(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024155946
(43)【公開日】2024-10-31
(54)【発明の名称】左眼および右眼のための共有ディスプレイを伴う拡張および仮想現実ディスプレイシステム
(51)【国際特許分類】
G02B 27/02 20060101AFI20241024BHJP
G02B 30/52 20200101ALI20241024BHJP
H04N 5/64 20060101ALI20241024BHJP
【FI】
G02B27/02 Z
G02B30/52
H04N5/64 511A
【審査請求】有
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2024134864
(22)【出願日】2024-08-13
(62)【分割の表示】P 2021537776の分割
【原出願日】2019-12-20
(31)【優先権主張番号】62/786,199
(32)【優先日】2018-12-28
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/800,363
(32)【優先日】2019-02-01
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/858,927
(32)【優先日】2019-06-07
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/911,018
(32)【優先日】2019-10-04
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】514108838
【氏名又は名称】マジック リープ, インコーポレイテッド
【氏名又は名称原語表記】Magic Leap,Inc.
【住所又は居所原語表記】7500 W SUNRISE BLVD,PLANTATION,FL 33322 USA
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ジャジャ アイ. トリスナディ
(72)【発明者】
【氏名】ヒュンスン チュン
(72)【発明者】
【氏名】ライオネル アーネスト エドウィン
(72)【発明者】
【氏名】ハワード ラッセル コーエン
(72)【発明者】
【氏名】ロバート ブレイク テイラー
(72)【発明者】
【氏名】アンドリュー イアン ラッセル
(72)【発明者】
【氏名】ケビン リチャード カーティス
(72)【発明者】
【氏名】クリントン カーライル
(57)【要約】
【課題】好適な左眼及び右眼用共有ディスプレイを伴う拡張及び仮想現実ディスプレイシステムの提供。
【解決手段】ウェアラブルディスプレイシステムは、1以上の発光型マイクロディスプレイ、例、マイクロLEDディスプレイを有する光投影システムを含む。光投影システムは、偏光器、切替可能偏光回転子を有する光学ルータを通し通過する時間多重化された左眼及び右眼画像を投影する。光学ルータは、光投影システムによる画像の生成と同期され、第1偏光を左眼画像に異なる第2偏光を右眼画像に付与する。第1偏光の光は光を左、右眼の一方に出力するために1以上の導波管を有する接眼レンズの中に内部結合される一方、第2偏光の光は光を左、右眼の他方に出力するために1以上の導波管を有する別の接眼レンズの中に内部結合され得る。各接眼レンズは、可変量の波面発散を伴って、内部結合された光を出力し、異なる遠近調節応答をユーザの眼から誘発し得る。
【選択図】
図32
【特許請求の範囲】
【請求項1】
頭部搭載型ディスプレイシステムであって、
頭部搭載可能フレームと、
発光型マイクロディスプレイを備える光投影システムであって、前記光投影システムは、右眼画像を形成するための右眼画像光と時間多重化される左眼画像を形成するための左眼画像光を備える画像光を出力するように構成される、光投影システムと、
前記フレームによって支持される左接眼レンズと、
前記フレームによって支持される右接眼レンズと、
機械的に切替可能なデバイスを備える光学ルータであって、前記機械的に切替可能なデバイスは、
前記光投影システムからの前記画像光を受け取ることと、
異なる時間に、前記左眼画像光を前記左接眼レンズに、前記右眼画像光を前記右接眼レンズに指向することと
を行うように構成される、光学ルータと
を備える、頭部搭載型ディスプレイシステム。
【請求項2】
制御電子機器であって、
前記光投影システムによる左眼画像画像の生成および前記光学ルータによる前記左接眼レンズへの前記左眼画像光のルーティングと、
前記光投影システムによる右眼画像の生成および前記光学ルータによる前記右接眼レンズへの前記右眼画像光のルーティングと
を同期させるように構成される、制御電子機器
をさらに備え、
前記機械的に切替可能なデバイスは、前記制御電子機器によって、前記光投影システムと同期され、前記左眼画像光を前記左接眼レンズに指向し、前記右眼画像光を前記右接眼レンズに指向する、請求項1に記載の頭部搭載型ディスプレイシステム。
【請求項3】
前記左接眼レンズは、左眼導波管アセンブリを形成する1つ以上の左眼導波管を備え、各左眼導波管は、
画像光を前記左眼導波管の中に内部結合するように構成される左眼内部結合光学要素と、
内部結合される画像光を前記左眼導波管から外に外部結合するように構成される左眼外部結合光学要素と
を備え、
前記右接眼レンズは、右眼導波管アセンブリを形成する1つ以上の右眼導波管を備え、各右眼導波管は、
画像光を前記右眼導波管の中に内部結合するように構成される右眼内部結合光学要素と、
内部結合される画像光を前記右眼導波管から外に外部結合するように構成される右眼外部結合光学要素と
を備える、請求項1に記載の頭部搭載型ディスプレイシステム。
【請求項4】
前記左眼導波管アセンブリは、複数の深度平面に対応する可変量の波面発散を伴って、前記内部結合される光を出力するように構成され、前記右眼導波管アセンブリは、前記複数の深度平面に対応する可変量の波面発散を伴って、前記外部結合された光を出力するように構成される、請求項3に記載の頭部搭載型ディスプレイシステム。
【請求項5】
前記左眼導波管アセンブリは、第1の導波管のスタックを備え、前記右眼導波管アセンブリは、第2の導波管のスタックを備え、前記光投影システムは、複数の原色の光を出力するように構成され、前記左眼および右眼導波管アセンブリはそれぞれ、各原色の光のための少なくとも1つの専用導波管を備える、請求項3に記載の頭部搭載型ディスプレイシステム。
【請求項6】
前記発光型マイクロディスプレイは、マイクロLEDディスプレイを備える、請求項1に記載の頭部搭載型ディスプレイシステム。
【請求項7】
複数の発光型マイクロディスプレイをさらに備え、各マイクロLEDディスプレイは、モノクロであり、原色の光を放出するように構成される、請求項1に記載の頭部搭載型ディスプレイシステム。
【請求項8】
X-立方体プリズムをさらに備え、前記発光型マイクロLEDディスプレイはそれぞれ、前記X-立方体プリズムの異なる側に面する、請求項7に記載の頭部搭載型ディスプレイシステム。
【請求項9】
各マイクロLEDディスプレイは、光エミッタのアレイを備え、光コリメータの複数のアレイをさらに備え、各マイクロディスプレイは、光コリメータの関連付けられるアレイを有し、光コリメータの各アレイは、前記マイクロディスプレイからの光の角度放出プロファイルを捕捉および低減させるように構成される、請求項8に記載の頭部搭載型ディスプレイシステム。
【請求項10】
前記光コリメータは、マイクロレンズを備える、請求項9に記載の頭部搭載型ディスプレイシステム。
【請求項11】
前記光コリメータは、ナノレンズを備える、請求項9に記載の頭部搭載型ディスプレイシステム。
【請求項12】
前記機械的に切替可能なデバイスは、左眼画像光を前記左接眼レンズに反射させる第1の配向と、右眼画像光を前記右接眼レンズに反射させる第2の配向とをとるように構成されるミラーである、請求項1に記載の頭部搭載型ディスプレイシステム。
【請求項13】
前記ミラーは、MEMSミラーである、請求項12に記載の頭部搭載型ディスプレイシステム。
【請求項14】
前記ミラーは、アクチュエータに取り付けられるミラーコンポーネントを有する走査式ミラーであり、前記アクチュエータは、前記第1の配向と前記第2の配向との間で前記ミラーコンポーネントを移動させる、請求項12に記載の頭部搭載型ディスプレイシステム。
【発明の詳細な説明】
【技術分野】
【0001】
(優先権の主張)
本願は、2019年6月7日に出願され、「AUGMENTED AND VIRTUAL REALITY DISPLAY SYSTEMS WITH SHARED DISPLAY FOR LEFT AND RIGHT EYES」と題された、米国仮出願第62/858,927号、2019年2月1日に出願され、「VIRTUAL AND AUGMENTED REALITY DISPLAY SYSTEMS WITH EMISSIVE MICRO-DISPLAYS」と題された、米国仮出願第62/800,363号、2019年10月4日に出願され、「AUGMENTED AND VIRTUAL REALITY DISPLAY SYSTEMS WITH SHARED DISPLAY FOR LEFT AND RIGHT EYES」と題された、米国仮出願第62/911,018号、および2018年12月28日に出願され、「LOW MOTION-TO-PHOTON LATENCY ARCHITECTURE FOR AUGMENTED AND VIRTUAL REALITY DISPLAY SYSTEMS」と題された、米国仮出願第62/786,199号の優先権を主張する。上記の出願は、参照することによってその全体として本明細書に組み込まれる。
【0002】
本願は、参照することによって、以下、すなわち、2014年11月27日に出願され、2015年7月23日に米国特許公開第2015/0205126号として公開された、米国特許出願第14/555,585号、2015年4月18日に出願され、2015年10月22日に米国特許公開第2015/0302652号として公開された、米国特許出願第14/690,401号、2014年3月14日に出願され、2016年8月16日に発行された、現米国特許第9,417,452号である、米国特許出願第14/212,961号、2014年7月14日に出願され、2015年10月29日に米国特許公開第2015/0309263号として公開された、米国特許出願第14/331,218号、2018年3月1日に公開された、米国特許出願公開第2018/0061121号、2018年12月14日に出願された、米国特許出願第16/221065号、2018年9月27日に公開された、米国特許出願公開第2018/0275410号、2018年12月28日に出願された、米国仮出願第62/786,199号、2018年12月14日に出願された、米国特許出願第16/221,359号、2018年7月24日に出願された、米国仮出願第62/702,707号、および2017年4月6日に出願された、米国特許出願第15/481,255号のそれぞれの全体を組み込む。
(技術分野)
【0003】
本開示は、ディスプレイシステムに関し、より具体的には、拡張および仮想現実ディスプレイシステムに関する。
【背景技術】
【0004】
現代のコンピューティングおよびディスプレイ技術は、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進しており、デジタル的に再現された画像またはその一部が、現実であるように見える、またはそのように知覚され得る様式でユーザに提示される。仮想現実、すなわち、「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透過性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実、すなわち、「AR」シナリオは、典型的には、ユーザの周囲の実際の世界の可視化に対する拡張としてのデジタルまたは仮想画像情報の提示を伴う。複合現実または「MR」シナリオは、一種のARシナリオであって、典型的には、自然世界の中に統合され、それに応答する、仮想オブジェクトを伴う。例えば、MRシナリオは、実世界内のオブジェクトによってブロックされて見える、または別様にそれと相互作用するように知覚される、AR画像コンテンツを含んでもよい。
【0005】
図1を参照すると、拡張現実場面10が、描写されている。AR技術のユーザには、人々、木々、背景における建物、コンクリートプラットフォーム30を特徴とする、実世界公園状設定20が見える。ユーザはまた、実世界プラットフォーム30上に立っているロボット像40と、マルハナバチの擬人化のように見える、飛んでいる漫画のようなアバタキャラクタ50等の「仮想コンテンツ」を「見ている」と知覚する。これらの要素50、40は、実世界には存在しないという点で、「仮想」である。ヒトの視知覚系は、複雑であって、他の仮想または実世界画像要素の中で仮想画像要素の快適で、自然な感覚で、かつ豊かな提示を促進する、AR技術を生産することは、困難である。
【発明の概要】
【課題を解決するための手段】
【0006】
いくつかの実施形態では、頭部搭載型ディスプレイシステムは、頭部搭載可能フレームと、光投影システムと、フレームによって支持される、左接眼レンズと、フレームによって支持される、右接眼レンズと、光学ルータとを備える。光投影システムは、発光型マイクロディスプレイを備え、右眼画像を形成するための右眼画像光と時間多重化される、左眼画像を形成するための左眼画像光を備える、画像光を出力するように構成される。光学ルータは、光投影システムからの画像光を受け取り、異なる時間に、左眼画像光を左接眼レンズに、右眼画像光右に接眼レンズに提供するように構成される。
【0007】
実施形態のいくつかの付加的実施例は、下記に提供される。
【0008】
(実施例1)
頭部搭載型ディスプレイシステムであって、
頭部搭載可能フレームと、
発光型マイクロディスプレイを備える光投影システムであって、光投影システムは、右眼画像を形成するための右眼画像光と時間多重化される左眼画像を形成するための左眼画像光を備える画像光を出力するように構成される、光投影システムと、
フレームによって支持される左接眼レンズと、
フレームによって支持される右接眼レンズと、
光学ルータであって、
光投影システムからの画像光を受け取ることと、
異なる時間に、左眼画像光を左接眼レンズに、右眼画像光を右接眼レンズに提供することと
を行うように構成される、光学ルータと
を備える、頭部搭載型ディスプレイシステム。
【0009】
(実施例2)
光学ルータは、
偏光器であって、偏光器は、画像光を受け取り、画像光を第1の偏光状態で出力するように構成される、偏光器と、
切替可能な偏光回転子であって、切替可能な偏光回転子は、第1の偏光状態を伴う画像光を受け取り、受け取られた画像光の偏光状態を第2の偏光状態に選択的に変化させるように構成される、切替可能な偏光回転子と
を備える、実施例1に記載の頭部搭載型ディスプレイシステム。
【0010】
(実施例3)
電気的に切替可能な偏光回転子は、切替可能な半波長板(HWP)を備える、実施例2に記載の頭部搭載型ディスプレイシステム。
【0011】
(実施例4)
制御電子機器であって、
光投影システムによる左眼画像画像の生成および光学ルータによる左接眼レンズへの左眼画像光のルーティングと、
光投影システムによる右眼画像の生成および光学ルータによる右接眼レンズへの右眼画像光のルーティングと、
を同期させるように構成される、制御電子機器
をさらに備え、
電気的に切替可能な偏光回転子は、制御電子機器によって、光投影システムと同期され、左眼画像光を第1の偏光状態で出力し、右眼画像光を第1の偏光状態と異なる第2の偏光で出力する、実施例2に記載の頭部搭載型ディスプレイシステム。
【0012】
(実施例5)
光学ルータはさらに、切替可能な偏光回転子からの画像光を受け取るように構成される偏光感知反射体を備え、
偏光感知反射体は、第1の偏光状態を有する画像光を反射させ、第2の偏光状態を有する画像光を透過させるように構成される、実施例2に記載の頭部搭載型ディスプレイシステム。
【0013】
(実施例6)
偏光感知反射体は、
第1および第2の偏光状態のうちの一方を有する左眼画像光を、左接眼レンズに向かって指向することと、
第1および第2の偏光状態の他方を有する右眼画像光を、右接眼レンズに向かって指向することと
を行うように構成される、実施例5に記載の頭部搭載型ディスプレイシステム。
【0014】
(実施例7)
偏光感知反射体は、偏光ビームスプリッタを備える、実施例5に記載の頭部搭載型ディスプレイシステム。
【0015】
(実施例8)
左接眼レンズは、左眼導波管アセンブリを形成する、1つ以上の左眼導波管を備え、各左眼導波管は、
画像光を左眼導波管の中に内部結合するように構成される左眼内部結合光学要素と、
内部結合される画像光を左眼導波管から外に外部結合するように構成される左眼外部結合光学要素と
を備え、
右接眼レンズは、右眼導波管アセンブリを形成する1つ以上の右眼導波管を備え、各右眼導波管は、
画像光を右眼導波管の中に内部結合するように構成される右眼内部結合光学要素と、
内部結合される画像光を右眼導波管から外に外部結合するように構成される右眼外部結合光学要素と
を備える、
実施例1に記載の頭部搭載型ディスプレイシステム。
【0016】
(実施例9)
左眼導波管アセンブリは、複数の深度平面に対応する可変量の波面発散を伴って、内部結合される光を出力するように構成され、右眼導波管アセンブリは、複数の深度平面に対応する可変量の波面発散を伴って、外部結合された光を出力するように構成される、実施例8に記載の頭部搭載型ディスプレイシステム。
【0017】
(実施例10)
左眼導波管アセンブリは、第1の導波管のスタックを備え、右眼導波管アセンブリは、第2の導波管のスタックを備え、光投影システムは、複数の原色の光を出力するように構成され、左眼および右眼導波管アセンブリはそれぞれ、各原色の光のための少なくとも1つの専用導波管を備える、実施例8に記載の頭部搭載型ディスプレイシステム。
【0018】
(実施例11)
左接眼レンズは、1つ以上の左眼導波管を備え、各左眼導波管は、
第1の偏光状態を有する光を左眼導波管の中に内部結合するように構成される、左眼偏光感知内部結合光学要素と、
内部結合される光を左眼導波管から外に外部結合するように構成される、左眼外部結合光学要素と
を備える、実施例1に記載の頭部搭載型ディスプレイシステム。
【0019】
(実施例12)
右接眼レンズは、1つ以上の右眼導波管を備え、各右眼導波管は、
第2の偏光状態を有する光を右眼導波管の中に内部結合するように構成される右眼偏光感知内部結合光学要素と、
内部結合される光を右眼導波管から外に外部結合するように構成される右眼外部結合光学要素と
を備える、実施例11に記載の頭部搭載型ディスプレイシステム。
【0020】
(実施例13)
左眼偏光感知内部結合光学要素および右眼偏光感知内部結合光学要素は、同一画像光経路内に配置される、実施例12に記載の頭部搭載型ディスプレイ。
【0021】
(実施例14)
左眼偏光感知内部結合光学要素と右眼偏光感知内部結合光学要素との間に配置されるクリーンアップ偏光器をさらに備え、クリーンアップ偏光器は、
下流偏光感知内部結合光学要素が敏感であるように構成される偏光を有していない光を遮断する
ように構成される、実施例13に記載の頭部搭載型ディスプレイ。
【0022】
(実施例15)
発光型マイクロディスプレイは、マイクロLEDディスプレイを備える、実施例1に記載の頭部搭載型ディスプレイシステム。
【0023】
(実施例16)
複数の発光型マイクロディスプレイをさらに備え、各マイクロLEDディスプレイは、モノクロであり、原色の光を放出するように構成される、実施例1に記載の頭部搭載型ディスプレイシステム。
【0024】
(実施例17)
X-立方体プリズムをさらに備え、発光型マイクロLEDディスプレイはそれぞれ、X-立方体プリズムの異なる側に面する、実施例16に記載の頭部搭載型ディスプレイシステム。
【0025】
(実施例18)
各マイクロLEDディスプレイは、光エミッタのアレイを備え、光コリメータの複数のアレイをさらに備え、各マイクロディスプレイは、光コリメータの関連付けられるアレイを有し、光コリメータの各アレイは、マイクロディスプレイからの光の角度放出プロファイルを捕捉および低減させるように構成される、実施例17に記載の頭部搭載型ディスプレイシステム。
【0026】
(実施例19)
光コリメータは、マイクロレンズを備える、実施例18に記載の頭部搭載型ディスプレイシステム。
【0027】
(実施例20)
光コリメータは、ナノレンズを備える、実施例18に記載の頭部搭載型ディスプレイシステム。
本明細書は、例えば、以下の項目も提供する。
(項目1)
頭部搭載型ディスプレイシステムであって、
頭部搭載可能フレームと、
発光型マイクロディスプレイを備える光投影システムであって、前記光投影システムは、右眼画像を形成するための右眼画像光と時間多重化される左眼画像を形成するための左眼画像光を備える画像光を出力するように構成される、光投影システムと、
前記フレームによって支持される左接眼レンズと、
前記フレームによって支持される右接眼レンズと、
光学ルータであって、
前記光投影システムからの前記画像光を受け取ることと、
異なる時間に、前記左眼画像光を前記左接眼レンズに、前記右眼画像光を前記右接眼レンズに提供することと
を行うように構成される、光学ルータと
を備える、頭部搭載型ディスプレイシステム。
(項目2)
前記光学ルータは、
偏光器であって、前記偏光器は、前記画像光を受け取り、前記画像光を第1の偏光状態で出力するように構成される、偏光器と、
切替可能な偏光回転子であって、前記切替可能な偏光回転子は、前記第1の偏光状態を伴う前記画像光を受け取り、前記受け取られた画像光の偏光状態を第2の偏光状態に選択的に変化させるように構成される、切替可能な偏光回転子と
を備える、項目1に記載の頭部搭載型ディスプレイシステム。
(項目3)
電気的に切替可能な偏光回転子は、切替可能な半波長板(HWP)を備える、項目2に記載の頭部搭載型ディスプレイシステム。
(項目4)
制御電子機器であって、
前記光投影システムによる左眼画像画像の生成および前記光学ルータによる前記左接眼レンズへの前記左眼画像光のルーティングと、
前記光投影システムによる右眼画像の生成および前記光学ルータによる前記右接眼レンズへの前記右眼画像光のルーティングと
を同期させるように構成される、制御電子機器
をさらに備え、
電気的に切替可能な偏光回転子は、前記制御電子機器によって、前記光投影システムと同期され、左眼画像光を第1の偏光状態で出力し、右眼画像光を前記第1の偏光状態と異なる第2の偏光で出力する、項目2に記載の頭部搭載型ディスプレイシステム。
(項目5)
前記光学ルータはさらに、前記切替可能な偏光回転子からの画像光を受け取るように構成される偏光感知反射体を備え、
前記偏光感知反射体は、前記第1の偏光状態を有する画像光を反射させ、前記第2の偏光状態を有する画像光を透過させるように構成される、項目2に記載の頭部搭載型ディスプレイシステム。
(項目6)
前記偏光感知反射体は、
前記第1および第2の偏光状態のうちの一方を有する左眼画像光を、前記左接眼レンズに向かって指向することと、
前記第1および第2の偏光状態の他方を有する右眼画像光を、前記右接眼レンズに向かって指向することと
を行うように構成される、項目5に記載の頭部搭載型ディスプレイシステム。
(項目7)
前記偏光感知反射体は、偏光ビームスプリッタを備える、項目5に記載の頭部搭載型ディスプレイシステム。
(項目8)
前記左接眼レンズは、左眼導波管アセンブリを形成する1つ以上の左眼導波管を備え、各左眼導波管は、
画像光を前記左眼導波管の中に内部結合するように構成される左眼内部結合光学要素と、
内部結合される画像光を前記左眼導波管から外に外部結合するように構成される左眼外部結合光学要素と
を備え、
前記右接眼レンズは、右眼導波管アセンブリを形成する1つ以上の右眼導波管を備え、各右眼導波管は、
画像光を前記右眼導波管の中に内部結合するように構成される右眼内部結合光学要素と、
内部結合される画像光を前記右眼導波管から外に外部結合するように構成される右眼外部結合光学要素と
を備える、
項目1に記載の頭部搭載型ディスプレイシステム。
(項目9)
前記左眼導波管アセンブリは、複数の深度平面に対応する可変量の波面発散を伴って、前記内部結合される光を出力するように構成され、前記右眼導波管アセンブリは、前記複数の深度平面に対応する可変量の波面発散を伴って、前記外部結合された光を出力するように構成される、項目8に記載の頭部搭載型ディスプレイシステム。
(項目10)
前記左眼導波管アセンブリは、第1の導波管のスタックを備え、前記右眼導波管アセンブリは、第2の導波管のスタックを備え、前記光投影システムは、複数の原色の光を出力するように構成され、前記左眼および右眼導波管アセンブリはそれぞれ、各原色の光のための少なくとも1つの専用導波管を備える、項目8に記載の頭部搭載型ディスプレイシステム。
(項目11)
前記左接眼レンズは、1つ以上の左眼導波管を備え、各左眼導波管は、
第1の偏光状態を有する光を前記左眼導波管の中に内部結合するように構成される左眼偏光感知内部結合光学要素と、
内部結合される光を前記左眼導波管から外に外部結合するように構成される左眼外部結合光学要素と
を備える、項目1に記載の頭部搭載型ディスプレイシステム。
(項目12)
前記右接眼レンズは、1つ以上の右眼導波管を備え、各右眼導波管は、
第2の偏光状態を有する光を前記右眼導波管の中に内部結合するように構成される右眼偏光感知内部結合光学要素と、
内部結合される光を前記右眼導波管から外に外部結合するように構成される右眼外部結合光学要素と
を備える、項目11に記載の頭部搭載型ディスプレイシステム。
(項目13)
前記左眼偏光感知内部結合光学要素および前記右眼偏光感知内部結合光学要素は、同一画像光経路内に配置される、項目12に記載の頭部搭載型ディスプレイシステム。
(項目14)
前記左眼偏光感知内部結合光学要素と前記右眼偏光感知内部結合光学要素との間に配置されるクリーンアップ偏光器をさらに備え、前記クリーンアップ偏光器は、
下流偏光感知内部結合光学要素が敏感であるように構成される偏光を有していない光を遮断する
ように構成される、項目13に記載の頭部搭載型ディスプレイシステム。
(項目15)
前記発光型マイクロディスプレイは、マイクロLEDディスプレイを備える、項目1に記載の頭部搭載型ディスプレイシステム。
(項目16)
複数の発光型マイクロディスプレイをさらに備え、各マイクロLEDディスプレイは、モノクロであり、原色の光を放出するように構成される、項目1に記載の頭部搭載型ディスプレイシステム。
(項目17)
X-立方体プリズムをさらに備え、前記発光型マイクロLEDディスプレイはそれぞれ、前記X-立方体プリズムの異なる側に面する、項目16に記載の頭部搭載型ディスプレイシステム。
(項目18)
各マイクロLEDディスプレイは、光エミッタのアレイを備え、光コリメータの複数のアレイをさらに備え、各マイクロディスプレイは、光コリメータの関連付けられるアレイを有し、光コリメータの各アレイは、前記マイクロディスプレイからの光の角度放出プロファイルを捕捉および低減させるように構成される、項目17に記載の頭部搭載型ディスプレイシステム。
(項目19)
前記光コリメータは、マイクロレンズを備える、項目18に記載の頭部搭載型ディスプレイシステム。
(項目20)
前記光コリメータは、ナノレンズを備える、項目18に記載の頭部搭載型ディスプレイシステム。
【図面の簡単な説明】
【0028】
【
図1】
図1は、ARデバイスを通した拡張現実(AR)のユーザのビューを図示する。
【0029】
【
図2】
図2は、ユーザのための3次元画像をシミュレートするための従来のディスプレイシステムを図示する。
【0030】
【
図3】
図3A-3Cは、曲率半径と焦点半径との間の関係を図示する。
【0031】
【
図4A】
図4Aは、ヒト視覚系の遠近調節(accommodation)-輻輳・開散運動(vergence)応答の表現を図示する。
【0032】
【
図4B】
図4Bは、一対のユーザの眼の異なる遠近調節状態および輻輳・開散運動状態の実施例を図示する。
【0033】
【
図4C】
図4Cは、ディスプレイシステムを介してコンテンツを視認するユーザの上下図の表現の実施例を図示する。
【0034】
【
図4D】
図4Dは、ディスプレイシステムを介してコンテンツを視認するユーザの上下図の表現の別の実施例を図示する。
【0035】
【
図5】
図5は、波面発散を修正することによって3次元画像をシミュレートするためのアプローチの側面を図示する。
【0036】
【
図6】
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。
【0037】
【
図7】
図7は、導波管によって出力された出射ビームの実施例を図示する。
【0038】
【
図8】
図8は、スタックされた接眼レンズの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。
【0039】
【
図9A】
図9Aは、それぞれ、内部結合光学要素を含む、スタックされた導波管のセットの実施例の断面側面図を図示する。
【0040】
【0041】
【
図9C】
図9Cは、
図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。
【0042】
【
図9D】
図9Dは、複数のスタックされた導波管の別の実施例の上下平面図を図示する。
【0043】
【
図9E】
図9Eは、ウェアラブルディスプレイシステムの実施例を図示する。
【0044】
【
図10】
図10は、空間光変調器と、別個の光源とを有する、光投影システムを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
【0045】
【
図11A】
図11Aは、複数の発光型マイクロディスプレイを有する、光投影システムを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
【0046】
【
図11B】
図11Bは、光エミッタのアレイを伴う、発光型マイクロディスプレイの実施例を図示する。
【0047】
【
図12】
図12は、複数の発光型マイクロディスプレイと、関連付けられる光再指向構造とを有する、光投影システムを伴う、ウェアラブルディスプレイシステムの別の実施例を図示する。
【0048】
【
図13A】
図13Aは、複数の発光型マイクロディスプレイと、重複し、側方に偏移される、光内部結合光学要素を伴う導波管を有する、接眼レンズとを有する、光投影システムを伴う、ウェアラブルディスプレイシステムの側面図の実施例を図示する。
【0049】
【
図13B】
図13Bは、光を接眼レンズの単一光内部結合面積に指向するように構成される、複数の発光型マイクロディスプレイを有する、光投影システムを伴う、ウェアラブルディスプレイシステムの別の実施例を図示する。
【0050】
【
図14】
図14は、単一発光型マイクロディスプレイを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
【0051】
【
図15】
図15は、重複する内部結合光学要素を伴う、導波管のスタックを有する、接眼レンズの実施例の側面図を図示する。
【0052】
【
図16】
図16は、導波管間の残影またはクロストークを軽減するためのカラーフィルタを伴う、導波管のスタックの実施例の側面図を図示する。
【0053】
【0054】
【0055】
【
図19A】
図19Aは、重複し、側方に偏移される、内部結合光学要素を伴う、導波管のスタックを有する、接眼レンズの実施例の側面図を図示する。
【0056】
【
図19B】
図19Bは、導波管間の残影またはクロストークを軽減するためのカラーフィルタを伴う、
図19Aの接眼レンズの実施例の側面図を図示する。
【0057】
【0058】
【0059】
【
図21】
図21は、導波管内の再バウンスの実施例の側面図を図示する。
【0060】
【
図22A】
図22A-22Cは、再バウンスを低減させるように構成される、内部結合光学要素を有する、接眼レンズの上下図の実施例を図示する。
【
図22B】
図22A-22Cは、再バウンスを低減させるように構成される、内部結合光学要素を有する、接眼レンズの上下図の実施例を図示する。
【
図22C】
図22A-22Cは、再バウンスを低減させるように構成される、内部結合光学要素を有する、接眼レンズの上下図の実施例を図示する。
【0061】
【
図23A】
図23A-23Cは、再バウンスを低減させるように構成される、内部結合光学要素を有する、接眼レンズの上下図の付加的実施例を図示する。
【
図23B】
図23A-23Cは、再バウンスを低減させるように構成される、内部結合光学要素を有する、接眼レンズの上下図の付加的実施例を図示する。
【
図23C】
図23A-23Cは、再バウンスを低減させるように構成される、内部結合光学要素を有する、接眼レンズの上下図の付加的実施例を図示する。
【0062】
【
図24A】
図24Aは、発光型マイクロディスプレイの個々の光エミッタによって放出される光と、投影光学系によって捕捉された光の角度放出プロファイルの実施例を図示する。
【0063】
【
図24B】
図24Bは、光コリメータのアレイを使用して、角度放出プロファイルの狭化の実施例を図示する。
【0064】
【
図25A】
図25Aは、光を投影光学系に指向するためのテーパ状反射性ウェルのアレイの側面図の実施例を図示する。
【0065】
【0066】
【
図26】
図26A-26Cは、上層レンズの中心線に対する異なる位置における光エミッタのための光経路における差異の実施例を図示する。
【0067】
【
図27】
図27は、上層ナノレンズアレイを伴う、発光型マイクロディスプレイの個々の光エミッタの側面図の実施例を図示する。
【0068】
【0069】
【
図29】
図29は、
図28のフルカラー発光型マイクロディスプレイを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
【0070】
【
図30A】
図30Aは、発光型マイクロディスプレイと、関連付けられる光コリメータのアレイとを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
【0071】
【
図30B】
図30Bは、それぞれ、関連付けられる光コリメータのアレイを伴う、複数の発光型マイクロディスプレイを伴う、光投影システムの実施例を図示する。
【0072】
【
図30C】
図30Cは、それぞれ、関連付けられる光コリメータのアレイを伴う、複数の発光型マイクロディスプレイを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
【0073】
【
図31】
図31Aおよび31Bは、視認者に対する光の波面発散を変動させるための可変焦点要素を有する、導波管アセンブリの実施例を図示する。
【0074】
【
図32】
図32は、1つ以上の発光型マイクロディスプレイを有する、光投影システムと、光を左および右接眼レンズに選択的に指向するための光学ルータとを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
【0075】
【
図33】
図33は、画像を左および右接眼レンズに選択的に指向するための偏光感知反射性構造を含む、光学ルータを有する、ウェアラブルディスプレイシステムの実施例を図示する。
【0076】
【
図34】
図34は、入射画像光の偏光状態を切り替える、光学ルータと、異なる偏光状態の光を選択的に内部結合する、内部結合光学要素を有する、左および右接眼レンズとを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
【発明を実施するための形態】
【0077】
本明細書に説明されるように、ARおよび/またはVRシステムは、仮想コンテンツをユーザまたは視認者に表示し得る。本コンテンツは、画像情報をユーザの眼に投影する、例えば、アイウェアの一部としての頭部搭載型ディスプレイ上に表示され得る。加えて、システムがARシステムである場合、ディスプレイはまた、周囲環境からの光をユーザの眼に透過させ、周囲環境のビューを可能にし得る。本明細書で使用されるように、「頭部搭載型」または「頭部搭載可能」ディスプレイは、ユーザまたは視認者の頭部上に搭載され得る、ディスプレイであることを理解されたい。
【0078】
多くの頭部搭載型ディスプレイシステムは、透過性または反射性空間光変調器を利用して、ユーザに提示される、画像を形成する。光源が、光を放出し、これは、空間光変調器に指向され、次いで、光を変調させ、これは、次いで、ユーザに指向される。レンズ構造が、光源と空間光変調器との間に提供され、光源からの光を空間光変調器上に集束させ得る。望ましくないことに、光源および関連光学系は、嵩高性および重量をディスプレイシステムに追加し得る。本嵩高性または重量は、異なる画像がユーザの左および右眼に提示され得、したがって、各眼が、専用の関連付けられる光源および空間光変調器を有し得るため、複雑になり得る。関連付けられる光源および関連付けられる空間光変調器の嵩高および重量は、ディスプレイシステムの快適性およびシステムを長持続時間にわたって装着する能力に悪影響を及ぼし得る。
【0079】
加えて、いくつかのディスプレイシステムのフレームレート限界は、視認不快感を生じさせ得ることが見出されている。いくつかのディスプレイシステムは、空間光変調器を使用して、画像を形成する。多くの空間光変調器は、光学要素の移動を利用して、空間光変調器によって出力された光の強度を変調させ、それによって、画像を形成する。例えば、MEMSベースの空間光変調器は、可動ミラーを利用して、入射光を変調させ得る一方、LCoSベースのディスプレイは、液晶分子の移動を利用して、光を変調させ得る。他のARまたはVRシステムは、光ファイバの端部が、光を出力しながら、ある面積を横断して物理的に移動する、走査ファイバディスプレイを利用し得る。光ファイバによって出力された光は、ファイバの端部の位置に伴って、タイミング調整され、それによって、ピクセルを異なる場所に事実上模倣し、それによって、画像を形成する。光ファイバ、ミラー、および液晶分子が、物理的に移動する、要件は、これらの光学要素を使用して、個々のピクセルが、状態を変化させ得る、速さを限定し、また、ディスプレイのフレームレートを制約する。
【0080】
そのような限界は、例えば、モーションブラーおよび/またはユーザの頭部の配向と表示される画像との間の不整合に起因して、視認不快感を生じさせ得る。例えば、ユーザの頭部の配向の検出と、その配向と一致する画像の提示には、待ち時間が存在し得る。配向を検出することと、画像をユーザに提示することとの間の時間帯に、ユーザの頭部が、移動している場合がある。しかしながら、提示される画像は、異なる配向からのオブジェクトのビューに対応し得る。ユーザの頭部の配向と提示される画像との間のそのような不整合は、不快感(例えば、吐き気)をユーザに生じさせ得る。
【0081】
加えて、走査ファイバディスプレイは、例えば、望ましい見掛け明度の画像を形成するための高強度光源の使用を要求する、ファイバの小断面に起因して、他の望ましくない光学アーチファクトを提示し得る。好適な高強度光源は、レーザを含み、これは、コヒーレント光を出力する。望ましくないことに、コヒーレント光の使用は、光学アーチファクトを生じさせ得る。
【0082】
有利なこととして、本明細書に説明されるような発光型マイクロディスプレイを利用する、ディスプレイシステムは、低重量およびコンパクトな形状因子を可能にし得、また、高フレームレートおよび低モーションブラーを提供し得る。好ましくは、マイクロディスプレイは、発光型マイクロディスプレイであって、これは、高明度および高ピクセル密度の利点を提供する。いくつかの実施形態では、発光型マイクロディスプレイは、マイクロLEDディスプレイである。いくつかの他の実施形態では、発光型マイクロディスプレイは、マイクロOLEDディスプレイである。いくつかの実施形態では、発光型マイクロディスプレイは、例えば、1~5μmを含む、10μm未満、8μm未満、6μm未満、5μm未満、または2μm未満のピッチと、2μmまたはそれ未満、1.7μmまたはそれ未満、または1.3μmまたはそれ未満のエミッタサイズとを有する、光エミッタのアレイを備える。いくつかの実施形態では、エミッタサイズは、上記のサイズの上限と、1μmの下限とを有する、範囲内である。いくつかの実施形態では、エミッタサイズ対ピッチの比は、1:1~1:5、1:2~1:4、または1:2~1:3であって、これは、本明細書でさらに議論されるように、エミッタの個々の制御および接眼レンズによって放出される光の効率的利用の利点を有し得る。
【0083】
いくつかの実施形態では、複数の発光型マイクロディスプレイが、頭部搭載型ディスプレイシステムのための画像を形成するために利用されてもよい。これらの画像を形成するための画像情報を含有する、光は、画像光と称され得る。画像光は、例えば、波長、強度、偏光等が変動し得ることを理解されたい。発光型マイクロディスプレイは、画像光を接眼レンズに出力し、これは、次いで、光をユーザの眼に中継する。
【0084】
いくつかの実施形態では、頭部搭載型ディスプレイシステムは、画像光を、それぞれ、ユーザの左および右眼に中継するための左および右接眼レンズを含んでもよい。頭部搭載型ディスプレイシステムはまた、光投影システムと、画像光を左および右接眼レンズのうちの適切なものにルーティングするための光学ルータとを含んでもよい。光投影システムは、ディスプレイシステムの左および右接眼レンズの両方のために明確に異なる画像(例えば、画像フレーム)を生成するように構成されてもよく、光学ルータは、左眼および右眼画像フレームを左および右接眼レンズの対応するものに指向するように構成されてもよい。いくつかの実施形態では、光投影システムは、左および右接眼レンズの両方のための共通光投影システムの使用を促進する、高フレームレートの利点を有する、発光型マイクロディスプレイを利用する。
【0085】
いくつかの実施形態では、光投影システムは、左および右接眼レンズ画像フレームを時間多重化するように構成されてもよく、光学ルータは、左画像フレームを左接眼レンズに、右画像フレームを右接眼レンズにルーティングするように構成されてもよい。いくつかの実施形態では、光投影システムは、120Hz以上のフレームレートを伴う、1つ以上の発光型マイクロディスプレイを利用してもよく、これは、有利なこととして、左眼画像フレームを、60Hz以上のフレームレートで、左接眼レンズに提供する一方、また、右眼画像フレームを、60Hz以上のフレームレートで、右接眼レンズに提供し得る。マイクロディスプレイは、左眼および右眼画像とも称され得る、左眼および右眼画像フレームを時間的にインターリーブ(例えば、時間多重化)し得る。例えば、マイクロディスプレイは、左接眼レンズにルーティングされる、左眼画像フレーム(すなわち、左眼のために意図されるコンテンツの画像フレーム)の生成と、右接眼レンズにルーティングされる、右眼画像フレーム(すなわち、右眼のために意図されるコンテンツの画像フレーム)の生成との間で交互し得る。光学ルータは、左眼画像フレームを左接眼レンズに、右眼画像フレームを右接眼レンズにルーティングすることによって、左眼および右眼画像フレームの多重化を解除し得る。
【0086】
いくつかの実施形態では、光学ルータは、ルータによって出力される光の経路の選択可能切替を提供し、および/または、これは、光の性質の選択可能切替を提供し、光が後続下流構造と相互作用する(例えば、それを通して伝搬する)方法を変化させる、電気的に切替可能なデバイスであり得る。いくつかの実施形態では、光を、光学ルータを介して、左または右接眼レンズのうちの1つにルーティングすることは、光の偏光状態を変化させることを含み得る。
【0087】
いくつかの実施形態では、光学ルータは、光を右または左接眼レンズのうちの一方に反射させる、第1の配向と、光を右または左接眼レンズの他方に反射させる、第2の配向との間で切り替えられる、移動可能ミラー等の機械的に切替可能なデバイスであり得る。例えば、光学ルータは、MEMSミラーまたは走査式ミラーを備えてもよい。
【0088】
例えば、特定の偏光状態の光を選択的に反射させる、第1の反射体は、第1の偏光状態の光を対応する接眼レンズに向かって反射させる一方、第2の偏光状態の光を第2の反射体に透過させ、これが、次いで、残りの光を他の接眼レンズに反射させるために利用されてもよい。いくつかの実施形態では、第2の反射体は、第2の偏光状態の光を他の接眼レンズに選択的に反射させ得る。
【0089】
いくつかの実施形態では、左および右接眼レンズは、重複する(例えば、その両方とも、光投影システムからの光の共通経路内にある)、内部結合光学要素を有してもよい。光学ルータは、例えば、左接眼レンズ画像フレームが、左接眼レンズの内部結合光学要素によって内部結合されるように適切な偏光状態を伴う光によって形成され、右接眼レンズ画像フレームが、右接眼レンズの内部結合光学要素によって内部結合されるように適切な偏光状態を伴う光によって形成されるように、出力画像光の偏光状態を変化させることによって、光を適切な接眼レンズにルーティングする。
【0090】
したがって、いくつかの実施形態では、左および右接眼レンズは、共通光投影システムを共有し、これは、左および右接眼レンズ毎に専用光投影システムを使用することに対して、嵩高性および重量を低減させ得る。加えて、光投影システムは、好ましくは、1つ以上の発光型マイクロディスプレイを利用し、これは、本明細書に議論されるように、利点(例えば、嵩高性および重量を低減させる)をさらに提供する。
【0091】
いくつかの実施形態では、複数の発光型マイクロディスプレイが、利用され、光学コンバイナ、例えば、X-立方体プリズムまたはダイクロイックX-立方体の異なる側に位置付けられてもよい。X-立方体プリズムは、光線を立方体の異なる面上の異なるマイクロディスプレイから受け取り、光線を立方体の同一面から出力する。出力された光は、画像光を接眼レンズ上に収束または集束させるように構成される、投影光学系に向かって指向されてもよい。
【0092】
いくつかの実施形態では、複数の発光型マイクロディスプレイは、モノクロマイクロディスプレイを備え、これは、単一原色の光を出力するように構成される。種々の原色を組み合わせることは、フルカラー画像を形成する。いくつかの他の実施形態では、発光型マイクロディスプレイのうちの1つ以上のものは、ディスプレイシステムによって利用される原色のうちの2つ以上であるが全てではない、光を放出するように構成される、サブピクセルを有してもよい。例えば、単一発光型マイクロディスプレイは、青色および緑色の色の光を放出する、サブピクセルを有してもよい一方、X-立方体の異なる面上の別個の発光型マイクロディスプレイは、赤色光を放出するように構成される、ピクセルを有してもよい。いくつかの実施形態では、複数のマイクロディスプレイはそれぞれ、例えば、異なる原色の光を放出するように構成される、複数のサブピクセルから形成されるピクセルを備える、フルカラーディスプレイである。有利なこととして、複数のフルカラーマイクロディスプレイの光を組み合わせることは、ディスプレイ明度およびダイナミックレンジを増加させ得る。
【0093】
発光型マイクロディスプレイは、光エミッタのアレイを備えてもよいことを理解されたい。光エミッタは、Lambertian角度放出プロファイルを伴う、光を放出し得る。望ましくないことに、そのような角度放出プロファイルは、放出される光のわずかな部分のみが、最終的に、接眼レンズ上に入射し得るため、光を「無駄」にし得る。いくつかの実施形態では、光コリメータが、光エミッタによって放出される光の角度放出プロファイルを狭化するために利用されてもよい。本明細書で使用されるように、光コリメータは、光学構造であって、これは、入射光の角度放出プロファイルを狭化する。すなわち、光コリメータは、比較的に広初期角度放出プロファイルを伴う、関連付けられる光エミッタからの光を受け取り、その光を、広い初期角度放出プロファイルより狭い角度放出プロファイルを伴って出力する。いくつかの実施形態では、光コリメータから出射する光の光線は、コリメータを通して透過され、そこから出射する前に、光コリメータによって受け取られた、光の光線より平行である。光コリメータの実施例は、マイクロレンズ、ナノレンズ、反射性ウェル、メタ表面、および液晶格子を含む。いくつかの実施形態では、光コリメータは、光を操向し、最終的に、異なる側方に偏移される光結合光学要素上に収束させるように構成されてもよい。いくつかの実施形態では、各光エミッタは、専用の光コリメータを有する。光コリメータは、好ましくは、光エミッタに直接隣接または接触して位置付けられ、関連付けられる光エミッタによって放出される光の大割合を捕捉する。
【0094】
いくつかの実施形態では、単一の発光型マイクロディスプレイが、光を接眼レンズに指向するために利用されてもよい。例えば、単一の発光型マイクロディスプレイは、異なる原色の光を放出する、光エミッタを備える、フルカラーディスプレイであってもよい。いくつかの実施形態では、光エミッタは、共通面積内に局所化されたグループを形成してもよく、各グループは、各原色の光を放出する、光エミッタを備える。そのような実施形態では、光エミッタの各グループは、共通マイクロレンズを共有してもよい。有利なこととして、異なる光エミッタからの異なる色の光は、マイクロレンズを通して異なる経路を辿り、これは、本明細書に議論されるように、接眼レンズの異なる内部結合光学要素上に入射する、異なる原色の光で現れ得る。
【0095】
いくつかの実施形態では、フルカラーマイクロディスプレイは、同一原色の光エミッタの繰り返しグループを備えてもよい。例えば、マイクロディスプレイは、光エミッタの行を含んでもよく、各個々の行の光エミッタは、同一色の光を放出するように構成される。したがって、異なる行は、異なる原色の光を放出してもよい。加えて、マイクロディスプレイは、光を接眼レンズ上の所望の場所、例えば、関連付けられる内部結合光学要素に指向するように構成される、光コリメータの関連付けられるアレイを有してもよい。有利なこととして、そのようなフルカラーマイクロディスプレイの個々の光エミッタは、直接、マイクロディスプレイ上で視認されるように、高品質フルカラー画像を形成するように位置付けられ得ないが、レンズアレイは、光エミッタからの光を接眼レンズに適切に操向し、これは、異なる色の光エミッタによって形成されるモノクロ画像を組み合わせ、それによって、高品質フルカラー画像を形成する。
【0096】
いくつかの実施形態では、マイクロディスプレイからの画像光を受け取る、接眼レンズは、導波管アセンブリを備えてもよい。その上に画像光が入射する、導波管アセンブリの導波管の面積は、光が、全内部反射(TIR)によって、導波管を通して伝搬するように、入射画像光を内部結合する、内部結合光学要素を含んでもよい。いくつかの実施形態では、導波管アセンブリは、それぞれ、関連付けられる内部結合光学要素を有する、導波管のスタックを含んでもよい。異なる内部結合光学要素は、異なる導波管が、異なる色の光をその中に伝搬するように構成され得るように、異なる色の光を内部結合するように構成されてもよい。導波管は、外部結合された光が、ユーザの眼に向かって伝搬するように、その中に伝搬する光を外部結合する、外部結合光学要素を含んでもよい。いくつかの他の実施形態では、導波管アセンブリは、異なる原色の光を内部結合するように構成される、関連付けられる内部結合光学要素を有する、単一導波管を含んでもよい。
【0097】
いくつかの実施形態では、内部結合光学要素は、投影光学系から見られるように、側方に偏移される。異なる内部結合光学要素は、異なる色の光を内部結合するように構成されてもよい。好ましくは、異なる色の画像光は、接眼レンズまでの異なる経路を辿り、したがって、異なる対応する内部結合光学要素上に衝突する。
【0098】
いくつかの他の実施形態では、画像光をユーザの眼に中継するための他のタイプの接眼レンズまたは光学系が、利用されてもよい。例えば、本明細書に議論されるように、接眼レンズは、1つ以上の導波管を含んでもよく、これは、TIRによって、画像光をその中に伝搬する。別の実施例として、接眼レンズは、画像光を視認者に指向することと、周囲環境のビューを可能にすることとの両方を行う、半透明ミラーを備える、水盤鏡コンバイナを含んでもよい。
【0099】
いくつかの実施形態では、接眼レンズは、異なる量の波面発散を伴う光を選択的に出力し、ユーザから離れた異なる距離にあるように知覚される仮想コンテンツを複数の仮想深度平面(本明細書では、単に、「深度平面」とも称される)を提供するように構成されてもよい。例えば、接眼レンズは、それぞれ、異なる量の波面発散を伴う光を出力するための異なる屈折力を伴う、外部結合光学要素を有する、複数の導波管を備えてもよい。いくつかの他の実施形態では、可変焦点要素が、接眼レンズとユーザの眼との間に提供されてもよい。可変焦点要素は、屈折力を動的に変化させ、特定の仮想コンテンツのために所望の波面発散を提供するように構成されてもよい。いくつかの実施形態では、屈折力を提供するための導波管光学構造の代替として、またはそれに加え、ディスプレイシステムはまた、屈折力を提供する、または加えて提供する、複数のレンズを含んでもよい。
【0100】
上記に議論される、コンパクトな形状因子および高フレームレートに加え、いくつかの実施形態による、発光型マイクロディスプレイは、以下の利点のうちの1つ以上のものを提供し得る。例えば、マイクロディスプレイは、著しく小ピクセルピッチおよび高ピクセル密度を提供し得る。マイクロディスプレイはまた、高輝度および効率を提供し得る。例えば、発光型マイクロディスプレイの光エミッタは、光エミッタがある輝度でコンテンツを提供するために必要とされるとき、光を放出するための電力のみを消費し得る。これは、光源が、それらのピクセルのうちのいくつかが暗いかどうかにかかわらず、ピクセルのパネル全体を照明し得る、他のディスプレイ技術と対照的である。さらに、ヒト視覚系は、受け取られた光を経時的に統合し、マイクロLED等の発光型マイクロディスプレイの光エミッタは、有利なこととして、高デューティサイクルを有する(例えば、マイクロディスプレイ内の光エミッタが、「オフ」から完全「オン」状態に立ち上がるための短アクティブ化周期と、対応して、「オン」状態から「オフ」状態に立ち下がるための短時間とを含むことは、光エミッタが、各サイクルの大パーセンテージにわたってオンレベルで光を放出することを可能にする)ことを理解されたい。結果として、所与の知覚される明度を伴う画像を生成するために使用される電力は、より低いデューティサイクルを伴う従来のディスプレイ技術と比較して、より少なくなり得る。いくつかの実施形態では、デューティサイクルは、70%以上、80%以上、または90%以上であってもよい。いくつかの実施形態では、デューティサイクルは、約99%であってもよい。加えて、本明細書に記載されるように、マイクロディスプレイは、著しく高フレームレートを促進し得、これは、ユーザの頭部の位置と表示されるコンテンツとの間の不整合を低減させることを含む、利点を提供し得る。
【0101】
ここで、同様の参照番号が全体を通して同様の部分を指す、図面を参照する。別様に示されない限り、図面は、概略であって、必ずしも、正確な縮尺で描かれていない。
【0102】
図2は、ユーザのための3次元画像をシミュレートするための従来のディスプレイシステムを図示する。ユーザの眼は、離間されており、空間内の実オブジェクトを見ているとき、各眼は、オブジェクトの若干異なるビューを有し、オブジェクトの画像を各眼の網膜上の異なる場所に形成し得ることを理解されたい。これは、両眼視差と称され得、ヒト視覚系によって、深度の知覚を提供するために利用され得る。従来のディスプレイシステムは、仮想オブジェクトが所望の深度における実オブジェクトであるように各眼によって見えるであろう仮想オブジェクトのビューに対応する、眼210、220毎に1つの同一仮想オブジェクトの若干異なるビューを伴う2つの明確に異なる画像190、200を提示することによって、両眼視差をシミュレートする。これらの画像は、ユーザの視覚系が深度の知覚を導出するために解釈し得る、両眼キューを提供する。
【0103】
図2を継続して参照すると、画像190、200は、z-軸上で距離230だけ眼210、220から離間される。z-軸は、その眼が視認者の直前の光学無限遠におけるオブジェクトを固視している状態の視認者の光学軸と平行である。画像190、200は、平坦であって、眼210、220から固定距離にある。それぞれ、眼210、220に提示される画像内の仮想オブジェクトの若干異なるビューに基づいて、眼は、必然的に、オブジェクトの画像が眼のそれぞれの網膜上の対応する点に来て、単一両眼視を維持するように回転し得る。本回転は、眼210、220のそれぞれの視線を仮想オブジェクトが存在するように知覚される空間内の点上に収束させ得る。その結果、3次元画像の提供は、従来、ユーザの眼210、220の輻輳・開散運動を操作し得、ヒト視覚系が深度の知覚を提供するように解釈する、両眼キューを提供することを伴う。
【0104】
しかしながら、深度の現実的かつ快適な知覚の生成は、困難である。眼からの異なる距離におけるオブジェクトからの光は、異なる発散量を伴う波面を有することを理解されたい。
図3A-3Cは、距離と光線の発散との間の関係を図示する。オブジェクトと眼210との間の距離は、減少距離R1、R2、およびR3の順序で表される。
図3A-3Cに示されるように、光線は、オブジェクトまでの距離が減少するにつれてより発散する。逆に言えば、距離が増加するにつれて、光線は、よりコリメートされる。換言すると、点(オブジェクトまたはオブジェクトの一部)によって生成されるライトフィールドは、点がユーザの眼から離れている距離の関数である、球状波面曲率を有すると言え得る。曲率は、オブジェクトと眼210との間の距離の減少に伴って増加する。単眼210のみが、例証を明確にするために、
図3A-3Cおよび本明細書の種々の他の図に図示されるが、眼210に関する議論は、視認者の両眼210および220に適用され得る。
【0105】
図3A-3Cを継続して参照すると、視認者の眼が固視しているオブジェクトからの光は、異なる波面発散度を有し得る。異なる波面発散量に起因して、光は、眼の水晶体によって異なるように集束され得、これは、ひいては、水晶体に、異なる形状をとり、集束された画像を眼の網膜上に形成することを要求し得る。集束された画像が、網膜上に形成されない場合、結果として生じる網膜ぼかしは、集束された画像が網膜上に形成されるまで、眼の水晶体の形状に変化を生じさせる、遠近調節のためのキューとして作用する。例えば、遠近調節のためのキューは、眼の水晶体を囲繞する毛様筋の弛緩または収縮をトリガし、それによって、レンズを保持する低靱帯に印加される力を変調し、したがって、固視されている画像の網膜ぼかしが排除または最小限にされるまで、眼の水晶体の形状を変化させ、それによって、固視されているオブジェクトの集束された画像を眼の網膜(例えば、中心窩)上に形成し得る。眼の水晶体が形状を変化させるプロセスは、遠近調節と称され得、固視されているオブジェクトの集束された画像を眼の網膜(例えば、中心窩)上に形成するために要求される眼の水晶体の形状は、遠近調節状態と称され得る。
【0106】
ここで
図4Aを参照すると、ヒト視覚系の遠近調節-輻輳・開散運動応答の表現が、図示される。オブジェクトを固視するための眼の移動は、眼にオブジェクトからの光を受け取らせ、光は、画像を眼の網膜のそれぞれ上に形成する。網膜上に形成される画像内の網膜ぼかしの存在は、遠近調節のためのキューを提供し得、網膜上の画像の相対的場所は、輻輳・開散運動のためのキューを提供し得る。遠近調節するためのキューは、遠近調節を生じさせ、眼の水晶体がオブジェクトの集束された画像を眼の網膜(例えば、中心窩)上に形成する特定の遠近調節状態をとる結果をもたらす。一方、輻輳・開散運動のためのキューは、各眼の各網膜上に形成される画像が単一両眼視を維持する対応する網膜点にあるように、輻輳・開散運動移動(眼の回転)を生じさせる。これらの位置では、眼は、特定の輻輳・開散運動状態をとっていると言え得る。
図4Aを継続して参照すると、遠近調節は、眼が特定の遠近調節状態を達成するプロセスであると理解され得、輻輳・開散運動は、眼が特定の輻輳・開散運動状態を達成するプロセスであると理解され得る。
図4Aに示されるように、眼の遠近調節および輻輳・開散運動状態は、ユーザが別のオブジェクトを固視する場合、変化し得る。例えば、遠近調節された状態は、ユーザがz-軸上の異なる深度における新しいオブジェクトを固視する場合、変化し得る。
【0107】
理論によって限定されるわけではないが、オブジェクトの視認者は、輻輳・開散運動および遠近調節の組み合わせに起因して、オブジェクトを「3次元」であると知覚し得ると考えられる。上記に記載されるように、2つの眼の相互に対する輻輳・開散運動移動(例えば、瞳孔が相互に向かって、またはそこから移動し、眼の視線を収束させ、オブジェクトを固視するような眼の回転)は、眼の水晶体の遠近調節と密接に関連付けられる。通常条件下、焦点を1つのオブジェクトから異なる距離における別のオブジェクトに変化させるための眼の水晶体の焦点の変化は、「遠近調節-輻輳・開散運動反射」として知られる関係下、同一距離への輻輳・開散運動の合致する変化を自動的に生じさせるであろう。同様に、輻輳・開散運動の変化は、通常条件下、水晶体形状における合致する変化を誘起するであろう。
【0108】
ここで
図4Bを参照すると、眼の異なる遠近調節および輻輳・開散運動状態の実施例が、図示される。対の眼222aは、光学無限遠におけるオブジェクトを固視する一方、対の眼222bは、光学無限遠未満におけるオブジェクト221を固視する。着目すべきこととして、各対の眼の輻輳・開散運動状態は、異なり、対の眼222aは、まっすぐ指向される一方、対の眼222は、オブジェクト221上に収束する。各対の眼222aおよび222bを形成する眼の遠近調節状態もまた、水晶体210a、220aの異なる形状によって表されるように異なる。
【0109】
望ましくないことに、従来の「3-D」ディスプレイシステムの多くのユーザは、これらのディスプレイにおける遠近調節と輻輳・開散運動状態との間の不整合に起因して、そのような従来のシステムを不快であると見出す、または奥行感を全く知覚しない場合がある。上記に記載されるように、多くの立体視または「3-D」ディスプレイシステムは、若干異なる画像を各眼に提供することによって、場面を表示する。そのようなシステムは、それらが、とりわけ、単に、場面の異なる提示を提供し、眼の輻輳・開散運動状態に変化を生じさせるが、それらの眼の遠近調節状態に対応する変化を伴わないため、多くの視認者にとって不快である。むしろ、画像は、眼が全ての画像情報を単一遠近調節状態において視認するように、ディスプレイによって眼から固定距離に示される。そのような配列は、遠近調節状態における整合する変化を伴わずに輻輳・開散運動状態に変化を生じさせることによって、「遠近調節-輻輳・開散運動反射」に逆らう。本不整合は、視認者不快感を生じさせると考えられる。遠近調節と輻輳・開散運動との間のより良好な整合を提供する、ディスプレイシステムは、3次元画像のより現実的かつ快適なシミュレーションを形成し得る。
【0110】
理論によって限定されるわけではないが、ヒトの眼は、典型的には、有限数の深度平面を解釈し、深度知覚を提供することができると考えられる。その結果、知覚された深度の高度に真実味のあるシミュレーションが、眼にこれらの限定数の深度平面のそれぞれに対応する画像の異なる提示を提供することによって達成され得る。いくつかの実施形態では、異なる提示は、輻輳・開散運動のためのキューおよび遠近調節するための整合するキューの両方を提供し、それによって、生理学的に正しい遠近調節-輻輳・開散運動整合を提供してもよい。
【0111】
図4Bを継続して参照すると、眼210、220からの空間内の異なる距離に対応する、2つの深度平面240が、図示される。所与の深度平面240に関して、輻輳・開散運動キューが、眼210、220毎に適切に異なる視点の画像を表示することによって提供されてもよい。加えて、所与の深度平面240に関して、各眼210、220に提供される画像を形成する光は、その深度平面240の距離におけるある点によって生成されたライトフィールドに対応する波面発散を有してもよい。
【0112】
図示される実施形態では、点221を含有する、深度平面240のz-軸に沿った距離は、1mである。本明細書で使用されるように、z-軸に沿った距離または深度は、ユーザの眼の射出瞳に位置するゼロ点を用いて測定されてもよい。したがって、1mの深度に位置する深度平面240は、眼が光学無限遠に向かって指向される状態におけるそれらの眼の光学軸上のユーザの眼の射出瞳から1m離れた距離に対応する。近似値として、z-軸に沿った深度または距離は、ユーザの眼の正面のディスプレイ(例えば、導波管の表面)から測定され、デバイスとユーザの眼の射出瞳との間の距離に関する値が加えられてもよい。その値は、瞳距離と呼ばれ、ユーザの眼の射出瞳と眼の正面のユーザによって装着されるディスプレイとの間の距離に対応し得る。実際は、瞳距離に関する値は、概して、全ての視認者に関して使用される、正規化された値であってもよい。例えば、瞳距離は、20mmであると仮定され得、1mの深度における深度平面は、ディスプレイの正面の980mmの距離にあり得る。
【0113】
ここで
図4Cおよび4Dを参照すると、整合遠近調節-輻輳・開散運動距離および不整合遠近調節-輻輳・開散運動距離の実施例が、それぞれ、図示される。
図4Cに図示されるように、ディスプレイシステムは、仮想オブジェクトの画像を各眼210、220に提供してもよい。画像は、眼210、220に、眼が深度平面240上の点15上に収束する、輻輳・開散運動状態をとらせ得る。加えて、画像は、その深度平面240における実オブジェクトに対応する波面曲率を有する光によって形成され得る。その結果、眼210、220は、画像がそれらの眼の網膜上に合焦された遠近調節状態をとる。したがって、ユーザは、仮想オブジェクトを深度平面240上の点15にあるように知覚し得る。
【0114】
眼210、220の遠近調節および輻輳・開散運動状態はそれぞれ、z-軸上の特定の距離と関連付けられることを理解されたい。例えば、眼210、220からの特定の距離におけるオブジェクトは、それらの眼に、オブジェクトの距離に基づいて、特定の遠近調節状態をとらせる。特定の遠近調節状態と関連付けられた距離は、遠近調節距離Adと称され得る。同様に、特定の輻輳・開散運動状態または相互に対する位置における眼と関連付けられた特定の輻輳・開散運動距離Vdが、存在する。遠近調節距離および輻輳・開散運動距離が整合する場合、遠近調節と輻輳・開散運動との間の関係は、生理学的に正しいと言え得る。これは、視認者のために最も快適なシナリオと見なされる。
【0115】
しかしながら、立体視ディスプレイでは、遠近調節距離および輻輳・開散運動距離は、常時、整合しない場合がある。例えば、
図4Dに図示されるように、眼210、220に表示される画像は、深度平面240に対応する波面発散を伴って表示され得、眼210、220は、その深度平面上の点15a、15bが合焦する、特定の遠近調節状態をとり得る。しかしながら、眼210、220に表示される画像は、眼210、220を深度平面240上に位置しない点15上に収束させる、輻輳・開散運動のためのキューを提供し得る。その結果、いくつかの実施形態では、遠近調節距離は、眼210、220の射出瞳から深度平面240までの距離に対応する一方、輻輳・開散運動距離は、眼210、220の射出瞳から点15までのより大きい距離に対応する。遠近調節距離は、輻輳・開散運動距離と異なる。その結果、遠近調節-輻輳・開散運動不整合が存在する。そのような不整合は、望ましくないと見なされ、不快感をユーザに生じさせ得る。不整合は、距離(例えば、V
d-A
d)に対応し、ジオプタを使用して特徴付けられ得ることを理解されたい。
【0116】
いくつかの実施形態では、同一参照点が遠近調節距離および輻輳・開散運動距離のために利用される限り、眼210、220の射出瞳以外の参照点が、遠近調節-輻輳・開散運動不整合を決定するための距離を決定するために利用されてもよいことを理解されたい。例えば、距離は、角膜から深度平面まで、網膜から深度平面まで、接眼レンズ(例えば、ディスプレイデバイスの導波管)から深度平面まで等で測定され得る。
【0117】
理論によって限定されるわけではないが、ユーザは、不整合自体が有意な不快感を生じさせずに、依然として、最大約0.25ジオプタ、最大約0.33ジオプタ、および最大約0.5ジオプタの遠近調節-輻輳・開散運動不整合が生理学的に正しいとして知覚し得ると考えられる。いくつかの実施形態では、本明細書に開示されるディスプレイシステム(例えば、ディスプレイシステム250、
図6)は、約0.5ジオプタまたはそれ未満の遠近調節-輻輳・開散運動不整合を有する画像を視認者に提示する。いくつかの他の実施形態では、ディスプレイシステムによって提供される画像の遠近調節-輻輳・開散運動不整合は、約0.33ジオプタまたはそれ未満である。さらに他の実施形態では、ディスプレイシステムによって提供される画像の遠近調節-輻輳・開散運動不整合は、約0.25ジオプタまたはそれ未満であって、約0.1ジオプタまたはそれ未満を含む。
【0118】
図5は、波面発散を修正することによって、3次元画像をシミュレートするためのアプローチの側面を図示する。ディスプレイシステムは、画像情報でエンコードされた光770を受け取り、その光をユーザの眼210に出力するように構成される、導波管270を含む。導波管270は、所望の深度平面240上のある点によって生成されたライトフィールドの波面発散に対応する定義された波面発散量を伴って光650を出力してもよい。いくつかの実施形態では、同一量の波面発散が、その深度平面上に提示される全てのオブジェクトのために提供される。加えて、ユーザの他方の眼は、類似導波管からの画像情報を提供され得るように図示されるであろう。
【0119】
いくつかの実施形態では、単一導波管が、単一または限定数の深度平面に対応する設定された波面発散量を伴う光を出力するように構成されてもよく、および/または導波管は、限定された範囲の波長の光を出力するように構成されてもよい。その結果、いくつかの実施形態では、複数またはスタックの導波管が、異なる深度平面のための異なる波面発散量を提供し、および/または異なる範囲の波長の光を出力するために利用されてもよい。本明細書で使用されるように、深度平面は、平面であり得る、または湾曲表面の輪郭に追従し得ることを理解されたい。
【0120】
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。ディスプレイシステム250は、複数の導波管270、280、290、300、310を使用して、3次元知覚を眼/脳に提供するために利用され得る、導波管のスタックまたはスタックされた導波管アセンブリ260を含む。ディスプレイシステム250は、いくつかの実施形態では、ライトフィールドディスプレイと見なされてもよいことを理解されたい。加えて、導波管アセンブリ260はまた、接眼レンズとも称され得る。
【0121】
いくつかの実施形態では、ディスプレイシステム250は、輻輳・開散運動するための実質的に連続キューおよび遠近調節するための複数の離散キューを提供するように構成されてもよい。輻輳・開散運動のためのキューは、異なる画像をユーザの眼のそれぞれに表示することによって提供されてもよく、遠近調節のためのキューは、選択可能離散量の波面発散を伴う画像を形成する光を出力することによって提供されてもよい。換言すると、ディスプレイシステム250は、可変レベルの波面発散を伴う光を出力するように構成されてもよい。いくつかの実施形態では、波面発散の各離散レベルは、特定の深度平面に対応し、導波管270、280、290、300、310のうちの特定の1つによって提供されてもよい。
【0122】
図6を継続して参照すると、導波管アセンブリ260はまた、複数の特徴320、330、340、350を導波管の間に含んでもよい。いくつかの実施形態では、特徴320、330、340、350は、1つ以上のレンズであってもよい。導波管270、280、290、300、310および/または
複数のレンズ320、330、340、350は、種々のレベルの波面曲率または光線発散を用いて、画像情報を眼に送信するように構成されてもよい。各導波管レベルは、特定の深度平面と関連付けられてもよく、その深度平面に対応する画像情報を出力するように構成されてもよい。画像投入デバイス360、370、380、390、400は、導波管のための光源として機能してもよく、画像情報を導波管270、280、290、300、310の中に投入するために利用されてもよく、それぞれ、本明細書に説明されるように、眼210に向かって出力するために、各個別の導波管を横断して入射光を分散させるように構成されてもよい。光は、画像投入デバイス360、370、380、390、400の出力表面410、420、430、440、450から出射し、導波管270、280、290、300、310の対応する入力表面460、470、480、490、500の中に投入される。いくつかの実施形態では、入力表面460、470、480、490、500はそれぞれ、対応する導波管の縁であってもよい、または対応する導波管の主要表面の一部(すなわち、世界510または視認者の眼210に直接面する導波管表面のうちの1つ)であってもよい。いくつかの実施形態では、光の単一ビーム(例えば、コリメートされたビーム)が、各導波管の中に投入され、特定の導波管と関連付けられた深度平面に対応する特定の角度(および発散量)において眼210に向かって指向される、クローン化されるコリメートされたビームの場全体を出力してもよい。いくつかの実施形態では、画像投入デバイス360、370、380、390、400のうちの単一の1つは、複数(例えば、3つ)の導波管270、280、290、300、310と関連付けられ、その中に光を投入してもよい。
【0123】
いくつかの実施形態では、画像投入デバイス360、370、380、390、400はそれぞれ、対応する導波管270、280、290、300、310の中への投入のための画像情報をそれぞれ生成する、離散ディスプレイである。いくつかの他の実施形態では、画像投入デバイス360、370、380、390、400は、例えば、1つ以上の光学導管(光ファイバケーブル等)を介して、画像情報を画像投入デバイス360、370、380、390、400のそれぞれに送り得る、単一の多重化されたディスプレイの出力端である。画像投入デバイス360、370、380、390、400によって提供される画像情報は、異なる波長または色(例えば、本明細書に議論されるように、異なる原色)の光を含んでもよいことを理解されたい。
【0124】
いくつかの実施形態では、導波管270、280、290、300、310の中に投入される光は、光投影システム520によって提供され、これは、光モジュール530を備え、これは、発光ダイオード(LED)等の光エミッタを含んでもよい。光モジュール530からの光は、ビームスプリッタ550を介して、光変調器540、例えば、空間光変調器によって指向および修正されてもよい。光変調器540は、導波管270、280、290、300、310の中に投入される光の知覚される強度を変化させ、光を画像情報でエンコードするように構成されてもよい。空間光変調器の実施例は、シリコン上液晶(LCOS)ディスプレイを含む、液晶ディスプレイ(LCD)を含む。画像投入デバイス360、370、380、390、400は、図式的に図示され、いくつかの実施形態では、これらの画像投入デバイスは、光を導波管270、280、290、300、310の関連付けられたものの中に出力するように構成される、共通投影システム内の異なる光経路および場所を表し得ることを理解されたい。いくつかの実施形態では、導波管アセンブリ260の導波管は、導波管の中に投入された光をユーザの眼に中継しながら、理想的レンズとして機能し得る。本概念では、オブジェクトは、空間光変調器540であってもよく、画像は、深度平面上の画像であってもよい。
【0125】
いくつかの実施形態では、ディスプレイシステム250は、光を種々のパターン(例えば、ラスタ走査、螺旋走査、リサジューパターン等)で1つ以上の導波管270、280、290、300、310の中に、最終的には、視認者の眼210に投影するように構成される、1つ以上の走査ファイバを備える、走査ファイバディスプレイであってもよい。いくつかの実施形態では、図示される画像投入デバイス360、370、380、390、400は、光を1つまたは複数の導波管270、280、290、300、310の中に投入するように構成される、単一走査ファイバまたは走査ファイバの束を図式的に表し得る。いくつかの他の実施形態では、図示される画像投入デバイス360、370、380、390、400は、複数の走査ファイバまたは走査ファイバの複数の束を図式的に表し得、それぞれ、光を導波管270、280、290、300、310のうちの関連付けられた1つの中に投入するように構成される。1つ以上の光ファイバは、光を光モジュール530から1つ以上の導波管270、280、290、300、310に透過させるように構成されてもよいことを理解されたい。1つ以上の介在光学構造が、走査ファイバまたは複数のファイバと、1つ以上の導波管270、280、290、300、310との間に提供され、例えば、走査ファイバから出射する光を1つ以上の導波管270、280、290、300、310の中に再指向してもよいことを理解されたい。
【0126】
コントローラ560は、画像投入デバイス360、370、380、390、400、光源530、および光モジュール540の動作を含む、スタックされた導波管アセンブリ260のうちの1つ以上のものの動作を制御する。いくつかの実施形態では、コントローラ560は、ローカルデータ処理モジュール140の一部である。コントローラ560は、例えば、本明細書に開示される種々のスキームのいずれかに従って、導波管270、280、290、300、310への画像情報のタイミングおよび提供を調整する、プログラミング(例えば、非一過性媒体内の命令)を含む。いくつかの実施形態では、コントローラは、単一一体型デバイスまたは有線または無線通信チャネルによって接続される分散型システムであってもよい。コントローラ560は、いくつかの実施形態では、処理モジュール140または150(
図9E)の一部であってもよい。
【0127】
図6を継続して参照すると、導波管270、280、290、300、310は、全内部反射(TIR)によって各個別の導波管内で光を伝搬するように構成されてもよい。導波管270、280、290、300、310はそれぞれ、主要上部表面および底部表面およびそれらの主要上部表面と底部表面との間に延在する縁を伴う、平面である、または別の形状(例えば、湾曲)を有してもよい。図示される構成では、導波管270、280、290、300、310はそれぞれ、各個別の導波管内で伝搬する光を導波管から外に再指向し、画像情報を眼210に出力することによって、光を導波管から抽出するように構成される、外部結合光学要素570、580、590、600、610を含んでもよい。抽出された光はまた、外部結合光と称され得、外部結合光学要素はまた、光抽出光学要素と称され得る。抽出された光のビームは、導波管によって、導波管内で伝搬する光が光抽出光学要素に衝打する場所において出力され得る。外部結合光学要素570、580、590、600、610は、例えば、本明細書にさらに議論されるような回折光学特徴を含む、格子であってもよい。説明を容易にし、図面を明確にするために、導波管270、280、290、300、310の底部主要表面に配置されて図示されるが、いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、本明細書にさらに議論されるように、上部および/または底部主要表面に配置されてもよく、および/または導波管270、280、290、300、310の容積内に直接配置されてもよい。いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、透明基板に取り付けられ、導波管270、280、290、300、310を形成する、材料の層内に形成されてもよい。いくつかの他の実施形態では、導波管270、280、290、300、310は、材料のモノリシック片であってもよく、外部結合光学要素570、580、590、600、610は、その材料片の表面上および/または内部に形成されてもよい。
【0128】
図6を継続して参照すると、本明細書に議論されるように、各導波管270、280、290、300、310が、光を出力し、特定の深度平面に対応する画像を形成するように構成される。例えば、眼の最近傍の導波管270は、眼210にコリメートされた光(そのような導波管270の中に投入された)を送達するように構成されてもよい。コリメートされた光は、光学無限遠焦点面を表し得る。次の上方の導波管280は、眼210に到達し得る前に、第1のレンズ350(例えば、負のレンズ)を通して通過する、コリメートされた光を送出するように構成されてもよい。そのような第1のレンズ350は、眼/脳が、その次の上方の導波管280から生じる光を光学無限遠から眼210に向かって内向きにより近い第1の焦点面から生じるものとして解釈するように、若干の凸面波面曲率を生成するように構成されてもよい。同様に、第3の上方の導波管290は、眼210に到達する前に、その出力光を第1の350および第2の340レンズの両方を通して通過させる。第1の350および第2の340レンズの組み合わせられた屈折力は、眼/脳が、第3の導波管290から生じる光が次の上方の導波管280からの光であったよりも光学無限遠から人物に向かって内向きにさらに近い第2の焦点面から生じるものとして解釈するように、別の漸増量の波面曲率を生成するように構成されてもよい。
【0129】
他の導波管層300、310およびレンズ330、320も同様に構成され、スタック内の最高導波管310が、人物に最も近い焦点面を表す集約焦点力のために、その出力をそれと眼との間のレンズの全てを通して送出する。スタックされた導波管アセンブリ260の他側の世界510から生じる光を視認/解釈するとき、レンズ320、330、340、350のスタックを補償するために、補償レンズ層620が、スタックの上部に配置され、下方のレンズスタック320、330、340、350の集約力を補償してもよい。そのような構成は、利用可能な導波管/レンズ対と同じ数の知覚される焦点面を提供する。導波管の外部結合光学要素およびレンズの集束側面は両方とも、静的であってもよい(すなわち、動的または電気活性ではない)。いくつかの代替実施形態では、一方または両方とも、電気活性特徴を使用して動的であってもよい。
【0130】
いくつかの実施形態では、導波管270、280、290、300、310のうちの2つ以上のものは、同一の関連付けられた深度平面を有してもよい。例えば、複数の導波管270、280、290、300、310が、同一深度平面に設定される画像を出力するように構成されてもよい、または導波管270、280、290、300、310の複数のサブセットが、深度平面毎に1つのセットを伴う、同一の複数の深度平面に設定される画像を出力するように構成されてもよい。これは、それらの深度平面において拡張された視野を提供するようにタイル化された画像を形成する利点を提供し得る。
【0131】
図6を継続して参照すると、外部結合光学要素570、580、590、600、610は、導波管と関連付けられる特定の深度平面のために、光をそれらの個別の導波管から再指向し、かつ本光を適切な量の発散またはコリメーションを伴って出力するように構成されてもよい。その結果、異なる関連付けられる深度平面を有する導波管は、外部結合光学要素570、580、590、600、610の異なる構成を有してもよく、これは、関連付けられる深度平面に応じて、異なる量の発散を伴って光を出力する。いくつかの実施形態では、光抽出光学要素570、580、590、600、610は、光を具体的角度で出力するように構成され得る、立体または表面特徴であってもよい。例えば、光抽出光学要素570、580、590、600、610は、立体ホログラム、表面ホログラム、および/または回折格子であってもよい。いくつかの実施形態では、特徴320、330、340、350は、レンズではなくてもよい。むしろ、それらは、単に、スペーサであってもよい(例えば、空隙を形成するためのクラッディング層および/または構造)。
【0132】
いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、回折パターンを形成する回折特徴または「回折光学要素」(また、本明細書では、「DOE」とも称される)である。好ましくは、DOEは、ビームの光の一部のみがDOEの各交差部で眼210に向かって偏向される一方、残りがTIRを介して、導波管を通して移動し続けるように、十分に低回折効率を有する。画像情報を搬送する光は、したがって、様々な場所において導波管から出射する、いくつかの関連出射ビームに分割され、その結果、導波管内でバウンスする本特定のコリメートされたビームに関して、眼210に向かって非常に均一なパターンの出射放出となる。
【0133】
いくつかの実施形態では、1つ以上のDOEは、それらが能動的に回折する「オン」状態と有意に回折しない「オフ」状態との間で切替可能であり得る。例えば、切替可能なDOEは、微小液滴がホスト媒体中に回折パターンを備える、ポリマー分散液晶の層を備えてもよく、微小液滴の屈折率は、ホスト材料の屈折率に実質的に合致するように切り替えられてもよい(その場合、パターンは、入射光を著しく回折させない)、または微小液滴は、ホスト媒体のものに合致しない屈折率に切り替えられてもよい(その場合、パターンは、入射光を能動的に回折させる)。
【0134】
いくつかの実施形態では、カメラアセンブリ630(例えば、可視光および赤外線光カメラを含む、デジタルカメラ)が、眼210および/または眼210の周囲の組織の画像を捕捉し、例えば、ユーザ入力を検出する、および/またはユーザの生理学的状態を監視するために提供されてもよい。本明細書で使用されるように、カメラは、任意の画像捕捉デバイスであってもよい。いくつかの実施形態では、カメラアセンブリ630は、画像捕捉デバイスと、光(例えば、赤外線光)を眼に投影し、次いで、その光が眼によって反射され、画像捕捉デバイスによって検出され得る、光源とを含んでもよい。いくつかの実施形態では、カメラアセンブリ630は、フレーム80(
図9E)に取り付けられてもよく、カメラアセンブリ630からの画像情報を処理し得る、処理モジュール140および/または150と電気通信してもよい。いくつかの実施形態では、1つのカメラアセンブリ630が、眼毎に利用され、各眼を別個に監視してもよい。
【0135】
ここで
図7を参照すると、導波管によって出力された出射ビームの実施例が、示される。1つの導波管が図示されるが、導波管アセンブリ260(
図6)内の他の導波管も同様に機能し得、導波管アセンブリ260は、複数の導波管を含むことを理解されたい。光640が、導波管270の入力表面460において導波管270の中に投入され、TIRによって導波管270内を伝搬する。光640がDOE570上に衝突する点において、光の一部が、出射ビーム650として導波管から出射する。出射ビーム650は、略平行として図示されるが、本明細書に議論されるように、また、導波管270と関連付けられる深度平面に応じて、(例えば、発散出射ビームを形成する)ある角度で眼210に伝搬するように再指向されてもよい。略平行出射ビームは、眼210からの遠距離(例えば、光学無限遠)における深度平面に設定されるように現れる画像を形成するように光を外部結合する、外部結合光学要素を伴う導波管を示し得ることを理解されたい。他の導波管または他の外部結合光学要素のセットが、より発散する、出射ビームパターンを出力してもよく、これは、眼210がより近い距離に遠近調節し、網膜上に合焦させることを要求し、光学無限遠より眼210に近い距離からの光として脳によって解釈されるであろう。
【0136】
いくつかの実施形態では、フルカラー画像が、原色、例えば、3つ以上の原色のそれぞれに画像をオーバーレイすることによって、各深度平面において形成されてもよい。
図8は、スタックされた導波管アセンブリの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。図示される実施形態は、深度平面240a-240fを示すが、より多いまたはより少ない深度もまた、検討される。各深度平面は、第1の色Gの第1の画像、第2の色Rの第2の画像、および第3の色Bの第3の画像を含む、それと関連付けられた3つ以上の原色画像を有してもよい。異なる深度平面は、文字G、R、およびBに続くジオプタ(dpt)に関する異なる数字によって図に示される。単なる実施例として、これらの文字のそれぞれに続く数字は、ジオプタ(1/m)、すなわち、視認者からの深度平面の逆距離を示し、図中の各ボックスは、個々の原色画像を表す。いくつかの実施形態では、異なる波長の光の眼の集束における差異を考慮するために、異なる原色に関する深度平面の正確な場所は、変動してもよい。例えば、所与の深度平面に関する異なる原色画像は、ユーザからの異なる距離に対応する深度平面上に設置されてもよい。そのような配列は、視力およびユーザ快適性を増加させ得、および/または色収差を減少させ得る。
【0137】
いくつかの実施形態では、各原色の光は、単一専用導波管によって出力されてもよく、その結果、各深度平面は、それと関連付けられた複数の導波管を有してもよい。そのような実施形態では、文字G、R、またはBを含む、図中の各ボックスは、個々の導波管を表すものと理解され得、3つの導波管は、深度平面毎に提供されてもよく、3つの原色画像が、深度平面毎に提供される。各深度平面と関連付けられた導波管は、本図面では、説明を容易にするために相互に隣接して示されるが、物理的デバイスでは、導波管は全て、レベル毎に1つの導波管を伴うスタックで配列されてもよいことを理解されたい。いくつかの他の実施形態では、複数の原色が、例えば、単一導波管のみが深度平面毎に提供され得るように、同一導波管によって出力されてもよい。
【0138】
図8を継続して参照すると、いくつかの実施形態では、Gは、緑色であって、Rは、赤色であって、Bは、青色である。いくつかの他の実施形態では、マゼンタ色およびシアン色を含む、光の他の波長と関連付けられた他の色も、赤色、緑色、または青色のうちの1つ以上のものに加えて使用されてもよい、またはそれらに取って代わってもよい。
【0139】
本開示全体を通した所与の光の色の言及は、その所与の色として視認者によって知覚される、光の波長の範囲内の1つ以上の波長の光を包含するものと理解されると理解されたい。例えば、赤色光は、約620~780nmの範囲内である1つ以上の波長の光を含んでもよく、緑色光は、約492~577nmの範囲内である1つ以上の波長の光を含んでもよく、青色光は、約435~493nmの範囲内である1つ以上の波長の光を含んでもよい。
【0140】
いくつかの実施形態では、光源530(
図6)は、視認者の視覚的知覚範囲外の1つ以上の波長、例えば、赤外線および/または紫外線波長の光を放出するように構成されてもよい。加えて、ディスプレイ250の導波管の内部結合、外部結合、および他の光再指向構造は、例えば、結像および/またはユーザ刺激用途のために、本光をディスプレイからユーザの眼210に向かって指向および放出するように構成されてもよい。
【0141】
ここで
図9Aを参照すると、いくつかの実施形態では、導波管に衝突する光は、その光を導波管の中に内部結合するために再指向される必要があり得る。内部結合光学要素が、光をその対応する導波管の中に再指向および内部結合するために使用されてもよい。
図9Aは、それぞれ、内部結合光学要素を含む、複数またはセット660のスタックされた導波管の実施例の断面側面図を図示する。導波管はそれぞれ、1つ以上の異なる波長または1つ以上の異なる波長範囲の光を出力するように構成されてもよい。スタック660は、スタック260(
図6)に対応し得、スタック660の図示される導波管は、複数の導波管270、280、290、300、310の一部に対応してもよいが、画像投入デバイス360、370、380、390、400のうちの1つ以上のものからの光が、光が内部結合のために再指向されることを要求する位置から導波管の中に投入されることを理解されたい。
【0142】
スタックされた導波管の図示されるセット660は、導波管670、680、および690を含む。各導波管は、関連付けられた内部結合光学要素(導波管上の光入力面積とも称され得る)を含み、例えば、内部結合光学要素700は、導波管670の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素710は、導波管680の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素720は、導波管690の主要表面(例えば、上側主要表面)上に配置される。いくつかの実施形態では、内部結合光学要素700、710、720のうちの1つ以上のものは、個別の導波管670、680、690の底部主要表面上に配置されてもよい(特に、1つ以上の内部結合光学要素は、反射性偏向光学要素である)。図示されるように、内部結合光学要素700、710、720は、その個別の導波管670、680、690の上側主要表面(または次の下側導波管の上部)上に配置されてもよく、特に、それらの内部結合光学要素は、透過性偏向光学要素である。いくつかの実施形態では、内部結合光学要素700、710、720は、個別の導波管670、680、690の本体内に配置されてもよい。いくつかの実施形態では、本明細書に議論されるように、内部結合光学要素700、710、720は、他の光の波長を透過しながら、1つ以上の光の波長を選択的に再指向するような波長選択的である。その個別の導波管670、680、690の片側または角に図示されるが、内部結合光学要素700、710、720は、いくつかの実施形態では、その個別の導波管670、680、690の他の面積内に配置されてもよいことを理解されたい。
【0143】
図示されるように、内部結合光学要素700、710、720は、これらの内部結合光学要素に伝搬する光の方向における、図示される真正面図に見られるように、相互から側方にオフセットされてもよい。いくつかの実施形態では、各内部結合光学要素は、その光が別の内部結合光学要素を通して通過せずに、光を受け取るようにオフセットされてもよい。例えば、各内部結合光学要素700、710、720は、
図6に示されるように、光を異なる画像投入デバイス360、370、380、390、および400から受け取るように構成されてもよく、光を内部結合光学要素700、710、720の他のものから実質的に受け取らないように、他の内部結合光学要素700、710、720から分離されてもよい(例えば、側方に離間される)。
【0144】
各導波管はまた、関連付けられた光分散要素を含み、例えば、光分散要素730は、導波管670の主要表面(例えば、上部主要表面)上に配置され、光分散要素740は、導波管680の主要表面(例えば、上部主要表面)上に配置され、光分散要素750は、導波管690の主要表面(例えば、上部主要表面)上に配置される。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の底部主要表面上に配置されてもよい。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の上部および底部両方の主要表面上に配置されてもよい、または光分散要素730、740、750は、それぞれ、異なる関連付けられた導波管670、680、690内の上部および底部主要表面の異なるもの上に配置されてもよい。
【0145】
導波管670、680、690は、例えば、材料のガス、液体、および/または固体層によって離間および分離されてもよい。例えば、図示されるように、層760aは、導波管670および680を分離してもよく、層760bは、導波管680および690を分離してもよい。いくつかの実施形態では、層760aおよび760bは、低屈折率材料(すなわち、導波管670、680、690の直近のものを形成する材料より低い屈折率を有する材料)から形成される。好ましくは、層760a、760bを形成する材料の屈折率は、導波管670、680、690を形成する材料の屈折率の0.05以上または0.10以下である。有利なこととして、より低い屈折率層760a、760bは、導波管670、680、690を通して光の全内部反射(TIR)(例えば、各導波管の上部および底部主要表面間のTIR)を促進する、クラッディング層として機能してもよい。いくつかの実施形態では、層760a、760bは、空気から形成される。図示されないが、導波管の図示されるセット660の上部および底部は、直近クラッディング層を含んでもよいことを理解されたい。
【0146】
好ましくは、製造および他の考慮点を容易にするために、導波管670、680、690を形成する材料は、類似または同一であって、層760a、760bを形成する材料は、類似または同一である。いくつかの実施形態では、導波管670、680、690を形成する材料は、1つ以上の導波管間で異なってもよい、および/または層760a、760bを形成する材料は、依然として、前述の種々の屈折率関係を保持しながら、異なってもよい。
【0147】
図9Aを継続して参照すると、光線770、780、790が、導波管のセット660に入射する。光線770、780、790は、1つ以上の画像投入デバイス360、370、380、390、400(
図6)によって導波管670、680、690の中に投入されてもよいことを理解されたい。
【0148】
いくつかの実施形態では、光線770、780、790は、異なる色に対応し得る、異なる性質、例えば、異なる波長または異なる波長範囲を有する。内部結合光学要素700、710、720はそれぞれ、光が、TIRによって、導波管670、680、690のうちの個別の1つを通して伝搬するように、入射光を偏向させる。いくつかの実施形態では、内部結合光学要素700、710、720はそれぞれ、他の波長を下層導波管および関連付けられた内部結合光学要素に透過させながら、1つ以上の特定の光の波長を選択的に偏向させる。
【0149】
例えば、内部結合光学要素700は、それぞれ、異なる第2および第3の波長または波長範囲を有する、光線780および790を透過させながら、第1の波長または波長範囲を有する、光線770を偏向させるように構成されてもよい。透過された光線780は、第2の波長または波長範囲の光を偏向させるように構成される、内部結合光学要素710に衝突し、それによって偏向される。光線790は、第3の波長または波長範囲の光を選択的に偏向させるように構成される、内部結合光学要素720によって偏向される。
【0150】
図9Aを継続して参照すると、偏向された光線770、780、790は、対応する導波管670、680、690を通して伝搬するように偏向される。すなわち、各導波管の内部結合光学要素700、710、720は、光をその対応する導波管670、680、690の中に偏向させ、光を対応する導波管の中に内部結合する。光線770、780、790は、光をTIRによって個別の導波管670、680、690を通して伝搬させる角度で偏向される。光線770、780、790は、導波管の対応する光分散要素730、740、750に衝突するまで、TIRによって個別の導波管670、680、690を通して伝搬する。
【0151】
ここで
図9Bを参照すると、
図9Aの複数のスタックされた導波管の実施例の斜視図が、図示される。上記に記載されるように、内部結合された光線770、780、790は、それぞれ、内部結合光学要素700、710、720によって偏向され、次いで、それぞれ、導波管670、680、690内でTIRによって伝搬する。光線770、780、790は、次いで、それぞれ、光分散要素730、740、750に衝突する。光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820に向かって伝搬するように、光線770、780、790を偏向させる。
【0152】
いくつかの実施形態では、光分散要素730、740、750は、直交瞳エクスパンダ(OPE)である。いくつかの実施形態では、OPEは、光を外部結合光学要素800、810、820に偏向または分散し、いくつかの実施形態では、また、外部結合光学要素に伝搬するにつれて、本光のビームまたはスポットサイズを増加させ得る。いくつかの実施形態では、光分散要素730、740、750は、省略されてもよく、内部結合光学要素700、710、720は、光を直接外部結合光学要素800、810、820に偏向させるように構成されてもよい。例えば、
図9Aを参照すると、光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820と置換されてもよい。いくつかの実施形態では、外部結合光学要素800、810、820は、光を視認者の眼210(
図7)に指向させる、射出瞳(EP)または射出瞳エクスパンダ(EPE)である。OPEは、少なくとも1つの軸においてアイボックスの寸法を増加させるように構成されてもよく、EPEは、OPEの軸と交差する、例えば、直交する軸においてアイボックスを増加させてもよいことを理解されたい。例えば、各OPEは、光の残りの部分が導波管を辿って伝搬し続けることを可能にしながら、OPEに衝打する光の一部を同一導波管のEPEに再指向するように構成されてもよい。OPEへの衝突に応じて、再び、残りの光の別の部分は、EPEに再指向され、その部分の残りの部分は、導波管等を辿ってさらに伝搬し続ける。同様に、EPEへの衝打に応じて、衝突光の一部は、導波管からユーザに向かって指向され、その光の残りの部分は、EPに再び衝打するまで、導波管を通して伝搬し続け、その時点で、衝突する光の別の部分は、導波管から指向される等となる。その結果、内部結合される光の単一ビームは、その光の一部がOPEまたはEPEによって再指向される度に、「複製」され、それによって、
図6に示されるように、クローン化された光のビーム野を形成し得る。いくつかの実施形態では、OPEおよび/またはEPEは、光のビームのサイズを修正するように構成されてもよい。
【0153】
故に、
図9Aおよび9Bを参照すると、いくつかの実施形態では、導波管のセット660は、原色毎に、導波管670、680、690と、内部結合光学要素700、710、720と、光分散要素(例えば、OPE)730、740、750と、外部結合光学要素(例えば、EP)800、810、820とを含む。導波管670、680、690は、各1つの間に空隙/クラッディング層を伴ってスタックされてもよい。内部結合光学要素700、710、720は、(異なる波長の光を受け取る異なる内部結合光学要素を用いて)入射光をその導波管の中に再指向または偏向させる。光は、次いで、個別の導波管670、680、690内にTIRをもたらすであろう角度で伝搬する。示される実施例では、光線770(例えば、青色光)は、前述の様式において、第1の内部結合光学要素700によって偏光され、次いで、導波管を辿ってバウンスし続け、光分散要素(例えば、OPE)730、次いで、外部結合光学要素(例えば、EP)800と相互作用する。光線780および790(例えば、それぞれ、緑色および赤色光)は、導波管670を通して通過し、光線780は、内部結合光学要素710上に衝突し、それによって偏向される。光線780は、次いで、TIRを介して、導波管680を辿ってバウンスし、その光分散要素(例えば、OPE)740、次いで、外部結合光学要素(例えば、EP)810に進むであろう。最後に、光線790(例えば、赤色光)は、導波管690を通して通過し、導波管690の光内部結合光学要素720に衝突する。光内部結合光学要素720は、光線が、TIRによって、光分散要素(例えば、OPE)750に、次いで、TIRによって、外部結合光学要素(例えば、EP)820に伝搬するように、光線790を偏向させる。外部結合光学要素820は、次いで、最後に、光線790を視認者に外部結合し、視認者はまた、他の導波管670、680からの外部結合した光も受け取る。
【0154】
図9Cは、
図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。本上下図は、内部結合光学要素800、810、820に向かう光の伝搬方向に見られるように、真正面図とも称され得る、すなわち、上下図は、画像光がページに対して法線に入射する、導波管の図であることを理解されたい。図示されるように、導波管670、680、690は、各導波管の関連付けられた光分散要素730、740、750および関連付けられた外部結合光学要素800、810、820とともに、垂直に整合されてもよい。しかしながら、本明細書に議論されるように、内部結合光学要素700、710、720は、垂直に整合されない。むしろ、内部結合光学要素は、好ましくは、非重複する(例えば、上下図に見られるように、側方に離間される)。本明細書でさらに議論されるように、本非重複空間配列は、1対1ベースで異なるソースから異なる導波管の中への光の投入を促進し、それによって、具体的光源が具体的導波管に一意に結合されることを可能にする。いくつかの実施形態では、非重複の空間的に分離される内部結合光学要素を含む、配列は、偏移瞳システムと称され得、これらの配列内の内部結合光学要素は、サブ瞳に対応し得る。
【0155】
空間的に重複する面積は、上下図に見られるように、その面積の70%以上、80%以上、または90%以上の側方重複を有し得ることを理解されたい。他方では、側方に偏移される面積は、上下図に見られるように、その面積の30%未満が重複する、20%未満が重複する、または10%未満が重複する。いくつかの実施形態では、側方に偏移される面積は、重複を有していない。
【0156】
図9Dは、複数のスタックされた導波管の別の実施例の上下平面図を図示する。図示されるように、導波管670、680、690は、垂直に整合されてもよい。しかしながら、
図9Cの構成と比較して、別個の光分散要素730、740、750および関連付けられる外部結合光学要素800、810、820は、省略される。代わりに、光分散要素および外部結合光学要素が、事実上、重畳され、上下図に見られるように、同一面積を占有する。いくつかの実施形態では、光分散要素(例えば、OPE)が、導波管670、680、690の1つの主要表面上に配置されてもよく、外部結合光学要素(例えば、EPE)が、それらの導波管の他の主要表面上に配置されてもよい。したがって、各導波管670、680、690は、集合的に、それぞれ、組み合わせられたOPE/EPE1281、1282、1283と称される、重畳された光分散および外部結合光学要素を有してもよい。そのような組み合わせられたOPE/EPEに関するさらなる詳細は、2018年12月14日に出願された、米国特許出願第16/221,359号(その開示全体は、参照することによって本明細書に組み込まれる)に見出され得る。内部結合光学要素700、710、720は、光を内部結合し、それぞれ、組み合わせられたOPE/EPE1281、1282、1283に指向する。いくつかの実施形態では、図示されるように、内部結合光学要素700、710、720は、偏移された瞳空間配列を有する場合、側方に偏移されてもよい(例えば、それらは、図示される上下図に見られるように、側方に離間される)。
図9Cの構成と同様に、本側方に偏移された空間配列は、1対1のベースで、異なる導波管の中への異なる波長の光の投入を促進する(例えば、異なる光源から)。
【0157】
図9Eは、本明細書に開示される種々の導波管および関連システムが統合され得る、ウェアラブルディスプレイシステム60の実施例を図示する。いくつかの実施形態では、ディスプレイシステム60は、
図6のシステム250であって、
図6は、そのシステム60のいくつかの部分をより詳細に図式的に示す。例えば、
図6の導波管アセンブリ260は、ディスプレイ70の一部であってもよい。
【0158】
図9Eを継続して参照すると、ディスプレイシステム60は、ディスプレイ70と、そのディスプレイ70の機能をサポートするための種々の機械的および電子的モジュールおよびシステムとを含む。ディスプレイ70は、フレーム80に結合されてもよく、これは、ディスプレイシステムユーザまたは視認者90によって装着可能であって、ディスプレイ70をユーザ90の眼の正面に位置付けるように構成される。ディスプレイ70は、いくつかの実施形態では、アイウェアと見なされ得る。ディスプレイ70は、内部結合される画像光を中継し、その画像光をユーザ90の眼に出力するように構成される、導波管270等の1つ以上の導波管を含んでもよい。いくつかの実施形態では、スピーカ100が、フレーム80に結合され、ユーザ90の外耳道に隣接して位置付けられるように構成される(いくつかの実施形態では、示されない別のスピーカも、随意に、ユーザの他方の外耳道に隣接して位置付けられ、ステレオ/成形可能音制御を提供してもよい)。ディスプレイシステム60はまた、1つ以上のマイクロホン110または他のデバイスを含み、音を検出してもよい。いくつかの実施形態では、マイクロホンは、ユーザが入力またはコマンドをシステム60に提供することを可能にするように構成され(例えば、音声メニューコマンドの選択、自然言語質問等)、および/または他の人物(例えば、類似ディスプレイシステムの他のユーザ)とのオーディオ通信を可能にしてもよい。マイクロホンはさらに、周辺センサとして構成され、オーディオデータ(例えば、ユーザおよび/または環境からの音)を収集してもよい。いくつかの実施形態では、ディスプレイシステム60はさらに、オブジェクト、刺激、人々、動物、場所、またはユーザの周囲の世界の他の側面を検出するように構成される、1つ以上の外向きに指向される環境センサ112を含んでもよい。例えば、環境センサ112は、1つ以上のカメラを含んでもよく、これは、例えば、ユーザ90の通常の視野の少なくとも一部に類似する画像を捕捉するように外向きに向いて位置してもよい。いくつかの実施形態では、ディスプレイシステムはまた、周辺センサ120aを含んでもよく、これは、フレーム80と別個であって、ユーザ90の身体(例えば、ユーザ90の頭部、胴体、四肢等)上に取り付けられてもよい。周辺センサ120aは、いくつかの実施形態では、ユーザ90の生理学的状態を特徴付けるデータを入手するように構成されてもよい。例えば、センサ120aは、電極であってもよい。
【0159】
図9Eを継続して参照すると、ディスプレイ70は、有線導線または無線コネクティビティ等の通信リンク130によって、ローカルデータ処理モジュール140に動作可能に結合され、これは、フレーム80に固定して取り付けられる、ユーザによって装着されるヘルメットまたは帽子に固定して取り付けられる、ヘッドホンに内蔵される、または別様にユーザ90に除去可能に取り付けられる(例えば、リュック式構成において、ベルト結合式構成において)等、種々の構成において搭載されてもよい。同様に、センサ120aは、通信リンク120b、例えば、有線導線または無線コネクティビティによって、ローカルデータ処理モジュール140に動作可能に結合されてもよい。ローカル処理およびデータモジュール140は、ハードウェアプロセッサおよび不揮発性メモリ(例えば、フラッシュメモリまたはハードディスクドライブ)等のデジタルメモリを備えてもよく、その両方とも、データの処理、キャッシュ、および記憶を補助するために利用され得る。随意に、ローカル処理およびデータモジュール140は、1つ以上の中央処理ユニット(CPU)、グラフィック処理ユニット(GPU)、専用処理ハードウェア等を含んでもよい。データは、a)センサ(画像捕捉デバイス(カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、ジャイロスコープ、および/または本明細書に開示される他のセンサ(例えば、フレーム80に動作可能に結合される、または別様にユーザ90に取り付けられ得る))から捕捉されるデータ、および/またはb)可能性として、処理または読出後にディスプレイ70への通過のために、遠隔処理モジュール150および/または遠隔データリポジトリ160(仮想コンテンツに関連するデータを含む)を使用して入手および/または処理されるデータを含んでもよい。ローカル処理およびデータモジュール140は、これらの遠隔モジュール150、160が相互に動作可能に結合され、ローカル処理およびデータモジュール140に対するリソースとして利用可能であるように、有線または無線通信リンク等を介して、通信リンク170、180によって、遠隔処理モジュール150および遠隔データリポジトリ160に動作可能に結合されてもよい。いくつかの実施形態では、ローカル処理およびデータモジュール140は、画像捕捉デバイス、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープのうちの1つ以上のものを含んでもよい。いくつかの他の実施形態では、これらのセンサのうちの1つ以上のものは、フレーム80に取り付けられてもよい、または有線または無線通信経路によってローカル処理およびデータモジュール140と通信する、独立構造であってもよい。
【0160】
図9Eを継続して参照すると、いくつかの実施形態では、遠隔処理モジュール150は、データおよび/または画像情報を分析および処理するように構成される、1つ以上のプロセッサを備えてもよく、例えば、1つ以上の中央処理ユニット(CPU)、グラフィック処理ユニット(GPU)、専用処理ハードウェア等を含む。いくつかの実施形態では、遠隔データリポジトリ160は、デジタルデータ記憶設備を備えてもよく、これは、インターネットまたは「クラウド」リソース構成における他のネットワーキング構成を通して利用可能であってもよい。いくつかの実施形態では、遠隔データリポジトリ160は、1つ以上の遠隔サーバを含んでもよく、これは、情報、例えば、仮想コンテンツを生成するための情報をローカル処理およびデータモジュール140および/または遠隔処理モジュール150に提供する。いくつかの実施形態では、全てのデータが、記憶され、全ての算出が、ローカル処理およびデータモジュールにおいて実施され、遠隔モジュールからの完全に自律的な使用を可能にする。随意に、CPU、GPU等を含む、外部システム(例えば、1つ以上のプロセッサ、1つ以上のコンピュータのシステム)が、処理(例えば、画像情報を生成する、データを処理する)の少なくとも一部を実施し、例えば、無線または有線接続を介して、情報をモジュール140、150、160に提供し、情報をそこから受信してもよい。
【0161】
図10は、空間光変調器930と、別個の光源940とを有する、光投影システム910を伴う、ウェアラブルディスプレイシステムの実施例を図示する。光源940は、1つ以上の光エミッタを備え、空間光変調器(SLM)930を照明してもよい。レンズ構造960が、光源940からの光をSLM930上に集束させるために使用されてもよい。ビームスプリッタ(例えば、偏光ビームスプリッタ(PBS))950が、光源940からの光を空間光変調器930に反射させ、これは、光を反射および変調させる。画像光とも称される、反射された変調された光は、次いで、ビームスプリッタ950を通して、接眼レンズ920に伝搬する。別のレンズ構造である、投影光学系970が、画像光を接眼レンズ920上に収束または集束させるために利用されてもよい。接眼レンズ920は、1つ以上の導波管または変調された光を眼210に中継する導波管を含んでもよい。
【0162】
本明細書に記載されるように、別個の光源940および関連付けられるレンズ構造960は、望ましくないことに、重量およびサイズをウェアラブルディスプレイシステムに追加し得る。これは、特に、長時間にわたってディスプレイシステムを装着しているユーザにとって、ディスプレイシステムの快適性を減少させ得る。
【0163】
加えて、光源940は、SLM930と併せて、エネルギーを非効率的に消費し得る。例えば、光源940は、SLM930の全体を照明し得る。SLM930は、次いで、光を接眼レンズ920に向かって選択的に反射させる。したがって、光源940によって生産された全ての光が、画像を形成するために利用され得ない。本光の一部、例えば、画像の暗い領域に対応する光は、接眼レンズ920に反射されない。結果として、光源940は、光を生成するためのエネルギーを利用して、SLM930の全体を照明するが、本光のある割合のみが、いくつかの画像を形成するために必要とされ得る。
【0164】
さらに、本明細書に記載されるように、ある場合には、SLM930は、マイクロミラーを使用して、または下層ミラーから反射された光の量を修正する、液晶分子を使用して、光を変調させ、入射光を選択的に反射させ得る。結果として、そのようなデバイスは、光源940からの光を変調させるために、光学要素(例えば、マイクロミラーまたは液晶分子)の物理的移動を要求する。光を変調させ、光を、例えば、ピクセルに対応する、画像情報でエンコーディングするために要求される、物理的移動は、例えば、LEDまたはOLEDを「オン」または「オフ」にする能力と比較して、比較的に低速で生じ得る。本比較的に低速の移動は、ディスプレイシステムのフレームレートを限定し得、例えば、モーションブラー、色割れ、および/またはユーザの頭部の姿勢または該姿勢の変化と不整合される、提示される画像として、可視であり得る。
【0165】
有利なこととして、本明細書に開示されるような発光型マイクロディスプレイを利用する、ウェアラブルディスプレイは、比較的に低重量および嵩高性、高エネルギー効率、および高フレームレートを有し、低モーションブラーおよび運動から画像描画までの短待ち時間を伴う、ウェアラブルディスプレイシステムを促進し得る。低ぼけおよび運動から画像描画までの短待ち時間はさらに、2018年12月28日に出願された、米国仮出願第62/786199号(その開示全体は、参照することによって本明細書に組み込まれる)に議論される。加えて、走査式ファイバディスプレイと比較して、発光型マイクロディスプレイは、コヒーレント光源の使用によって生じるアーチファクトを回避し得る。
【0166】
ここで
図11Aを参照すると、複数の発光型マイクロディスプレイ1030a、1030b、1030cを有する、光投影システム1010を伴う、ウェアラブルディスプレイシステムの実施例が、図示される。マイクロディスプレイ1030a、1030b、1030cからの光は、光学コンバイナ1050によって組み合わせられ、接眼レンズ1020に向かって指向され、これは、光をユーザの眼210に中継する。投影光学系1070は、光学コンバイナ1050と接眼レンズ1020との間に提供されてもよい。いくつかの実施形態では、接眼レンズ1020は、1つ以上の導波管を備える、導波管アセンブリであってもよい。いくつかの実施形態では、光投影システム1010および接眼レンズ1020は、フレーム80(
図9E)に支持されてもよい(例えば、取り付けられる)。
【0167】
いくつかの実施形態では、マイクロディスプレイ1030a、1030b、1030cは、モノクロマイクロディスプレイであってもよく、各モノクロマイクロディスプレイは、異なる原色の光を出力し、モノクロ画像を提供する。本明細書に議論されるように、モノクロ画像は、組み合わせられ、フルカラー画像を形成する。
【0168】
いくつかの他の実施形態では、マイクロディスプレイ1030a、1030b、1030cはそれぞれ、全ての原色の光を出力するように構成される、フルカラーディスプレイであってもよい。例えば、マイクロディスプレイ1030a、1030b、1030cはそれぞれ、赤色、緑色、および青色光エミッタを含む。マイクロディスプレイ1030a、1030b、1030cは、同じであってもよく、同一画像を表示してもよい。しかしながら、複数のマイクロディスプレイを利用することは、複数のマイクロディスプレイからの光を組み合わせ、単一画像を形成することによって、画像の明度および明度の明度ダイナミックレンジを増加させるための利点を提供し得る。いくつかの実施形態では、2つ以上の(例えば、3つの)マイクロディスプレイが、利用されてもよく、光学コンバイナ1050は、これらのマイクロディスプレイの全てからの光を組み合わせるように構成される。
【0169】
マイクロディスプレイは、光エミッタのアレイを備えてもよい。光エミッタの実施例は、有機発光ダイオード(OLED)およびマイクロ発光ダイオード(マイクロLED)を含む。OLEDは、光を放出するために有機材料を利用し、マイクロLEDは、光を放出するために無機材料を利用することを理解されたい。有利なこととして、いくつかのマイクロLEDは、OLEDより高い輝度およびより高い効率(ルクス/Wの観点から)を提供する。いくつかの実施形態では、マイクロディスプレイは、好ましくは、マイクロLEDディスプレイである。
【0170】
図11Aを継続して参照すると、マイクロディスプレイ1030a、1030b、1030cはそれぞれ、画像光1032a、1032b、1032cを放出するように構成されてもよい。マイクロディスプレイが、モノクロマイクロディスプレイである場合、画像光1032a、1032b、1032cはそれぞれ、異なる原色であってもよい。光学コンバイナ1050は、画像光1032a、1032b、1032cを受け取り、光が、概して、同一方向に、例えば、投影光学系1070に向かって伝搬するように、本光を効果的に組み合わせる。いくつかの実施形態では、光学コンバイナ1050は、画像光1032a、1032b、1032cを投影光学系1070に再指向する、反射性内部表面を有する、ダイクロイックX-立方体プリズムであってもよい。投影光学系1070は、画像光を接眼レンズ1020上に収束または集束させる、1つ以上のレンズを備える、レンズ構造であってもよいことを理解されたい。接眼レンズ1020は、次いで、画像光1032a、1032b、1032cを眼210に中継する。
【0171】
いくつかの実施形態では、接眼レンズ1020は、それぞれ、個別の内部結合光学要素1022a、1022b、1022cを有する、複数のスタックされた導波管1020a、1020b、1020cを備えてもよい。いくつかの実施形態では、導波管の数は、マイクロディスプレイ1030a、1030b、1030cによって提供される原色の数に比例する。例えば、3つの原色が存在する場合、接眼レンズ1020内の導波管の数は、3つの導波管のセットまたは各3つの導波管の複数のセットを含んでもよい。いくつかの実施形態では、各セットは、本明細書に議論されるように、特定の深度平面に対応する波面発散を伴う、光を出力してもよい。導波管1020a、1020b、1020cおよび内部結合光学要素1022a、1022b、1022cは、それぞれ、
図9A-9Cの導波管670、680、690および内部結合光学要素700、710、720に対応し得ることを理解されたい。投影光学系1070から視認されるように、内部結合光学要素1022a、1022b、1022cは、それらが、少なくとも部分的に、そのような図に見られるように、重複しないように、側方に偏移されてもよい。
【0172】
図示されるように、本明細書に開示される種々の内部結合光学要素(例えば、内部結合光学要素1022a、1022b、1022c)は、関連付けられる導波管(例えば、それぞれ、導波管1020a、1020b、1020c)の主要表面上に配置されてもよい。加えて、また、図示されるように、その上に所与の内部結合光学要素が配置される、主要表面は、導波管の背面表面であってもよい。そのような構成では、内部結合光学要素は、反射性光再指向要素であってもよく、これは、関連付けられる導波管を通して、TIRを支援する角度で光を反射させることによって、光を内部結合する。ある他の構成では、内部結合光学要素は、導波管の前方(後方表面より投影光学系1070に近い)表面上に配置されてもよい。そのような構成では、内部結合光学要素は、透過性光再指向要素であってもよく、これは、光が内部結合光学要素を通して透過されるにつれて、光の伝搬方向を変化させることによって、光を内部結合する。本明細書に開示される内部結合光学要素のいずれも、反射性または透過性内部結合光学要素であってもよいことを理解されたい。
【0173】
図11Aを継続して参照すると、マイクロディスプレイ1030a、1030b、1030cの異なるものからの画像光1032a、1032b、1032cは、それらが内部結合光学要素1022a、1022b、1022cの異なるもの上に衝突するように、接眼レンズ1020への異なる経路を辿り得る。画像光1032a、1032b、1032cが、異なる原色の光を含む場合、関連付けられる内部結合光学要素1022a、1022b、1022cは、それぞれ、例えば、
図9A-9Cの内部結合光学要素700、710、720に関して上記に説明されるように、異なる波長の光を選択的に内部結合するように構成されてもよい。
【0174】
図11Aを継続して参照すると、光学コンバイナ1050は、内部結合光学要素1022a、1022b、1022cの適切な関連付けられるもの上に衝突するために、画像光が異なる光学経路に沿って伝搬するように、マイクロディスプレイ1030a、1030b、1030cによって放出される画像光1032a、1032b、1032cを再指向するように構成されてもよい。したがって、光学コンバイナ1050は、画像光が、光学コンバイナ1050の共通面から出力されるという意味において、画像光1032a、1032b、1032cを組み合わせるが、光は、光学コンバイナから若干異なる方向に出射する。例えば、X-立方体プリズムの反射性内部表面1052、1054はそれぞれ、画像光1032a、1032b、1032cを異なる経路に沿って接眼レンズ1020に指向するように角度付けられてもよい。結果として、画像光1032a、1032b、1032cは、内部結合光学要素1022a、1022b、1022cの異なる関連付けられるもの上に入射し得る。いくつかの実施形態では、マイクロディスプレイ1030a、1030b、1030cは、X-立方体プリズムの反射性内部表面1052、1054に対して適切に角度付けられ、所望の光経路を内部結合光学要素1022a、1022b、1022cに提供し得る。例えば、マイクロディスプレイ1030a、1030b、1030cのうちの1つ以上のものの面は、マイクロディスプレイによって放出される画像光が、反射性内部表面1052、1054上に適切な角度で入射し、関連付けられる内部結合光学要素1022a、1022b、または1022cに向かって伝搬するように、光学コンバイナ1050の面に合致するように角度付けられてもよい。立方体に加え、光学コンバイナ1050は、種々の他の多面体の形態をとってもよいことを理解されたい。例えば、光学コンバイナ1050は、正方形ではなく、少なくとも2つの面を有する、直角プリズムの形状であってもよい。
【0175】
図11Aを継続して参照すると、いくつかの実施形態では、直接、出力面1051に対向する、モノクロマイクロディスプレイ1030bは、有利なこととして、緑色光を出力し得る。反射性表面1052、1054は、マイクロディスプレイから光を反射させるとき、光学損失を有し得ることを理解されたい。加えて、ヒトの眼は、緑色の色に最も敏感である。その結果、出力面1051に対向する、モノクロマイクロディスプレイ1030bは、好ましくは、緑色光が、光学コンバイナ1050から出力されるために反射される必要なく、直接、光学コンバイナ1050を通して進み得るように、緑色光を出力する。しかしながら、緑色モノクロマイクロディスプレイは、いくつかの他の実施形態では、光学コンバイナ1050の他の表面に面してもよいことを理解されるであろう。
【0176】
本明細書に議論されるように、ユーザによるフルカラー画像の知覚は、いくつかの実施形態では、時間分割多重化を用いて達成され得る。例えば、発光型マイクロディスプレイ1030a、1030b、1030cの異なるものが、異なる時間にアクティブ化され、異なる原色画像を生成し得る。
【0177】
そのような実施形態では、単一フルカラー画像を形成する、異なる原色画像が、ヒト視覚系が原色画像が異なる時間に表示されているように知覚しないほど十分に迅速に、順次、表示され得る。すなわち、単一フルカラー画像を形成する、異なる原色画像は全て、ユーザが、時間的に分離されているのではなく、同時に提示されているように、原色画像を知覚するほど十分に短い、持続時間内に表示され得る。例えば、ヒト視覚系は、フリッカ融合閾値を有し得ることを理解されたい。フリッカ融合閾値は、ヒト視覚系が異なる時間に提示されているような画像を区別することが不可能である、持続時間と理解され得る。その持続時間内に提示される画像は、融合され、または組み合わせられ、結果として、ユーザによって、同時に提示されているように知覚され得る。その持続時間外の画像間の時間的間隙を伴う、フリッカ画像は、組み合わせられず、画像のフリッカが、知覚可能である。いくつかの実施形態では、持続時間は、1/60秒またはそれ未満であって、これは、60Hz以上のフレームレートに対応する。好ましくは、任意の個々の眼のための画像フレームは、ユーザのフリッカ融合閾値の持続時間に等しいまたはより高いフレームレートでユーザに提供される。例えば、左接眼レンズまたは右接眼レンズ毎のフレームレートは、60Hz以上、または120Hz以上であってもよく、結果として、光投影システム1010によって提供されるフレームレートは、いくつかの実施形態では、120Hz以上、または240Hz以上であってもよい。
【0178】
時分割多重化は、有利なこととして、表示される画像を形成するために利用される、プロセッサ(例えば、グラフィックプロセッサ)上の算出負荷を低減させ得ることを理解されたい。十分な算出リソースが利用可能である場合等のいくつかの他の実施形態では、フルカラー画像を形成する、全ての原色画像は、マイクロディスプレイ1030a、1030b、1030cによって、同時に表示されてもよい。
【0179】
本明細書に議論されるように、マイクロディスプレイ1030a、1030b、1030cはそれぞれ、光エミッタのアレイを含んでもよい。
図11Bは、光エミッタ1044のアレイ1042の実施例を図示する。関連付けられるマイクロディスプレイが、モノクロマイクロディスプレイである場合、光エミッタ1044は全て、同一色の光を放出するように構成されてもよい。
【0180】
関連付けられるマイクロディスプレイが、フルカラーマイクロディスプレイである場合、光エミッタ1044の異なるものは、異なる色の光を放出するように構成されてもよい。そのような実施形態では、光エミッタ1044は、サブピクセルと見なされ得、グループ内に配列されてもよく、各グループは、各原色の光を放出するように構成される、少なくとも1つの光エミッタを有する。例えば、原色が、赤色、緑色、および青色である場合、各グループは、少なくとも1つの赤色サブピクセルと、少なくとも1つの緑色サブピクセルと、少なくとも1つの青色サブピクセルとを有してもよい。
【0181】
光エミッタ1044は、例証を容易にするために、グリッドパターンで配列されて示されるが、光エミッタ1044は、他の規則的に繰り返す空間配列を有してもよいことを理解されるであろう。例えば、異なる原色の光エミッタの数は、変動し得、光エミッタのサイズも、変動し得、光エミッタの形状および/または光エミッタのグループによって作り出される形状も、変動し得る等である。
【0182】
図11Bを継続して参照すると、マイクロエミッタ1044は、光を放出することを理解されたい。加えて、リソグラフィまたは他のパターン化および処理限界等の製造制約および/または電気考慮点は、近傍の光エミッタ1044が離間される近接度を限定し得る。結果として、他の光エミッタ1044を形成することが実践的ではない、光放射エミッタ1044を囲繞する面積1045が存在し得る。本面積1045は、光エミッタ1044間にエミッタ間領域を形成する。いくつかの実施形態では、面積1045を考慮して、光エミッタは、例えば、10μm未満、8μm未満、6μm未満、または5μm未満であって、かつ1~5μmを含む1μmを上回る、ピッチを有し、エミッタサイズは、2μmまたはそれ未満、1.7μmまたはそれ未満、または1.3μmまたはそれ未満である。いくつかの実施形態では、エミッタサイズは、上記のサイズの上限と、1μmの下限とを有する、範囲内である。いくつかの実施形態では、エミッタサイズ対ピッチの比は、1:1~1:5、1:2~1:4、または1:2~1:3である。
【0183】
いくつかの光エミッタデバイスアーキテクチャおよび材料を前提として、電流密集は、エミッタの効率を減少させ得、ピクセルのドループは、ピクセルの非意図的アクティブ化を生じさせ得る(例えば、1つの光エミッタに指向されるエネルギーが近傍の光エミッタに漏れることに起因して)ことを理解されたい。結果として、比較的に大面積1045は、有益なこととして、電流密集およびピクセルのドループを低減させ得る。いくつかの実施形態では、エミッタサイズ対ピッチの比は、好ましくは、1:2~1:4または1:2~1:3である。
【0184】
しかしながら、また、光エミッタ間の大分離(例えば、小さな光エミッタ対ピッチの比)は、望ましくないことに、可視間隙または暗領域を光エミッタ間に引き起こし得ることを理解されたい。いくつかの実施形態では、光コリメータ等のレンズ構造が、これらの暗領域を効果的に充填するために利用されてもよい。例えば、光コリメート型レンズが、エミッタ1044からの光がレンズを完全に充填するように、光エミッタ1044上およびその周囲に延在してもよい。例えば、光コリメート型レンズは、光エミッタ1044より大きい幅を有してもよく、いくつかの実施形態では、コリメート型レンズの幅は、ピッチとほぼ等しくてもよい。結果として、エミッタ1044のサイズは、レンズの面積を横断して延在するように事実上増加され、それによって、面積1045の一部または全部を充填する。光コリメータ等のレンズ構造がさらに、本明細書で議論される(例えば、
図30Aおよび関連議論において)。
【0185】
本明細書に議論されるように、光エミッタ1044は、OLEDまたはマイクロLEDであってもよい。OLEDは、例えば、光を放出するために電極間に配置される、有機材料の層を利用してもよいことを理解されたい。マイクロLEDは、光放出のために、無機材料、例えば、GaAs、GaN、および/またはGaIn等の第III-V族材料を利用してもよい。GaN材料の実施例は、InGaNを含み、これは、いくつかの実施形態では、青色または緑色光エミッタを形成するために使用されてもよい。GaIn材料の実施例は、AlGaInPを含み、これは、いくつかの実施形態では、赤色光エミッタを形成するために使用されてもよい。いくつかの実施形態では、光エミッタ1044は、初期色の光を放出してもよく、これは、蛍光体材料または量子ドットを使用して、他の所望の色に変換されてもよい。例えば、光エミッタは、青色光を放出してもよく、これは、青色波長光を緑色または赤色波長に変換する、蛍光体材料または量子ドットを励起させる。
【0186】
ここで
図12を参照すると、複数の発光型マイクロディスプレイ1030a、1030b、1030cを有する、光投影システムを伴う、ウェアラブルディスプレイシステムの別の実施例が、図示される。図示されるディスプレイシステムは、
図11Aのディスプレイシステムに類似するが、光学コンバイナ1050は、標準的X-立方体プリズム構成を有し、X-立方体プリズムの反射性表面1052、1054上への光の入射角を修正するために、光再指向構造1080aおよび1080cを含む。標準的X-立方体プリズム構成は、X-立方体の面に対して法線である、光を受け取り、X-立方体の横方向面から法線角度で出力されるように、本光を45°で再指向するであろうことを理解されたい。しかしながら、これは、画像光1032a、1032b、1032cを接眼レンズ1020の同一内部結合光学要素上に入射させるであろう。画像光が、導波管アセンブリの内部結合光学要素1022a、1022b、1022cの関連付けられるもの上に入射するように、画像光1032a、1032b、1032cのための異なる経路を提供するために、光再指向構造1080a、1080cが、利用されてもよい。
【0187】
いくつかの実施形態では、光再指向構造1080a、1080cは、レンズ構造であってもよい。レンズ構造は、入射光を受け取り、光が、反射性表面1052、1054の対応するものから反射し、光経路に沿って、内部結合光学要素1022a、1022cの対応するものに向かって伝搬するような角度で、入射光を再指向するように構成されてもよいことを理解されたい。実施例として、光再指向構造1080a、1080cは、マイクロレンズ、ナノレンズ、反射性ウェル、メタ表面、および液晶格子を備えてもよい。いくつかの実施形態では、マイクロレンズ、ナノレンズ、反射性ウェル、メタ表面、および液晶格子は、アレイに編成されてもよい。例えば、マイクロディスプレイ1030a、1030cの各光エミッタは、1つのマイクロレンズと合致されてもよい。いくつかの実施形態では、光を特定の方向に再指向するために、マイクロレンズまたは反射性ウェルは、非対称であってもよく、および/または光エミッタは、マイクロレンズに対して中心からずらして配置されてもよい。加えて、いくつかの実施形態では、光再指向構造1080a、1080cは、コリメータであってもよく、これは、関連付けられる光エミッタの角度放出プロファイルを狭化し、最終的に接眼レンズ1020の中に内部結合される光の量を増加させる。そのような光再指向構造1080a、1080cに関するさらなる詳細は、
図24A-27Cに関して下記に議論される。
【0188】
ここで
図13Aを参照すると、いくつかの実施形態では、内部結合光学要素1022a、1022b、1022cのうちの2つ以上のものは、重複してもよい(例えば、内部結合光学要素1022a、1022b、1022cの中への光伝搬の方向における、真正面図に見られるように)。
図13Aは、複数の発光型マイクロディスプレイ1032a、1032b、1032cと、重複する光内部結合光学要素1022a、1022cおよび非重複する光内部結合光学要素1022bを伴う、接眼レンズ1020とを有する、光投影システム1010を伴う、ウェアラブルディスプレイシステムの側面図の実施例を図示する。図示されるように、内部結合光学要素1022a、1022cは、重複する一方、内部結合光学要素1022bは、側方に偏移される。換言すると、内部結合光学要素1022a、1022cは、直接、画像光1032a、1032cの経路内に整合される一方、画像光1032bは、画像光1032a、1032cが入射される面積に対して側方に偏移される、接眼レンズ1020の面積上に入射するように、接眼レンズ1020への別の経路を辿る。
【0189】
図示されるように、画像光1032bおよび画像光1032a、1032cのための経路間の差異は、光再指向構造1080a、1080cを使用して確立されてもよい。いくつかの実施形態では、発光型マイクロディスプレイ1030bからの画像光1032bは、直接、光学コンバイナ1052を通して進む。発光型マイクロディスプレイ1032aからの画像光1032aは、光再指向構造1080aによって、反射性表面1054から反射し、光学コンバイナ1050から外に、画像光1032cと同一方向に伝搬するように再指向される。発光型マイクロディスプレイ1032cからの画像光1032cは、光再指向構造1080cによって、画像光1032cが、光学コンバイナ1050から外に、画像光1032bと同一方向に伝搬するような角度で、反射性表面1052から反射するように再指向されることを理解されたい。したがって、光再指向構造1080a、1080cによる光の再指向および反射性表面1052、1054の角度は、光学コンバイナ1050から外に画像光1032a、1032cのための共通経路を提供するように構成され、本共通経路は、画像光1032bの経路と異なる。いくつかの他の実施形態では、光再指向構造1080a、1080cの一方または両方は、省略されてもよく、光学コンバイナ1050内の反射性表面1052、1054は、光学コンバイナ1050から出射し、画像光1032bの方向と異なる、同一方向に伝搬するように、画像光1032a、1032cを適切な個別の方向に反射させるように構成されてもよい。したがって、投影光学系1070を通して伝搬後、画像光1032a、1032cは、1つの射出瞳から出射する一方、画像光1032bは、別の射出瞳から出射する。本構成では、光投影システム1010は、2瞳投影システムと称され得る。
【0190】
いくつかの実施形態では、光投影システム1010は、単一出力瞳を有してもよく、単一瞳投影システムと称され得る。そのような実施形態では、光投影システム1010は、画像光1032a、1032b、1032cを接眼レンズ1020の単一共通面積上に指向するように構成されてもよい。そのような構成は、光を接眼レンズ1020の単一光内部結合面積に指向するように構成される、複数の発光型マイクロディスプレイ1030a、1030b、1030cを有する、光投影システム1010を伴う、ウェアラブルディスプレイシステムを図示する、
図13Bに示される。いくつかの実施形態では、さらに本明細書で議論されるように、接眼レンズ1020は、重複する光内部結合光学要素を有する、導波管のスタックを含んでもよい。いくつかの他の実施形態では、単一光内部結合光学要素は、全ての原色の光を単一導波管の中に内部結合するように構成されてもよい。
図13Bのディスプレイシステムは、光再指向構造1080a、1080cの省略および導波管1020aと関連付けられる内部結合光学要素1122aの併用を除き、
図13Aのディスプレイシステムに類似する。図示されるように、内部結合光学要素1122aは、画像光1032a、1032b、1032cのそれぞれを導波管1020aの中に内部結合し、これは、次いで、画像光を眼210に中継する。いくつかの実施形態では、内部結合光学要素1122aは、回折格子を備えてもよい。いくつかの実施形態では、内部結合光学要素1122aは、メタ表面および/または液晶格子である。
【0191】
本明細書に議論されるように、いくつかの実施形態では、発光型マイクロディスプレイ1030a、1030b、1030cは、異なる色の光を放出するように構成される、モノクロマイクロディスプレイであってもよい。いくつかの実施形態では、発光型マイクロディスプレイ1030a、1030b、1030cのうちの1つ以上のものは、2つ以上であるが全てではない原色の光を放出するように構成される、光エミッタのグループを有してもよい。例えば、単一発光型マイクロディスプレイは、青色光を放出するように構成される、グループあたり少なくとも1つの光エミッタと、緑色光を放出するように構成される、グループあたり少なくとも1つの光エミッタとを伴う、光エミッタのグループを有してもよく、X-立方体1050の異なる面上の別個の発光型マイクロディスプレイは、赤色光を放出するように構成される、光エミッタを有してもよい。いくつかの他の実施形態では、発光型マイクロディスプレイ1030a、1030b、1030cはそれぞれ、それぞれ、全ての原色の光エミッタを有する、フルカラーディスプレイであってもよい。本明細書に記載されるように、複数の類似マイクロディスプレイを利用することは、ダイナミックレンジのための利点および増加されたディスプレイ明度を提供し得る。
【0192】
いくつかの実施形態では、単一フルカラー発光型マイクロディスプレイが、利用されてもよい。
図14は、単一発光型マイクロディスプレイ1030bを伴う、ウェアラブルディスプレイシステムの実施例を図示する。
図14のウェアラブルディスプレイシステムは、
図14のウェアラブルディスプレイシステムに類似するが、単一発光型マイクロディスプレイ1030bは、全ての原色の光を放出するように構成される、フルカラーマイクロディスプレイである。図示されるように、マイクロディスプレイ1030bは、各原色の画像光1032a、1032b、1032cを放出する。そのような実施形態では、光学コンバイナ1050(
図13B)は、省略されてもよく、これは、有利なこととして、光学コンバイナを伴うシステムに対して、ウェアラブルディスプレイシステムの重量およびサイズを低減させ得る。
【0193】
上記に議論されるように、接眼レンズ1020の内部結合光学要素は、種々の構成をとってもよい。接眼レンズ1020に関する構成のいくつかの実施例は、
図15-23Cに関連して下記に議論される。
【0194】
図15は、それぞれ、重複する内部結合光学要素1022a、1022b、1022cを伴う、導波管1020a、1020b、1020cのスタックを有する、接眼レンズ1020の実施例の側面図を図示する。図示される導波管スタックは、
図13Bおよび14の単一の図示される導波管1020aの代わりに利用されてもよいことを理解されたい。本明細書に議論されるように、内部結合光学要素1022a、1022b、1022cはそれぞれ、具体的色を有する光を内部結合するように構成される(例えば、特定の波長または波長の範囲の光)。画像光が接眼レンズ1020に向かってページを辿って垂直に伝搬する、接眼レンズ1020の図示される配向では、内部結合光学要素1022a、1022b、1022cは、上下図(内部結合光学要素に伝搬する画像光1032a、1032b、1032cの方向における真正面図)に見られるように、それらが相互に空間的に重複するように、相互に垂直に整合される(例えば、画像光1032a、1032b、1032cの伝搬方向と平行な軸に沿って)。
【0195】
図15を継続して参照すると、本明細書に議論されるように、投影システム1010(
図13、14)は、投影システムの単一瞳を通して、第1のモノクロカラー画像、第2のモノクロカラー画像、および第3のモノクロカラー画像(例えば、赤色、緑色、および青色カラー画像)を出力するように構成され、モノクロ画像は、それぞれ、画像光1032a、1032b、1032cによって形成される。内部結合光学要素1022cは、導波管1020cの上側および底部主要表面における複数回の全内部反射によって、導波管1020cを通して伝搬するように、第1のカラー画像のために、画像光1032cを導波管1020cの中に内部結合するように構成され、内部結合光学要素1022bは、導波管1020bの上側および底部主要表面における複数回の全内部反射によって、導波管1020bを通して伝搬するように、第2のカラー画像のために、画像光1032bを導波管1020bの中に内部結合するように構成され、内部結合光学要素1022aは、導波管1020aの上側および底部主要表面における複数回の全内部反射によって、導波管1020aを通して伝搬するように、第3のカラー画像のために、画像光1032aを導波管1020aの中に内部結合するように構成される。
【0196】
本明細書に議論されるように、内部結合光学要素1022cは、好ましくは、第1のカラー画像に対応する、実質的に全ての入射光1032cを関連付けられる導波管1020cの中に内部結合する一方、それぞれ、第2のカラー画像および第3のカラー画像に対応する、実質的に全ての入射光1032b、1032aが、内部結合されずに、透過されることを可能にするように構成される。同様に、内部結合光学要素1022bは、好ましくは、第2のカラー画像に対応する、実質的に全ての入射画像光1032bを関連付けられる導波管1020bの中に内部結合する一方、第3のカラー画像に対応する、実質的に全ての入射光が、内部結合されずに、透過されることを可能にするように構成される。
【0197】
実践では、種々の内部結合光学要素は、完璧な選択性を有していない場合があることを理解されたい。例えば、画像光1032b、1032aの一部は、望ましくないことに、内部結合光学要素1022cによって、導波管1020cの中に内部結合され得、入射画像光1032aの一部は、望ましくないことに、内部結合光学要素1022bによって、導波管1020bの中に内部結合され得る。さらに、画像光1032cの一部は、内部結合光学要素1022cを通して透過され、それぞれ、内部結合光学要素1020bおよび/または1020aによって、導波管1020bおよび/または1020aの中に内部結合され得る。同様に、画像光1032bの一部は、内部結合光学要素1022bを通して透過され、内部結合光学要素1022aによって、導波管1020aの中に内部結合され得る。
【0198】
カラー画像のための画像光を意図されない導波管の中に内部結合することは、例えば、クロストークおよび/または残影等の望ましくない光学効果を生じさせ得る。例えば、第1のカラー画像のための画像光1032cの意図されない導波管1020bおよび/または1020aの中への内部結合は、第1のカラー画像、第2のカラー画像、および/または第3のカラー画像間の望ましくないクロストークをもたらし得、および/または望ましくない残影をもたらし得る。別の実施例として、それぞれ、第2または第3のカラー画像のための画像光1032b、1032aの意図されない導波管1020cの中への内部結合は、第1のカラー画像、第2のカラー画像、および/または第3のカラー画像間の望ましくないクロストークをもたらし得、および/または望ましくない残影を生じさせ得る。いくつかの実施形態では、これらの望ましくない光学効果は、意図されない導波管の中に内部結合される、入射光の量を低減させ得る、カラーフィルタ(例えば、吸光性カラーフィルタ)を提供することによって軽減され得る。
【0199】
図16は、残影または導波管間のクロストークを軽減するために、カラーフィルタを伴う、導波管のスタックの実施例の側面図を図示する。
図16の接眼レンズ1020は、カラーフィルタ1024c、1024bおよび1028、1026のうちの1つ以上のものの存在を除き、
図15のものに類似する。カラーフィルタ1024c、1024bは、それぞれ、導波管1020bおよび1020aの中に非意図的に内部結合される、光の量を低減させるように構成される。カラーフィルタ1028、1026は、それぞれ、導波管1020b、1020cを通して伝搬する、非意図的に内部結合される画像光の量を低減させるように構成される。
【0200】
図16を継続して参照すると、導波管1020cの上側および下側主要表面上に配置される、一対のカラーフィルタ1026は、導波管1020cの中に非意図的に内部結合されたとされ得る、画像光1032a、1032bを吸光するように構成されてもよい。いくつかの実施形態では、導波管1020cと1020bとの間に配置される、カラーフィルタ1024cは、内部結合されずに、内部結合光学要素1022cを通して透過される、画像光1032cを吸光するように構成される。導波管1020bの上側および下側主要表面上に配置される、一対のカラーフィルタ1028は、導波管1020bの中に内部結合される、画像光1032aを吸光するように構成される。導波管1020bと1020aとの間に配置される、カラーフィルタ1024bは、内部結合光学要素710を通して透過される、画像光1032bを吸光するように構成される。
【0201】
いくつかの実施形態では、導波管1020cの各主要表面上のカラーフィルタ1026は、類似し、画像光1032a、1032bの両方の波長の光を吸光するように構成される。いくつかの他の実施形態では、導波管1020cの1つの主要表面上のカラーフィルタ1026は、画像光1032aの色の光を吸光するように構成されてもよく、他の主要表面上のカラーフィルタは、画像光1032bの色の光を吸光するように構成されてもよい。配列のいずれかでは、カラーフィルタ1026は、全内部反射によって、導波管1020cを通して伝搬する、画像光1032a、1032bを選択的に吸光するように構成されてもよい。例えば、導波管1020cの主要表面からの画像光1032a、1032bのTIRバウンスでは、画像光1032a、1032bは、それらの主要表面上のカラーフィルタ1026に接触し、その画像光の一部は、吸光される。好ましくは、カラーフィルタ1026による画像光1032a、1032bの選択的吸光に起因して、導波管1020cを通してTIRを介して内部結合される画像光1032cの伝搬は、著しく影響されない。
【0202】
同様に、複数のカラーフィルタ1028が、全内部反射によって、導波管1020bを通して伝搬する、内部結合される画像光1032aを吸光する、吸光フィルタとして構成されてもよい。導波管1020bの主要表面からの画像光1032aのTIRバウンスでは、画像光1032aは、それらの主要表面上のカラーフィルタ1028に接触し、その画像光の一部は、吸光される。好ましくは、画像光1032aの吸光は、選択的であって、同様に導波管1020bを通してTIRを介して伝搬する、内部結合される画像光1032bの伝搬に影響を及ぼさない。
【0203】
図16を継続して参照すると、カラーフィルタ1024cおよび1024bはまた、吸光フィルタとして構成されてもよい。カラーフィルタ1024cは、画像光1032a、1032bが、殆どまたは全く減衰を伴わずに、カラーフィルタ1024cを通して透過される一方、画像光1032cの色の光が、選択的に吸光されるように、画像光1032a、1032bの色の光に対して実質的に透明であってもよい。同様に、カラーフィルタ1024bは、入射画像光1032aが、殆どまたは全く減衰せずに、カラーフィルタ1024bを通して透過される一方、画像光1032bの色の光が、選択的に吸光されるように、画像光1032aの色の光に対して実質的に透明であってもよい。カラーフィルタ1024cは、
図16に示されるように、導波管1020bの主要表面(例えば、上側主要表面)上に配置されてもよい。代替として、カラーフィルタ1024cは、導波管1020cと1020bとの間に位置付けられる、別個の基板上に配置されてもよい。同様に、カラーフィルタ1024bは、導波管1020aの主要表面(例えば、上側主要表面)上に配置されてもよい。代替として、カラーフィルタ1024bは、導波管1020bと1020aとの間に位置付けられる、別個の基板上に配置されてもよい。カラーフィルタ1024cおよび1024bは、画像光1032a、1032b、1032cを出力する、プロジェクタの単一瞳と垂直に整合されてもよい(画像光1032a、1032b、1032cが、図示されるように、導波管スタック1020に対して垂直に伝搬する、配向において)ことを理解されたい。
【0204】
いくつかの実施形態では、カラーフィルタ1026および1028は、導波管1020c、1020bの厚さを通して伝搬する、光(例えば、導波管1020c、1020bを通して周囲環境および/または他の導波管から伝搬する、画像光1032a、1032bの色の光)の有意な望ましくない吸光を回避するために、約10%未満(例えば、約5%未満またはそれに等しく、約2%未満またはそれに等しく、かつ約1%を上回る)単一通過減衰係数を有してもよい。カラーフィルタ1024cおよび1024bの種々の実施形態は、透過されるべき波長のための低減衰係数と、吸光されるべき波長のための高減衰係数とを有するように構成されてもよい。例えば、いくつかの実施形態では、カラーフィルタ1024cは、画像光1032a、1032bの色を有する、入射光の80%を上回って、90%を上回って、または95%を上回って透過させ、画像光1032aの色を有する、入射光の80%を上回って、90%を上回って、または95%を上回って吸光するように構成されてもよい。同様に、カラーフィルタ1024bは、画像光1032aの色を有する、入射光の80%を上回って、90%を上回って、または95%を上回って透過させ、画像光1032bの色を有する、入射光の80%を上回って、90%を上回って、または95%を上回って吸光するように構成されてもよい。
【0205】
いくつかの実施形態では、カラーフィルタ1026、1028、1024c、1024bは、導波管1020c、1020b、および/または1020aの一方または両方の表面上に堆積される、色選択的吸光材料の層を備えてもよい。色選択的吸光材料は、染料、インク、または金属、半導体、および誘電体等の他の吸光材料を備えてもよい。いくつかの実施形態では、金属、半導体、および誘電体等の材料の吸光は、これらの材料を利用して、サブ波長格子(例えば、光を回折しない、格子)を形成することによって、色選択的にされてもよい。格子は、プラズモニクス(例えば、金、銀、およびアルミニウム)または半導体(例えば、シリコン、非晶質シリコン、およびゲルマニウム)から作製されてもよい。
【0206】
色選択的材料は、種々の堆積方法を使用して、基板上に堆積されてもよい。例えば、色選択的吸光材料は、ジェット堆積技術(例えば、インクジェット堆積)を使用して、基板上に堆積されてもよい。インクジェット堆積は、色選択的吸光材料の薄い層の堆積を促進し得る。インクジェット堆積は、堆積が基板の選択された面積上に局所化されることを可能にするため、インクジェット堆積は、基板を横断して非均一厚さおよび/または組成を提供することを含む、色選択的吸光材料の層の厚さおよび組成の高度の制御を提供する。いくつかの実施形態では、インクジェット堆積を使用して堆積される色選択的吸光材料は、厚さ約10nm~約1ミクロン(例えば、約10nm~約50nm、約25nm~約75nm、約40nm~約100nm、約80nm~約300nm、約200nm~約500nm、約400nm~約800nm、約500nm~約1ミクロン、またはこれらの値のいずれかによって定義された範囲/サブ範囲内の任意の値)を有してもよい。色選択的吸光材料の堆積される層の厚さを制御することは、所望の減衰係数を有する、カラーフィルタを達成する際に有利であり得る。さらに、異なる厚さを有する層が、基板の異なる部分に堆積されてもよい。加えて、色選択的吸光材料の異なる組成が、インクジェット堆積を使用して、基板の異なる部分に堆積されてもよい。組成および/または厚さのそのような変動は、有利なこととして、吸光率の場所特有の変動を可能にし得る。例えば、周囲からの光の透過(視認者に周囲環境が見えることを可能にするために)が必要ない、導波管の面積では、組成および/または厚さは、光の選択された波長の高吸光率または減衰率を提供するように選択されてもよい。コーティング、スピンコーティング、噴霧等の他の堆積方法も、色選択的吸光材料を基板上に堆積させるために採用されてもよい。
【0207】
図17は、
図15および16の導波管アセンブリの上下図の実施例を図示する。図示されるように、内部結合光学要素1022a、1022b、1022cは、空間的に重複する。加えて、導波管1020a、1020b、1020cは、各導波管の関連付けられる光分散要素730、740、750および関連付けられる外部結合光学要素800、810、820とともに、垂直に整合されてもよい。内部結合光学要素1022a、1022b、1022cは、画像光が、TIRによって、関連付けられる光分散要素730、740、750に向かって伝搬するように、入射画像光1032a、1032b、1032c(
図15および16)がそれぞれ、それぞれ、導波管1020a、1020b、1020c内に内部結合するように構成される。
【0208】
図18は、
図15および16の導波管アセンブリの上下図の別の実施例を図示する。
図17におけるように、内部結合光学要素1022a、1022b、1022cは、空間的に重複し、導波管1020a、1020b、1020cは、垂直に整合される。しかしながら、各導波管の関連付けられる光分散要素730、740、750および関連付けられる外部結合光学要素800、810、820の代わりに、それぞれ、組み合わせられたOPE/EPE1281、1282、1283がある。内部結合光学要素1022a、1022b、1022cは、画像光が、TIRによって、関連付けられる組み合わせられたOPE/EPE1281、1282、1283に向かって伝搬するように、入射画像光1032a、1032b、1032c(
図15および16)がそれぞれ、それぞれ、導波管1020a、1020b、1020c内に内部結合するように構成される。
【0209】
図15-18は、ディスプレイシステムの単一瞳構成のために、重複する内部結合光学要素を示すが、ディスプレイシステムは、いくつかの実施形態では、2瞳構成を有してもよいことを理解されたい。3つの原色が利用される、そのような構成では、2つの色のための画像光は、重複する内部結合光学要素を有してもよい一方、第3の色のための画像光は、側方に偏移された内部結合光学要素を有してもよい。例えば、光学コンバイナ1050(
図11A、12、13A-13B)および/または光再指向構造1080a、1080cは、2つの色の画像光が、直接、接眼レンズ1020の重複面積上に入射する一方、画像光の別の色が、側方に偏移される面積上に入射するように、画像光を投影光学系1070を通して指向するように構成されてもよい。例えば、反射性表面1052、1054(
図11A)は、1つの色の画像光が、発光型マイクロディスプレイ1030bからの画像光と共通光経路を辿る一方、別の色の画像光が、異なる光経路を辿るように、角度付けられてもよい。いくつかの実施形態では、光再指向構造1080a、1080c(
図12)の両方を有するのではなく、これらの光再指向構造のうちの1つは、マイクロディスプレイ1030a、1030cのうちの1つからの光のみが、角度付けられ、他の2つのマイクロディスプレイによって放出される光と異なる光経路を提供するように、省略されてもよい。
【0210】
図19Aは、いくつかの重複する内部結合光学要素と、いくつかの側方に偏移された内部結合光学要素とを伴う、導波管のスタックを有する、接眼レンズの実施例の側面図を図示する。
図19Aの接眼レンズは、
図15の接眼レンズに類似するが、内部結合光学要素のうちの一方は、他方の内部結合光学要素に対して側方に偏移される。画像光が接眼レンズ1020に向かってページを辿って垂直に伝搬する、接眼レンズ1020の図示される配向では、内部結合光学要素1022a、1022cは、内部結合光学要素1022a、1022b、1022cに伝搬する画像光1032a、1032cの方向における、真正面図に見られるように、それらが相互に空間的に重複するように、相互に垂直に整合される(例えば、画像光1032a、1032cの伝搬方向と平行な軸に沿って)。同一真正面図に見られるように(例えば、図示される配向における上下図に見られるように)、内部結合光学要素1022bは、他の内部結合光学要素1022a、1022cに対して側方に偏移される。内部結合光学要素1022bのための光は、内部結合光学要素1022a、1022cのための光と異なる射出瞳を通して、接眼レンズ1020に出力される。導波管1020a、1020b、1020cを備える、図示される導波管スタックは、
図13および14の単一の図示される導波管1020aの代わりに利用されてもよいことを理解されたい。
【0211】
図19を継続して参照すると、内部結合光学要素1022cは、導波管1020cの上側主要表面と底部主要表面との間の複数回の全内部反射によって、導波管1020cを通して伝搬するように、画像光1032cを導波管1020cの中に内部結合するように構成され、内部結合光学要素1022bは、導波管1020bの上側主要表面と底部主要表面との間の複数回の全内部反射によって、導波管1020bを通して伝搬するように、画像光1032bを導波管1020bの中に内部結合するように構成され、内部結合光学要素1022aは、導波管1020aの上側主要表面と底部主要表面との間の複数回の全内部反射によって、導波管1020aを通して伝搬するように、画像光1032aを導波管1020aの中に内部結合するように構成される。
【0212】
内部結合光学要素1022cは、好ましくは、全ての入射光1032cを関連付けられる導波管1020cの中に内部結合する一方、全ての入射光1032aを透過させるように構成される。他方では、画像光1032bは、任意の他の内部結合光学要素を通して伝搬する必要なく、内部結合光学要素1022bに伝搬し得る。これは、いくつかの実施形態では、それに対して眼がより敏感である光が、他の内部結合光学要素を通した伝搬と関連付けられる、任意の損失または歪曲を伴わずに、所望の内部結合光学要素上に入射することを可能にすることによって、有利であり得る。理論によって限定されるわけではないが、いくつかの実施形態では、画像光1032bは、それに対してヒトの眼がより敏感である、緑色光である。導波管1020a、1020b、1020cは、特定の順序で配列されるように図示されるが、いくつかの実施形態では、導波管1020a、1020b、1020cの順序は、異なり得ることを理解されたい。
【0213】
本明細書に議論されるように、内部結合光学要素1022aの上層の内部結合光学要素1022cは、完璧な選択性を有していない場合があることを理解されたい。画像光1032aの一部は、望ましくないことに、内部結合光学要素1022cによって、導波管1020cの中に内部結合され得、画像光1032cの一部は、内部結合光学要素1022cを通して透過され得、その後、画像光1032cは、内部結合光学要素1020aに衝打し、導波管1020aの中に内部結合され得る。本明細書に議論されるように、そのような望ましくない内部結合は、残影またはクロストークとして可視であり得る。
【0214】
図19Bは、残影または導波管間のクロストークを軽減するためのカラーフィルタを伴う、
図19Aの接眼レンズの実施例の側面図を図示する。特に、カラーフィルタ1024cおよび/または1026は、
図19Aに示される構造に追加される。図示されるように、内部結合光学要素1022cは、画像光1032aの一部を導波管1020cの中に非意図的に内部結合し得る。加えて、または代替として、画像光1032cの一部は、望ましくないことに、内部結合光学要素1022cを通して透過され、その後、内部結合光学要素1022aによって、非意図的に内部結合され得る。
【0215】
導波管1022cを通して伝搬する画像光1032aを非意図的に内部結合することを軽減させるために、吸光性カラーフィルタ1026が、導波管1022cの一方または両方の主要表面上に提供されてもよい。吸光性カラーフィルタ1026は、非意図的に内部結合される画像光1032aの色の光を吸光するように構成されてもよい。図示されるように、吸光性カラーフィルタ1026は、導波管1020cを通した画像光の一般的伝搬方向に配置される。したがって、吸光性カラーフィルタ1026は、その光がTIRによって導波管1020cを通して伝搬し、導波管1020cの主要表面の一方または両方から反射する際、吸光性カラーフィルタ1026に接触するにつれて、画像光1032aを吸光するように構成される。
【0216】
図19Bを継続して参照すると、内部結合されずに、内部結合光学要素1022cを通して伝搬する、画像光1032cを軽減させるために、吸光性カラーフィルタ1024cが、内部結合光学要素1022aの前方に提供されてもよい。吸光性カラーフィルタ1024cは、画像光1032cの色の光を吸光し、その光が内部結合光学要素1022aに伝搬することを防止するように構成される。導波管1020cと1020bとの間に図示されるが、いくつかの他の実施形態では、吸光性カラーフィルタ1024cは、導波管1020bと1020aとの間に配置されてもよい。吸光性カラーフィルタ1024cおよび1026の組成、形成、および性質に関するさらなる詳細は、
図16の議論に提供されることを理解されたい。
【0217】
また、
図16および19Bに図示される実施形態では、カラーフィルタ1026、1028、1024c、および1024bのうちの1つ以上のものは、1つ以上の内部結合光学要素1022a、1022b、1022cが、それぞれ、関連付けられる導波管1020a、1020b、1022cの中に内部結合されるように意図される、光の色に関して十分に高選択性を有する場合、省略されてもよいことを理解されたい。
【0218】
図20Aは、
図19Aおよび19Bの接眼レンズの上下図の実施例を図示する。図示されるように、内部結合光学要素1022a、1022cは、空間的に重複する一方、内部結合光学要素1022bは、側方に偏移される。加えて、導波管1020a、1020b、1020cは、各導波管の関連付けられる光分散要素730、740、750および関連付けられる外部結合光学要素800、810、820とともに、垂直に整合されてもよい。内部結合光学要素1022a、1022b、1022cは、画像光が、TIRによって、関連付けられる光分散要素730、740、750に向かって伝搬するように、入射画像光1032a、1032b、1032c(
図15および16)をそれぞれ、それぞれ、導波管1020a、1020b、1020c内に内部結合するように構成される。
【0219】
図20Bは、
図19Aおよび19Bの導波管アセンブリの上下図の別の実施例を図示する。
図20Aにおけるように、内部結合光学要素1022a、1022cは、空間的に重複し、内部結合光学要素は、側方に偏移され、導波管1020a、1020b、1020cは、垂直に整合される。しかしながら、各導波管の関連付けられる光分散要素730、740、750および関連付けられる外部結合光学要素800、810、820の代わりに、それぞれ、組み合わせられたOPE/EPE1281、1282、1283がある。内部結合光学要素1022a、1022b、1022cは、画像光が、TIRによって、関連付けられる組み合わせられたOPE/EPE1281、1282、1283に向かって伝搬するように、入射画像光1032a、1032b、1032c(
図15および16)をそれぞれ、それぞれ、導波管1020a、1020b、1020c内に内部結合するように構成される。
【0220】
ここで
図21を参照すると、内部結合される光の再バウンスが、望ましくないことに、導波管内で生じ得ることを理解されたい。再バウンスは、導波管に沿って伝搬する内部結合される光が、初期内部結合入射後、2回目として、または後続の時間において、内部結合光学要素に衝打するときに生じる。再バウンスは、内部結合される光の一部が、望ましくないことに、内部結合光学要素の材料によって、外部結合および/または吸光される結果をもたらし得る。外部結合および/または吸光は、望ましくないことに、全体的内部結合効率および/または内部結合される光の均一性の低減を生じさせ得る。
【0221】
図21は、導波管1030a内の再バウンスの実施例の側面図を図示する。図示されるように、画像光1032aは、内部結合光学要素1022aによって、導波管1030aの中に内部結合される。内部結合光学要素1022aは、概して、方向1033に、導波管を通して伝搬するように、画像光1032aを再指向する。再バウンスは、内部結合される画像光が、内部結合光学要素1022aに対向する導波管1030aの主要表面から内部反射またはバウンスし、内部結合光学要素1022a上に入射する、または第2のバウンス(再バウンス)を被るときに生じ得る。導波管1030aの同一表面上の2つの近傍のバウンス間の距離は、間隔1034によって示される。
【0222】
理論によって限定されるわけではないが、内部結合光学要素1022aは、対称的に挙動し得ることを理解されたい。すなわち、入射光が、TIR角度で導波管を通して伝搬するように、入射光を再指向し得る。しかしながら、TIR角度で回折光学要素上に入射する光(再バウンスに応じて等)はまた、外部結合され得る。加えて、または代替として、内部結合光学要素1022aが反射性材料でコーティングされる、実施形態では、金属等の材料の層からの光の反射はまた、反射が材料からの光の吸光および放出を伴い得るため、入射光の部分的吸光を伴い得ることを理解されたい。結果として、光の外部結合および/または吸光は、望ましくないことに、内部結合される光の損失を引き起こし得る。故に、再バウンスされた光は、内部結合光学要素1022aと1回のみ相互作用する、光と比較して、有意な損失を被り得る。
【0223】
いくつかの実施形態では、内部結合要素は、再バウンスに起因する内部結合される画像光損失を軽減させるように構成される。概して、内部結合される光の再バウンスは、内部結合光学要素1022aの端部1023に向かって、内部結合される光の伝搬方向1033に生じる。例えば、端部1023に対向する内部結合光学要素1022aの端部において内部結合される光は、その光のための間隔1034が十分に短い場合、再バウンスし得る。そのような再バウンスを回避するために、いくつかの実施形態では、内部結合光学要素1022aは、伝搬方向端部1023において切頂され、それに沿って再バウンスが生じる可能性が高い、内部結合光学要素1022aの幅1022wを低減させる。いくつかの実施形態では、切頂は、内部結合光学要素1022aの全ての構造(例えば、金属化および回折格子)の完全切頂であってもよい。いくつかの他の実施形態では、例えば、内部結合光学要素1022aが、金属化された回折格子を備える場合、伝搬方向端部1023における内部結合光学要素1022aの一部は、内部結合光学要素1022aの伝搬方向端部1023が、再バウンス光を殆ど吸光せず、および/またはより低い効率を伴って、再バウンス光を外部結合するように、金属化されなくてもよい。いくつかの実施形態では、内部結合光学要素1022aの回折領域は、伝搬方向1033に沿って、伝搬方向1033と垂直なその長さより短い幅を有してもよく、および/または画像光1032aの第1の部分が、内部結合光学要素1022a上に入射し、光のビームの第2の部分が、内部結合光学要素1022a上に入射せずに、導波管1030a上に衝突するように定寸および成形されてもよい。導波管1032aおよび光内部結合光学要素1022aは、明確にするために、単独で図示されるが、再バウンスおよび再バウンスを低減させるための議論される方略は、本明細書に開示される内部結合光学要素のいずれかに適用されてもよいことを理解されたい。また、間隔1034は、導波管1030aの厚さに関係する(より大きい厚さは、より大きい間隔1034をもたらす)ことを理解されたい。いくつかの実施形態では、個々の導波管の厚さは、再バウンスが生じないように、間隔1034を設定するように選択されてもよい。再バウンス軽減に関するさらなる詳細は、2018年7月24日に出願された、米国仮出願第62/702,707号(その開示全体は、参照することによって本明細書に組み込まれる)に見出され得る。
【0224】
図22A-23Cは、再バウンスを低減させるように構成される、内部結合光学要素を有する、接眼レンズの上下図の実施例を図示する。内部結合光学要素1022a、1022b、1022cは、関連付けられる光分散要素730、740、750(
図22A-22C)または組み合わせられるOPE/EPE1281、1282、1283(
図23A-23C)に向かった伝搬方向に伝搬するように、光を内部結合するように構成される。図示されるように、内部結合光学要素1022a、1022b、1022cは、伝搬方向に沿ったより短い寸法と、横軸に沿ったより長い寸法とを有してもよい。例えば、内部結合光学要素1022a、1022b、1022cはそれぞれ、伝搬方向の軸に沿ったより短い辺と、直交軸に沿ったより長い辺とを伴う、矩形形状であってもよい。内部結合光学要素1022a、1022b、1022cは、他の形状(例えば、直交、六角形等)を有してもよいことを理解されたい。加えて、内部結合光学要素1022a、1022b、1022cの異なるものは、いくつかの実施形態では、異なる形状を有してもよい。また、好ましくは、図示されるように、非重複する内部結合光学要素は、それらが他の内部結合光学要素の伝搬方向にないように位置付けられてもよい。例えば、
図22A、22B、23A、および23Bに示されるように、非重複する内部結合光学要素は、伝搬方向の軸を交差(例えば、直交)する軸に沿った線に配列されてもよい。
【0225】
図22A-22Cの導波管アセンブリは、内部結合光学要素1022a、1022b、1022cの重複を除き、類似することを理解されたい。例えば、
図22Aは、重複を伴わない、内部結合光学要素1022a、1022b、1022cを図示する。
図22Bは、重複する内部結合光学要素1022a、1022cと、非重複する内部結合光学要素1022bとを図示する。
図22Cは、全ての内部結合光学要素1022a、1022b、1022c間の重複を図示する。
【0226】
図23A-23Cの導波管アセンブリもまた、内部結合光学要素1022a、1022b、1022cの重複を除き、類似する。
図23Aは、重複を伴わない、内部結合光学要素1022a、1022b、1022cを図示する。
図23Bは、重複する内部結合光学要素1022a、1022cと、非重複する内部結合光学要素1022bとを図示する。
図22Cは、全ての内部結合光学要素1022a、1022b、1022c間の重複を図示する。
【0227】
ここで
図24Aを参照すると、発光型マイクロディスプレイは、高エタンデュを有し、これが、効率的光の利用に関する課題を提示することを理解されたい。本明細書に議論されるように、発光型マイクロディスプレイは、複数の個々の光エミッタを含んでもよい。これらの光エミッタはそれぞれ、大角度放出プロファイル、例えば、Lambertianまたは近Lambertian放出プロファイルを有し得る。望ましくないことに、本光は全て、捕捉され、ディスプレイシステムの接眼レンズに指向されない場合がある。
【0228】
図24Aは、発光型マイクロディスプレイ1032の個々の光エミッタ1044によって放出された光と、投影光学系1070によって捕捉された光との角度放出プロファイルの実施例を図示する。図示される発光型マイクロディスプレイ1032は、発光型マイクロディスプレイ1032a、1032b、1032cを含む、本明細書に開示される発光型マイクロディスプレイのいずれかに対応し得る。図示されるように、投影光学系1070は、角度放出プロファイル1046を有する、光を捕捉するであろうように定寸されてもよい。しかしながら、光エミッタ1044内の角度放出プロファイル1046は、有意により大きく、光エミッタ1044によって放出される光の全てが、投影光学系1070上に入射せず、必ずしも、光が投影光学系1070の中およびそれを通して伝搬するであろう、角度で入射しない。結果として、光エミッタ1044によって放出される光の一部は、望ましくないことに、捕捉され、最終的に、ユーザの眼に中継され、画像を形成しないため、「無駄」となり得る。これは、光エミッタ1040によって出力された光のより多くのものが、最終的に、ユーザの眼に到達した場合に予期されるであろうものより暗く現れる、画像をもたらし得る。
【0229】
いくつかの実施形態では、光エミッタ1040によって放出される光のより多くのものを捕捉するための1つの方略は、投影光学系1070のサイズを増加させ、光を捕捉する投影光学系1070の開口数のサイズを増加させることである。加えて、または代替として、投影光学系1070はまた、高屈折率材料(例えば、1.5を上回る屈折率を有する)で形成されてもよく、これはまた、集光を促進し得る。いくつかの実施形態では、投影光学系1070は、光エミッタ1044によって放出される光の所望の高割合を捕捉するように定寸される、レンズを利用してもよい。いくつかの実施形態では、投影光学系1070は、伸長射出瞳を有し、例えば、
図22A-23Cの内部結合光学要素1022a、1022b、1022cの形状に類似する断面プロファイルを有する、光ビームを放出するように構成されてもよい。例えば、投影光学系1070は、
図22A-23Cの内部結合光学要素1022a、1022b、1022cの伸長寸法に対応する寸法において、伸長されてもよい。理論によって限定されるわけではないが、そのような伸長内部結合光学要素1022a、1022b、1022cは、発光型マイクロディスプレイと接眼レンズ1020(
図22A-23C)との間のエタンデュ不整合を改良し得る。いくつかの実施形態では、接眼レンズ1020(例えば、
図11Aおよび12-23C)の導波管の厚さは、例えば、本明細書に議論されるように、再バウンス間隔を増加させることにより、再バウンスを低減させることによって、事実上捕捉される光のパーセンテージを増加させるように選択されてもよい。
【0230】
いくつかの実施形態では、1つ以上の光コリメータが、光エミッタ1044からの光の角度放出プロファイルを低減または狭化するために利用されてもよい。結果として、光エミッタ1044によって放出される光のより多くのものが、投影光学系1070によって捕捉され、ユーザの眼に中継され、有利なこととして、画像の明度およびディスプレイシステムの効率を増加させ得る。いくつかの実施形態では、光コリメータは、投影光学系の集光効率(投影光学系によって捕捉される、光エミッタ1044によって放出される光のパーセンテージ)が、約85~95%または85~90%を含む、80%以上、85%以上、または90%以上の値に到達することを可能にし得る。加えて、光エミッタ1044からの光の角度放出プロファイルは、60°またはそれ未満、50°またはそれ未満、または40°またはそれ未満に低減され得る(例えば、180°から)。いくつかの実施形態では、低減された角度放出プロファイルは、約30~60°、30~50°、または30~40°の範囲内であってもよい。光エミッタ1044からの光は、円錐の形状を作り出し得、光エミッタ1044は、円錐の頂点にあることを理解されたい。角度放出プロファイルは、円錐の辺によって作り出される角度を指し、関連付けられる光エミッタ1044は、その角度の頂点にある(円錐の中央を通して延在し、円錐頂点を含む、平面に沿って得られた、断面に見られるように)。
【0231】
図24Bは、光コリメータのアレイを使用した角度放出プロファイルの狭化の実施例を図示する。図示されるように、発光型マイクロディスプレイ1032は、光エミッタ1044のアレイを含み、これは、角度放出プロファイル1046を伴う、光を放出する。光コリメータ1302のアレイ1300は、光エミッタ1044の前方に配置される。いくつかの実施形態では、各光エミッタ1044は、関連付けられる光コリメータ1302と1対1で合致される(光エミッタ1044あたり1つの光コリメータ1302)。各光コリメータ1302は、関連付けられる光エミッタ1044からの入射光を再指向し、狭化された角度放出プロファイル1047を提供する。したがって、比較的に大角度放出プロファイル1046は、より小さい角度放出プロファイル1047に狭化される。
【0232】
いくつかの実施形態では、光コリメータ1302およびアレイ1300は、
図12および13Aの光再指向構造1080a、180cの一部であってもよい。したがって、光コリメータ1302は、光学コンバイナ1050の中に適切な角度で伝搬し、複数の光経路および関連する複数の射出瞳を画定するように、光エミッタ1044の角度放出プロファイルを狭化し、また、光を再指向してもよい。光は、光コリメータ1302を適切に成形することによって、特定の方向に再指向されてもよいことを理解されたい。
【0233】
好ましくは、光コリメータ1302は、光エミッタ1044に近接近して位置付けられ、光エミッタ1044によって出力された大割合の光を捕捉する。いくつかの実施形態では、間隙が、光コリメータ1302と光エミッタ1044との間に存在してもよい。いくつかの他の実施形態では、光コリメータ1302は、光エミッタ1044と接触してもよい。角度放出プロファイル1046は、光の広円錐を作り出してもよいことを理解されたい。好ましくは、光エミッタ1044からの光の円錐の全体または大部分は、単一の関連付けられる光コリメータ1302上に入射する。したがって、いくつかの実施形態では、各光エミッタ1044は、関連付けられる光コリメータ1302の受光面より小さい(より小さい面積を占有する)。いくつかの実施形態では、各光エミッタ1044は、近傍の離れた光エミッタ1044間の間隔より小さい幅を有する。
【0234】
有利なこととして、光コリメータ1302は、光の利用の効率を増加させ得、また、近傍の光エミッタ1044間のクロストークの発生を低減させ得る。光エミッタ1044間のクロストークは、近傍の光エミッタからの光が、その近傍の光エミッタと関連付けられない光コリメータ1302によって捕捉されるときに生じ得ることを理解されたい。その捕捉された光は、ユーザの眼に伝搬され、それによって、所与のピクセルに関する誤った画像情報を提供し得る。
【0235】
図24Aおよび24Bを参照すると、投影光学系1070によって捕捉される光のビームのサイズは、投影光学系1070から出射する、光のビームのサイズに影響を及ぼし得る。
図24Aに示されるように、光コリメータを使用しないと、出射ビームは、比較的に大幅1050を有し得る。
図24Bに示されるように、光コリメータ1302を伴うと、出射ビームは、より小さい幅1052を有し得る。したがって、いくつかの実施形態では、光コリメータ1302が、接眼レンズの中に内部結合するために、所望のビームサイズを提供するために使用されてもよい。例えば、光コリメータ1302が角度放出プロファイル1046を狭化する量は、少なくとも部分的に、それに対して投影光学系1070によって出力された光が指向される、接眼レンズ内の内部結合光学要素のサイズに基づいて、選択されてもよい。
【0236】
光コリメータ1302は、種々の形態をとってもよいことを理解されたい。例えば、光コリメータ1302は、いくつかの実施形態では、マイクロレンズまたはレンズレットであってもよい。本明細書に議論されるように、各マイクロレンズは、好ましくは、関連付けられる光エミッタ1044の幅を上回る幅を有する。マイクロレンズは、フォトレジストおよびエポキシ等の樹脂を含む、ガラスまたはポリマー等の湾曲透明材料から形成されてもよい。いくつかの実施形態では、光コリメータ1302は、ナノレンズ、例えば、回折光学格子であってもよい。いくつかの実施形態では、光コリメータ1302は、メタ表面および/または液晶格子であってもよい。いくつかの実施形態では、光コリメータの1302は、反射性ウェルの形態をとってもよい。
【0237】
異なる光コリメータ1302は、関連付けられる光エミッタ1044によって放出される光の波長または色に応じて、異なる寸法および/または形状を有してもよいことを理解されたい。したがって、フルカラー発光型マイクロディスプレイに関して、アレイ1300は、関連付ける光エミッタ1044によって放出される光の色に応じて、異なる寸法および/または形状を伴う、複数の光コリメータ1302を含んでもよい。発光型マイクロディスプレイがモノクロマイクロディスプレイである、実施形態では、アレイ1300は、簡略化されてもよく、アレイ内の光コリメータ1302のそれぞれが、同一色の光を再指向するように構成される。そのようなモノクロマイクロディスプレイを用いることで、光コリメータ1302は、いくつかの実施形態では、アレイ1300を横断して、類似してもよい。
【0238】
図24Bを継続して参照すると、本明細書に議論されるように、光コリメータ1302は、光エミッタ1044と1対1の関連付けを有してもよい。例えば、各光エミッタ1044は、離散する関連付けられる光コリメータ1302を有してもよい。いくつかの他の実施形態では、光コリメータ1302は、それらが、複数の光エミッタ1044を横断して延在するように、伸長されてもよい。例えば、いくつかの実施形態では、光コリメータ1302は、ページの向こう側に向けて伸長され、複数の光エミッタ1044の行の正面に延在してもよい。いくつかの他の実施形態では、単一光コリメータ1302は、光エミッタ1044の列を横断して延在してもよい。さらに他の実施形態では、光コリメータ1302は、レンズ構造(例えば、ナノレンズ構造、マイクロレンズ構造等)のスタックされた列および/または行を備えてもよい。
【0239】
上記に述べられたように、光コリメータ1302は、反射性ウェルの形態をとってもよい。
図25Aは、光を投影光学系に指向するためのテーパ状反射性ウェルのアレイの側面図の実施例を図示する。図示されるように、光コリメータアレイ1300は、その中に反射性ウェルの形態における、複数の光コリメータ1302が、形成され得る、基板1301を含んでもよい。各ウェルは、少なくとも1つの光エミッタ1044を含んでもよく、これは、Lambertian角度放出プロファイル1046を伴う光を放出してもよい。光コリメータ1302のウェルの反射性壁1303は、テーパ状であって、より狭角度放出プロファイル1047を伴って、ウェルから出力されるように、放出される光を反射させる。図示されるように、反射性壁1303は、断面サイズが光エミッタ1044からの距離に伴って増加するように、テーパ状であってもよい。いくつかの実施形態では、反射性壁1303は、湾曲されてもよい。例えば、側1303は、複合放物線集光器(CPC)の形状を有してもよい。
【0240】
ここで
図25Bを参照すると、非対称テーパ状反射性ウェルの側面図の実施例が、図示される。本明細書に議論されるように、例えば、
図12A-13Aに図示されるように、光コリメータ1302を利用して、光エミッタ1044の表面に対して法線ではない特定の方向に、光を操向することが望ましくあり得る。いくつかの実施形態では、
図25Bに図示されるような側面図において視認されるように、光コリメータ1302は、非対称であってもよく、上辺1303aは、光エミッタ1044の表面と、下辺1303bと異なる角度(例えば、より大きい角度)を形成する。例えば、光エミッタ1044に対する反射性壁1303a、1303bの角度は、光を特定の非法線方向に指向するために、光コリメータ1302の異なる辺上で異なり得る。したがって、図示されるように、光コリメータ1302から出射する光は、概して、光エミッタ1044の表面に対して法線ではない、方向1048に伝搬し得る。いくつかの他の実施形態では、光を方向1048に指向するために、上辺1303aのテーパは、下辺のテーパと異なり得る。例えば、上辺1303aは、下辺1303bより広い範囲に拡開し得る。
【0241】
図25を継続して参照すると、基板1301は、反射性壁1303の所望の形状を維持するために十分な機械的完全性を有する、種々の材料から形成されてもよい。好適な材料の実施例は、金属、プラスチック、およびガラスを含む。いくつかの実施形態では、基板1301は、材料のプレートであってもよい。いくつかの実施形態では、基板1301は、連続する一体型の材料片である。いくつかの他の実施形態では、基板1301は、2つ以上の材料片をともに継合することによって形成されてもよい。
【0242】
反射性壁1303は、種々の方法によって、基板1301内に形成されてもよい。例えば、壁1303は、基板1301を機械加工する、または別様に、材料を除去し、壁1303を画定することによって、所望の形状に形成されてもよい。いくつかの他の実施形態では、壁1303は、基板1301が形成されるにつれて形成されてもよい。例えば、壁1303は、基板1301がその所望の形状に成型されるにつれて、基板1301の中に成型されてもよい。いくつかの他の実施形態では、壁1303は、本体2200の形成後、材料の再配列によって画定されてもよい。例えば、壁1303は、インプリントによって画定されてもよい。
【0243】
いったん壁1303の輪郭が、形成されると、それらは、さらなる処理を受け、所望の反射度を有する、表面を形成してもよい。いくつかの実施形態では、基板1301の表面自体が、反射性であってもよい、例えば、本体は、反射性金属から形成される。そのような場合、さらなる処理は、壁1303の内部表面を平滑化または研磨し、その反射率を増加させるステップを含んでもよい。いくつかの他の実施形態では、反射体2110の内部表面は、例えば、蒸着プロセスによって、反射性コーティングで裏打ちされてもよい。例えば、反射性層は、物理的蒸着(PVD)または化学蒸着(CVD)によって形成されてもよい。
【0244】
関連付けられる光コリメータに対する光エミッタの場所は、光コリメータから外に放出される光の方向に影響を及ぼし得ることを理解されたい。これは、例えば、上層の関連付けられる光コリメータの中心線に対して異なる位置における光エミッタのための光経路の差異の実施例を図示する、
図26A-26Cに図示される。
図26Aに示されるように、発光型マイクロディスプレイ1030は、それぞれ、関連付けられる光コリメータ1302を有する、複数の光エミッタ1044aを有し、これは、狭化された角度放出プロファイル1047を有する、光の出力を促進する。光は、投影光学系1070(例証を容易にするために、単純レンズとして表される)を通して通過し、これは、種々の光エミッタ1044aからの光を面積1402a上に収束させる。
【0245】
図26Aを継続して参照すると、いくつかの実施形態では、光コリメータ1302はそれぞれ、対称であってもよく、光コリメータの対称性の軸に沿って延在する、中心線を有してもよい。図示される構成では、光エミッタ1044aは、光コリメータ1302のそれぞれの中心線上に配置される。
【0246】
ここで
図26Bを参照すると、光エミッタ1044bは、その個別の光コリメータ1302の中心線から距離1400だけオフセットされる。本オフセットは、光エミッタ1044bからの光に、光コリメータ1302を通る、異なる経路を辿らせ、これは、狭化された角度放出プロファイル1047bを伴う、光エミッタ1044bからの光を出力する。投影光学系1070は、次いで、光エミッタ1044bからの光を面積1402b上に収束させ、これは、その上に光エミッタ1044aからの光が収束する、面積1402aに対してオフセットされる。
【0247】
ここで
図26Cを参照すると、光エミッタ1044aおよび1044bの両方からオフセットされた光エミッタ1044cが、図示される。本オフセットは、光エミッタ1044cからの光に、光コリメータ1302を通る、光エミッタ1044aおよび1044bからの光と異なる経路を辿らせる。これは、光コリメータ1302に、投影光学系1070への、光エミッタ1044aおよび1044bからの光と異なる経路を辿る、狭化された角度放出プロファイルを伴う、光エミッタ1044cからの光を出力させる。最終的には、投影光学系1070は、光エミッタ1044cからの光を面積1402c上に収束させ、これは、面積1402aおよび1402bに対してオフセットされる。
【0248】
図26A-26Cを参照すると、光エミッタ1044a、1044b、1044cの各三回対称軸は、共通光コリメータ1302を共有してもよい。いくつかの実施形態では、マイクロディスプレイ1030は、フルカラーマイクロディスプレイであってもよく、各光エミッタ1044a、1044b、1044cは、異なる原色の光を放出するように構成されてもよい。有利なこととして、オフセット面積1402a、1402b、1402cは、いくつかの実施形態では、導波管の内部結合光学要素に対応し得る。例えば、面積1402a、1402b、1402cは、それぞれ、
図11Aおよび12の内部結合光学要素1022a、1022b、1022cに対応し得る。したがって、光コリメータ1302および光エミッタ1044a、1044b、1044cのオフセット配向は、有利なこととして、フルカラー発光型マイクロディスプレイを使用して、単純3瞳投影システム1010を提供し得る。
【0249】
本明細書に記載されるように、光コリメータ1302はまた、ナノレンズの形態をとってもよい。
図27は、ナノレンズである、光コリメータ1302の上層アレイ1300を伴う、発光型マイクロディスプレイ1030の個々の光エミッタ1044の側面図の実施例を図示する。本明細書に議論されるように、光エミッタ1044の個々のものはそれぞれ、関連付けられる光コリメータ1302を有してもよい。光コリメータ1302は、光エミッタ1044からの光を再指向し、光エミッタ1044の大角度放出プロファイル1046を狭化し、狭化された角度放出プロファイル1047を伴う、光を出力する。
【0250】
図27を継続して参照すると、いくつかの実施形態では、光コリメータ1302は、格子構造であってもよい。いくつかの実施形態では、光コリメータ1302は、異なる屈折率を有する材料の交互伸長離散拡張部(例えば、線)によって形成される、格子であってもよい。例えば、材料1306の拡張部は、ページの内外に伸長されてもよく、基板1308の材料内に形成され、それによって分離されてもよい。いくつかの実施形態では、材料1306の伸長拡張部は、サブ波長幅およびピッチを有してもよい(例えば、光コリメータ1302が関連付けられる光エミッタ1044から受け取るように構成される、光の波長より小さい、幅およびピッチ)。いくつかの実施形態では、ピッチ1304は、30~300nmであってもよく、格子の深度は、10~1,000nmであってもよく、基板1308を形成する材料の屈折率は、1.5~3.5であってもよく、格子特徴1306を形成する材料の屈折率は、1.5~2.5であってもよい(かつ基板1308を形成する材料の屈折率と異なる)。
【0251】
図示される格子構造は、種々の方法によって形成されてもよい。例えば、基板1308は、エッチングまたはナノインプリントされ、溝を画定してもよく、溝は、基板1308と異なる屈折率の材料で充填され、格子特徴1306を形成してもよい。
【0252】
有利なこととして、ナノレンズアレイは、種々の利点を提供し得る。例えば、ナノレンズレットの集光効率は、大きく、例えば、85~90%を含む、80~95%であり得、角度放出プロファイルの優れた低減、例えば、30~40°までの低減(180°から)を伴う。加えて、低レベルのクロストークが、ナノレンズ光コリメータ1302のそれぞれが、特定の色および可能性として特定の入射角の光に作用する一方、好ましくは、高消光率を提供する(他の色の光の波長に関して)ように選択される、物理的寸法および性質(例えば、ピッチ、深度、特徴1306および基板1308を形成する材料の屈折率)を有し得るため、達成され得る。加えて、ナノレンズアレイは、平坦プロファイル(例えば、平坦基板上に形成される)を有し得、これは、フラットパネルであり得る、マイクロディスプレイとの統合を促進し得、また、ナノレンズアレイを形成する際、製造を促進し、高再現性および精度を提供し得る。例えば、高度に再現可能な溝形成および堆積プロセスが、各ナノレンズを形成するために使用されてもよい。さらに、これらのプロセスは、アレイのナノレンズ間の変動に関して、類似変動を伴う湾曲レンズを形成するときに典型的に達成されるものを上回る容易性および再現性を可能にする。
【0253】
ここで
図28を参照すると、発光型マイクロディスプレイ1030の実施例の斜視図が、図示される。光コリメータアレイ1300は、有利なこととして、マイクロディスプレイから放出される光が所望に応じてルーティングされることを可能にすることを理解されたい。結果として、いくつかの実施形態では、フルカラーマイクロディスプレイの光エミッタは、例えば、ディスプレイデバイス内での製造または実装の容易性のために、所望に応じて編成され得る。いくつかの実施形態では、光エミッタ1044は、行または列1306a、1306b、1306c内に配列されてもよい。各行または列は、同一原色の光を放出するように構成される、光エミッタ1044を含んでもよい。3つの原色が利用される、ディスプレイでは、3つの行または列のグループが存在してもよく、これは、マイクロディスプレイ1030を横断して繰り返される。より多くの原色が利用される場合、各繰り返しグループは、その数の行または列を有してもよいことを理解されたい。例えば、4つの原色が利用される場合、各グループは、4つの行または4つの列を有してもよく、1つの行または1つの列は、単一原色の光を放出するように構成される、光エミッタによって形成される。
【0254】
いくつかの実施形態では、いくつかの行または列は、特定の原色の光エミッタの数を増加させるように繰り返されてもよい。例えば、いくつかの原色の光エミッタは、複数の行または列を占有してもよい。これは、色平衡を促進し得、および/または経時的光放出強度における微分劣化または低減に対処するために利用されてもよい。
【0255】
図27および28を参照すると、いくつかの実施形態では、光エミッタ1044はそれぞれ、関連付けられる光コリメータ1302を有してもよい。いくつかの他の実施形態では、複数の光エミッタ1044の各ライン1306a、1306b、1306cは、単一の関連付けられる光コリメータ1302を有してもよい。その単一の関連付けられる光コリメータ1302は、関連付けられるライン1306a、1306b、または1306cの実質的に全体を横断して延在してもよい。いくつかの他の実施形態では、関連付けられる光コリメータ1302は、伸長され、関連付けられるライン1306a、1306b、または1306cの一部を形成する、複数の光エミッタ1044にわたって延在してもよく、複数の類似光コリメータ1302が、関連付けられるライン1306a、1306b、1306cのそれぞれに沿って提供されてもよい。
【0256】
図28を継続して参照すると、各光エミッタ1044は、特定の軸に沿って(例えば、図示されるように、y-軸に沿って)伸長されてもよい。すなわち、各光エミッタは、特定の軸に沿って長さを有し、長さは、光エミッタの幅より長い。加えて、同一原色の光を放出するように構成される、光エミッタのセットが、光エミッタ1044の伸長軸を交差(例えば、直交)する、軸(例えば、x-軸)に沿って延在するライン1306a、1306b、または1306c(例えば、行または列)内に配列されてもよい。したがって、いくつかの実施形態では、同一原色の光エミッタ1044は、光エミッタのライン1306a、1306b、または1306cを形成し、ラインは、第1の軸(例えば、x-軸)に沿って延在し、ライン内の個々の光エミッタ1044は、第2の軸(例えば、y-軸)に沿って伸長される。
【0257】
対照的に、フルカラーマイクロディスプレイは、典型的には、各原色のサブピクセルを含み、サブピクセルは、グループ内の特定の比較的に緊密に充塞された空間配向に配列され、これらのグループは、アレイを横断して再現されることを理解されたい。サブピクセルの各グループは、画像内のピクセルを形成してもよい。ある場合には、サブピクセルは、軸に沿って伸長され、同一原色のサブピクセルの行または列は、その同一軸に沿って延在する。そのような配列は、各グループのサブピクセルがともに近接して位置することを可能にし、これが、画質およびピクセル密度に関する利点を有し得ることを理解されたい。しかしながら、
図28の図示される配列では、異なる原色のサブピクセルは、光エミッタ1044の伸長形状に起因して、比較的に遠く離れている。すなわち、ライン1306aの光エミッタは、ライン1306bの光エミッタの伸長形状が、光エミッタ1306aおよび1306cを光エミッタの所与のラインの近傍の光エミッタより離間させるため、ライン1306cの光エミッタから比較的に遠く離れている。これは、マイクロディスプレイ1030の表面上に形成される、画像が、直接、ユーザの眼に中継される場合、容認不可能に不良な画質を提供することが予期され得るが、光コリメータアレイ1300の使用は、有利なこととして、異なる色の光が、所望に応じてルーティングされ、高品質画像を形成することを可能にする。例えば、各原色の光が、別個のモノクロ画像を形成するために使用されてもよく、これは、次いで、接眼レンズ1020(例えば、
図11Aおよび12-14)等の接眼レンズにルーティングされ、その中で組み合わせられる。
【0258】
図27および28を参照すると、いくつかの実施形態では、光エミッタ1044はそれぞれ、関連付けられる光コリメータ1302を有してもよい。いくつかの他の実施形態では、光エミッタ1044の各ライン1306a、1306b、1306cは、単一の関連付けられる光コリメータ1302を有してもよい。その単一の関連付けられる光コリメータ1302は、関連付けられるライン1306a、1306b、または1306cの実質的に全体を横断して延在してもよい。いくつかの他の実施形態では、関連付けられる光コリメータ1302は、関連付けられるライン1306a、1306b、または1306cの一部を形成する、複数の光エミッタ1044にわたって伸長され、延在してもよく、複数の類似光コリメータ1302が、関連付けられるライン1306a、1306b、1306cのそれぞれに沿って提供されてもよい。
【0259】
光コリメータ1302は、光を異なる光経路に沿って指向し、多瞳投影システムを形成するために利用されてもよいことを理解されたい。例えば、光コリメータ1302は、光を内部結合するために、異なる原色の光を、それぞれ、2つまたは3つの面積に指向してもよい。
【0260】
図29は、多瞳投影システム1010を形成するために使用される、
図28のフルカラー発光型マイクロディスプレイ1030を伴う、ウェアラブルディスプレイシステムの実施例を図示する。図示される実施形態では、フルカラー発光型マイクロディスプレイ1030は、3つの原色の光を放出し、3瞳投影システム1010を形成する。投影システム1010は、3つの射出瞳を有し、それを通して異なる原色の画像光1032a、1032b、1032cが、それぞれ、接眼レンズ1020の3つの側方に偏移された光内部結合光学要素1022a、1022b、1022cに伝搬する。接眼レンズ1020は、次いで、画像光1032a、1032b、1032cをユーザの眼210に中継する。
【0261】
発光型マイクロディスプレイ1030は、光エミッタ1044のアレイを含み、これは、モノクロ光エミッタ1044a、1044b、1044cに細分割されてもよく、これは、それぞれ、画像光1032a、1032b、1032cを放出する。光エミッタ1044は、広角放出プロファイル1046を伴う、画像光を放出することを理解されたい。画像光は、光コリメータのアレイ1300を通して伝搬し、これは、角度放出プロファイルを狭化された角度放出プロファイル1047に低減させる。
【0262】
加えて、光コリメータのアレイ1300は、画像光が適切な内部結合光学要素1022a、1022b、1022cに伝搬するように、投影光学系1070に画像光を出力させる角度で、画像光が投影光学系1070上に入射するように、画像光(画像光1032a、1032b、1032c)を再指向するように構成される。例えば、光コリメータのアレイ1300は、好ましくは、投影光学系1070を通して伝搬し、内部結合光学要素1022a上に入射するように、画像光1032aを指向し、投影光学系1070を通して伝搬し、内部結合光学要素1022b上に入射するように、画像光1032bを指向し、投影光学系1070を通して伝搬し、内部結合光学要素1022c上に入射するように、画像光1032cを指向するように構成される。
【0263】
異なる光エミッタ1044は、異なる波長の光を放出し得、適切な内部結合光学要素に到達するために、異なる方向に再指向される必要があり得るため、いくつかの実施形態では、異なる光エミッタ1044と関連付けられる、光コリメータは、異なる物理的パラメータ(例えば、異なるピッチ、異なる幅等)を有してもよい。有利なこととして、光コリメータとしての平坦ナノレンズの使用は、光コリメータのアレイ1300を横断して物理的性質を変動させる、光コリメータの形成を促進する。本明細書に記載されるように、ナノレンズは、パターン化および堆積プロセスを使用して、形成されてもよく、これは、基板を横断して異なるピッチ、幅等を伴う、構造の形成を促進する。
【0264】
再び、
図24Aを参照すると、図示されるディスプレイシステムは、単一発光型マイクロディスプレイを示し、光学コンバイナ1050(
図11Aおよび12-13B)を省略することを理解されたい。光学コンバイナ1050を利用する実施形態では、光学コンバイナ1050内の反射性表面1052、1054(
図11A、12-13B、および30B)は、好ましくは、鏡面反射体であって、光エミッタ1044からの光は、反射性表面1052、1054から反射された後、その大角度放出プロファイルを留保することが予期されるであろう。したがって、
図24Aに示される無駄にされる光に関する問題は、光学コンバイナ1050が利用されるときにも同様に存在する。
【0265】
ここで
図30Aを参照すると、発光型マイクロディスプレイと、関連付けられる光コリメータのアレイとを伴う、ウェアラブルディスプレイシステムの実施例が、図示される。
図30Aは、光エミッタ1044と、光コリメータ1302と、接眼レンズ1020の内部結合光学要素との間の交互作用に関する付加的詳細を示す。ディスプレイシステムは、マイクロディスプレイ1030bを含み、これは、いくつかの実施形態では、フルカラーマイクロディスプレイであってもよい。いくつかの他の実施形態では、マイクロディスプレイ1030bは、モノクロマイクロディスプレイであってもよく、付加的モノクロマイクロディスプレイ(図示せず)が、随意の光学コンバイナ1050の異なる面に提供されてもよい(
図30Cに示されるように)。
【0266】
図30Aを継続して参照すると、マイクロディスプレイ1030bは、それぞれ、広角放出プロファイル(例えば、Lambertian角度放出プロファイル)を伴う、光を放出する、光エミッタ1044のアレイを含む。各光エミッタ1044は、関連付けられる専用光コリメータ1302を有し、これは、事実上、角度放出プロファイルを狭化された角度放出プロファイル1047に狭化する。狭化された角度放出プロファイルを伴う、光ビーム1032bは、投影光学系1070を通して通過し、これは、それらの光ビームを内部結合光学要素1022b上に投影または収束させる。光ビーム1032bは、ある断面形状およびサイズ1047aを有することを理解されたい。いくつかの実施形態では、内部結合光学要素1022bは、ビーム1032bがその内部結合光学要素1022b上に入射するときの光ビーム1032bの断面形状およびサイズと実質的に合致する、またはそれより大きい、サイズおよび形状を有する。したがって、いくつかの実施形態では、内部結合光学要素1022bのサイズおよび形状は、内部結合光学要素1022b上に入射するときの光ビーム1032bの断面サイズおよび形状に基づいて選択されてもよい。いくつかの他の実施形態では、他の要因(再バウンス軽減または内部結合光学要素1022bによって支援される角度または視野)が、内部結合光学要素1022bのサイズおよび形状を決定するために利用されてもよく、光コリメータ1302は、好ましくは、内部結合光学要素1022bのサイズおよび形状によって完全またはほぼ完全に包含される、適切に定寸および成形された断面を伴う、光ビーム1032bを提供するように構成(例えば、定寸および成形)されてもよい。いくつかの実施形態では、光コリメータ1302および内部結合光学要素1022bのための物理的パラメータは、他の所望の機能性(例えば、再バウンス軽減、所望の視野のための支援等)と併せて、高度に効率的光利用を提供するように相互に修正されてもよい。有利なこととして、光コリメータ1302によって提供される上記の光コリメーションと、光ビーム1032bの断面サイズおよび形状と内部結合光学要素1022bのサイズおよび形状の合致は、内部結合光学要素1022bが入射光ビーム1032bの大パーセンテージを捕捉することを可能にする。内部結合される光は、次いで、導波管1020bを通して伝搬し、眼210に外部結合される。
【0267】
図示されるように、マイクロディスプレイ1030bは、光エミッタ1044のアレイ1042を備えてもよく、それぞれ、総幅1045wを有する、非発光面積1045によって囲繞される。加えて、光エミッタ1044は、幅Wと、ピッチPとを有する。光エミッタ1044が規則的に離間される、アレイでは、各光エミッタ1044および囲繞する面積1045は、事実上、ピッチPに等しくあり得る、幅1045wを有する、単位セルを形成する。
【0268】
いくつかの実施形態では、光コリメータ1302は、直接、関連付けられる光エミッタ1044上に配置され、それを囲繞する、マイクロレンズである。いくつかの実施形態では、マイクロレンズ1302の幅は、近傍のマイクロレンズ1302が相互にほぼ接触または直接接触するように、1045wに等しい。光エミッタ1044からの光は、関連付けられるマイクロレンズ1302を充填し、事実上、光エミッタ1044によって包含される面積を拡大し得ることを理解されたい。有利なこととして、そのような構成は、光を放出しない、そうでなければ、暗い空間としてユーザに可視となり得る、面積1045の知覚性を低減させる。しかしながら、マイクロレンズ1302は、マイクロレンズ1302の面積全体を横断して延在するように、事実上、関連付けられる光エミッタ1044を拡大するため、面積1045は、マスクされてもよい。
【0269】
図30Aを継続して参照すると、光エミッタ1044および光コリメータ1302の相対的サイズは、光エミッタ1044からの光が関連付けられる光コリメータ1302を充填するように選択されてもよい。例えば、光エミッタ1044は、所望の曲率を有する、マイクロレンズコリメータ1302が、光エミッタ1044の個々のものにわたって延在して形成され得るように、十分に離間されてもよい。加えて、上記に述べられたように、内部結合光学要素1022bのサイズおよび形状は、好ましくは、その内部結合光学要素1022b上に入射するときの光ビーム1032bの断面形状およびサイズに合致する、またはそれを超えるように選択される。その結果、いくつかの実施形態では、内部結合光学要素1022bの幅1025は、マイクロレンズ1302の幅(1045wまたはPに等しい幅を有してもよい)以上である。好ましくは、幅1025は、光ビーム1032bのある程度の拡散を考慮するために、マイクロレンズ1302の幅または1045wまたはPを上回る。本明細書に議論されるように、幅1025はまた、再バウンスを軽減させるように選択されてもよく、内部結合光学要素1022bの長さ(幅に直交する)より短くてもよい。いくつかの実施形態では、幅1025は、眼210への伝搬のために外部結合される前に、導波管1020bを通して、内部結合される光1032bの伝搬方向と同一軸に沿って延在してもよい。
【0270】
ここで
図30Bを参照すると、複数の発光型マイクロディスプレイ1030a、1030b、1030cと、光コリメータの関連付けられるアレイ1300a、1300b、1300cとを伴う、光投影システム1010の実施例が、それぞれ、図示される。マイクロディスプレイ1030a、1030b、1030cによって放出される光の角度放出プロファイルは、光コリメータアレイ1300a、1300b、1300cによって狭化され、それによって、光が光学コンバイナ1050を通して伝搬後、投影光学系1070によって放出される光の大パーセンテージの集光を促進する。投影光学系1070は、次いで、光を接眼レンズ1020(例えば、
図11Aおよび12-14)(図示せず)等の接眼レンズに指向する。
【0271】
図30Cは、それぞれが、それぞれ、光コリメータの関連付けられるアレイ1300a、1300b、1300cを伴う、複数の発光型マイクロディスプレイ1030a、1030b、1030cを伴う、ウェアラブルディスプレイシステムの実施例を図示する。図示されるディスプレイシステムは、画像情報を伴う光を放出するために、複数のマイクロディスプレイ1030a、1030b、1030cを含む。図示されるように、マイクロディスプレイ1030a、1030b、1030cは、マイクロLEDパネルであってもよい。いくつかの実施形態では、マイクロディスプレイは、モノクロマイクロLEDパネルであってもよく、それぞれ、異なる原色を放出するように構成される。例えば、マイクロディスプレイ1030aは、赤色である、光1032aを放出するように構成されてもよく、マイクロディスプレイ1030bは、緑色である、光1032bを放出するように構成されてもよく、マイクロディスプレイ1030cは、青色である、光1032cを放出するように構成されてもよい。
【0272】
各マイクロディスプレイ1030a、1030b、1030cは、それぞれ、光コリメータの関連付けられるアレイ1300a、1300b、1300cを有してもよい。光コリメータは、関連付けられるマイクロディスプレイの光エミッタからの光1032a、1032b、1032cの角度放出プロファイルを狭化する。いくつかの実施形態では、個々の光エミッタは、専用の関連付けられる光コリメータ(
図30Aに示されるように)を有する。
【0273】
図30Cを継続して参照すると、光コリメータのアレイ1300a、1300b、1300cは、関連付けられるマイクロディスプレイ1030a、1030b、1030cと光学コンバイナ1050との間にあって、これは、X-立方体であってもよい。図示されるように、光学コンバイナ1050は、入射光を光学コンバイナの出力面から外に反射させるために、内部反射性表面1052、1054を有する。入射光の角度放出プロファイルの狭化に加え、光コリメータのアレイ1300a、1300cは、光が、それぞれ、関連付けられる光内部結合光学要素1022a、1022cに向かって伝搬するために適切な角度で、光学コンバイナ1050の内部反射性表面1052、1054に衝打するように、関連付けられるマイクロディスプレイ1030a、1030cからの光を再指向するように構成されてもよい。いくつかの実施形態では、光を特定の方向に再指向するために、光コリメータのアレイ1300a、1300cは、マイクロレンズまたは反射性ウェルを備えてもよく、これは、非対称であってもよく、および/または光エミッタが、本明細書に開示されるように、マイクロレンズまたは反射性ウェルに対して中心からずらして配置されてもよい。
【0274】
図30Cを継続して参照すると、投影光学系1070(例えば、投影レンズ)が、光学コンバイナ1050の出力面に配置され、その光学コンバイナから出射される画像光を受け取る。投影光学系1070は、画像光を接眼レンズ1020上に収束または集束させるように構成される、レンズを備えてもよい。図示されるように、接眼レンズ1020は、複数の導波管を備えてもよく、それぞれ、特定の色の光を内部結合および外部結合するように構成される。例えば、導波管1020aは、赤色光1032aをマイクロディスプレイ1030aから受け取るように構成されてもよく、導波管1020bは、緑色光1032bをマイクロディスプレイ1030bから受け取るように構成されてもよく、導波管1020cは、青色光1032cをマイクロディスプレイ1030cから受け取るように構成されてもよい。各導波管1020a、1020b、1020cは、光をその中に内部結合するために、それぞれ、関連付けられる光内部結合光学要素1022a、1022b、1022cを有する。加えて、本明細書に議論されるように、導波管1020a、1020b、1020cは、それぞれ、
図9Bの導波管670、680、690に対応し得、それぞれ、関連付けられる直交瞳エクスパンダ(OPE)と、射出瞳エクスパンダ(EPE)とを有してもよく、これは、最終的には、光1032a、1032b、1032cをユーザに外部結合する。
【0275】
本明細書に議論されるように、マイクロディスプレイを組み込む、ウェアラブルディスプレイシステムは、好ましくは、異なる量の波面発散を伴う、光を出力し、ユーザのために快適な遠近調節-輻輳・開散運動整合を提供するように構成される。これらの異なる量の波面発散は、異なる屈折力を伴う外部結合光学要素を使用して、達成されてもよい。本明細書に議論されるように、外部結合光学要素は、接眼レンズ1020(例えば、
図11Aおよび12-14)等の接眼レンズの導波管上または内に存在してもよい。いくつかの実施形態では、レンズが、外部結合光学要素によって提供される波面発散を増大させるために利用されてもよい、または外部結合光学要素がコリメートされた光を出力するように構成される構成では、所望の波面発散を提供するために使用されてもよい。
【0276】
図31Aおよび31Bは、視認者への光の波面発散を変動させるためのレンズを有する、接眼レンズ1020の実施例を図示する。
図31Aは、導波管構造1032を有する、接眼レンズ1020を図示する。いくつかの実施形態では、本明細書に議論されるように、全ての原色の光が、導波管構造1032が、単一導波管のみを含むように、単一導波管の中に内部結合されてもよい。これは、有利なこととして、コンパクトな接眼レンズを提供する。いくつかの他の実施形態では、導波管構造1032は、複数の導波管(例えば、
図11Aおよび12-13Aの導波管1032a、1032b、1032c)を含むと理解され得、それぞれ、単一原色の光をユーザの眼に中継するように構成されてもよい。
【0277】
いくつかの実施形態では、可変焦点レンズ要素1530、1540が、導波管構造1032の両側上に配置されてもよい。可変焦点レンズ要素1530、1540は、眼210への導波管構造1032からの画像光の経路内と、また、周囲環境から導波管構造1003 2を通して眼210への光の経路内とにあってもよい。可変焦点光学要素1530は、導波管構造1032によって眼210に出力される画像光の波面発散を変調させ得る。可変焦点光学要素1530は、世界の眼210のビューを歪曲させ得る、屈折力を有し得ることを理解されたい。その結果、いくつかの実施形態では、第2の可変焦点光学要素1540が、導波管構造1032の世界側上に提供されてもよい。第2の可変焦点光学要素1540は、可変焦点レンズ要素1530、1540および導波管構造1032の正味屈折力が実質的にゼロであるように、可変焦点光学要素1530のものと反対の(または導波管構造1032が屈折力を有する場合、光学要素1530および導波管構造1032の正味屈折力と反対の)屈折力を提供し得る。
【0278】
好ましくは、可変焦点レンズ要素1530、1540の屈折力は、例えば、電気信号をそこに印加することによって、動的に改変されてもよい。いくつかの実施形態では、可変焦点レンズ要素1530、1540は、動的レンズ(例えば、液晶レンズ、電気活性レンズ、可動要素を伴う従来の屈折レンズ、機械的変形ベースのレンズ、エレクトロウェッティングレンズ、エラストマレンズ、または異なる屈折率を伴う複数の流体)等の透過性光学要素を備えてもよい。可変焦点レンズ要素の形状、屈折率、または他の特性を改変することによって、入射光の波面が、変化されてもよい。いくつかの実施形態では、可変焦点レンズ要素1530、1540は、2つの基板間に挟入される、液晶の層を備えてもよい。基板は、ガラス、プラスチック、アクリル等の光学的に透過性の材料を備えてもよい。
【0279】
いくつかの実施形態では、仮想コンテンツを異なる深度平面上に設置するために、可変量の波面発散を提供することに加えて、または代替として、可変焦点レンズ要素1530、1540および導波管構造1032は、有利なこととして、補正レンズのためのユーザの処方箋屈折力に等しい、正味屈折力を提供してもよい。したがって、接眼レンズ1020は、近視、遠視、老眼、および非点収差を含む、屈折誤差を補正するために使用される、レンズのための代用品としての役割を果たし得る。補正レンズのための代用品としての可変焦点レンズ要素の使用に関するさらなる詳細は、2017年4月6日に出願された、米国特許出願第15/481,255号(その開示全体は、参照することによって本明細書に組み込まれる)に見出され得る。
【0280】
ここで
図31Bを参照すると、いくつかの実施形態では、接眼レンズ1020は、可変ではなく、静的レンズ要素を含んでもよい。
図31Bと同様に、導波管構造1032は、単一導波管(例えば、異なる色の光を中継し得る)または複数の導波管(例えば、それぞれ、単一原色の光を中継し得る)を含んでもよい。同様に、導波管構造1034は、単一導波管(例えば、異なる色の光を中継し得る)または複数の導波管(例えば、それぞれ、単一原色の光を中継し得る)を含んでもよい。導波管構造1032、1034の一方または両方は、屈折力を有してもよく、特定の波面発散の量を伴う、光を出力してもよい、または、単に、コリメートされた光を出力してもよい。
【0281】
図31Bを継続して参照すると、接眼レンズ1020は、いくつかの実施形態では、静的レンズ要素1532、1534、1542を含んでもよい。これらのレンズ要素はそれぞれ、周囲環境から導波管構造1032、1034を通して眼210の中への光の経路内に配置される。加えて、レンズ要素1532は、導波管構造1003 2と眼210との間にある。レンズ要素1532は、導波管構造1032によって眼210に出力される光の波面発散を修正する。
【0282】
レンズ要素1534は、導波管構造1034によって眼210に出力される光の波面発散を修正する。導波管構造1034からの光はまた、レンズ要素1532を通して通過することを理解されたい。したがって、導波管構造1034によって出力される光の波面発散は、レンズ要素1534およびレンズ要素1532(および導波管構造1003 2が屈折力を有する場合、導波管構造1032)の両方によって修正される。いくつかの実施形態では、レンズ要素1532、1534および導波管構造1032は、導波管構造1034から出力される光のための特定の正味屈折力を提供する。
【0283】
図示される実施形態は、2つの異なるレベルの波面発散を提供し、1つは、導波管構造1032から出力される光のためのものであって、2つ目は、導波管構造1034によって出力される光のためのものである。結果として、仮想オブジェクトは、異なるレベルの波面発散に対応する、2つの異なる深度平面上に設置され得る。いくつかの実施形態では、付加的レベルの波面発散、したがって、付加的深度平面が、付加的レンズ要素を付加的導波管構造と眼210との間に伴って、付加的導波管構造をレンズ要素1532と眼210との間に追加することによって提供されてもよい。さらなるレベルの波面発散は、さらなる導波管構造およびレンズ要素を追加することによって、同様に追加されてもよい。
【0284】
図31Bを継続して参照すると、レンズ要素1532、1534および導波管構造1032、1034は、世界のユーザビューを歪曲させ得る、正味屈折力を提供することを理解されたい。結果として、レンズ要素1542が、周囲光の屈折力および歪曲に対抗するために使用されてもよい。いくつかの実施形態では、レンズ要素1542の屈折力は、レンズ要素1532、1534および導波管構造1032、1034によって提供される集約屈折力を無効にするために設定される。いくつかの他の実施形態では、レンズ要素1542、レンズ要素1532、1534、および導波管構造1032、1034の正味屈折力は、補正レンズのためのユーザの処方箋屈折力に等しい。
【0285】
本明細書に議論されるように、発光型マイクロディスプレイは、非常に高フレームレート動作を提供し得る。実施例として、発光型マイクロディスプレイは、120Hz以上、または240Hz以上のフレームレート、またはさらにより高いフレームレートを提供することが可能であり得る。そのような発光型マイクロディスプレイの高フレームレート能力に部分的に起因して、ウェアラブルシステムは、それぞれ、画像フレームの左および右接眼レンズの適切なものへの時間同期されたルーティングとともに、ウェアラブルシステムの左および右接眼レンズの両方のために明確に異なる画像フレームを生成する、1つ以上の発光型マイクロディスプレイを具備し得る。有利なこととして、発光型マイクロディスプレイは、少なくとも、仮想コンテンツがユーザに提示されるフレームレートの倍数である、フレームレートが可能であり得る。結果として、発光型マイクロディスプレイ(または光投影システムが複数のマイクロディスプレイを利用する、1つ以上のマイクロディスプレイ)は、画像フレームが任意の個々の接眼レンズによって提示される、レートに影響を及ぼさずに、複数の接眼レンズのための画像フレームを表示し得る、十分な余剰フレームレート能力を有し得る。
【0286】
実施例として、120Hz以上のフレームレートを伴う、1つ以上のマイクロディスプレイは、左眼画像フレームを60Hzで左接眼レンズに提供する一方、また、右眼画像フレームを60Hzで右接眼レンズに提供するように構成されてもよい。マイクロディスプレイは、それぞれ、左眼および右眼画像とも称され得る、左眼および右眼画像フレームの表示を時間的にインターリーブしてもよい。実施例として、マイクロディスプレイは、左接眼レンズにルーティングされる、左眼画像フレームの生成と、右接眼レンズにルーティングされる、右眼画像フレームの生成との間で交互してもよい(例えば、時間多重化スキームにおいて)。いくつかの実施形態では、マイクロディスプレイは、他方の眼のための画像フレームを表示する前に、複数の左眼画像フレームおよび/または複数の右眼画像フレームを連続して表示してもよい。本明細書に議論されるように、いくつかの実施形態では、任意の個々の眼のための画像フレームは、ユーザのフリッカ融合閾値に対応するフレームレートに等しいまたはより高いフレームレートで、ユーザに提供される。例えば、左または右接眼レンズ毎のフレームレートは、60Hz以上、または120Hz以上であり得、結果として、光投影システム1010によって提供されるフレームレートは、いくつかの実施形態では、120Hz以上、または240Hz以上であり得る。
【0287】
ここで
図32を参照すると、1つ以上の発光型マイクロディスプレイを有する、光投影システム1010と、光を、それぞれ、左および右接眼レンズ1020Lおよび1020Rに選択的に指向するための光学ルータ3201とを伴う、ウェアラブルディスプレイシステムの実施例が、図示される。ウェアラブルディスプレイシステムは、本明細書に議論されるように、頭部搭載型ディスプレイシステムであってもよい。光投影システム1010は、左接眼レンズ1020Lおよび右接眼レンズ1020Rの両方に共通であって、画像フレームを生成するように構成される。光投影システム1010は、本明細書に開示される光投影システムのいずれかであってもよい。いくつかの実施形態では、光投影システム1010は、例えば、
図10A-14および24B-30Cを参照して本明細書に議論されるように、例えば、マイクロディスプレイ(例えば、マイクロディスプレイ1030a、1030b、1030cのうちの1つ以上のもの)、光学コンバイナ(例えば、光学コンバイナ1050)、光再指向構造(例えば、光再指向構造1080a、1080b)、光コリメートアレイ(例えば、光コリメートアレイ1300)投影光学系(例えば、投影光学系1070)等のうちの1つ以上のものを含んでもよい。
【0288】
図32を継続して参照すると、時間多重化された左および右眼画像が、光投影システム1010によって生成され(例えば、1つ以上の発光型マイクロディスプレイを使用して)、画像光1032LRは、次いで、光学ルータ3201を使用して逆多重化され、これは、左眼画像のための画像光1032Lを左接眼レンズ1020Lに、右眼画像のための画像光1032Rを右接眼レンズ1020Rにルーティングする。制御電子機器3200は、光投影システム1010および光学ルータ3201に動作可能に結合され、それらと通信してもよい。制御電子機器3200は、光投影システム1010および/または光学ルータ3201からの情報(例えば、その動作ステータスに関する)を受信するように構成されてもよく、光投影システム1010および/または光学ルータ3201の動作を制御するためのコマンドを送信してもよい。いくつかの実施形態では、制御電子機器3200は、光学ルータ3201の動作を光投影システム1010の動作に同期させるように構成されてもよい(例えば、光学ルータ3201が、光投影システム1010からの時間多重化された画像の多重化を適切に解除するように)。制御電子機器3200は、プログラミング(例えば、非一過性媒体内に記憶される命令)を含み、1つ以上の発光型マイクロディスプレイによる画像の生成を調整するステップと、光学ルータ3201の動作を調整するステップとを含む、本明細書に開示される種々のアクションを実施してもよい。いくつかの実施形態では、制御電子機器3200は、ローカル処理およびデータモジュール140(
図9E)および/または遠隔処理モジュール150および遠隔データリポジトリ160の一部であってもよい。
【0289】
左および右接眼レンズ1020Lおよび1020Rは、本参照明細書に開示される接眼レンズ1020(例えば、
図11A、12-23C、29-30A、および30C-31Bおよび関連説明)に類似し、文字「L」および「R」は、接眼レンズを、それぞれ、左および右接眼レンズとして指定することを理解されたい。例えば、左および右接眼レンズ1020Lおよび1020Rは、本明細書に議論されるように、単一導波管またはスタック内に配列される1つ以上の導波管を含んでもよい。いくつかの実施形態では、左および右接眼レンズ1020Lおよび1020Rは、本明細書に議論されるように、内部結合光学要素と、外部結合光学要素とを含んでもよい。左および右接眼レンズ1020Lおよび1020Rが、導波管のスタックを含む、いくつかの実施形態では、異なる導波管の内部結合光学要素は、本明細書に議論されるように、重複し、光投影システム1010からの光の同一経路内にあってもよい。いくつかの実施形態では、少なくともいくつかの内部結合光学要素は、本明細書に議論されるように、1つの導波管の内部結合光学要素に衝打する光が下層導波管の内部結合光学要素上に衝突しないように、側方に変位されてもよい(接眼レンズの主要表面の上下図に見られるように)。いくつかの実施形態では、1つ以上の光学フィルタが、本明細書に議論されるように、導波管のスタックの導波管の間に配置され、導波管内の非意図的に内部結合される光の存在を低減させてもよい。
【0290】
光学ルータ3201は、光が、光学ルータ3201の外側の光学構造と異なるように相互作用し、光を異なる接眼レンズの中に再指向するように、異なる経路に沿って(例えば、異なる方向に)画像光を出力することによって、および/または光の1つ以上の性質を変化させることによって、画像光を異なる(例えば、左および右)接眼レンズにルーティングするように構成されてもよい。いくつかの実施形態では、光投影システム1010は、それぞれ、異なる偏光状態を伴う、左眼および右眼画像フレームを形成する、画像光を提供してもよい。光学ルータ3201は、次いで、偏光感知光学構造を利用して、(特定の接眼レンズの画像フレームのための)特定の偏光の光を所望の方向におよび/または所望の導波管の中に選択的に再指向してもよい。
【0291】
いくつかの実施形態では、光学ルータ3201は、画像光1032LRを光投影システム1010から受け取り、第1の偏光状態を有する、画像光1032LRの一部を出力する一方、第2の偏光状態の光を遮断するように構成される、偏光器を含む。したがって、光投影システム1010からの光(複数の偏光状態を有する)は、事実上、単一偏光状態を有する、偏光に変換される。光学ルータ3201はさらに、偏光を受け取り、偏光状態の変化を伴わずに、受け取られた光を透過させるか、または偏光の偏光状態を変化させるかのいずれかを行う、選択的にアクティブ化される偏光回転子を含んでもよい。いくつかの実施形態では、光学ルータ3201は、第1の偏光状態の画像光を第1の接眼レンズ(例えば、左接眼レンズ1020L)に向かって指向し、実質的に、第2の偏光の光が反射されずに通過することを可能にする、偏光感知反射体(例えば、偏光ビームスプリッタ)を含んでもよい。第2の偏光状態の光は、次いで、第2の接眼レンズ(例えば、右接眼レンズ1020R)に到達し得る。いくつかの実施形態では、光学ルータ3201は、第2の反射体を含んでもよく、これは、偏光感知性である場合とそうではない場合があり、
図33に関して下記に議論されるように、第2の偏光状態の光を第2の接眼レンズ(例えば、右接眼レンズ1020R)に向かって反射させる。
【0292】
いくつかの実施形態では、光学ルータ3201は、単に、共通光経路に沿って、異なる偏光状態の画像光1032LRを出力するように構成されてもよい。接眼レンズ1020Lおよび1020Rは、画像光1032LRを受け取る、光学構造(例えば、内部結合光学要素)を含んでもよい。異なる接眼レンズは、内部結合光学要素を含み、異なる偏光状態を内部結合してもよい。したがって、その中に画像光が内部結合される、接眼レンズは、
図34に関して下記に議論されるように、入射光の偏光状態に依存し得る。
【0293】
ここで
図33を参照すると、異なる経路に沿って、それぞれ、左および右接眼レンズ1020Lおよび1020Rに画像を選択的に指向するための偏光感知反射性構造3306を含む、光学ルータ3201を有する、ウェアラブルディスプレイシステムの実施例が、図示される。そこに記載されるように、光投影システム1010が、画像光1032LRを生成し、これは、所与の画像フレームが、左眼または右眼画像フレームであるかどうかに基づいて選択的に偏光される、左および右眼画像フレームを形成する。偏光された後、左眼画像フレームのための画像光1032Lは、偏光感知反射性構造3306によって、所与の画像フレームのための選択的に適用される偏光に応じて、左接眼レンズ1020Lにルーティングされ、右眼画像フレームのための画像光1032Rは、右接眼レンズ1020Rにルーティングされる。いくつかの実施形態では、偏光感知反射性構造3306は、偏光ビームスプリッタ(PBS)である。偏光感知特徴は、特定の偏光を有する光に選択的に作用する一方、異なる偏光を有する光に実質的に透明であることを理解されたい。
【0294】
いくつかの実施形態では、偏光器3302は、偏光器3302を通して通過する、光を線形に偏光させ得、好ましくは、偏光回転子3304と整合される、偏光配向を提供する(例えば、偏光回転子3304の性能が、特定の配向に伴って偏光された光を受け取るとき、改良され得るように)。
【0295】
偏光回転子3304は、第1の状態では、偏光回転子3304が、第1の偏光状態を有する光を出力するように、第2の状態では、偏光回転子3304が、第1の偏光状態に直交する、第2の偏光状態を有する、光を出力するように、選択的に電気的に切替可能であってもよい。制御電子機器3200は、偏光回転子3304の状態を制御してもよく、偏光回転子3304の状態と光投影システム1010からの左または右眼画像のための画像光1032LRの出力を同期させてもよい。いくつかの実施形態では、偏光回転子3304は、第1の状態で構成されるとき、通過する偏光の偏光を保存するように構成されてもよく、第2の状態で構成されるとき、通過する偏光の偏光を90°回転させるように構成されてもよい。いくつかの実施形態では、偏光回転子3304は、その第1および第2の状態の両方において、光の偏光方向を回転させてもよい。偏光回転子3304は、実施例としては、切替可能な半波長板(HWP)を含んでもよい。
【0296】
偏光回転子3304は、光投影システム1010によって生成された画像のフレームレートに合致するために十分に高レートで、状態を変化させるように構成される。いくつかの実施形態では、偏光回転子3304は、ユーザの片眼に提供される画像のフレームレートの少なくとも2倍のレートで、状態を変化させるように構成される。加えて、偏光回転子3304は、第1の状態にある間、光投影システム1010によって生成された左眼画像のための光が、偏光回転子3304を通して通過するように、かつ第2の状態にある間、光投影システム1010によって生成された右眼画像のための光が、偏光回転子3304を通して通過するように、光投影システム1010と同期して、第1の状態と第2の状態との間で切り替えるように構成されてもよい。このように、偏光回転子3304は、左接眼レンズ1020Lのための画像のための画像光1032Lを所望のフレームレート(30Hz、45Hz、60Hz、または60Hzを上回り得る)で出力し、また、右接眼レンズ1020Rのための画像のための画像光1032Rを所望のフレームレート(30Hz、45Hz、60Hz、または60Hzを上回り得る)で出力してもよい。
【0297】
偏光回転子3304を通して通過後、偏光は、例えば、画像光の偏光に応じて、偏光された画像光1032Lまたは1032Rを左接眼レンズ1020Lまたは右接眼レンズ1020Rのいずれかに再指向する、光学コンポーネントを通して伝搬する。実施例として、偏光回転子3304からの偏光は、偏光感知反射性構造3306(例えば、偏光ビームスプリッタ)を通して通過されてもよく、これは、第1の偏光(例えば、左眼画像と関連付けられる光1032Lのために偏光器3302および回転子3304によって付与される、偏光)を有する光を反射させ、それによって、光を左接眼レンズ1020Lのための1つ以上の内部結合光学要素1022Lに向かって再指向する、偏光感知ミラー3308を含んでもよい。偏光感知ミラー3308は、第2の偏光を有する光が、ミラー3310に通過し、これが、ひいては、光を右接眼レンズ1020Rと関連付けられる1つ以上の内部結合光学要素1022Rに向かって再指向するように、第2の偏光(例えば、右眼画像と関連付けられる光1032Rのために回転子3304によって付与される、直交偏光)を有する光に透明であってもよい。ミラー3310は、単に、全ての偏光の光を反射させる、反射性表面であってもよいことを理解されたい。いくつかの実施形態では、ミラー3310は、偏光感知ミラーであってもよく、これは、右接眼レンズ1020Rに内部結合される光の選択性を改良する利点を有し得る。いくつかの実施形態では、内部結合光学要素1022Lおよび1022Rは、偏光感知性であってもよく、これはまた、望ましくない偏光の光の非意図的内部結合を防止する利点を有し得る(例えば、他の接眼レンズのために意図される画像フレームのための光の内部結合を防止するため)。いくつかの実施形態では、内部結合光学要素1022L、1022Rは、回折格子であってもよい。いくつかの実施形態では、内部結合光学要素1022L、1022Rは、メタ表面および/または液晶格子であってもよい。
【0298】
したがって、光投影システム1010によって生成される、明確に異なる左および右眼画像は、光学ルータ3201からの光を対応する接眼レンズに出力することによって、対応する左および右眼接眼レンズ1020L、1020Rに提供されてもよい。
【0299】
ここで
図34を参照すると、いくつかの実施形態では、光学ルータ3201は、単に、光1032LRの偏光を修正し、共通光学経路に沿って、光1032Lおよび1032Rを出力するように構成されてもよい。光1032Lおよび1032Rは、下流偏光感知内部結合光学要素が、所望の偏光の光を対応する左または右接眼レンズの中に選択的に内部結合することを可能にする、異なる偏光状態を有する。
図34は、入射画像光の偏光状態を切り替える、光学ルータ3201と、異なる偏光状態の光を選択的に内部結合する、内部結合光学要素1022L’、1022R’を有する、左および右接眼レンズ1020L、1020Rとを伴う、ウェアラブルディスプレイシステムの実施例を図示する。いくつかの実施形態では、内部結合光学要素1022L’、1022R’は、回折格子であってもよい。いくつかの実施形態では、内部結合光学要素1022L’、1022R’は、メタ表面および/または液晶格子であってもよい。
【0300】
図示されるように、左および右接眼レンズ1020L、1020Rの一部は、左眼内部結合光学要素1022Lが、右眼内部結合光学要素1022Rと実質的に整合され、内部結合光学要素の両方が、光学ルータ3201によって出力された光の同一光学経路内にあるように、重複してもよい。実施例として、内部結合光学要素1022Lおよび1022Rは、ユーザの左眼と右眼との間の中間点を中心として位置してもよい、または所望に応じて、中間点の片側に向かって位置してもよい。
【0301】
少なくとも1つの接眼レンズ(例えば、左または右接眼レンズ)の内部結合光学要素は、偏光感知性であってもよい。好ましくは、最も上流の内部結合光学要素(光学ルータ3201からの光を受け取る、内部結合光学要素の第1のもの)は、偏光感知性である。
図34は、左眼内部結合光学要素1022Lが、偏光感知性であって、右眼内部結合光学要素1022Rの「上流」にある、実施例を図示する。そのような実施形態では、左眼内部結合光学要素1022Lは、第1の偏光を有する光を左接眼レンズ1020Lの中に内部結合するように構成されてもよく、第2の直交偏光を有する光を右眼内部結合光学要素1022Rに通過させるように構成されてもよい。右眼内部結合光学要素1022Rは、次いで、残りの光(例えば、要素1022Lによって内部結合されない光)を右接眼レンズ1020Rの中に内部結合するように構成されてもよい。
【0302】
いくつかの実施形態では、左眼内部結合光学要素1022Lは、第1の偏光状態の全ての画像光1032Lを、本画像光1032Lの一部が、右眼内部結合光学要素1022Rに伝搬し得るように、内部結合しなくてもよい。その結果、本画像光1032Lの右接眼レンズ1020Rの中への内部結合を防止することが有利であり得る。いくつかの実施形態では、右眼内部結合光学要素1022Rはまた、要素1022Rが、第1の偏光状態を有する光1022Lを除外して、第2の偏光状態を有する光1022Rを選択的に内部結合するように、偏光感知性であってもよい。いくつかの実施形態では、クリーンアップ偏光器と称され得る、付加的偏光器が、左眼内部結合光学要素1022Lと右眼内部結合光学要素1022Rとの間に位置付けられることができる。クリーンアップ偏光器は、光1032Lの右眼内部結合光学要素1022Rへの伝搬を防止することによって、クロストークを防止することに役立ち得る。
【0303】
図32-34を参照すると、光学ルータ3201は、光1032LRを左眼内部結合光学要素1022Lまたは右眼内部結合光学要素1022Rの適切なものに指向する、機械的に切替可能なデバイスであってもよいことを理解されたい。例えば、光学ルータ3201は、光を右または左接眼レンズ1022L、1022Rのうちの一方に反射させる、第1の配向と、光を他方の右または左接眼レンズ1022L、1022Rに反射させる、第2の配向とをとるように構成される、ミラーであってもよい。いくつかの実施形態では、ミラーは、MEMSミラーである。いくつかの実施形態では、ミラーは、ミラーを移動させる、例えば、回転させるアクチュエータに取り付けられる、ミラーを有する、走査式ミラーである。
【0304】
本明細書に議論されるように、マイクロディスプレイ等の発光型ディスプレイは、比較的に高明度を提供し得、これは、光投影システム1010からの偏光と関連付けられる、任意の損失を補償し、偏光ビームスプリッタ3310等の偏光感知コンポーネントおよび要素1022L’および/または1022R’等の偏光感知内部結合光学要素を通して偏光を通過させ得る。加えて、切替可能な偏光を使用して、左および右画像をルーティングする、システムでは、信頼性および性能は、そのような偏光ベースのシステムが、機械的システムほど機械的擾乱に敏感ではあり得ないため、いくつかの機械的光学ルーティングシステムより改良され得る。
【0305】
ここで
図11A-34を参照すると、ウェアラブルディスプレイシステムのいずれかの図示されるコンポーネントは、フレーム80(
図9E)上に支持されてもよいことを理解されたい。したがって、これらのコンポーネントはそれぞれ、ウェアラブルディスプレイシステムの一部として、ユーザの頭部90上に事実上搭載されてもよい。
【0306】
本発明の種々の例示的実施形態が、本明細書に説明される。非限定的な意味で、これらの実施例が参照される。それらは、本発明のより広くて適用可能な側面を例証するように提供される。種々の変更が、説明される本発明に行われてもよく、本発明の真の精神および範囲から逸脱することなく、同等物が置換されてもよい。
【0307】
例えば、有利なこととして、複数の深度平面を横断して画像を提供する、拡張現実ディスプレイとともに利用されるが、本明細書に開示される仮想コンテンツはまた、画像を単一深度平面上に提供する、システムによって表示されてもよい。
【0308】
加えて、特定の状況、材料、物質組成、プロセス、プロセス行為、またはステップを本発明の目的、精神、または範囲に適合させるように、多くの修正が行われてもよい。さらに、当業者によって理解されるように、本明細書で説明および例証される個々の変形例はそれぞれ、本発明の範囲または精神から逸脱することなく、他のいくつかの実施形態のうちのいずれかの特徴から容易に分離され、またはそれらと組み合わせられ得る、離散コンポーネントおよび特徴を有する。全てのそのような修正は、本開示と関連付けられる請求項の範囲内にあることを意図している。
【0309】
本発明は、本主題のデバイスを使用して実施され得る方法を含む。本方法は、そのような好適なデバイスを提供する行為を含んでもよい。そのような提供は、エンドユーザによって実施されてもよい。換言すると、「提供する」行為は、単に、ユーザが、本主題の方法において必要なデバイスを取得する、それにアクセスする、それに接近する、それを位置付ける、それを設定する、それをアクティブ化する、それに電源を入れる、または別様にそれを提供するように作用することを要求する。本明細書に列挙される方法は、論理的に可能な列挙されたイベントの任意の順番およびイベントの列挙された順序で行なわれてもよい。
【0310】
加えて、本明細書に説明される、および/または図に描写されるプロセス、方法、およびアルゴリズムはそれぞれ、具体的かつ特定のコンピュータ命令を実行するように構成される、1つ以上の物理的コンピューティングシステム、ハードウェアコンピュータプロセッサ、特定用途向け回路、および/または電子ハードウェアによって実行される、コードモジュールにおいて具現化され、それによって完全または部分的に自動化され得ることを理解されたい。例えば、コンピューティングシステムは、具体的コンピュータ命令とともにプログラムされた汎用コンピュータ(例えば、サーバ)または専用コンピュータ、専用回路等を含むことができる。コードモジュールは、実行可能プログラムにコンパイルおよびリンクされ得る、動的リンクライブラリ内にインストールされ得る、またはインタープリタ型プログラミング言語において書き込まれ得る。いくつかの実装では、特定の動作および方法が、所与の機能に特有の回路によって実施され得る。
【0311】
さらに、本開示の機能性のある実装は、十分に数学的、コンピュータ的、または技術的に複雑であるため、(適切な特殊化された実行可能命令を利用する)特定用途向けハードウェアまたは1つ以上の物理的コンピューティングデバイスは、例えば、関与する計算の量または複雑性に起因して、または結果を実質的にリアルタイムで提供するために、機能性を実施する必要があり得る。例えば、ビデオは、多くのフレームを含み、各フレームは、数百万のピクセルを有し得、具体的にプログラムされたコンピュータハードウェアは、商業的に妥当な時間量において所望の画像処理タスクまたは用途を提供するようにビデオデータを処理する必要がある。
【0312】
コードモジュールまたは任意のタイプのデータは、ハードドライブ、ソリッドステートメモリ、ランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、光学ディスク、揮発性または不揮発性記憶装置、同一物の組み合わせ、および/または同等物を含む、物理的コンピュータ記憶装置等の任意のタイプの非一過性コンピュータ可読媒体上に記憶され得る。いくつかの実施形態では、非一過性コンピュータ可読媒体は、ローカル処理およびデータモジュール(140)、遠隔処理モジュール(150)、および遠隔データリポジトリ(160)のうちの1つ以上のものの一部であってもよい。本方法およびモジュール(またはデータ)はまた、無線ベースおよび有線/ケーブルベースの媒体を含む、種々のコンピュータ可読伝送媒体上で生成されたデータ信号として(例えば、搬送波または他のアナログまたはデジタル伝搬信号の一部として)伝送され得、種々の形態(例えば、単一または多重化アナログ信号の一部として、または複数の離散デジタルパケットまたはフレームとして)をとり得る。開示されるプロセスまたはプロセスステップの結果は、任意のタイプの非一過性有形コンピュータ記憶装置内に持続的または別様に記憶され得る、またはコンピュータ可読伝送媒体を介して通信され得る。
【0313】
本明細書に説明される、および/または添付される図に描写される任意のプロセス、ブロック、状態、ステップ、または機能性は、プロセスにおいて具体的機能(例えば、論理または算術)またはステップを実装するための1つ以上の実行可能命令を含む、コードモジュール、セグメント、またはコードの一部を潜在的に表すものとして理解されたい。種々のプロセス、ブロック、状態、ステップ、または機能性は、組み合わせられる、再配列される、本明細書に提供される例証的実施例に追加される、そこから削除される、修正される、または別様にそこから変更されてもよい。いくつかの実施形態では、付加的または異なるコンピューティングシステムまたはコードモジュールが、本明細書に説明される機能性のいくつかまたは全てを実施し得る。本明細書に説明される方法およびプロセスはまた、いずれの特定のシーケンスにも限定されず、それに関連するブロック、ステップ、または状態は、適切である他のシーケンスで、例えば、連続して、並行して、またはある他の様式で実施されることができる。タスクまたはイベントが、開示される例示的実施形態に追加される、またはそこから除去され得る。さらに、本明細書で説明される実施形態における種々のシステムコンポーネントの分離は、例証目的のためであり、全ての実施形態においてそのような分離を要求するものとして理解されるべきではない。説明されるプログラムコンポーネント、方法、およびシステムは、概して、単一のコンピュータ製品においてともに統合される、または複数のコンピュータ製品にパッケージ化され得ることを理解されたい。
【0314】
本発明の例示的側面が、材料選択および製造に関する詳細とともに、上記に記載されている。本発明の他の詳細に関して、これらは、上記で参照された特許および刊行物に関連して理解され、概して、当業者によって公知である、または理解され得る。同じことが、一般または論理的に採用されるような付加的な行為の観点から、本発明の方法ベースの実施形態に関しても当てはまり得る。
【0315】
加えて、本発明は、随意に、種々の特徴を組み込む、いくつかの実施例を参照して説明されているが、本発明は、本発明の各変形例に関して検討されるように説明および指示されるものに限定されるものではない。種々の変更が、説明される本発明に行われてもよく、均等物(本明細書に列挙されるか、またはある程度の簡潔目的のために含まれていないかにかかわらず)が、本発明の真の精神および範囲から逸脱することなく代用されてもよい。加えて、値の範囲が提供される場合、その範囲の上限と下限との間の全ての介在値および任意の他の述べられた値または述べられた範囲内の介在値が、本発明内に包含されるものと理解されたい。
【0316】
また、説明される本発明の変形例の任意の随意の特徴は、独立して、または本明細書に説明される特徴のうちの任意の1つ以上のものと組み合わせて、記載および請求され得ることが検討される。単数形項目の言及は、存在する複数の同一項目が存在する可能性を含む。より具体的には、本明細書および本明細書に関連付けられる請求項で使用されるように、単数形「a」、「an」、「said」、および「the」は、別様に具体的に述べられない限り、複数の言及を含む。換言すると、冠詞の使用は、上記の説明および本開示と関連付けられる請求項における本主題の項目のうちの「少なくとも1つ」を可能にする。さらに、そのような請求項は、任意の随意の要素を除外するように起草され得ることに留意されたい。したがって、本文言は、請求項の要素の列挙と関連する「単に」、「のみ」、および同等物等の排他的専門用語の使用、または「消極的」限定の使用のための先行詞としての役割を果たすことが意図される。そのような排他的用語を使用することなく、本開示と関連付けられる請求項での「~を備える」という用語は、所与の数の要素がそのような請求項で列挙されるか、または特徴の追加をそのような請求項に記載される要素の性質の変換として見なすことができるかにかかわらず、任意の付加的な要素を含むことを可能にするものとする。
【0317】
故に、請求項は、本明細書に示される実施形態に限定されることを意図されず、本明細書に開示される本開示、原理、および新規の特徴と一貫する最も広い範囲を与えられるべきである。