電位を超える電位を生成することも可能となる。例えば発光素子を用いた場合では、ハイダイナミックレンジ(HDR)表示等を行うことができる。また、液晶素子を用いた場合では、オーバードライブ駆動等を実現できる。
【0367】
<適用例>
〔液晶素子を用いた例〕
図18Cに示す画素回路400LCは、回路401LCを有する。回路401LCは、液晶素子LCと、容量C2とを有する。
【0368】
液晶素子LCは、一方の電極がノードN2及び容量C2の一方の電極と、他方の電極が電位Vcom2が与えられる配線と接続する。容量C2は、他方の電極が電位Vcom1が与えられる配線と接続する。
【0369】
容量C2は保持容量として機能する。なお、容量C2は不要であれば省略することができる。
【0370】
画素回路400LCは、液晶素子LCに高い電圧を供給することができるため、例えばオーバードライブ駆動により高速な表示を実現すること、駆動電圧の高い液晶材料を適用することなどができる。また、配線S1または配線S2に補正信号を供給することで、使用温度や液晶素子LCの劣化状態等に応じて階調を補正することもできる。
【0371】
〔発光素子を用いた例〕
図18Dに示す画素回路400ELは、回路401ELを有する。回路401ELは、発光素子EL、トランジスタM3、及び容量C2を有する。
【0372】
トランジスタM3は、ゲートがノードN2及び容量C2の一方の電極と、ソース及びドレインの一方が電位Vが与えられる配線と、他方が発光素子ELの一方の電極と、それぞれ接続される。容量C2は、他方の電極が電位Vcomが与えられる配線と接続する。発光素子ELは、他方の電極が電位Vが与えられる配線と接続する。
【0373】
トランジスタM3は、発光素子ELに供給する電流を制御する機能を有する。容量C2は保持容量として機能する。容量C2は不要であれば省略することができる。
【0374】
なお、ここでは発光素子ELのアノード側がトランジスタM3と接続する構成を示しているが、カソード側にトランジスタM3を接続してもよい。そのとき、電位Vと電位Vの値を適宜変更することができる。
【0375】
画素回路400ELは、トランジスタM3のゲートに高い電位を与えることで、発光素子ELに大きな電流を流すことができるため、例えばHDR表示などを実現することができる。また、配線S1または配線S2に補正信号を供給することで、トランジスタM3や発光素子ELの電気特性のばらつきを補正することもできる。
【0376】
なお、図18C及び図18Dで例示した回路に限られず、別途トランジスタや容量などを追加した構成としてもよい。
【0377】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0378】
(実施の形態5)
本実施の形態では、本発明の一態様を用いて作製することができる表示モジュールについて説明する。
【0379】
図19Aに示す表示モジュール6000は、上部カバー6001と下部カバー6002との間に、FPC6005が接続された表示装置6006、フレーム6009、プリント基板6010、及びバッテリー6011を有する。
【0380】
例えば、本発明の一態様を用いて作製された表示装置を、表示装置6006に用いることができる。表示装置6006により、極めて消費電力の低い表示モジュールを実現することができる。
【0381】
上部カバー6001及び下部カバー6002は、表示装置6006のサイズに合わせて、形状や寸法を適宜変更することができる。
【0382】
表示装置6006はタッチパネルとしての機能を有していてもよい。
【0383】
フレーム6009は、表示装置6006の保護機能、プリント基板6010の動作により発生する電磁波を遮断する機能、放熱板としての機能等を有していてもよい。
【0384】
プリント基板6010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路、バッテリー制御回路等を有する。
【0385】
図19Bは、光学式のタッチセンサを備える表示モジュール6000の断面概略図である。
【0386】
表示モジュール6000は、プリント基板6010に設けられた発光部6015及び受光部6016を有する。また、上部カバー6001と下部カバー6002により囲まれた領域に一対の導光部(導光部6017a、導光部6017b)を有する。
【0387】
表示装置6006は、フレーム6009を間に介してプリント基板6010やバッテリー6011と重ねて設けられている。表示装置6006とフレーム6009は、導光部6017a、導光部6017bに固定されている。
【0388】
発光部6015から発せられた光6018は、導光部6017aにより表示装置6006の上部を経由し、導光部6017bを通って受光部6016に達する。例えば指やスタイラスなどの被検知体により、光6018が遮られることにより、タッチ操作を検出することができる。
【0389】
発光部6015は、例えば表示装置6006の隣接する2辺に沿って複数設けられる。受光部6016は、発光部6015と対向する位置に複数設けられる。これにより、タッチ操作がなされた位置の情報を取得することができる。
【0390】
発光部6015は、例えばLED素子などの光源を用いることができ、特に、赤外線を発する光源を用いることが好ましい。受光部6016は、発光部6015が発する光を受光し、電気信号に変換する光電素子を用いることができる。好適には、赤外線を受光可能なフォトダイオードを用いることができる。
【0391】
光6018を透過する導光部6017a、導光部6017bにより、発光部6015と受光部6016とを表示装置6006の下側に配置することができ、外光が受光部6016に到達してタッチセンサが誤動作することを抑制できる。特に、可視光を吸収し、赤外線を透過する樹脂を用いると、タッチセンサの誤動作をより効果的に抑制できる。
【0392】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0393】
(実施の形態6)
本実施の形態では、本発明の一態様の表示装置を適用可能な、電子機器の例について説明する。
【0394】
図20Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
【0395】
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
【0396】
表示部6502に、本発明の一態様の表示装置を適用することができる。
【0397】
図20Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
【0398】
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリー6518等が配置されている。
【0399】
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が図示しない接着層により固定されている。
【0400】
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されている。また、当該折り返された部分に、FPC6515が接続されている。FPC6515には、IC6516が実装されている。またFPC6515は、プリント基板6517に設けられた端子に接続されている。
【0401】
表示パネル6511には本発明の一態様のフレキシブルディスプレイパネルを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリー6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
【0402】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0403】
(実施の形態7)
本実施の形態では、本発明の一態様を用いて作製された表示装置を備える電子機器について説明する。
【0404】
以下で例示する電子機器は、表示部に本発明の一態様の表示装置を備えるものである。したがって、高い解像度が実現された電子機器である。また高い解像度と、大きな画面が両立された電子機器とすることができる。
【0405】
本発明の一態様の電子機器の表示部には、例えばフルハイビジョン、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。
【0406】
電子機器としては、例えば、テレビジョン装置、ノート型のパーソナルコンピュータ、モニタ装置、デジタルサイネージ、パチンコ機、ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
【0407】
本発明の一態様が適用された電子機器は、家屋やビルの内壁または外壁、自動車等の内装または外装等が有する平面または曲面に沿って組み込むことができる。
【0408】
図21Aは、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
【0409】
カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。
【0410】
なおカメラ8000は、レンズ8006と筐体とが一体となっていてもよい。
【0411】
カメラ8000は、シャッターボタン8004を押す、またはタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
【0412】
筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
【0413】
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
【0414】
筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100はカメラ8000から受信した映像等を表示部8102に表示させることができる。
【0415】
ボタン8103は、電源ボタン等としての機能を有する。
【0416】
カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。なお、ファインダーが内蔵されたカメラ8000であってもよい。
【0417】
図21Bは、ヘッドマウントディスプレイ8200の外観を示す図である。
【0418】
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリー8206が内蔵されている。
【0419】
ケーブル8205は、バッテリー8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球やまぶたの動きの情報を入力手段として用いることができる。
【0420】
装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極が設けられ、視線を認識する機能を有していてもよい。また、当該電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能や、使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能を有していてもよい。
【0421】
表示部8204に、本発明の一態様の表示装置を適用することができる。
【0422】
図21C図21D及び図21Eは、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
【0423】
使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、視差を用いた3次元表示等を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
【0424】
なお、表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の半導体装置を有する表示装置は、極めて精細度が高いため、図21Eのようにレンズ8305を用いて拡大したとしても、使用者に画素が視認されることなく、より現実感の高い映像を表示することができる。
【0425】
図22A乃至図22Gに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
【0426】
図22A乃至図22Gに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画や動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
【0427】
図22A乃至図22Gに示す電子機器の詳細について、以下説明を行う。
【0428】
図22Aは、テレビジョン装置9100を示す斜視図である。テレビジョン装置9100は、大画面、例えば、50インチ以上、または100インチ以上の表示部9001を組み込むことが可能である。
【0429】
図22Bは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。図22Bでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例として、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリーの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
【0430】
図22Cは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
【0431】
図22Dは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチとして用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
【0432】
図22E図21F及び図21Gは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図22Eは携帯情報端末9201を展開した状態、図22Gは折り畳んだ状態、図22F図22E図22Gの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径1mm以上150mm以下で曲げることができる。
【0433】
図23Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7500が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
【0434】
図23Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7500にタッチパネルを適用し、これに触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、操作ボタンの他に表示部を有していてもよい。
【0435】
なお、テレビジョン装置7100は、テレビ放送の受信機や、ネットワーク接続のための通信装置を有していてもよい。
【0436】
図23Bに、ノート型パーソナルコンピュータ7200を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7500が組み込まれている。
【0437】
図23C及び図23Dに、デジタルサイネージ(Digital Signage:電子看板)の一例を示す。
【0438】
図23Cに示すデジタルサイネージ7300は、筐体7301、表示部7500、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
【0439】
図23Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7500を有する。
【0440】
表示部7500が広いほど、一度に提供できる情報量を増やすことができ、また人の目につきやすいため、例えば広告の宣伝効果を高める効果を奏する。
【0441】
表示部7500にタッチパネルを適用し、使用者が操作できる構成とすることが好ましい。これにより、広告用途だけでなく、路線情報や交通情報、商用施設の案内情報など、使用者が求める情報を提供するための用途にも用いることができる。
【0442】
図23C及び図23Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311と無線通信により連携可能であることが好ましい。例えば、表示部7500に表示される広告の情報を情報端末機7311の画面に表示させることや、情報端末機7311を操作することで、表示部7500の表示を切り替えることができる。
【0443】
デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
【0444】
図23A乃至図23Dにおける表示部7500に、本発明の一態様の表示装置を適用することができる。
【0445】
本実施の形態の電子機器は表示部を有する構成としたが、表示部を有さない電子機器にも本発明の一態様を適用することができる。
【0446】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【実施例0447】
本実施例では、金属酸化物層114に用いることができる材料のエッチング速度を評価した。
【0448】
評価には、ガラス基板上に金属酸化物膜を形成した試料(sample A1乃至sample A4)を用いた。
【0449】
金属酸化物膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=1:1:1[原子数比])を用いたスパッタリング法により成膜した。成膜時の基板温度は100℃とし、成膜ガスとして酸素ガス(酸素流量比100%)を用いた。ここで、金属酸化物膜の成膜時の電源電力及び圧力を異ならせた4つの試料(sample A1乃至sample A4)を作製した。
【0450】
sample A1は、電源電力を2.5kW(交流)とし、圧力を0.3Paとした。sample A2は、電源電力を2.5kW(交流)とし、圧力を0.6Paとした。sample A3は、電源電力を4.5kW(交流)とし、圧力を0.3Paとした。sample A4は、電源電力を4.5kW(交流)とし、圧力を0.6Paとした。
【0451】
エッチング速度は、ウェットエッチング法で評価した。エッチャントとして、シュウ酸(5%以下)、添加剤(濃度非公開)、水(95%以上)の混合液を用いた。エッチング時のエッチャント温度は45℃とした。エッチング速度は、光干渉式膜厚測定により得た膜厚から算出した。なお、本実施例で示すエッチング速度は、金属酸化物膜の膜厚方向のエッチング速度を意味する。
【0452】
各試料のエッチング速度(ER)を、表1に示す。表1には金属酸化物膜の成膜速度(DR)も示している。
【0453】
【表1】
【0454】
表1に示すように、金属酸化物膜の成膜時の電源電力(Power)を高くすると、金属酸化物膜のエッチング速度が遅くなる傾向を確認できた。また、金属酸化物膜の成膜時の圧力(Pressure)を低くすると、金属酸化物膜のエッチング速度が遅くなる傾向を確認できた。金属酸化物膜の成膜時の電源電力を高くする、または圧力を低くすることにより金属酸化物膜の結晶性が高まり、エッチング速度が遅くなったと考えられる。なお、金属酸化物膜の成膜時の電源電力を高くすると成膜速度が速くなる傾向を確認できた。金属酸化物膜の成膜時の圧力で、成膜速度に大きな差は見られなかった。
【実施例0455】
本実施例では、図1に示すトランジスタ100に相当する試料(sample B1乃至sample B4)を作製し、断面形状を評価した。
【0456】
評価には、ガラス基板上に絶縁層、金属酸化物層及び導電層を形成した試料を用いた。
【0457】
<試料の作製>
まず、ガラス基板上に厚さ150nmの絶縁層を成膜した。絶縁層として、厚さ約5nmの第1の酸化窒化シリコン膜、厚さ約140nmの第2の酸化窒化シリコン膜、及び厚さ約5nmの第3の酸化窒化シリコン膜を、それぞれプラズマCVD法により成膜した。
【0458】
第1の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ24sccm、18000sccmとし、圧力を200Pa、成膜電力を130W、基板温度を350℃とした。
【0459】
第2の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ200sccm、4000sccmとし、圧力を300Pa、成膜電力を750W、基板温度を350℃とした。
【0460】
第3の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ20sccm、3000sccmとし、圧力を40Pa、成膜電力を500W、基板温度を350℃とした。
【0461】
続いて、絶縁層上にスパッタリング法により、厚さ約20nmの金属酸化物膜を成膜した。金属酸化物膜の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=1:1:1[原子数比])を用いたスパッタリング法により行った。成膜時の基板温度を100℃とし、成膜ガスとして酸素ガス(酸素流量比100%)を用いた。ここで、金属酸化物膜の成膜時の電源電力及び圧力を異ならせた4つの試料(sample B1乃至sample B4)を作製した。
【0462】
sample B1は、電源電力を2.5kW(交流)とし、圧力を0.3Paとした。sample B2は、電源電力を2.5kW(交流)とし、圧力を0.6Paとした。sample B3は、電源電力を4.5kW(交流)とし、圧力を0.3Paとした。sample B4は、電源電力を4.5kW(交流)とし、圧力を0.6Paとした。
【0463】
続いて、窒素を含む雰囲気下で350℃、1時間の加熱処理を行なった。
【0464】
続いて、金属酸化物膜上に導電膜を成膜した。導電膜として、厚さ約100nmのモリブデン膜をスパッタリング法により成膜した。
【0465】
続いて、導電膜上にレジストパターンを形成した。
【0466】
続いて、レジストパターンをマスクとして、導電膜をエッチングし、導電層を得た。エッチングにはドライエッチング法を用い、エッチングガスとしてSFガスを用いた。
【0467】
続いて、金属酸化物膜をエッチングし、金属酸化物層を得た。エッチングにはウェットエッチング法を用いた。エッチャントは実施例1の記載を参照できるため、詳細な説明は省略する。なお、エッチング処理時間は、sample B1乃至sample B4のいずれも75秒とした。
【0468】
<試料の断面観察>
次に、sample B1乃至sample B4を集束イオンビーム(FIB:Focused Ion Beam)により薄片化し、断面を走査透過電子顕微鏡法(STEM:Scanning Transmission Electron Microscopy)で観察した。
【0469】
sample B1乃至sample B4の断面のSTEM像を、図24に示す。図24は倍率10万倍の透過電子像(TE像)であり、縦方向に金属酸化物層の成膜時の電源電力(Power)を示しており、横方向に金属酸化物層の成膜時の圧力(Pressure)を示している。また、図24において、ガラス基板をGlass、絶縁層をSiON、金属酸化物層をIGZO、導電層をMo、断面観察用の帯電防止膜として用いたプラチナコーティングをPt、保護膜として用いたカーボンコーティングをCと記している。また、導電層(Mo)の端部と金属酸化物層(IGZO)の端部の位置の差である幅L2の値を示している。
【0470】
図24に示すように、いずれの試料においても導電層(Mo)の端部より金属酸化物層(IGZO)の端部が内側に位置することを確認できた。また、金属酸化物膜の成膜時の電源電力を高くすると、幅L2が小さくなる傾向を確認できた。金属酸化物膜の成膜時の圧力を低くすると、幅L2が小さくなる傾向を確認できた。なお、実施例1で示した金属酸化物膜のエッチング速度と、幅L2はほぼ線形の相関関係であることも確認できた。
【0471】
以上示したように、金属酸化物の成膜条件を異ならせることにより、幅L2を制御できることが分かった。
【実施例0472】
本実施例では、図5に示すトランジスタ100Aに相当する試料(sample C1乃至sample C3)を作製し、電気特性及び断面形状を評価した。
【0473】
<試料の作製>
作製したトランジスタの構成は、実施の形態1で例示したトランジスタ100Aを援用できる。
【0474】
まず、ガラス基板上に厚さ約100nmのタングステン膜をスパッタリング法により形成し、これを加工して第1のゲート電極を得た。続いて、第1のゲート絶縁層として厚さ約240nmの第1の窒化シリコン膜と、厚さ約60nmの第2の窒化シリコン膜と、厚さ約3nmの酸化窒化シリコン膜をプラズマCVD法により積層して形成した。
【0475】
第1の窒化シリコン膜の成膜は、シランガス、窒素ガス、アンモニアガスの流量をそれぞれ290sccm、2000sccm、2000sccmとし、圧力を200Pa、成膜電力を3000W、基板温度を350℃とした。
【0476】
第2の窒化シリコン膜の成膜は、シランガス、窒素ガス、アンモニアガスの流量をそれぞれ200sccm、2000sccm、100sccmとし、圧力を100Pa、成膜電力を2000W、基板温度を350℃とした。
【0477】
酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ20sccm、3000sccmとし、圧力を40Pa、成膜電力を3000W、基板温度を350℃とした。
【0478】
続いて、第1のゲート絶縁層上に、厚さ40nmの金属酸化物膜を成膜し、これを加工して半導体層を得た。金属酸化物膜の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=1:1:1[原子数比])を用いたスパッタリング法により行った。成膜時の基板温度は100℃とした。成膜ガスとして酸素ガス及びアルゴンガスの混合ガスを用い、酸素流量比を50%とした。また、電源電力を2.5kW(交流)とし、圧力を0.6Paとした。
【0479】
半導体層の形成後、窒素ガス雰囲気下にて350℃、1時間の加熱処理を行なった後、窒素ガスと酸素ガスの混合雰囲気下にて350℃、1時間の加熱処理を行なった。
【0480】
続いて、第2のゲート絶縁層として、厚さ約5nmの第1の酸化窒化シリコン膜、厚さ約140nmの第2の酸化窒化シリコン膜、及び厚さ約5nmの第3の酸化窒化シリコン膜を、それぞれプラズマCVD法により成膜した。
【0481】
第1の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ24sccm、18000sccmとし、圧力を200Pa、成膜電力を130W、基板温度を350℃とした。
【0482】
第2の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ200sccm、4000sccmとし、圧力を300Pa、成膜電力を750W、基板温度を350℃とした。
【0483】
第3の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ20sccm、3000sccmとし、圧力を40Pa、成膜電力を500W、基板温度を350℃とした。
【0484】
続いて、第2のゲート絶縁層上にスパッタリング法により、金属酸化物膜を成膜した。金属酸化物膜の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=1:1:1[原子数比])を用いたスパッタリング法により行った。成膜時の基板温度は100℃とした。成膜ガスとして酸素ガス(酸素流量比100%)を用いた。また、電源電力を4.5kW(交流)とし、圧力を0.3Paとした。ここで、金属酸化物膜の厚さを異ならせた3つの試料(sample C1乃至sample C3)を作製した。
【0485】
sample C1は、金属酸化物膜の厚さを20nmとした。sample C2は、金属酸化物膜の厚さを30nmとした。sample C3は、金属酸化物膜の厚さを40nmとした。
【0486】
その後、窒素を含む雰囲気下で350℃、1時間の加熱処理を行なった。
【0487】
続いて、導電膜として、金属酸化物膜上に厚さ約100nmのモリブデン膜をスパッタリング法により成膜した。
【0488】
続いて、導電膜上にレジストパターンを形成した。
【0489】
続いて、レジストパターンをマスクとして、導電膜をエッチングし、導電層を得た。エッチングにはドライエッチング法を用い、エッチングガスとしてSFガスを用いた。
【0490】
続いて、金属酸化物膜をエッチングし、金属酸化物層を得た。エッチングにはウェットエッチング法を用いた。エッチャントは実施例1の記載を参照できるため、詳細な説明は省略する。なお、エッチング処理時間は、sample C1乃至sample C3のいずれも75秒とした。
【0491】
続いて、導電層をマスクとして、不純物元素としてホウ素の添加処理を行なった。不純物の添加は、プラズマイオンドーピング装置を用いた。ホウ素を供給するためのガスには、Bガスを用いた。
【0492】
続いて、トランジスタを覆う保護絶縁層として厚さ約300nmの酸化窒化シリコン膜をプラズマCVD法により成膜した。
【0493】
保護絶縁層の成膜は、シランガス、窒素ガスの流量をそれぞれ290sccm、4000sccmとし、圧力を133Pa、成膜電力を1000W、基板温度を350℃とした。
【0494】
続いて、保護絶縁層及び第2のゲート絶縁層の一部をエッチングにより開口し、モリブデン膜をスパッタリング法により成膜した後、これを加工してソース電極及びドレイン電極を得た。その後、平坦化層として厚さ約1.5μmのアクリル膜を形成し、窒素雰囲気下、温度250℃、1時間の条件で加熱処理を行った。
【0495】
以上の工程により、それぞれガラス基板上に形成されたトランジスタを有する、sample C1乃至sample C3を得た。
【0496】
<試料の断面観察>
続いて、上記で作製したsample C1乃至sample C3を集束イオンビーム(FIB:Focused Ion Beam)により薄片化し、断面を走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscope)で観察した。
【0497】
<トランジスタのId-Vg特性>
続いて、上記で作製したトランジスタのId-Vg特性を測定した。
【0498】
トランジスタのId-Vg特性の測定は、ゲート電極に印加する電圧(以下、ゲート電圧(Vg)ともいう)を、-15Vから+20Vまで0.25Vのステップで印加した。また、ソース電極に印加する電圧(以下、ソース電圧(Vs)ともいう)を0V(comm)とし、ドレイン電極に印加する電圧(以下、ドレイン電圧(Vd)ともいう)を、0.1V及び10Vとした。
【0499】
<トランジスタの信頼性>
続いて、上記トランジスタを用いて信頼性の評価として、ゲートバイアスストレス試験(GBT:Gate Bias Stress Test)を行った。
【0500】
ここで、ゲートバイアスストレス試験(GBT)は、トランジスタの信頼性を評価する指標の1つとして、ゲートに電界を印加した状態で保持し、トランジスタの特性変動を評価する。ゲートバイアスストレス試験(GBT)の中でも、ソース電位及びドレイン電位に対して、ゲートに正の電位を与えた状態で、高温下で保持する試験をPBTS(Positive Bias Temperature Stress)試験、ゲートに負の電位を与えた状態で、高温下で保持する試験をNBTS(Negative Bias Temperature Stress)試験と呼ぶ。また、白色LED光などの光を照射した状態で行うPBTS試験及びNBTS試験を、それぞれPBTIS(Positive Bias Temperature Illumination Stress)試験、NBTIS(Negative Bias Temperature Illumination Stress)試験と呼ぶ。
【0501】
特に、酸化物半導体を用いたn型のトランジスタにおいては、トランジスタをオン状態(電流を流す状態)とする際にゲートに正の電位が与えられるため、PBTS試験でのしきい値電圧の変動量が、トランジスタの信頼性の指標として着目すべき重要な項目の1つとなる。
【0502】
本実施例では、PBTS試験及びNBTIS試験について示す。PBTS試験及びNBTIS試験は、トランジスタが形成されている基板を60℃に保持し、トランジスタのソースとドレインに0V、ゲートには20Vまたは-20Vの電圧を印加し、この状態を1時間保持した。なお、NBTIS試験における光の照射は、約10000lxの白色LED光を用いた。
【0503】
sample C1におけるトランジスタのId-Vg特性、及び断面のSTEM像を図25に示す。sample C2におけるトランジスタのId-Vg特性、及び断面のSTEM像を図26に示す。sample C3におけるトランジスタのId-Vg特性、及び断面のSTEM像を図27に示す。図25乃至図27では縦方向にトランジスタのチャネル長が異なる条件のId-Vg特性を示しており、チャネル長が2μm、3μm、チャネル幅が50μmの2種類のトランジスタについて示している。図25乃至図27のId-Vg特性において、横軸にゲート電圧(Vg)を示し、縦軸にドレイン電流(Id)を示す。なお、それぞれの試料で10個のトランジスタのId-Vg特性を測定し、図25乃至図27では10個のトランジスタのId-Vg特性結果をそれぞれ重ねて示している。また、図25乃至図27それぞれの最下段に、断面のSTEM像を示している。STEM像において、窒化シリコン層をSiN、酸化窒化シリコン層をSiON、金属酸化物層をIGZO、導電層をMo、と記している。また、導電層(Mo)の端部と金属酸化物層(IGZO)の端部の位置の差である幅L2の値を示している。
【0504】
図25乃至図27に示すように、金属酸化物層が厚くなると幅L2が小さくなる傾向となった。つまり、金属酸化物の膜厚を異ならせることにより、幅L2を制御できることが分かった。
【0505】
図25乃至図27に示すように、いずれの試料においても良好な電気特性が得られることを確認できた。
【0506】
sample C1乃至sample C3における、PBTS試験及びNBTIS試験前後でのしきい値電圧の変動量(ΔVth)を図28に示す。図28において、横軸に金属酸化物層の厚さを示し、縦軸にしきい値電圧の変動量(ΔVth)を示す。
【0507】
図28に示すように、いずれの試料においても、しきい値電圧の変動量(ΔVth)は小さく、良好な信頼性であることを確認できた。また、金属酸化物層の膜厚でしきい値電圧の変動量(ΔVth)に差は見られなかった。
【実施例0508】
本実施例では、金属酸化物膜の抵抗を評価した。
【0509】
評価には、ガラス基板上に金属酸化物膜を形成した試料(sample D)を用いた。sample Dの断面構造を図29に示す。
【0510】
<試料の作製>
まず、ガラス基板200上に、厚さ100nmの金属酸化物膜214を成膜した。金属酸化物膜214の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=1:1:1[原子数比])を用いたスパッタリング法により行った。成膜時の基板温度を100℃とした。成膜ガスとして酸素ガス(酸素流量比100%)を用いた。また、電源電力を4.5kW(交流)とし、圧力を0.3Paとした。
【0511】
その後、窒素を含む雰囲気下で350℃、1時間の加熱処理を行なった。
【0512】
続いて、金属酸化物膜214上に、導電膜212を成膜した。導電膜212として、厚さ約50nmのモリブデン膜をスパッタリング法により成膜した。
【0513】
続いて、導電膜212上に、絶縁膜218を成膜した。絶縁膜218として、厚さ約300nmの酸化窒化シリコン膜をプラズマCVD法により成膜した。絶縁膜218の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ290sccm、4000sccmとし、圧力を133Pa、成膜電力を1000W、基板温度を350℃とした。
【0514】
続いて、絶縁膜218及び導電膜212をドライエッチング法により除去した。エッチングには、SFガスを用いた。
【0515】
以上の工程で、sample Dを得た。
【0516】
<抵抗測定>
本実施例では、金属酸化物膜214の膜厚方向の抵抗を評価した。具体的には、金属酸化物膜214の膜厚及び抵抗を測定し、その後、金属酸化物膜214の表面側を一部エッチングにより除去して膜厚を薄くし、再び膜厚及び抵抗を測定する、を繰り返した。
【0517】
金属酸化物膜214のシート抵抗を、図30に示す。図30において、横軸に金属酸化物膜214の膜減り量を示し、縦軸にシート抵抗を示す。
【0518】
図30に示すように、金属酸化物膜214の表面から深さ約80nm程度までは、シート抵抗が1×10Ω/□以下と抵抗が低いことが分かった。金属酸化物膜214を約80nm程度に厚くした場合においても、導電膜として機能することを確認できた。
【実施例0519】
本実施例では、図1に示すトランジスタ100に相当する試料(sample E1乃至sample E4)を作製し、断面形状を評価した。ここでは、保護絶縁層である絶縁層118に相当する絶縁層の膜種、成膜条件を異ならせた。
【0520】
評価には、ガラス基板上に絶縁層、金属酸化物層、導電層及び保護絶縁層を形成した試料を用いた。
【0521】
<試料の作製>
まず、ガラス基板上に厚さ150nmの絶縁層を成膜した。絶縁層として、厚さ約5nmの第1の酸化窒化シリコン膜、厚さ約140nmの第2の酸化窒化シリコン膜、及び厚さ約5nmの第3の酸化窒化シリコン膜を、それぞれプラズマCVD法により成膜した。
【0522】
第1の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ24sccm、18000sccmとし、圧力を200Pa、成膜電力を130W、基板温度を350℃とした。
【0523】
第2の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ200sccm、4000sccmとし、圧力を300Pa、成膜電力を750W、基板温度を350℃とした。
【0524】
第3の酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ20sccm、3000sccmとし、圧力を40Pa、成膜電力を500W、基板温度を350℃とした。
【0525】
続いて、絶縁層上にスパッタリング法により、厚さ約20nmの金属酸化物膜を成膜した。金属酸化物膜の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=1:1:1[原子数比])を用いたスパッタリング法により行った。成膜時の基板温度は100℃とし、成膜ガスとして酸素ガス(酸素流量比100%)を用いた。また、電源電力を4.5kW(交流)とし、圧力を0.3Paとした。
【0526】
続いて、窒素を含む雰囲気下で350℃、1時間の加熱処理を行なった。
【0527】
続いて、金属酸化物膜上に導電膜を成膜した。導電膜として、厚さ約100nmのモリブデン膜をスパッタリング法により成膜した。
【0528】
続いて、導電膜上にレジストパターンを形成した。
【0529】
続いて、レジストパターンをマスクとして、導電膜をエッチングし、導電層を得た。エッチングにはドライエッチング法を用い、エッチングガスとしてSFガスを用いた。
【0530】
続いて、金属酸化物膜をエッチングし、金属酸化物層を得た。エッチングにはウェットエッチング法を用いた。エッチャントは実施例1の記載を参照できるため、詳細な説明は省略する。なお、エッチング処理時間は、sample E1乃至sample E4のいずれも75秒とした。
【0531】
続いて、保護絶縁層として厚さ約300nmの絶縁膜をプラズマCVD法により成膜した。ここで、保護絶縁層の膜種及び成膜条件を異ならせた4つの試料(sample E1乃至sample E4)を作製した。
【0532】
sample E1は、保護絶縁層として酸化窒化シリコン膜を成膜した。酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ290sccm、4000sccmとし、圧力を133Pa、成膜電力を1000W、基板温度を350℃とした。
【0533】
sample E2は、保護絶縁層として酸化窒化シリコン膜を成膜した。酸化窒化シリコン膜の成膜は、シランガス、一酸化二窒素ガスの流量をそれぞれ150sccm、1000sccmとし、圧力を200Pa、成膜電力を2000W、基板温度を350℃とした。
【0534】
sample E3は、保護絶縁層として窒化酸化シリコン膜を成膜した。窒化酸化シリコン膜の成膜は、シランガス、一酸化二窒素ガス、窒素ガス、アンモニアガスの流量をそれぞれ150sccm、1000sccm、5000sccm、100sccmとし、圧力を200Pa、成膜電力を2000W、基板温度を350℃とした。
【0535】
sample E4は、保護絶縁層として窒化シリコン膜を成膜した。窒化シリコン膜の成膜は、シランガス、窒素ガス、アンモニアガスの流量をそれぞれ150sccm、5000sccm、100sccmとし、圧力を200Pa、成膜電力を2000W、基板温度を350℃とした。
【0536】
以上の工程により、sample E1乃至sample E4を得た。
【0537】
<試料の断面観察>
次に、sample E1乃至sample E4を集束イオンビーム(FIB:Focused Ion Beam)により薄片化し、断面を走査透過電子顕微鏡法(STEM:Scanning Transmission Electron Microscopy)で観察した。
【0538】
sample E1乃至sample E4の断面のSTEM像を、図31に示す。図31は、倍率10万倍の透過電子像(TE像)である。また、図31では、ガラス基板をGlass、絶縁層をSiON1、導電層をMo、金属酸化物層をIGZOと記している。また、保護絶縁層は酸化窒化シリコン膜をSiON2、窒化酸化シリコン膜をSiNO、窒化シリコン膜をSiNと記している。
【0539】
図31において、導電層(Mo)と金属酸化物層(IGZO)との間に観察される淡色の領域は、空隙であることを示す。保護絶縁層として酸化窒化シリコンを用いたsample E1とsample E2において、sample E1と比較してsample E2は空隙が小さく、導電層(Mo)と金属酸化物層(IGZO)との間に保護絶縁層(SiON2)が形成されていることが分かった。保護絶縁層の成膜条件を異ならせることで、導電層(Mo)と金属酸化物層(IGZO)との間の空隙の大きさを制御できることが分かった。
【0540】
sample E1と比較して、保護絶縁層として窒化酸化シリコンを用いたsample E3は空隙が小さい傾向となった。保護絶縁層の膜種を異ならせることで、導電層(Mo)と金属酸化物層(IGZO)との間の空隙の大きさを制御できることが分かった。
【0541】
保護絶縁層として窒化シリコンを用いたsample E4では、保護絶縁層に鬆(図31中の矢印)が観察された。
【符号の説明】
【0542】
C1:容量、C2:容量、DL_1:データ線、G1:配線、G2:配線、GL_1:ゲート線、M1:トランジスタ、M2:トランジスタ、M3:トランジスタ、N1:ノード、N2:ノード、P1:領域、P2:領域、S1:配線、S2:配線、T1:期間、T2:期間、100:トランジスタ、100A:トランジスタ、100B:トランジスタ、100C:トランジスタ、102:基板、103:絶縁層、103a:絶縁層、103b:絶縁層、103c:絶縁層、103d:絶縁層、103i:領域、106:導電層、108:半導体層、108C:領域、108f:金属酸化物膜、108L:領域、108N:領域、110:絶縁層、110a:絶縁層、110b:絶縁層、110c:絶縁層、110i:領域、112:導電層、112f:導電膜、114:金属酸化物層、114f:金属酸化物膜、115:レジストマスク、116:絶縁層、118:絶縁層、120a:導電層、120b:導電層、130:空隙、140:不純物元素、141a:開口部、141b:開口部、142:開口部、150:絶縁領域、200:ガラス基板、212:導電膜、214:金属酸化物膜、218:絶縁膜、400:画素回路、400EL:画素回路、400LC:画素回路、401:回路、401EL:回路、401LC:回路、501:画素回路、502:画素部、504:駆動回路部、504a:ゲートドライバ、504b:ソースドライバ、506:保護回路、507:端子部、550:トランジスタ、552:トランジスタ、554:トランジスタ、560:容量素子、562:容量素子、570:液晶素子、572:発光素子、700:表示装置、700A:表示装置、700B:表示装置、701:基板、702:画素部、704:ソースドライバ回路部、705:基板、706:ゲートドライバ回路部、708:FPC端子部、710:信号線、711:配線部、712:シール材、716:FPC、717:IC、721:ソースドライバIC、722:ゲートドライバ回路部、723:FPC、724:プリント基板、730:絶縁膜、732:封止膜、734:絶縁膜、736:着色膜、738:遮光膜、740:保護層、741:保護層、742:接着層、743:樹脂層、744:絶縁層、745:支持基板、746:樹脂層、750:トランジスタ、752:トランジスタ、760:配線、770:平坦化絶縁膜、772:導電層、773:絶縁層、774:導電層、775:液晶素子、776:液晶層、778:スペーサ、780:異方性導電膜、782:発光素子、786:EL層、788:導電膜、790:容量素子、6000:表示モジュール、6001:上部カバー、6002:下部カバー、6005:FPC、6006:表示装置、6009:フレーム、6010:プリント基板、6011:バッテリー、6015:発光部、6016:受光部、6017a:導光部、6017b:導光部、6018:光、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリー、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7500:表示部、8000:カメラ、8001:筐体、8002:表示部、8003:操作ボタン、8004:シャッターボタン、8006:レンズ、8100:ファインダー、8101:筐体、8102:表示部、8103:ボタン、8200:ヘッドマウントディスプレイ、8201:装着部、8202:レンズ、8203:本体、8204:表示部、8205:ケーブル、8206:バッテリー、8300:ヘッドマウントディスプレイ、8301:筐体、8302:表示部、8304:固定具、8305:レンズ、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9100:テレビジョン装置、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
【手続補正書】
【提出日】2024-07-30
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
半導体層と、第1の絶縁層と、金属酸化物層と、導電層と、絶縁領域と、を有し、
前記第1の絶縁層は、前記半導体層上に位置する領域を有し、
前記導電層は、前記第1の絶縁層上に位置する領域を有し、
断面視において、前記金属酸化物層は、前記第1の絶縁層と前記導電層との間に位置する領域を有し、
断面視において、前記金属酸化物層の端部は、前記導電層の端部よりも内側に位置する領域を有し、
断面視において、前記絶縁領域は、前記金属酸化物層と隣接し、且つ前記第1の絶縁層と前記導電層との間に位置する領域を有し、
前記半導体層は、第1の領域と、一対の第2の領域と、一対の第3の領域と、を有し、
前記第1の領域は、前記金属酸化物層及び前記導電層と重なり、且つチャネル形成領域としての機能を有し、
前記第2の領域は、前記第1の領域を挟み、前記絶縁領域及び前記導電層と重なり、且つ前記金属酸化物層と重ならない領域であり、
前記第3の領域は、前記第1の領域及び一対の前記第2の領域を挟み、且つ前記導電層と重ならない領域であり、
前記第3の領域は、前記第1の領域よりも低抵抗である部分を含み、
前記第2の領域は、前記第3の領域よりも高抵抗である部分を含み、
前記第1の絶縁層は、前記第1の領域の上面及び側面、前記第2の領域の上面及び側面、並びに前記第3の領域の上面及び側面を覆う領域を有し、
前記第3の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第1の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記半導体層及び前記金属酸化物層はそれぞれ、インジウムを含み、
前記絶縁領域は、空隙を有する半導体装置。
【請求項2】
半導体層と、第1の絶縁層と、金属酸化物層と、導電層と、絶縁領域と、を有し、
前記第1の絶縁層は、前記半導体層上に位置する領域を有し、
前記導電層は、前記第1の絶縁層上に位置する領域を有し、
断面視において、前記金属酸化物層は、前記第1の絶縁層と前記導電層との間に位置する領域を有し、
断面視において、前記金属酸化物層の端部は、前記導電層の端部よりも内側に位置し、
断面視において、前記絶縁領域は、前記金属酸化物層と隣接し、且つ前記第1の絶縁層と前記導電層との間に位置する領域を有し、
前記半導体層は、第1の領域と、一対の第2の領域と、一対の第3の領域と、を有し、
前記第1の領域は、前記金属酸化物層及び前記導電層と重なり、且つチャネル形成領域としての機能を有し、
前記第2の領域は、前記第1の領域を挟み、前記絶縁領域及び前記導電層と重なり、且つ前記金属酸化物層と重ならない領域であり、
前記第3の領域は、前記第1の領域及び一対の前記第2の領域を挟み、且つ前記導電層と重ならない領域であり、
前記第3の領域は、前記第1の領域よりも低抵抗である部分を含み、
前記第2の領域は、前記第3の領域よりも高抵抗である部分を含み、
前記第1の絶縁層は、前記第1の領域の上面及び側面、前記第2の領域の上面及び側面、並びに前記第3の領域の上面及び側面を覆う領域を有し、
前記第3の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第1の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記第2の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第1の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記半導体層及び前記金属酸化物層はそれぞれ、インジウムを含み、
前記絶縁領域は、空隙を有する半導体装置。
【請求項3】
半導体層と、第1の絶縁層と、金属酸化物層と、導電層と、絶縁領域と、を有し、
前記第1の絶縁層は、前記半導体層上に位置する領域を有し、
前記導電層は、前記第1の絶縁層上に位置する領域を有し、
断面視において、前記金属酸化物層は、前記第1の絶縁層と前記導電層との間に位置する領域を有し、
断面視において、前記金属酸化物層の端部は、前記導電層の端部よりも内側に位置し、
断面視において、前記絶縁領域は、前記金属酸化物層と隣接し、且つ前記第1の絶縁層と前記導電層との間に位置する領域を有し、
前記半導体層は、第1の領域と、一対の第2の領域と、一対の第3の領域と、を有し、
前記第1の領域は、前記金属酸化物層及び前記導電層と重なり、且つチャネル形成領域としての機能を有し、
前記第2の領域は、前記第1の領域を挟み、前記絶縁領域及び前記導電層と重なり、且つ前記金属酸化物層と重ならない領域であり、
前記第3の領域は、前記第1の領域及び一対の前記第2の領域を挟み、且つ前記導電層と重ならない領域であり、
前記第3の領域は、前記第1の領域よりも低抵抗である部分を含み、
前記第2の領域は、前記第3の領域よりも高抵抗である部分を含み、
前記第1の絶縁層は、前記第1の領域の上面及び側面、前記第2の領域の上面及び側面、並びに前記第3の領域の上面及び側面を覆う領域を有し、
前記第3の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第1の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記第3の領域と重なる領域の前記第1の絶縁層の膜厚が、前記第2の領域と重なる領域の前記第1の絶縁層の膜厚より薄く、
前記半導体層及び前記金属酸化物層はそれぞれ、インジウムを含み、
前記絶縁領域は、空隙を有する半導体装置。
【請求項4】
請求項1乃至請求項3のいずれか一において、
前記絶縁領域と、前記第1の絶縁層とは、比誘電率が異なる半導体装置。
【請求項5】
請求項1乃至請求項4のいずれか一において、
前記第3の領域は、第1の元素を含み、
前記第1の元素は、ホウ素、リン、アルミニウム、及びマグネシウムから選ばれる一以上である半導体装置。
【請求項6】
請求項1乃至請求項5のいずれか一において、
前記半導体層は、酸化インジウムを有する半導体装置。